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Introduction

The macroscopic constitutive response of heterogeneous materials is inherited from the microstructural organisation and material behaviour of the underlying constituents. The presence of preferred microstructural directions, together with a high elastic contrast between the constituents and the presence of dissipative phenomena, results in a highly anisotropic elastic and dissipative response at the macroscopic scale, multiplying the material parameters to be identified for the complete description of the constitutive behaviour.

An efficient formulation and identification strategy for such complex material models requires two steps:

1. an appropriate formulation of the macroscale model, which accounts for microstructural information related for instance to material orientations and symmetries, and which reduces as much as possible the number of independent material parameters to be identified; 2. the use of appropriate scale transition procedures in order to quantitatively transfer the information from the micro-to the macroscale.

Concerning the viscoelastic behaviour of unidirectional, fibres-reinforced, polymer matrix composites, a transversely isotropic material model can be postulated due to material symmetries, and the underlying mechanism for viscoelasticity is essentially related to the deviatoric behaviour of the matrix. Many literature works introduce different relaxation functions for each of the five parameters of transversely isotropic elasticity [START_REF] Zocher | A three-dimensional finite element formulation for thermoviscoelastic orthotropic media[END_REF][START_REF] Pettermann | An anisotropic linear thermoviscoelastic constitutive law[END_REF][START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF], thus multiplying the number of macroscale material parameters to be identified, which are not necessarily independent in nature, as they are related to a single microscopic dissipation mechanism in the matrix. In a recent work [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], on the other hand, the authors have reformulated the transversely isotropic constitutive law based on a Cartan decomposition of the stress and strain tensors, related to the O(2) group of orthogonal transformations which models the transverse isotropy. This constitutes the first step of the strategy discussed above, as it enabled the authors to derive elastic parameters which are more closely related to the underlying constituents, and to postulate the need of a relaxation function for only two of the five new elastic parameters.

The second step is carried out in this paper. After briefly recalling in Section 2 the model proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], analytical and numerical homogenisation procedures are developed and implemented in Sections 3 and 4, in order to challenge the model hypotheses, as well as to quantitatively identify its elastic and viscoelastic parameters. In particular, a periodic homogenisation strategy enabling us to control the macroscopic strain or macroscopic stress for each component was developed, thus different loading paths could be used for identification and validation of the proposed model. Conclusions and perspectives of this work are given in Section 5. Specific bibliographic elements concerning the different homogenisation techniques are given directly in the pertinent Sections.

Transversely isotropic viscoelastic model

The transversely isotropic viscoelastic model is briefly recalled in this Section. For further details on its geometrical foundations, the reader is referred to [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF].

Cartan decomposition and definition of a new set of elastic parameters

The key advantage of the model is the choice of a new set of five elementary elastic parameters. These are different from the elastic parameters usually defined for transversely isotropic materials, but they can be more easily related to the material parameters of the underlying constituents, the fibres and the matrix.

Let us consider a unidirectional composite whose fibres are oriented in the direction of the unit vector v f , and whose distribution in the orthogonal (v 2 ,v 3 ) plane results into a transversely isotropic homogenised behaviour. The new set of five independent elastic parameters is defined by formulating the free energy in terms of a well chosen invariant basis, originating directly from an irreductible Cartan decomposition of the second order stress and strain tensors. This irreductible decomposition is related to the O(2) group of orthogonal transformations of the transverse isotropy plane (v 2 ,v 3 ) which models the transverse isotropy, thus it has a clear origin from both the geometrical and physical point of view.

The Cartan decomposition of the stress (and strain) tensors reads:

σ = s f M f + s h M h + s f s + s d , (1) 
where

s f s = s f 2 M f 2 + s f 3 M f 3 , s d = s d M d + s 23 M 23 , (2) 
and M • are unit second order tensors, defined as:

M f = v f ⊗ v f , M h = 1 √ 2 (v 2 ⊗ v 2 + v 3 ⊗ v 3 ) , M f 2 = 1 √ 2 (v f ⊗ v 2 + v 2 ⊗ v f ) , M f 3 = 1 √ 2 (v f ⊗ v 3 + v 3 ⊗ v f ) , M d = 1 √ 2 (v 2 ⊗ v 2 -v 3 ⊗ v 3 ) , M 23 = 1 √ 2 (v 2 ⊗ v 3 + v 3 ⊗ v 2 ) . (3) 
The decomposition defined above enables us to define the following minimal integrity basis

I 1 := s f , J 1 := s h , I 2 := ||s f s || 2 , J 2 := ||s d || 2 , I 3 := tr s fs 2 s d , (4) 
which can be used to formulate the quadratic Gibbs free energy

ω = 1 2 S F I 2 1 + S F H I 1 J 1 + 1 2 S H J 2 1 + S F S I 2 + S D J 2 . (5) 
Derivation of the free energy with respect to the stress yields the elastic constitutive relations:

e f e h = S F S F H S F H S H s f s h , e f s = S F S s f s , e d = S D s d . (6) 
which involve the newly defined set of five elastic parameters (compliances) (S F ,S F H ,S H ,S F S ,S D ).

To clarify the significance of this decomposition, as well as the link between the elastic compliances (S F ,S F H ,S H ,S F S ,S D ) and the usual set of parameters considered for transverse isotropy (E l , E t , ν lt , µ l , µ t ), the decomposition and the constitutive relations are written here in the case where material directions (v f , v 2 , v 3 ) are aligned with the standard basis vectors in the Cartesian coordinates (e 1 , e 2 , e 3 ). The elements of the stress (and strain) decompositions read:

s f = σ 11 , s f 2 = √ 2σ 12 , s f 3 = √ 2σ 13 , s h = √ 2 2 (σ 22 + σ 33 ) , s d = √ 2 2 (σ 22 -σ 33 ) , s 23 = √ 2σ 23 . (7) 
The terms s f and s f s correspond to the normal and the shear stress components related to the fibres direction, respectively. The terms s h and s d , on the other hand, involve the stress components contained in the transverse isotropy plane (v 2 ,v 3 ), which are decomposed in their hydrostatic (s h ) and deviatoric (s d ) parts.

The compliance tensor S in the material basis can then be written as follows, in terms of the new set of elastic parameters:

        ε 11 ε 22 ε 33 √ 2ε 23 √ 2ε 13 √ 2ε 12         =          S F S F H √ 2 S F H √ 2 0 0 0 S F H √ 2 S H +S D 2 S H -S D 2 0 0 0 S F H √ 2 S H -S D 2 
S H +S D 2 0 0 0 0 0 0 S D 0 0 0 0 0 0 S F S 0 0 0 0 0 0 S F S                  σ 11 σ 22 σ 33 √ 2σ 23 √ 2σ 13 √ 2σ 12         , (8) 
and of the usual set of elastic parameters for transverse isotropy:

S =          1 E l -ν lt E l -ν lt E l 0 0 0 -ν lt E l 1 Et -νtt Et 0 0 0 -ν lt E l -νtt Et 1 Et 0 0 0 0 0 0 1 2µt 0 0 0 0 0 0 1 2µ l 0 0 0 0 0 0 1 2µ l          . ( 9 
)
This leads to the following relations between the usual and the new set of parameters:

E l = 1 S F , E t = 2 S H + S D , ν lt = - S F H √ 2S F , (10) 
µ l = 1 2S F S , µ t = 1 2S D . (11) 
The Young's modulus in the fibres direction E l , as well as the two shear moduli µ l and µ t , are each related to a single one of the newly defined elastic compliances. The Poisson's coefficient ν lt is naturally related to the ratio between two compliances. Finally, the Young's modulus in the transversely isotropic plane E t is related to both the hydrostatic and deviatoric compliances in the transverse isotropy plane.

Assumptions and description of the viscoelastic behaviour

The viscoelastic properties of the transversely isotropic composite are inherited from the viscoelastic properties of its constituents. For typical carbon or glass fibres, polymer matrix composites, the fibres can be considered elastic in the service temperature range, while the matrix displays a viscoelastic behaviour affecting essentially its deviatoric response. Furthermore, the fibres are much stiffer than the matrix (with a Young's modulus generally one or two orders of magnitude higher) and constitute about half of the composite's volume fraction.

In this context, the terms S F , S F H and S H are supposed to be mostly controlled by the fibres' response, as well as by the matrix bulk response. For this reason, they were considered to be elastic in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], and viscoelastic properties were only attributed to the terms S F S and S D , which are mostly controlled by the deviatoric response of the matrix. It is interesting to notice that, through the second of Eqs. [START_REF] Hill | Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour[END_REF], the transverse modulus E t displays a viscoelastic response which is inherited from the one associated to the transverse shear modulus.

Similar arguments were given in [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF] to derive a transversely isotropic viscoelastic model based on a different set of invariants (from [START_REF] Spencer | Continuum theory of the mechanics of fibre-reinforced composites[END_REF]), and thus of elastic parameters. In that case, a different decomposition of the stress and strain tensors, which does not enable to separate the viscoelastic responses of the longitudinal and transverse shear moduli, was introduced after the formulation of the constitutive laws, thus yielding coupled constitutive equations which do not easily enable the derivation of the complete consistent tangent behaviour.

Once the affected elastic constants are determined, a form of the viscoelastic response can be defined to complete the model. In [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], a generalised Maxwell model formulated in terms of the hereditary integral was used, as it is particularly convenient to apply in a displacement-based finite element setting and it can be accurately and efficiently integrated using a recursive formulation [START_REF] Taylor | Thermomechanical analysis of viscoelastic solids[END_REF]. The time-dependent stresses s f s and s d thus read

s • (t) = t 0 Γ • (t -t ) de • (t ) dt dt , (12) 
where the relaxation functions are written based on the Maxwell elements

Γ • = 1 S • lt + N j=1 1 S • j exp - t -t (τ • ) j , (13) 
where 1

S• lt

is the long-term stiffness, while 1

S• j

and (τ • ) j are the stiffness and the relaxation time associated to the j-th Maxwell element. The instantaneous stiffness thus reads

1 S • inst = 1 S • lt + N j=1 1 S • j . (14) 

Limits of the model and further work

The model proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF] and recalled in this Section was successfully used for the prediction of the development of residual stresses during composites manufacturing. In particular, the stresses distribution predicted by [START_REF] Chapman | Prediction of process-induced residual stresses in thermoplastic composites[END_REF] for a plate under heterogeneous cooling conditions was correctly reproduced in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], and a qualitative agreement with experimental results was obtained in [START_REF] Gennaro | Modeling and simulation of the initial state of a thermoplastic matrix composite structure manufactured by laser assisted tape placement[END_REF] for tubes manufactured by Laser Assisted Tape Placement. In this last work, some questions arose on the validity of the assumptions introduced to describe the viscoelastic behaviour directly at the scale of the composite.

Indeed, the viscoelastic response of the composite was supposed to affect only the S F S and S D elastic compliances, and a generalised Maxwell model, with potentially different relaxation functions, was assumed for each of the two terms. In this work, the limits associated to these assumptions are discussed by comparing the transversely isotropic model presented above to analytical and numerical homogenisation results.

Analytical homogenisation

In the 1960s, seminal work on the elastic moduli of heterogeneous materials derived analytical solutions for unidirectional fibre-reinforced composites based on a cylindrical model [START_REF] Hill | Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour[END_REF][START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF]. These solutions were later extended to viscoelasticity in [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF]. The extension to viscoelasticity is based on a correspondence principle, stating that the same formulas derived for the elastic moduli can be applied, simply replacing the elastic moduli of each phase with their complex moduli. Although they are based on some simplifying assumptions, these early results enable us to obtain a first estimate of the elastic and viscoelastic response of the transversely isotropic composite, and in particular to evaluate the role of the matrix shear modulus in determining the different elastic parameters defined in the proposed model [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF].

Let us consider the expressions of the elastic parameters, as given in [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF]:

µ l = µ m 1 + v f µm µ f -µm + vm 2 , ( 15 
)
µ t = µ m 1 + αv 3 f (ρ + β m v f ) -3v f v 2 m β 2 m 1 + αv 3 f (ρ -v f ) -3v f v 2 m β 2 m , (16) 
E l = E m v m + E f v f + 4v m v f (ν f -ν m ) 2 vm k f + v f km + 1 µm , (17) 
ν lt = ν m v m + ν f v f + v m v f (ν f -ν m ) 1 km -1 k f vm k f + v f km + 1 µm , (18) 
k t = k m 1 + v f km k f -km + kmvm km+µm . ( 19 
)
where k i and µ i are the bulk and shear moduli of the phases (fibres and matrix), supposed isotropic, v i are the volume fractions, and the following relations are defined

α = β m -γβ f 1 + γβ f , ρ = γ + β m γ -1 , β i = 1 3 -4ν i , γ = µ f µ m , (20) 
E i = 9k i µ i 3k i + µ i , ν i = 3k i -2µ i 2 (3k i + µ i ) . ( 21 
)
It should be noted that the expression given in Eq. ( 16), as well as the definition of the dimensionless parameter α given in Eq. ( 20), are slightly different from those reported in [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF], but coherent with the results given by the same author in his previous work [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF], as well as in the review paper [START_REF] Hashin | Analysis of composite materials -a survey[END_REF]. Indeed, there appears to be a mistake in the expression for µ t given in [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF]. Among the five analytical expressions Eqs. ( 15) to [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF], four are exact results from the cylindrical model, while µ t constitutes an upper bound. These results can be extended to transversely isotropic constituents, but this is not detailed further here. Among the five independent parameters selected in [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF] to describe the transversely isotropic behavior, E l , ν lt , µ l and µ t , are classical elastic constants already discussed in this paper, while the transverse bulk modulus k t was considered instead of the transverse Young's modulus E t . For a plane strain state ε [START_REF] Pettermann | An anisotropic linear thermoviscoelastic constitutive law[END_REF][START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF] 

in the (v 2 , v 3 ) plane (ε i1 = 0), the definition of k t reads σ (2,3) = k t tr(ε (2,3) )I + 2µ t dev(ε (2,3) ). ( 22 
)
This choice is quite interesting, as this set of parameters is closely related to the new set considered in the model proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], although with a less clear geometrical justification. Indeed, the plane strain bulk modulus can be written in terms of the newly defined elastic compliances as follows:

k t = S F 2 (S F S H -S 2 F H ) . (23) 
While the transverse Young's modulus depends on both the hydrostatic and deviatoric compliances in the transverse isotropy plane (v 2 , v 3 ) (see Eq. ( 10)), the transverse bulk modulus depends on the hydrostatic term only, as well as to the terms S F and S F H because of Poisson's effect. Both sets of parameters (from [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF] and [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF]) can therefore be separated into two subgroups:

• the terms mainly controlled by the matrix shear response, namely (S F S , S D ), or (µ l , µ t );

• the terms mainly controlled by the fibres' response, as well as by the matrix bulk response, namely (S F , S F H , S H ), or (E l , ν lt , k t ).

Analysing the role of µ m in Eqs. ( 15) to [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF] enables us to evaluate how these two sets of parameters are affected by a change in the matrix deviatoric response. Considering Eqs. ( 15) and ( 16), it is easy to realise that the transverse and in-plane shear moduli of the composite, µ l and µ t , show a direct dependence on the matrix shear modulus µ m , and in particular they tend to zero as the matrix shear modulus tends to zero. On the other hand, the three remaining parameters (E l , ν lt , k t ), obtained from Eqs. ( 17) to [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF], are indeed affected by µ m , but their dependence is less significant, and they will retain a nonzero value even for µ m → 0. Inverting Eqs. ( 10) and (23), we can show that the same behaviour applies to (S F , S F H , S H ) defined in the proposed model. To summarise, the two subgroups of parameters defined above have different behaviour as µ m → 0:

• (S F S , S D ) → ∞, or (µ l , µ t ) → 0 (no remaining stiffness);

• (S F , S F H , S H ), or (E l , ν lt , k t ), retain a finite, non zero value (finite remaining stiffness).

This fundamental difference between the two subgroups confirms the pertinence of choosing this set of parameters in order to make a clear link with the underlying constituents' response. For this reason, it is the first justification for the assumption proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF].

Since µ m actually appears in Eqs. ( 17) to [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF], considering that these parameters are not affected by the matrix shear modulus, as it was done in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], is indeed an approximation, whose pertinence depends on the values of the moduli and volume fractions of the two phases. The closed form solutions provided by [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF] enable us to evaluate the error introduced by this approximation.

In typical polymer matrix composites, which are considered in this study, the two constituents have similar volume fractions, the fibres are one or two orders of magnitude stiffer than the matrix, and the polymer matrix behaviour is generally moderately compressible, with a Poisson's coefficient of the order of 0.4. In this case, the approximation proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF] is quite pertinent. Figure 1 depicts the normalised composite parameters obtained from Eqs. ( 15)-( 19) and ( 10), ( 11), (23) as a function of decreasing normalised matrix shear modulus, for typical constituents' properties. The direct influence of µ m on the first two parameters is immediately noticeable, while the three remaining parameters display much smaller variations: in particular, the response in the fibres' direction, S F , is nearly constant, while the hydrostatic response in the plane of transverse isotropy, 1/S H , varies by 10% maximum and the coupling term, |1/S F H |, by 20%.

It is interesting to notice that neglecting the variations of (S F , S F H , S H ) with respect to the matrix shear modulus still enables us to represent the transverse modulus E t of the composite with considerable accuracy. This can be observed in Figure 2, where the transverse modulus computed using Figure 2: Composite transverse modulus E t computed using Eq. ( 10) vs Eq. ( 24), for decreasing normalised matrix shear modulus (initial set of parameters for the constituents from [START_REF] Mallick | Fiber-Reinforced Composites -Materials, Manufacturing and Design[END_REF]:

E f = 248 GPa, ν f = 0.2, E m = 3240 MPa, ν m = 0.4, v f = 0.5).
Eq. ( 10) is compared to the one obtained by the following expression:

E t = 2 S H,ini + S D , (24) 
where S H,ini is maintained at its initial value, and only S D is considered to be affected by the evolution of the matrix shear modulus µ m . As it can be seen from Figure 2, the two results are nearly superposed. This confirms the assumption, made in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], that the strong influence of the matrix shear modulus µ m on the transverse modulus of the composite, E t , is essentially related to the deviatoric response in the transverse isotropy plane.

Numerical homogenisation

A more general strategy to predict the macroscopic response of a heterogeneous material with general microstructure and local material properties is numerical homogenisation. In this type of strategy, the local, or microscopic, fields on a Representative Volume Element (RVE) with opportunely defined boundary conditions are determined by numerical simulation, and then averaged to obtain the macroscopic response to be attributed to the heterogeneous material. Numerical identification of the macroscopic behaviour in the case of linear elastic response of the constituents is straightforward, and it requires to simulate three (in 2D) or six (in 3D) boundary value problems with static boundary conditions corresponding to elementary macroscopic loadings [START_REF] Suquet | Homogenization Techniques for Composite Media[END_REF].

Different approaches have been proposed in the literature to extend this framework to linear viscoelastic problems. A first strategy is to make use of the Laplace transform [START_REF] Suquet | Homogenization Techniques for Composite Media[END_REF]. Reformulated in the Laplace domain, the viscoelastic boundary value problem transforms into a fictitious elastic problem, where the local elastic properties depend on both the elastic and viscous properties of the constituents. The main difficulty in this type of approaches is related to the inverse Laplace transform, required to obtain the macroscopic viscoelastic response in the time domain. The inverse transform does not generally exist in closed form, and issues on both the computational cost and the accuracy of the results arise from its numerical computation. For this reason, other strategies have been developed directly in the time domain. For instance, in [START_REF] Lahellec | Effective behavior of linear viscoelastic composites: a time-integration approach[END_REF], the homogenised version of the microscopic evolution problem was reformulated as a variational problem with appropriate internal variables to keep track of the viscous strain in each phase. On the other hand, in [START_REF] Tran | A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials[END_REF], relaxation tests were simulated on the RVE with constant elementary macroscopic strains in order to numerically identify the macroscopic relaxation tensor, which is then interpolated between computed time steps and extrapolated to times not covered by the numerical simulation.

Here, the aim is to assess the pertinence of the macroscopic model proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], as well as to provide a strategy to identify a limited number of elastic and viscous model parameters starting from the microstructure and the behaviour of the constituents. For this reason, the microscopic numerical simulations on the RVE are used as a "virtual testing machine", which is able to simulate different loading histories on the RVE and provide "virtual experimental data" for material identification and validation. To this end, the periodic homogenisation method is generalised as in [START_REF] Michel | Effective properties of composite materials with periodic microstructure: a computational approach[END_REF] in order to impose a general loading path in terms of macroscopic strains and/or macroscopic stresses. This enables us to simulate relaxation (constant strain) and creep (constant stress) tests, as well as any general loading path on the RVE: some of these tests are used in the following to identify the elastic parameters of the macroscopic viscoelastic model [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], and the others enable us to compare the responses of the RVE and of the macroscopic model in order to validate the pertinence of the proposed ply-scale model.

Periodic homogenisation for general macroscopic loading paths

In numerical homogenisation, microscale simulations are carried out on a Representative Volume Element (RVE), which includes either an elementary unit cell (for a periodic microstructure) or a statistically representative example of the microstructure (for a random microstructure).

The equations to be satisfied on the RVE domain Ω are the following:

ε = 1 2 ∇u + ∇ T u , (25) 
σ = σ (ε) , ( 26 
) ∇ • σ = 0. ( 27 
)
where u, ε and σ are the local displacement, strain and stress fields in RVE.

As for the boundary conditions, three different approaches are usually adopted:

• Kinematic Uniform Boundary Conditions (KUBC), with kinematic conditions along the whole boundary ∂Ω of the form:

u = E 0 • OM, ( 28 
)
where OM is a point belonging to the boundary and E 0 is a symmetric second order tensor;

• Static Uniform Boundary Conditions (SUBC), with static conditions along the whole boundary ∂Ω of the form:

σ • n = Σ 0 • n. ( 29 
)
where n is the normal to the boundary and Σ 0 is a symmetric second order tensor;

• Periodic Boundary Conditions (PBC), with mixed conditions along the whole boundary ∂Ω of the form:

u N -u M = E 0 • (ON -OM) , (30) 
where ON, OM are points in periodic positions along the boundary and E 0 is a symmetric second order tensor.

Averaging the local stress and strain fields over the RVE yields the macroscopic stress and strain fields, which represent the macroscopic response of the heterogeneous material:

Σ = σ = 1 V V σdΩ, E = ε = 1 V V εdΩ. ( 31 
)
The relation between the macroscopic stress and strain enables us to identify the homogenised material behaviour. The macroscopic and microscopic behaviours are equivalent in the sense of internal work:

σ : ε = Σ : E (32)
Among the three possible choices of boundary conditions for the RVE, the KUBC conditions yield an upper bound for the homogenised stiffness, while the SUBC yield a lower bound. The PBC, on the other hand, yield intermediate results which are generally a more accurate representation of the macroscopic stiffness of the material. This last type of boundary conditions is therefore retained in the following.

It can be shown that the second order tensor E 0 (respectively, Σ 0 ) intervening in the definition of the boundary conditions corresponds directly to the macroscopic strain (respectively, stress) in the RVE. For this reason, the macroscopic strain E is usually imposed in KUBC and PBC, whereas the macroscopic stress Σ is usually imposed in SUBC. In each case, the dual quantity is determined as post-processing of the numerical simulation.

For linear elastic materials, imposing the macroscopic strain or the macroscopic stress is strictly equivalent, as the material response does not depend on time or on the loading path. In cases when the constituents response depends on time, such as viscoelasticity, or on the loading path, such as plasticity, it becomes crucial to be able to simulate more general loading histories, and fully imposing the macroscopic strain or the macroscopic stress is no longer equivalent. In the following, an Abaqus implementation of the PBC, enabling us to easily control either the macroscopic strain or the macroscopic stress independently for each component, is discussed. The principle is inspired by [START_REF] Michel | Effective properties of composite materials with periodic microstructure: a computational approach[END_REF].

PBC for general loading paths

The mixed condition given in Eq. (30) explicitly contains the macroscopic strain tensor E 0 = E, thus the most obvious way of imposing such condition is to control the macroscopic strain during the simulation, and to deduce the macroscopic stress Σ from averaging of the simulated stress field as in Eq. (31). In order to achieve macroscopic stress control, that is to impose Σ during the simulation, the macroscopic strain E 0 needs to become an additional unknown of the problem, to be computed at the same time as the homogenisation procedure. In [START_REF] Michel | Effective properties of composite materials with periodic microstructure: a computational approach[END_REF], the additional degrees of freedom of E 0 are carried by an additional node, the macroscopic node, which is common to all of the elements of the mesh. This implementation requires intrusive modifications of the element formulation, which are not convenient to carry out in a commercial finite element code. For this reason, a different strategy was adopted here, based on the classical implementation of PBC in a commercial finite element code such as Abaqus.

The implementation of periodic boundary conditions in a commercial code such as Abaqus is usually carried out as follows. For each couple of faces of normal n along the RVE boundary, a dummy node P n is created, and for each node pair (M n , N n ) in periodic positions belonging to those faces, linear constraint equations of the following form are formulated:

u Nn -u Mn = u Pn . (33) 
The displacement jumps between each couple of nodes (M n , N n ) belonging to the faces of normal n is therefore related to the displacement of the same dummy node P n . The macroscopic strain E for the RVE can therefore be obtained by averaging the local strains over the RVE, or directly as

E • n = u Pn L n , (34) 
where L n is the length of the RVE along the n direction. Since all of the linear constraints for the faces of normal n are associated to the same dummy node P n , the overall stiffness associated to this node corresponds to the macroscopic stiffness of the RVE along n. For this reason, the macroscopic stress Σ can be obtained by averaging the local stresses over the RVE, or directly as

Σ • n = F Pn S n , (35) 
where F Pn is the reaction force associated to the dummy node P n and S n is the area of each RVE face of normal n. Based on this discussion, it is easy to see how the macroscopic strain or the macroscopic stress can be imposed as boundary conditions for the simulation. Indeed, the macroscopic strain tensor E can be imposed by fixing the displacement values for the dummy nodes, whereas the macroscopic stress tensor Σ can be imposed by fixing the forces, instead of the displacements, on the dummy nodes. Imposing some displacement and some force components on the dummy nodes enables us to simulate any general loading path, such as a uniaxial, strain controlled test in which E ii = Ē(t) and Σ ij = 0 for the remaining components.

In this work, a Python script was developed to automatically detect the nodes in periodic positions and define the linear constraint equations, as well as the boundary conditions associated to the different simulated loading paths.

Numerical homogenisation results

Representative Volume Element (RVE) description

The numerical simulations were carried out on the Representative Volume Element (RVE) depicted in Figure 3. It is extracted from a unidirectional fibres composite with a regular hexagonal arrangement, in order to ensure the symmetries required to obtain a transversely isotropic behaviour. The volume is meshed with 3D linear elements with an average element size of The constituents are considered as isotropic and have the following material properties:

• fibres: E f = 248 GPa, ν f = 0.2, elastic behaviour;

• matrix: E m = 3.24 GPa, ν m = 0.4, the bulk response is elastic while the shear response is viscoelastic.

The fibres volume fraction is v f = 0.5. The viscoelastic response in shear of the matrix is modelled with a Generalized Maxwell model, native in Abaqus. In particular, a simple GM model with a single Maxwell element was considered here, with a characteristic time τ = 10 s and a long term modulus equal to 50% of the instantaneous modulus. More complex descriptions of the matrix viscoelastic response can of course be assumed without any practical complication, except the need of a specific procedure for the identification of the transversely isotropic model, as it is discussed in Section 4.2.3.

Linear elastic tests: identification of the instantaneous homogenised

behaviour Before considering a viscoelastic behaviour for the matrix, the two constituents are supposed linear elastic in order to obtain elastic parameters to be compared with the analytical homogenisation results given in Section 3.

The results obtained from the two procedures are given in Table 1 in terms of classical elastic parameters, Hashin parameters, as well as the parameters of the present model. As it can be seen, the numerical and analytical homogenisation results agree remarkably well for most parameters, in particular those who are related to the analytical results Eqs. ( 15), ( 17), ( 18) and [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF], which are exact results from the cylindrical model. The numerical results for µ t = 1/(2S D ) and E t , on the other hand, are lower than the analytical ones, which are upper bounds, as it is stated in [START_REF] Hashin | Complex moduli of viscoelastic composites -II. Fiber reinforced materials[END_REF]. Identical numerical results (within numerical round off error) were obtained through computation of the average stiffness matrix (with imposed macroscopic strain E) and of the average compliance matrix (with imposed macroscopic stress Σ).

Relaxation tests: identification of the homogenised viscoelastic behaviour

As it was discussed at the beginning of Section 4, different strategies have been proposed in the literature to identify a homogenised behaviour from microscopic simulations over the RVE. Here, the RVE is used as a "virtual testing machine" which enables us to obtain the relation between macroscopic stresses and strains for different loading histories, and to use them to identify a simple model for the homogenised composite behaviour.

A Generalised Maxwell model was postulated in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], where the form of the relaxation functions for the different parameters is given in Eq. ( 13). The relaxation functions for the RVE can easily be obtained through virtual relaxation tests with constant macroscopic strain Ē. Indeed, we have [START_REF] Tran | A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials[END_REF]:

E(t) = H(t) Ē (36) 
where H(t) is the Heaviside function. This leads to the following result:

Σ(t) = t 0 Γ (t -t ) dE (t ) dt dt = t 0 Γ (t -t ) δ(t ) Ēdt = Γ(t) Ē ( 37 
)
where δ(t) is the Dirac delta function. Imposing different loading histories with elementary constant macroscopic strains (E ij = 1 for each component in turn, while the other components are zero) enables to recover the full relaxation tensor, as in [START_REF] Tran | A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials[END_REF]. An alternative to directly access the relaxation behaviour of specific model parameters is to impose appropriate loading paths, such as E 22 = Ē22 and Σ ij = 0 for the other components in order to directly access the transverse Young's modulus E t . It should be noticed that, while relaxation tests are the most direct way to identify a Generalised Maxwell (GM) model, creep tests with constant imposed stress would be the best choice if a Generalised Kelvin-Voigt (GKV) model was postulated at the macroscopic scale, as it would enable us to directly identify the creep compliance function.

The relaxation behaviour of the parameters of the model proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], obtained through numerical relaxation tests on the RVE, is depicted in Figure 4. Here, the matrix behaviour was modelled with a GM model having a single Maxwell element, with characteristic time τ = 10 s and a long term modulus equal to 50% of the instantaneous modulus, in order to obtain a relatively simple macroscopic relaxation response. As it was expected from the analytical homogenisation results, the parameters S F S and S D have a significant relaxation response, rather similar to the one of the pure matrix. S F is nearly not affected, as it is controlled by the fibres' behaviour, while S H and S F H have a limited relaxation response.

This data can be used to identify a viscoelastic model for the homogenised parameters. In [START_REF] Suquet | Homogenization Techniques for Composite Media[END_REF], it was shown that the homogenised response does not generally have the same kernel shape as its constituents, therefore in principle a general kernel description should be adopted at the macroscale. To achieve an approximated, simple representation of such a general kernel in terms of a GM model with a limited number of elements, identification procedures such as the ones discussed in [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF] can be used, but this is beyond the scope of the present work.

Here, the extremely simple viscoelastic behaviour assumed for the matrix A final test case, designed in order to test the limits of the proposed model, is depicted in Figure 6. In this test, denoted as "θ = 90 • constrained" in the Figure, the fibres are at a 90 • angle with respect to the loading direction e x and aligned with the e y direction, and a constant macroscopic stress Σxx = 100 MPa is imposed, while the macroscopic strain components Ēyy = Ēzz = 0 are kept constant. Thanks to this constraint, the terms S H and S F H play a significant role on the RVE response: as the viscoelastic response of these two terms was neglected in the proposed model, a discrepancy is expected between the RVE results and those of the proposed model. Indeed, this is observed in Figure 6, where the transversely free 90 • creep test previously reported in Figure 5 is also depicted for a more direct comparison. As it can be observed, the discrepancy between the RVE response and the homogenised model response remains rather low; if necessary, it could be diminished further by attributing a viscoelastic behaviour to the S H and S F H terms of the proposed model, but this would result in a more complex model with more parameters to be identified.

Conclusions and perspectives

Analytical and numerical homogenisation approaches were developed and implemented in this paper, in order to identify and validate the new viscoelastic constitutive model for unidirectional, fibre-reinforced, polymer matrix composites proposed in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF]. The hypotheses introduced in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF] were shown to be an simplification of the full homogenised behaviour, nevertheless the simplified macroscopic model yielded a very good approximation of the full RVE behaviour under the different loading conditions tested in this paper.

Perspectives of this work include the implementation of a complete identification procedure for the macroscopic viscoelastic response, as in [START_REF] Jalocha | Revisiting the identification of generalized maxwell models from experimental results[END_REF], starting from homogenisation data, as well as the investigation of the usefulness of the Cartan decomposition and of the general PBC strategy for the modelling and identification of other types of dissipative material behaviours, such as plasticity and damage.
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 1 Figure 1: Normalised composite parameters for decreasing normalised matrix shear modulus (initial set of parameters for the constituents from [14]: E f = 248 GPa, ν f = 0.2, E m = 3.24 GPa, ν m = 0.4, v f = 0.5).
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 3 Figure 3: Microstructure and finite element mesh for the Representative Volume Element (RVE).
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 4 Figure 4: Normalised composite parameters as a function of time, obtained through numerical relaxation tests on the RVE.
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 5 Figure 5: Strain as a function of time, obtained through numerical uniaxial creep tests on the RVE and on the transversely isotropic model.

Figure 6 :

 6 Figure 6: Strain as a function of time, obtained through free and constrained numerical creep tests at 90 • on the RVE and on the transversely isotropic model.

Table 1 :

 1 Comparison between analytical and numerical homogenisation results for linear elastic constituents (E f = 248 GPa, ν f = 0.2, E m = 3.24 GPa, ν m = 0.4, v f = 0, .5) µm, taking care of having the same nodes positions in opposite faces, in order to ensure a one-to-one pairing of the nodes for Eq. (33).

	Parameter	units Analytical Numerical
	E l = 1/S F	GPa	125.72	125.56
	E t	GPa	12.917	10.385
	ν lt	-	0.29119	0.29128
	µ l = 1/(2S F S ) GPa	3.373	3.376
	µ t = 1/(2S D ) GPa	4.445	3.330
	k t	GPa	12.200	12.189
	1/S F H	GPa	-305.291	-304.810
	1/S H	GPa	23.622	23.594
	0.3			
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enabled us to use a simplified identification procedure. A simple GM with a single Maxwell element was assumed for S F S and S D , the instantaneous and long term moduli were identified from the first and last values of the relaxation tests, and a linear regression was used to identify the relaxation times. In order to test the pertinence of the simplifications made in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], the relaxation behaviour of the parameters S F , S H and S F H was neglected. The resulting viscoelastic model parameters are the following

• for 1/S D :

Creep tests: validation of the homogenised viscoelastic model

Once the instantaneous and the viscoelastic parameters of the homogenised model have been identified, the transversely isotropic model can be validated against the RVE response for different loading paths. Here, uniaxial creep tests where the loading is applied at different angles with respect to the fibres' direction were chosen as validation tests, inspired by [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF]. As it can be seen in [START_REF] Nedjar | A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices[END_REF][START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF], different loading angles enable us to highlight the contribution of different parameters of the transversely isotropic model, and thus to evaluate the pertinence of the approximation adopted in [START_REF] Gennaro | A new mechanism-based temperature-dependent viscoelastic model for unidirectional polymer matrix composites based on cartan decomposition[END_REF] by considering the viscoelastic relaxation of the S F S and S D parameters only.

Creep tests on the RVE were simulated using the numerical periodic homogenisation discussed in Section 4.1 with a constant imposed macroscopic stress Σ = Σe x ⊗ e x , where e x • v f = cos θ and Σ = 100 MPa. Creep tests on the transversely isotropic model were simulated by imposing the same loading paths on a single material point, whose constitutive behaviour is described by the model discussed in Section 2. The results of the two computations for different values of θ are depicted in Figure 5. As it can be seen, the results are remarkably close, and they show very small discrepancies for large angles (θ = 60 • , 90 • ), which are the tests in which the influence of the bulk modulus is most visible.