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Automatic Verbal Depiction of a Brick Assembly for a Robot Instructing Humans

Verbal and nonverbal communication skills are essential for human-robot interaction, in particular when the agents are involved in a shared task. We address the specific situation where the robot is the only agent knowing about both the plan and the goal of the task, and has to instruct the human partners. The case study is a brick assembly. We here describe a multilayered verbal depictor whose semantic, syntactic, and lexical settings have been collected and evaluated via crowdsourcing. One crowdsourced experiment involves a robot-instructed pick-and-place task. We show that implicitly referring to achieved subgoals (stairs, pillars, etc) increases the performance of human partners.

Introduction

Task-oriented interactions between systems and humans, in order to achieve a common goal, are present in many applications. For instance, receiving directions via GPS is a task-oriented communication with the instructions being delivered visually and verbally [START_REF] Belvin | Development of the HRL route navigation dialogue system[END_REF]. Similarly, robots have been used to give directions [START_REF] Bohus | Directions robot: in-the-wild experiences and lessons learned[END_REF], describe its route experience [START_REF] Rosenthal | Verbalization: Narration of autonomous robot experience[END_REF][START_REF] Vittorio Perera | Dynamic generation and refinement of robot verbalization[END_REF] or instruct students in a tutorial class [START_REF] Gomez | Qualitative assessment of an immersive teleoperation environment for collaborative professional activities in a" beaming" experiment[END_REF]. In the later work (see Figure 1), a robot helps two participants to perform a jigsaw assembly task using verbal and non-verbal communication.

Figure 1: Face-to-face interaction on a Jigsaw reassembly task with an Icub robot (right) acting as the instructor for two students (left). From [START_REF] Gomez | Qualitative assessment of an immersive teleoperation environment for collaborative professional activities in a" beaming" experiment[END_REF].

The rise of social robots endowed with verbal, co-verbal and non-verbal communication capabilities, now raises the question from the robotic point of view. How a robot and a human can communicate to achieve a common goal and share plans, involving manipulating objects in their common working space?

In this paper, we study this problem by focusing on verbal communication. Indeed, a verbal description of how the task is to be done is a more effective way of communicating objectives than non-verbal descriptions: not only does it improve task performance but also gives rise to more compliance and better mutual adaptation (see [START_REF] Nikolaidis | Planning with verbal communication for human-robot collaboration[END_REF]. More precisely, we propose to explore the impact of the verbalization strategy in an extreme case where the robot is the only agent that knows the plan and the goal, and human coworkers are awaiting instructions planned by the robot to achieve the goal. Note that we limit here the number of human partners to one: the opportunistic allocation of tasks between available coworkers will be addressed in a following paper.

When using verbalisation as the main means of communication, an important question is to see how the style, i.e. saying the same thing in different ways, quoted as the verbalization space by [START_REF] Karlgren | Stylistic Experiments for Information Retrieval[END_REF], in which the instructions are being delivered, can affect the execution of the task, especially when communicating complex tasks.

In this context, our contribution is threefold:

Styles: we test four different styles on an assembly task (see Figure 2) that offers a large verbalization space, i.e. many stylistic dimensions including choice of geometric relations between bricks, of syntactic and lexical descriptions, etc. One primary style parameter is the use of context. By context, we mean implicit referencing to elements of the environment that go beyond the previous and current actions. We compare two AI-generated styles This paper is organized as follows: section 2 contains related work for task-oriented communication and plan description; section 3 describes the overall architecture of our control model, with a closer look on the planner and the verbalizer with its different layers (fig. 6); section (4) introduces the three experiments used to parametrize the verbalizer; section 4.1 presents the results of the first two web-based experiments used for data collection and assessment of human verbalizations; finally, section 4.2 presents the setup and results of the last web-based experiment used to validate the efficiency of the set of rules in our automatic verbalizer and to compare it with human verbalization.

Related work

Verbal communication of plans has been used in a large variety of Human-Robot Interaction (HRI) scenarios. They mainly vary along four main cate-gories: (1) task type (e.g. commentating, instructing, navigation). (2) perception capabilities (auditive/visual sensors). ( 3) style and its use in sentence generation (e.g. information tagging). ( 4) role (e.g. receptionist, instructor, navigator).

Most HRI tasks require some form of communication. It could be used to describe what happens in the scene: [START_REF] Veloso | A team of humanoid game commentators[END_REF] presented Rocco, a fully automated RoboCup [START_REF] Kitano | Robocup: The robot world cup initiative[END_REF] commentator, aiming at generating real-time summaries of the actions in the games [START_REF] Voelz | Rocco: A robocup soccer commentator system[END_REF]. For navigation tasks, [START_REF] Rosenthal | Verbalization: Narration of autonomous robot experience[END_REF][START_REF] Vittorio Perera | Dynamic generation and refinement of robot verbalization[END_REF] presented algorithms for generating routing narratives with varying parametrized styles. [START_REF] Belvin | Development of the HRL route navigation dialogue system[END_REF] presented a real-time spoken language navigation system able to respond to natural conversational queries. The queries were mainly regarding details of a step in the route. However, responses were generated using simple pre-written "holly sentences" filled with variables extracted from the plan. For assembly tasks, the 'SHRDLU' system [START_REF] Winograd | Shrdlu: A system for dialog[END_REF][START_REF] Winograd | Five lectures on artificial intelligence[END_REF] is quite inspiring: the task focused on manipulating blocks with a robot arm on the basis of the user's textual input. The system translates the user's input into procedures to move the blocks and question the scene. Our work exchanges the roles of the agents: our robot instructs human agents verbally. [START_REF] Fiore | On planning and task achievement modalities for human-robot collaboration[END_REF] also shares some similarities with our work, i.e. verbalising the actions in the plan for the user as well as explaining which actions should be executed and in what order. However, the task they chose does not require the same level of precision -and their focus was not on verbalization. Finally, the Robert system [START_REF] Behnke | New developments for robert -assisting novice users even better in DIY projects[END_REF], installed on Bosch equipment, provides its user with a step-by-step instruction (on a screen using text, images, voice and videos) detailing how to complete a given DIY project successfully. Similarly to us, the sequence of instructions (plan) is obtained using HTN planning. They also added a new feature to perceive the scene using connected tools (sensors), enabling the system to check whether the user is performing the project's steps correctly and to provide help in the case of failure. [START_REF] Zhu | Autonomous narration of humanoid robot kitchen task experience[END_REF] proposed a verbalization system able to generate explanations for navigation as well as grasping and manipulation tasks (pick-andplace kitchen scenario). They used pre-written sentence templates. [START_REF] Canal | Task plan verbalizations with causal justifications[END_REF] proposed Plan-Verb, a domain and planner-independent method for the verbalization of task plans based on semantic information tagging of the actions and predicates in the domain (for both PDDL and RDDL). Several works showed the importance of having different styles [START_REF] Virgínia | What is my style? using stylistic features of portuguese web texts to classify web pages according to users' needs[END_REF]Miehle et al., 2018a;[START_REF] Macfadden | Males and females scan maps similarly, but give directions differently[END_REF]. In line with [START_REF] Voelz | Rocco: A robocup soccer commentator system[END_REF]; [START_REF] Veloso | A team of humanoid game commentators[END_REF], our verbal generation framework relies on crowdsourcing experiments, for both defining the different styles of the instructions and assessing their efficiency.

Verbal communication has been used in a large variety of situations. [START_REF] Gockley | Designing robots for long-term social interaction[END_REF] proposed a robot receptionist with pre-written storylines. Their focus was on long-term interactions with a robot that exhibits personality and character. For their robot bartender, [START_REF] Petrick | Planning for social interaction in a robot bartender domain[END_REF] construct plans with tasks, dialogue, and social actions. They advocate for a stronger link between planning and language.

3 The architecture Figure 3 shows the overall architecture of our HRI system monitoring the interaction between the agents (humans and robot) and the working environment. While no single architecture has proven to be best for all applications, layered architectures have proven to be increasingly popular, due to their flexibility and ability to operate at multiple levels of abstraction simultaneously [START_REF] Kortenkamp | Robotic Systems Architectures and Programming[END_REF]. Similarly to what can be found in [START_REF] Alami | An architecture for autonomy[END_REF], our robot's architecture can be divided into three levels: perception, decision making and action. With different robots, capabilities change and so do their perception/action modalities. This architecture allows us to add/remove Figure 4: An example where the task is to build a LEGO ™ arch -Hierarchical decomposition in fig. 5 modalities, in order to cope with both industrial (e.g. no gaze/head) and humanoid robots (e.g. no grippers).

The perception level is in charge of capturing the current state of the environment as well as the agents acting on it, e.g. analyzing verbal requests coming from the human agent and all changes happening in the working environment. The action level takes charge of all actions towards the environment (e.g robot moving around to pick an object) and agents (e.g. coordinated gaze, speech and pointing to attract partners' attention). The controller is responsible for orchestrating action/perception loops according to the current objective given on request by the planner. In particular, the controller is in charge of monitoring the addressee's activity when processing the robot's instruction, such as on-line attention, task comprehension and correct execution. This includes the chunking or repetition of the instruction if necessary.

It all starts with the controller that receives a "go" signal and requests the first action from the planner. Provided the requested information, the controller (via the action modules) either applies the action or instructs the human agent to apply it. The environment is modified, the controller perceives the updated current state, and the loop continues until the planner deems this task as completed.

The following subsections detail the key modules for the generation of verbal instructions: the planner and the verbalizer.

Planner

The planner takes as input a domain that contains a logical description of the actions, an initial state obtained from the perception layer and an objective and outputs a sequence of actions (the plan/solution) in order to reach the objective. The initial state and the objective are described as a set of logical propositions.

The first advantage of using a planner is (a) being able to scale to other types of tasks (e.g. assembly, real-world applications, navigation, etc.), by adapting the domain and the problem to the new task; (b) allowing the robot to autonomously adapt and replan when observed actions differ from expected ones. Our planner has two important properties: it performs Hierarchical Planning [START_REF] Pellier | PDDL4J: a planning domain description library for java[END_REF], i.e. the goal task can be divided into subtasks, and Partial order planning, i.e. some actions can be executed in parallel as long as they satisfy applicability constraints. Hierarchical Planning allows us to specify subtasks, name them, and use these names in the verbalizer. Partial ordering means that the sequence of actions does not need to be fixed and some actions, while satisfying applicability constraints, can be executed in a different order. Partial ordering eases task description and offers more flexibility while executing the plan or verbalizing it. For instance, building an arch can be decomposed into building two pillars and a beam. Each pillar can be constructed by different workers but the beam assembly requires pillars to be finished.

This provides a plan that is almost identical to how a human would plan to build an arch. Thus, enabling the planning system to provide context about the plan as well as some explanation regarding its decisions in the plan. One might argue that context may not be crucial when giving an instruction. However, when dealing with a complex/important task, the addition of hierarchical decomposition into subtasks can help with assigning separate subtasks to different users, or giving a clear explanation to why we are applying a certain action. Our focus for using hierarchy is to give context to help remove ambiguity from instructions, and reduce the number of errors and needed time to complete the task.

The planner takes into account other constraints such as visibility (cannot perform an action if it prohibits you from seeing a later action), applicability (cannot apply what is inapplicable in a given state), and hierarchical constraints (best to finish all actions of a subtask before starting another one).

The planner module also provides vital contextual information for the completion of that action.

Verbalizer

We communicate the instructions via verbalization.

The aforementioned verbalizer has multiple parameterized layers (see Figure 6), each shaping one aspect of the message:

The depictor takes charge of all geometric aspects which are vital for completing an action (e.g. 3D position, orientation). This is where business ontologies are hosted (presently, what characterizes a pillar, steps, windows, walls, etc) The semantic generator focuses on the context, which is in our case giving a hierarchical explanation of where and why we are applying a certain action (e.g. "To finish the red tower"). The syntactic generator focuses on the syntax (i.e. arranging the words and phrases to create well-formed sentences). The realizer generates the final sentence from the syntactic tree The text-to-speech system converts the text into audiovisual signals

Style parameters condition each layer so that to be able to adapt communication to the task difficulty and workers' competence, with the objective to improve performance -e.g fewer mistakes and faster completion time of the instruction (Cassell and [START_REF] Cassell | Negotiated collusion: Modeling social language and its relationship effects in intelligent agents. User modeling and user-adapted interaction[END_REF][START_REF] Forbes-Riley | Responding to student uncertainty during computer tutoring: An experimental evaluation[END_REF][START_REF] Stenchikova | Measuring adaptation between dialogs[END_REF][START_REF] Reitter | Computational modelling of structural priming in dialogue[END_REF][START_REF] Mairesse | Towards personality-based user adaptation: psychologically informed stylistic language generation[END_REF]Miehle et al., 2018b)as well as cognitive load -e.g better recall of the task and processing capacity.

This multi-layer architecture was chosen in order to separate the different skills of the verbalizer, therefore constraining interventions when extending its capabilities. We first discuss each layer separately and spot differences between car navigation vs. assembly task.

Depictor

The depictor handles here agents, objects, and predicates that populate a particular domain: here 3D arrangement of objects. It contains all necessary properties of these elements such as dimension, relative position, color of objects, sets of objects (e.g. pillars, arches, etc), their relations as well as possible actions (e.g. placing, straddling, sticking, etc). Relative positioning is used by the verbalizer to describe where to place what, how and why, e.g. relative to the closest LEGO ™ object, or the last placed one. It can be relative to more than one object, or even a structure. For example: it enables the generation of "To finish the south pillar, put another red brick on top of the previous red brick".

It takes as input the action to be performed, the observed scene, as well as the goal, i.e. hierarchical information of the desired final arrangement; and outputs all possible spatial descriptions of the next action using metric, directional and topological operators as seen in [START_REF] Borrmann | Topological analysis of 3d building models using a spatial query language[END_REF]. For instance, "Stick a blue cube, East of the previous cube then move it two slots to the South". Stick translates to the blue cube touching the previous one which is a topological operator. East of is a directional operator. Lastly, move it two slots to the South is a metric putting forward the distance between the two objects in a certain direction.

Semantic generator

Given all possible actions delivered by the depictor, this layer filters/prioritizes the output list of the depictor according to the style policy: efficiency of the description in terms of positioning (e.g. use of centering, alignments), displacements, use of context, etc. When a chosen description is potentially ambiguous, it may add to the corresponding action extra verification(s).

The context is coming from the hierarchy of the tasks delivered by the planner (e.g. Without context: "Put a red brick on top of the previous red brick". vs. with context: "To finish the red tower, put a red brick on top of the previous red brick"). Note that it is also responsible for adding information on the addressee (who should perform the task) and the task (e.g. explaining what it consists of and why this action is triggered, e.g. "Let's start building an arch starting with its north pile!).

Syntactic generator

The syntactic generator is responsible for building a syntactic tree with proper verbal constructs, names of objects, etc Finally, in this layer, we have the option of either including all of the information (verbose) or omitting any redundant information as well as including pronominalisation, all while preserving the unicity of the task. (concise). Verbose: "Put a red brick on top of the previous red brick". Concise: "Put another one on top". The verbose option is straightforward and simply includes everything there is to know about the action. When applying the concise option, in order to remove redundant information, we need to consider what was previously manipulated by the human agent (i.e. LEGO ™ type, color, orientation, task).

Realizer

It converts a syntactic tree into sentences. We used the jsRealB [START_REF] Molins | Jsrealb: A bilingual text realizer for web programming[END_REF], that can handle both English and French (fig. 7).

Text To Speech

We currently use the macOS TTS. One issue that we have encountered is problematic mispronunciations in French (in particular handling homographs, liaisons, etc). The current TTS also does not allow to change the intonation in case we decided to manipulate the style of speech (e.g. instructing an order or an astonishment), nor can we include pauses to include coordination with gesture and gaze. Future work will include the use of a different TTS which allows controlling expressivity and rhythm as well as adding emphasis on certain parts of the text.

Going back to the idea of parametrizing the module for another task, a spatial task to be precise, a navigation task for instance. Aside from the necessary updates in the domain and problem files of the planner module corresponding to the new task at hand, some changes need to occur in the first two layers of the verbalizer. The depictor would still generate the semantic depiction and the relative positions between the objects, however, we would need to introduce the newly added different types of objects from the new environment (e.g. immovable obstacles, roads, traffic lights) and actions ("turn", "cross", "look", etc) as well as some information about the role and the link between these objects. The semantic generator would have the same objective as well, however, changes might Figure 7: English and French realization using jsRealB be required to accommodate with the type of information that needs to be transmitted. As for the rest of the layers, no particular update is required since it only concerns the styling, generation and utterance of the sentence.

It is important to mention that previous work, such as [START_REF] Irmak Dogan | The impact of adding perspective-taking to spatial referencing during human-robot interaction[END_REF], have shown that including perspective-taking helps reduce time and error. However, their work also mentions that the use of 'in front' and 'behind' did generate some ambiguity and caused more time and errors when applying a task. In our work, the use of left and right could have been easily used instead of East and West since we know the user's position with respect to the environment. However, we decided to use conventional directions (i.e. North East West South) instead of using perspective taking, (1) to ensure the absence of any ambiguity and (2) since this formulation can be used to instruct multiple users having different perspectives.

The following sections include the three webbased experiments that we conducted for finding out which (depiction/verbalization parameters) combination offers the best reduction of errors to complete the assembly.

Experiments

The purpose of the first two experiments is to provide us with a ground-truth corpus of verbal descriptions and obtain the highest and lowest ranked human exemplars for giving an instruction. The third experiment introduces an assembly task in order to test the efficiency of AI-generated instructions with reference to the natural ones.

Following the spatial representation -using metric, directional and topological operators as well as using multiple types of object references (point/corner, line/axis . . . ) [START_REF] Borrmann | Topological analysis of 3d building models using a spatial query language[END_REF]) -we chose a set of elementary actions which (1) spans most of these operators and (2) allows the implicit use of the context of that action. Thus, the instructions studied in the following describe the placement of the first brick of a new structure, i.e. giving the semantic generator the possibility to refer (or not) to the just finished one.

We describe below how we use crowdsourcing to gather human descriptions of these placements (mainly to parametrize the semantic and syntactic generator) and compare the efficiency of human vs. automatic descriptions. For this, we asked subjects to actually perform the actions. We expect conditions (human vs. AI-generated utterances, effective vs. no use of context) will impact placement error or time-to-complete.

All experiments are performed in French.

Collection of ground-truth data

We collected and ranked verbal descriptions performed by human subjects in two steps:

Free descriptions provide us with a ground-truth corpus of verbal descriptions of elementary placements performed by human subjects in which they put themselves in the place of a robot instructor. Ratings of the former verbalizations were then collected by asking subjects to put themselves in the place of human partners and listen to the robot's instructions.

Scene presentation. In both sub-tasks, subjects are presented with bricks laid on a board. The brick just placed by the robot and the one to be placed by the subjects are respectively displayed with back edges vs. 50% transparency. The following video shows the screen during the experiment.

Instructions. The proposed vs ranked verbal descriptions should be unambiguous and as short as possible. Before the actual test (24 scenes), we trained the participants with three examples containing some incorrect propositions. The results are used to validate crowdsourced data. We give the participants additional instructions when describing an action, namely, the use of specific terms (e.g. cube, brick, east-west orientation, north of) and the possibility to refer to the previously laid brick or any overtly constructed structure.

Subjects. The free descriptions were performed by the authors and 10 French-speaking participants while 15 participants recruited through Prolific performed the ranking.

Analysis of free descriptions. We combined descriptions performed by the authors with the ones suggested by the 10 participants. We manually selected an average of 5 natural instructions per scene in order to ensure that there were no duplicates, mistakes or ambiguities while trying to span as closely as possible the variety of styles, in particular syntactic constructs, topological properties of objects, etc. Feature selection. Then, amongst all the sentences, we gather the following key parts which are essential or helpful for the action description: Hierarchy (Hierarchical Planning) and precedence between actions in the assembly (Short and long term recall when referencing objects/landmarks).

The different reference types being the previously placed element, a built structure (e.g. tour, bridge, staircase etc) and a part of an element: (e.g. sides, corners, section of a structure etc). Aside from the reference object, an instructed action can be decomposed using multiple sub-actions or it can contain verification (i.e. additional information for validating the executed action). We note that the topological features and types of objects that can be found in our suggested scenes are taken from [START_REF] Borrmann | Topological analysis of 3d building models using a spatial query language[END_REF].

Analysis of the ranking. Following this phase, we repeat the same experiment with the same example and test sets along with the updated set of scene descriptions. However, we only ask the participants to choose the best, among the new list of natural instructions (see video). 15 participants are recruited through Prolific. The participants have to be French native speakers. The reason behind this experiment is to check which criteria a human agent would prefer as an instruction (e.g. including, or not, a verification step). 

Results

As instructed, the participants are to choose a compact description of the action, all while being unambiguous and easy to understand. Amongst all the participants over all the scenes, 58.33% of the chosen sentences are the shortest ones. Suggesting that even with the instruction of 'choosing a compact sentence', longer sentences (usually caused by adding a verification step, or using multiple subactions) are also considered by the participants. Figure 9 compares the percentage of sentences chosen at random with the ones chosen by the participants when a certain criterion is provided. In other words, the more the participants prefer a criterion, the bigger the difference will be between both percentages for that criterion. An instruction is a combination of multiple criteria, however the results still show a difference of preference between some of them. Going from the right, we see that when the feature is provided, the use of 'Decomposition' (decomposing an instruction), 'Metric' (numerical distance), and 'Topological' (touching reference)} were mainly preferred. Then 'Previous' (mention of previously placed object), 'Structure' (mention of context and structures), and 'Directional' (3D directions) were also preferred but with a smaller percentage. The final two criteria {Verification, Axes} were disliked by the participants. Despite the fact that including a 'Verification' step ensures the correctness and reduces the ambiguity in an instruction, only 25% of the times do the participants choose the option with verification. This might be due to the fact that the participants are steering away from longer sentences containing this verification step. Lastly, we notice that the 'Axes' criterion corresponding to alignment is not largely preferred, which might be caused by the complexity of the positioning compared to other options. Table 2: Subjective evaluation of the participants' mental charge: 1:Strongly disagree -5:Strongly agree Questions Score 1-The task was highly demanding 3.9 2-The pace of the task was too fast 2.9 3-You managed to accomplish what you were told to do 3.23 4-You worked hard to achieve your level of performance 3.9 5-You were insecure and stressed 2.48 

Task Assembly

The previous experiments helped us to identify the key features used and preferred by humans for verbally instructing an action. We now test the impact of this verbal instruction on effective action performance. Figure 10 shows an example scene and table 3 shows the sentences for that scene. The line 'Robot' gives the sentence accompanying the robot's first action. The other four sentences correspond to the We select scenes involving more than 2 bricks but less than 2 laid structures (see Figure 11). We fit a linear mixed-effects model (lmr from lme4 R package) with the scene as additional factor and subjects as random effect, and performed a post-hoc Tukey adjustments for pairwise comparisons (ght from multcomp R package). The highest ranked natural instruction significantly outperforms (p < 10 -3 ) the three other styles for time-to-complete and all but best-AI for successful completion. For scenes 21-24 with more than 2 laid structures (see Figure 12), AI-generated descriptions without mention of structures unexpectedly outperforms (p < 10 -3 ) all others for successful completion at a large margin: it seems that complex calculations seduce human intelligence but penalize performance. It also mirrors the findings of the data collection: people propose the use of axes and verifications (in experiment 1) but dislike them when asked to choose the best instruction (in experiment 2). The verbalisation questionnaire (Tab. 1) shows that the verbalizer is working adequately: instructions are syntactically correct and clear, do not contain any major ambiguities and are properly uttered. The participants agree that both the use of hierarchical context and the mentioning of previously placed objects are a plus, while still leaning more towards the use of the former. The NASA-TLX questionnaire (Tab. 2) shows that the experiment does require effort and cognitive load. It also shows that the participants are fairly satisfied with the rhythm, do not have much to say about their performance and do not express important signs of stress/frustration.

Conclusions and Future Work

We evaluate the impact of using hierarchical context when giving instructions in an assembly task. We gathered and ranked crowdsourced human instructions. We set up a multi-layer verbalizer that computes AI-generated instructions. We then compared the performance of these verbalization policies on a web-based assembly task. The differences between users' preferences and actual performances claim for an evaluation method in two steps: first, selecting candidate policies by subjective preference but then assess their efficiency by objective performance. We see that referring to hierarchical context improves human performance, compared to refraining from using it, in particular when context is unambiguous. We also show that our AI-generated instructions often outperform the least popular human instructions, validating the efficiency of our verbalizer.

While verbalizing, pointing towards the intended object would improve the understanding of the robot's intention, and reduce the effort in the verbal explanation to ensure task completion. Therefore, future work will include this modality in the action layer of our architecture along with speechhand-gaze coordination. Incremental monitoring of actions by perception, in particular for on-line comprehension and attention, is a key issue for HRI.
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 2 Figure 2: Face-to-face interaction on a LEGO ™ assembly task with YUMI acting as the instructor.

Figure 3 :

 3 Figure 3: Outer part shows the Human-robot Interaction. The inner part shows the multimodal Architecture. The two components involved in the paper are highlighted .
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 5 Figure 5: Hierarchical decomposition of an arch into towers/pillars and a bridge/beam -Example in fig. 4

Figure 6 :

 6 Figure 6: The different layers of the Verbalizer.
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 8 Figure 8: Frequency of appearance of topological operators in the proposed scenes

Table 1 :

 1 Subjective evaluation of different aspects of our verbalisation: 1:Strongly disagree -5:Strongly agree Questions Score 1-Utterances were generated by a computer 4.3 2-Instructions were unambiguous 2.9 3-I prefer instructions referring to structures in place 3prefer instructions referring to the brick just placed by the robot 3.55 7-Utterances were generated by humans 3.33 8-The complexity of sentences were well adapted to the task 3.05

Figure 10 :

 10 Figure 10: Scene example, having the bold red cube as the previously placed cube by the robot, and the transparent blue bar as the new object to be placed by the human agent different styles we are comparing when instructing a participant. At first glance, we see in this example some difficulty of giving an instruction without the use of structures/context. This is why both highest and lowest ranked natural sentences use context and structures, suggesting their importance when giving the instruction. Scene presentation. The participants were asked to observe the robot placing a brick on the game board, and then to continue the assembly according to its verbal instructions (see video). We use the same scenes as before and increase the test set using data augmentation (mirroring along the north/south axis), resulting in 54 scenes in total (3 training scenes & 51 test scenes). Subjects. 40 French native speakers are recruited through the Prolific platform. 86.79% are right handed, 50% identified as men and 88.67% have already played with LEGO ™ before this experiment. Instructions and conditions. They have to place the right element as instructed, accurately and as fast as possible (see video). We have 4 instruction styles: (a) Lowest preference rate from the datacollection experiments (worst_N I). (b) Highest preference rate from the data-collection experiments (best_N I). (c) AI-generated description without mention of structures (without_context). (d) AI-generated description with mention of structures (with_context). The 4 styles are equally distributed among the 40 participants so that each scene with a given style is exactly performed by 10 participants. Final questionnaires. We also include a two-part, 5-point Likert scale, questionnaire at the end of the

Figure 11 :

 11 Figure 11: Normalized results over the 4 different styles -scenes with only one structure as available reference

  

Table 3 :

 3 Different styles of sentences for the scene in fig.10 Ouest dont le côté Ouest doit être aligné avec celui du cube précédent laissant deux tenons libres vers le Nord. with_context Pour faire un pont, place une barre bleue orientée Est-Ouest qui recouvre le sommet jaune de l'escalier et le sommet rouge de la tour Nord.

	Type	Sentence
	robot	Pour terminer la tour Sud, je mets un cube rouge ici.
	worst_NI	Empile une barre bleue orientée Est-Ouest pour recouvrir exactement le haut de l'escalier, et le pilier qui est à l'Ouest de ce dernier.
	best_NI	Dépose une barre bleue recouvrant complètement la tour rouge au Nord et le sommet de l'escalier jaune.
	without_context	Place une barre bleue orientée Est-
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