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Abstract: High aspect-ratio gold nanostructures sustain
Fabry—Perot-like surface plasmon responses from infrared
to visible light energies. We show that some resonances
can be tuned by means of laser irradiation, where low
energy modes stay unperturbed. After laser irradiation,
gold nanowires’ tips are transformed into nanoparticles
of various sizes joint to gold nanowires, producing high
aspect-ratio half-dumbbells and dumbbells structures. The
plasmonic behaviour of both the nanowires and the newly
created nanostructures has been characterised by in-
depth monochromated electron energy loss spectroscopy
(EELS) developed in a transmission electron microscope
(TEM) and state-of-the-art discrete dipole approximation
(DDA) calculations. All these analyses serve as experi-
mental proof of the selective tuning (or robustness) of
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the plasmonic modes of the nanostructures in a specific
spectral range, which is of critical interest regarding appli-
cations for sensing devices, nano-sources or nanophotonic
waveguide, as well as optical remote control.
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1 Introduction

Ever since the term plasmonics was coined almost two
decades ago [1, 2], the research surrounding this topic
has become an incredibly fertile research field, mainly
for biotechnology [3], electronics, photonics [4], photo-
voltaic energy [5] and chemical analysis [6]. In this sense,
the study and the tuning of localised surface plasmon
resonances (LSPRs) of metallic nanosystems have been a
cornerstone of plasmonics due to their various realms of
application; ranging from photonics to electronics, sensors
[7-9] or even chemical analysis through surface-enhanced
Raman scattering (SERS) [10-13]. These localised charge
resonances occur at the surface of these nanostructures
when excited with an external electromagnetic field (such
as light or electron beams).

Low-loss electron energy loss spectroscopy (EELS) is a
very fitting technique for studying this kind of phenomena
in these nanostructures given its nanometric spatial reso-
lution and an energy resolution that can go down to as low
as a few meV [14-19].

This extensive research has delved into the plasmonic
behaviour of a myriad of nanostructures, extended but
not limited to metallic nanoparticles of various shapes [14,
20-23], core—shell structures [24] and, of course, higher
aspect-ratio nanostructures such as nanotubes [25, 26]
nanorods [17, 27-30] and nanocarrots [31]. Amongst all
these nanostructures, metallic nanowires have attracted
special interest [32-36] given their potential use as
nanophotonic waveguides, allowing for a much smaller
circuitry than their glass counterparts [2, 36, 37]. The high
aspect ratio in nanowires also allow to tune the plasmonic
resonance to lower energies [38] or to lower the excitation
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damping [39]. These FP resonances for finite size NW have
been shown to follow the dispersion relations close to that
of an infinite NW, following the basic ideas of Fabry—Pérot
(FP) interference or standing waves [35, 36, 38, 39], which
has also been of significant interest [40].

Furthermore, recent studies have shown the possibil-
ity to modify the morphology of these nanowires by means
of laser irradiation, providing a new opportunity to tune
the response of high aspect-ratio nanostructures [41, 42].
However, the study of very high aspect ratio Au nanos-
tructures is quite experimentally challenging because they
sustain many high wavelength FP modes taking place at
low energies (down to 0.1 eV) and most examples found
in the literature present a much lower aspect-ratio besides
very recent exceptions for Cu nanowires [43].

Our present EELS studies illustrate how a vast number
of modes can be analysed and mapped with state-of-the-
art data science tools [44, 45] in diverse high aspect-ratio
plasmonic nanostructures (namely, plain nanowires, half-
dumbbells and dumbbells), providing the opportunity to
investigate not only very high aspect ratio NW but also the
role of the morphology of the extremities of the NW on the
FP modes. With the support of numerical simulations, we
found that, whereas some of the FP modes are extremely
robust against such changes of morphology, higher energy
(small wavelength) modes are affected and can be tuned
by a modification of the shape of their extremities, e.g.,
by means of irradiation. This is of great interest for nano-
waveguiding and sensing nanodevices.

The large momentum (small wavelength) FP modes
associated with the propagating surface plasmon polariton
(SPP) of infinite NW and the LSPR of lower aspect ratio
nanosystems such as the one of the nanoparticles obtained
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after laser irradiation have overlapping resonance ener-
gies. Based on our custom data analysis methodology,
we have been able to resolve the contribution of both
contribution in a very narrow energy range (2.3-2.5 eV).

From both an experimental and a modelling point
of view, our present studies illustrate how the plasmonic
response of high aspect ratio gold 1D nanostructures can
be tuned by means nanoparticles attached to the tips
of gold nanowires, which can be created by means of
laser irradiation [32]. These works serve as well as a
proof of concept as to how low-loss EELS can be used
to understand plasmonic coupling in these particular
nanostructures. These studies will have an impact on real
applications of such nanostrucures as sensors [13] and
nanophotonics [40].

2 Results and discussion

Figure 1 shows a comprehensive view of the geometry
of the three nanostructures studied in the present paper,
featuring a scaled sketch and a high-angle annular dark-
field (HAADF) scanning transmission electron microscope
(STEM) micrograph for each nanostructure. Details on the
fabrication of these nanostructures can be found in the
literature [13, 46] and in the Supplementary Information.
The integrated low-loss EEL spectra of the half-dumbbell
nanostructure after applying a custom background extrac-
tion routine (see Supplementary Information) is also
displayed in Figure 1. As we can see, the integrated low-loss
EEL spectra of these nanostructures show two distinct
types of features. On the one hand, we can find many
narrow features (with a full width half maximum (FWHM)
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Figure 1: Left: Scaled comprehensive sketch (top) and STEM-HAADF micrograph (bottom) for (from top to bottom) an Au NW, an Au
half-dumbbell and an Au dumbbell nanostructure. Right: Low-loss EELS zero-loss peak (ZLP) removed integrated spectra on the
half-dumbbell high aspect-ratio nanostructure. Features related to FP modes and the surface plasmons are marked by arrows and by an
asterisk, respectively. A STEM-HAADF micrograph featuring the area on which the spectrum has been integrated (red rectangle) is shown as

an inset.
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of ~0.2 eV) in the spectral window from 0.2 to 2 eV.
These features have been assigned in the literature to
the nanostructure behaving like a quantified Fabry-Pérot
resonator [35, 38, 39]. On the other hand, the spectra
also present one (or several) features at high energies
(2.3-2.4 eV) related to other gold surface plasmon modes
of either the NW and their extremities. This is a crucial part
of these works since these relate to the coupling or lack
thereof in the nanostructure being measured.

2.1 Gold nanowires with high aspect ratio

Figure 2 shows the experimental and simulated EELS
maps of a high aspect-ratio Au NW with a length of 3 pm
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long and a diameter of 30 nm. Our non-negative matrix
factorisation (NMF) decomposition of the EELS spectrum-
image (SPIM) [47, 48] allows for a clear distinction between
the Fabry—Pérot modes, which can be discerned from 0.3
to 2.2 eV, and a continuous surface mode at 2.3 eV. The
EELS features are very well reproduced by the numerical
simulations.

A wavelength and thus a wavevector k can be associ-
ated with each FP excitations (k= (n — 1) - £ /L,y) were
n is the number of anti-nodes (excluding the tips) of
the EELS map and L,y is the distance between the two
furthest antinodes being measured (See Supplementary
Information). We note that no observable wavelength
contraction phenomena has been observed neither in
the experimental analysis nor in the simulated data, in
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Figure 2: Spatial distribution of the plasmon modes of nanowire obtained by background extraction and NMF decomposition.

(a) STEM-HAADF micrograph. (b) Top: NMF components corresponding to FP modes in ascending order of resonance m energy. Bottom: DDA
simulations corresponding to FP modes with the same number of nodes as their experimental counterparts. (c) Top: NMF components
corresponding to the surface mode of the Au NW. Bottom: Corresponding DDA simulations.
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contradiction to what has been previously reported [17, 36,
38] with the exception of the distance between the out-most
antinodes of the maps and the tips of the NW, which turned
out to be shorter than the rest of the distances measured,
as we will discuss later. We note that other experimental
studies do not mention the observation of wavelength
contraction [43] and that the modelling does not support
this contraction (see Supplementary Information).

On Figure 3, the experimental and simulated dis-
persion relations associated with the FP modes of the
3 pm long NW (symbols) is compared with the dispersion
relation of an infinite NW of the same radius (solid line),
calculated using the retarded theory of the SPP on a
cylinder [49] adapted for complex dielectric functions (see
Supplementary Information). These simulations confirm
that a finite size NW behaves like a FP cavity with no mod-
ification of the wavelength of the SPP. The good agreement
between FP mode resonance energies and the SPP of the
same wavenumber confirm that EELS experiments excite
the totally symmetric m = 0 mode for an e™¢ angular
dependence of the induced field [43] (see also the induced
field map in Supplementary Information). This totally
symmetric mode can also be excited by light polarised
along the NW axis and it is even the dominant mode in this
case for small radius NWs [50]. The dipolar m = +1 plasmon
are the modes that are predominantly excited by light with
atransverse polarisation. The observation of high intensity
FP cavity modes requires that the SPP propagates on the
NW with low losses and that the reflection probability at
the extremity is close to one. The losses that occur at the
tip of the NW, associated with the emission of light [51],
and the damping of the SPP along the NW will both reduce
the amplitude of the FP modes.

All the plasmon modes (for all m) rapidly converge
to the planar surface plasmon energy at 2.45 eV for large
k (see Figure 3 inset). This gives rise to the high energy
peak (2.4 eV) in the EELS spectra. As these high k modes
cannot be resolved, a continuous excitation probability
is observed along the NW and at his extremity. The
exact energy of this peak at 2.4 eV cannot be properly
reproduced by the simulations because the dielectric
response of gold is very dependent of the crystallinity of
gold around this energy [52]. It is also worth mentioning
that all the simulations in the present work are performed
for self-supported nanosystems where the experimental
EELS are obtained on an holey silicon oxide membrane
(see Supplementary Information). The interaction with a
dielectric substrate is known to induce a redshift of the
plasmonic features [15, 24]. However, we have not observed
a systematic disagreement of the simulated EELS response

DE GRUYTER

Figure 3: Dispersion relation of an infinite gold NW (R = 15 nm) for m
=0 (black curve) and m = 1 (blue curve) compared with the data
obtained from EELS spectra for finite NW (L = 3 pm). X are for
simulated EELS and e are for experimental EELS. The error bar
indicates the 0.05 eV experimental spectral resolution. For the
simulations, the dielectric function is taken from Ref. [52].

in comparison to the experiments. This is probably due
to the small dielectric response of silicon oxide in the
infra-red and visible (n ~ 1.45). Other uncertainties (exact
radius and length, shape of the extremities, numerical
error due to the discretisation, ...) are probably within
the same order of magnitude, but still small.

It is important to notice that, given the resolution of
the data analysis and the very high aspect-ratio of the
sample, the number of plasmonic modes seen in this Au
NW is considerably higher when compared to the literature
on the subject for these Au nanostructures [27]. We have
also observed both in the experimental maps and in the
simulated ones that, for higher energy modes, the EELS
intensity is lower at the centre of the NW than at the
edges as previously observed [29]. This is related to the
lower propagation length of the SPP along the NW at
excitation energy close to the volume plasmon resonance
(see Supplementary Information), a phenomenon also
observed for SPPs at planar interfaces [53].

2.2 Gold half-dumbbells and gold
dumbbells

The selected components from the NMF decompositions
after background removal of the Au half-dumbbell (HDB)
and the Au dumbbell (DB) spectrum-imaging STEM-EELS
results are displayed in Figure 4. The Au half-dumbbell
consists of a 3.2 + 0.1 pm long nanowire of 110 + 10 nm
of diameter, attached to a nanoparticle of 340 + 10 nm
in diameter. Regarding the NW within the nanostructure,
the NMF analysis allows the possibility to study both FP
features, going from 0.25 to 2 eV; as well as other plasmonic
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Figure 4: Spatial distribution of the plasmonic modes for the Au half-dumbbell (top) and the Au dumbbell (bottom). From left to right:
STEM-HAADF image: NMF components corresponding to FP modes in ascending order of resonance energy (blue background), and NMF
components corresponding to the surface modes of the Au NW and the Au NP at 2.35 and 2.4 eV for the half-dumbbell, and to the small
attached nanoparticle and the whole system in the dumbbell, respectively.

resonances above 2 eV related to the Au nanowire and the
Au nanoparticle, respectively. It is important to point out
that it is possible to separate the mode located on the Au
NW of the nanostructure (situated at 2.35 eV) from another
mode located on the Au NP of the nanostructure (located
at 2.4 eV). A similar localisation of the FP mode and of
the LSPR of the tip has been performed on the simulated
data (see Supplementary Information). This evidences the
extreme sensitivity of our decomposition methodology.
The second Au nanostructure displayed in Figure 4
consists of a full dumbbell, resulting of joining a 3.58 +
0.05 pm long NW with one nanoparticle in each end, each
measuring 300 £+ 10 nm and 210 + 10 nm in diameter,
respectively. The full dumbbell has a little 60 + 10 nm
diameter Au particle attached to it. Regarding the analysis
of the measurements performed on this nanostructure, the
FP modes can be discerned down to 0.25 eV. A feature at
0.3 eV has been found in our decomposition, associated

with the small protrusion near the middle of the NW. It
is related to an antenna effect of this protrusion on the
lowest FP mode. This is another evidence of the possibility
to differentiate both the energy of a EELS signature and its
localisation based on our decomposition approach. This is
of great importance for a detailed analysis of response of
such objects.

Furthermore, the information from the surface modes
indicates the presence of coupling between the NW and
both NPs at the tips. The presence of coupling on the DB
while there being a lack of coupling on the hDB can be
explained by the difference in size of the nanoparticles in
both structures.

As for the NW without a nanoparticle at its extremities,
the DDA simulations on the exact same geometry are
in very good agreement with the NMF decomposition
of the experimental EELS data. Indeed, Figure 5(a) dis-
plays the dispersion relations of both experimental and
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Figure 5: Dispersion of the m = 0 branch of infinite gold NW of

R =55 nm compared with the data extracted from the experimental
(open squares and circles) and simulated (crosses) EELS spectra of
finite size gold dumbbell and half-dumbbell. The error bars indicate
the 0.05 eV experimental spectral resolution.

simulated plasmon excitation energies as a function of its
wavenumber times R (kR) (symbols). The simulated EELS
maps confirmed the agreement and are provided in the
Supplementary Information.

The solid lines on Figure 5 gives the analytical dis-
persion of the m = 0 of perfect infinite NW of radius of
55 nm (black curve). The dispersion relations deduced
from the EELS data of finite DB and HDB follow it nicely.
The SPPs can then be seen as intrinsic modes of the
NW itself, regardless of the shape of the extremities. This
brings us to the question of the role of the extremity on
the FP modes. The comparison between the simulated
EELS spectra of NW, DB and HDB of the same total
length show very similar resonances for the low energy
modes (Figure 6(a)). On the contrary, a comparison with
a NW which length corresponds to the distance between
the spherical extremities displays resonances at higher
energies.

We further analyse the influence of the extremities on
the FP modes of the DB on Figure 6(b), where the EELS
spectra of NW (Ryp = 56 nm) is compared with the ones of
DB for different diameters of the spherical ends (Ry, = 104
nm and Ryp = 128 nm). The influence of the modification
of the extremity is clearly negligible for the low energy,
low k (high wavelength) modes and starts to be noticeable
when the wavelength of the FP is similar to the size of the
perturbation.

This is also illustrated on Figure 7 where the simulated
EELS map and the associated loss profile are detailed for
two specific FP modes of the NW, the DB and the HDB
systems. The FP mode at 0.73 eV (n = 5, A = 1698 nm) is
present for the three plasmonic systems with very similar
EELS maps and loss profiles, including at the extremities

—— M. Pelaez-Fernandez et al.: Laser-tuning of plasmonic response in high aspect-ratio Au nanostructures
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Figure 6: Simulated EEL spectra for different Au nanostructures: (a)
Comparison of the simulated EELS loss spectra of NWs of total
length L = 4140 nm for an aloof impact parameter at the mid-length:
Dumbbell shape (Black), plain NW (Blue), half-dumbbell shape
(dot-dashed green). The radius of the spheres at the extremity is
128 nm. The spectrum for a NW of length L = 3648 nm is displayed
for comparison (grey dashed). (b) Simulated EELS spectra of plain
NW and of dumbbell shape structures of total length L = 4140 nm
with various radii of the spheres at the ends of the NW (Ry, =104 nm
and Ry, =128 nm).

of the NW. We can then deduce that both the propagation
of the SPP and the reflection coefficient at the extremities
are identical for the three cases. The change of the shape of
the extremities, induced by the laser treatment, does not
influence neither the energy of the plasmonic response
of the NW, nor the field distribution (see Supplementary
Information).

For the FP mode n = 13, the resonance occurs at E =
1.66 eV (A = 607 nm) for the perfect NW, at E = 1.75 eV
(A =560 nm) for the DB and at E = 1.70 eV (A4 = 591 nm)
for the HDB. First, the larger damping of the SPP (and
lower propagation length) at this energy explains why the
loss probability is lower for all the nanostructures than for
the lower energy modes (see the loss profile). Second, in
this case, the shape of the extremities plays an important
role in the reflection of the SPP. The shorter wavelength
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Figure 7: Simulated EELS maps and spectra profiles for the FP modes at two different energies: (a) Simulated EELS maps for the FP modes
around 0.73 eV (first and second maps) and 1.7 eV (third and fourth maps), for the dumbbell with Ry, =128 nm (first and third maps) and the

plain NW (second and fourth maps). (b) and (c) EELS profiles.

(lower energy) of the n = 13 mode for the DB indicates
that the reflection condition of the SPP are modified. A
total reflection of the SPP on the edge of the spherical
protrusions would lead to a wavelength of 518 nm for the
DB (for a length between the spherical NPs of 3628 nm
for a total length of 4140 nm and NPs radius of 128 nm).
We are then in an intermediate configuration. This can be
further analysed in terms of reflection coefficient. Besides
the reduced loss oscillation magnitude, a change in the
imaginary part of the reflection coefficient attributed to
the shape and size of the nanowire ends can explain the
dephasing and shortening of loss oscillations when close
to the tips, in comparison to the NW case. It is reminded
that the oscillation phase is imposed by the excitation of
the SPP by the electron beam. The role of this reflection is
further evidence is the profile of the HDB. The position of
the maximum loss probabilities follows the pattern of the
perfect NW on the perfect extremity where it follows the
pattern of the DB on the side of the spherical protrusion.
This highlights also to role of the shape and of the size of
the nanoparticles at the tip of the NW on the exact FP mode

energies for small wavelength. The correct description
if this shape and size is then important to predict the
exact energy of these modes. This is also illustrated by
the dependence of the loss spectra with the size of the
spherical NP (Figure 6b). This gradual shift of the FP modes
energies can be associated with a continuous modification
of the reflection coefficient with the size of the extremities.
This explain why the match between the simulations and
the experimental data are less good for the HDB, which
displays aless spherical extremity and a small modification
of the other end (Figure 5).

We have then observed and rationalised that the
modification of high aspect ratio NW by laser irradiation
allows to tune specifically large k, small A modes, while
the low energy modes are not perturbed.

3 Conclusions

Laser-induced tuning of the plasmonic response in Au high
aspect ratio nanostructures has been reported by both its
deep study via low-loss STEM-EELS measurements and
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theoretical modelling by use of discrete dipole approxi-
mation calculations. We evidence that the modification of
the extremities of a high aspect ratio metallic NW allow
the control the resonance energy for small wavelength
plasmon modes where longer wavelength modes stay
almost unperturbed. These works establish an initial road-
map for a detailed tuning by laser irradiation of the energy
of small wavelength Fabry—Pérot modes in these nanos-
tructures. On the other hand, an robustness of the dielectric
response of the NW against the modification of the
extremities reinforce their potential interest as nanopho-
tonic waveguides and low energy resonators. These find-
ings demonstrate that high aspect ratio nanostructures
are very interesting candidates for future nanophotonic
applications.
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