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This paper is devoted to pointwise second-order necessary optimality conditions for the Mayer problem arising in optimal control theory. We first show that with every optimal trajectory it is possible to associate a solution p(•) of the adjoint system (as in the Pontryagin maximum principle) and a matrix solution W (•) of an adjoint matrix differential equation that satisfy a second-order transversality condition and a second-order maximality condition. These conditions seem to be a natural second-order extension of the maximum principle. We then prove a Jacobson like necessary optimality condition for general control systems and measurable optimal controls that may be only "partially singular" and may take values on the boundary of control constraints. Finally we investigate the second-order sensitivity relations along optimal trajectories involving both p(•) and W (•).

Introduction

Consider the Mayer optimal control problem Minimize ϕ(x(0), x(1)), over trajectories x(•) of the control system ẋ(t) = f (t, x(t), u(t)), u(t) ∈ U (t), a.e. in [0, 1], x(0) ∈ K 0 , [START_REF] Aronna | Quadratic order conditions for bang-singular extremals[END_REF] and the set of initial point constraints K 0 ⊂ R n . Admissible controls are measurable selections of U (•). If (x, ū) is an optimal trajectory-control pair, then it is well known that, under standard assumptions on f, the (unique) solution p(•) of the adjoint system ṗ(t) = f x (t, x(t), ū(t)) T p(t), -p(1) = ∇ x 2 ϕ(x(0), x(1)), satisfies the maximality condition p(t), f (t, x(t), ū(t)) = max u∈U (t) p(t), f (t, x(t), u) , a.e. and the transversality condition p(0) -∇ x 1 ϕ(x(0), x(1)) ∈ N K 0 (x(0)),

where f : [0, 1] × R n × R m → R n , ϕ : R n × R n → R, U (t) ⊂ R m for t ∈ [0,
where N K 0 (x(0)) is a normal cone to K 0 at x(0) and ∇ x 1 ϕ denotes the partial derivative of ϕ with respect to the first variable (for a moment we do not make precise which normal cones we consider, to avoid technicalities in the introduction). This maximality condition however, in general, does not single out ū(t) because the maximum may be attained by several u ∈ U (t). Let us denote the set of all maximizers by U (t) := z ∈ U (t) p(t), f (t, x(t), z) = max u∈U (t) p(t), f (t, x(t), u) .

An important ongoing research in optimal control theory concerns refining the set U (t) in order to restrict further the candidates for optimality. Several necessary optimality conditions can be found in the control literature of the 70ies including the Goh and the Jacobson conditions, [START_REF] Goh | Necessary conditions for singular extremals involving multiple control variables[END_REF][START_REF] Jacobson | Necessary and sufficient conditions for optimality for singular control problems: A limit approach[END_REF]. These results were usually assuming that U is time independent, that optimal control ū takes values in the interior of U and that it is also piecewise continuous, which is often not the case. Both the Goh and the Jacobson conditions are pointwise conditions. The Goh necessary condition was generalized in various ways by many authors, see for instance [START_REF] Aronna | Quadratic order conditions for bang-singular extremals[END_REF][START_REF] Frankowska | Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints[END_REF][START_REF] Schättler | Geometric optimal control[END_REF] and the references therein.

There is also a rich literature on second-order optimality conditions in integral form which hold under less restrictive assumptions than the pointwise conditions, see for instance [START_REF] Bonnans | Second-order necessary conditions in Pontryagin form for optimal control problems[END_REF][START_REF] Bonnans | No-gap second-order optimality conditions for optimal control problems with a single state constraint and control[END_REF][START_REF] Dmitruk | Quadratic order conditions of a local minimum for abnormal extremals[END_REF][START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF][START_REF] Gilbert | Second-order necessary conditions in optimal control: Accessoryproblem results without normality conditions[END_REF][START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF][START_REF] Malanowski | Second-order sufficient conditions for state-constrained optimal control problems[END_REF][START_REF] Milyutin | Calculus of Variations and Optimal Control[END_REF][START_REF] Páles | First-and second-order necessary conditions for control problems with constraints[END_REF] and the references therein. However, conditions in integral form are not simple to check as they must be satisfied on a set of functions instead of pointwise. The aim of our work is to prove a second-order maximum principle and the Jacobson inequality in a very general situation that we describe now. To simplify the discussion, let us assume that ϕ(x 1 , x 2 ) = ϕ 1 (x 1 ) + ϕ 2 (x 2 ) for all x 1 , x 2 ∈ R n , where ϕ i : R n → R are twice continuously differentiable functions. Recall that the (unmaximized) a.e. W (1) = -ϕ 2 (x(1)).

Hamiltonian H : [0, 1] × R n × R n × R m → R
Our results imply, in particular, that p, W satisfy the following second-order maximality condition max u∈U (t)

f x (t, x(t), u) T -f x [t] T p(t) + W (t) (f (t, x(t), u) -f [t]) , f (t, x(t), u) -f [t] = 0,
and the second-order transversality condition

W (0) -ϕ 1 (x(0)) ∈ N (2)
K 0 x(0); p(0) -∇ϕ 1 (x(0)) , where [t] = (t, x(t), ū(t)) and N

(2) K 0 denotes an appropriate second-order normal cone to K 0 .

The above two relations are similar to those of the Pontryagin maximum principle but use second-order normals and second-order adjoints instead of the first-order ones. An earlier result of this nature was obtained in [START_REF] Lou | Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure[END_REF] for a Bolza problem with a fixed initial point and time independent control sets. However in [START_REF] Lou | Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure[END_REF] some ad hoc relaxation arguments and a special type linearization of control system are used, which would not allow to treat more complex problems involving state constraints. Our proof is more direct, since we use the classical Filippov-Ważewski relaxation theorem in the form of differential inclusion and a linearization of this differential inclusion. Such techniques allow to investigate state constrained problems as well, see [START_REF] Frankowska | A second-order maximum priniciple in optimal control under state constraints[END_REF][START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF][START_REF]Feasible perturbations of control systems with pure state constraints and applications to second-order optimality conditions[END_REF]. Furthermore, thanks to the relaxation theorem, (f x (t, x(t), u), f (t, x(t), u)) may be replaced by convex combinations of such elements for u ∈ U (t), see Theorem 3.1 in Section 3. When, in addition, f is differentiable with respect to u, then the second-order necessary optimality condition from [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF][START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF] in the form of an integral inequality can be extended to problems with initial point constraints. Actually we improve [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF]Theorem 4.1] by allowing a larger set of admissible second-order variations of ū, see Theorem 6.1 from Section 6. We would like to underline here that Theorem 3.1 is deduced from the integral inequality (6.2) that is different from the one in Theorem 6.1. More generally, Theorems 3.1 and 6.1 are not comparable between them : the first one holds true without the differentiability assumptions on data with respect to u and concerns controls maximizing the Hamiltonian, while the second one supposes differentiability of data with respect to u and concerns critical variations of controls. In the difference with [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF][START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF], admissible second-order variations are defined here by using closed jets to U (t) at ū(t), instead of second-order tangents whose graph, being not closed in general, may be difficult to apply to deduce pointwise conditions. The obtained integral inequality implies, in turn, a pointwise inequality, leading to a very general formulation of the Jacobson type necessary optimality condition for measurable optimal controls, see Theorem 3.6 below. Such inequality was previously derived for affine with respect to control systems, time independent (box-type) U , piecewise continuous optimal controls taking values in the interior of U and H u [•] = 0. Since piecewise continuity of optimal controls does not hold in general, and typically optimal controls take values on the boundary of U , our extension is a major breakthrough avoiding to impose structural assumptions on optimal controls. In particular, if the boundary of U (t) is sufficiently smooth and ū(•) is singular in the sense that H u [t] = 0, H uu [t] = 0 a.e., our generalisation of the Jacobson inequality implies that for a.e. t ∈ [0, 1],

f u [t] T (H ux [t] + W (t)f u [t]) u, u ≤ 0,
for every u tangent to U (t) at ū(t). Thus, whenever ū(t) belongs to the interior of the set U (t), we get the inequality from [START_REF] Jacobson | A new necessary condition of optimality for singular control problems[END_REF]:

f u [t] T (H ux [t] + W (t)f u [t]) ≤ 0.
Actually the second-order maximality condition and the above inequality look somewhat similar. Still Theorem 3.1 does not imply Theorem 3.6. To complete our study, we also investigate the sensitivity relations for the value function V : [0, 1]×R n → R of the Mayer problem. Similarly to the first-order case where -p(t) is an element of the superdifferential of V (t, •) at x(t), we show that (-p(t), -W (t)) belongs to the second-order superjet of V (t, •) at x(t) for all t ∈ [0, 1]. In the difference with [START_REF] Cannarsa | Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control[END_REF], where the Riccati equation was used, our matrix differential equation does not contain a quadratic term. For this reason W (•) does not escape to infinity, unlike in [START_REF] Cannarsa | Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control[END_REF], and the sensitivity relations derived here hold true on the whole interval [0, 1]. These sensitivity relations are in turn less precise than those in [START_REF] Cannarsa | Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control[END_REF] and do not allow to investigate the local C 2 regularity of the value function. The outline of the paper is as follows. In Section 2 we provide some preliminaries and formulate the main assumptions. Section 3 presents our main results on second-order necessary optimality conditions, while Section 4 deals with sensitivity relations. Section 5 is devoted to the second-order variational equations. Proofs are given in Sections 6 and 7.

2 Problem statement and notations

Preliminaries

Throughout the paper n, m, r, s ∈ N are integers and R + , Q + are nonnegative reals and rationals, respectively. We denote the norm in R n by |•|, •, • is the standard inner product and

B := {x ∈ R n | |x| < 1} stands for the open unit ball. For a set K ⊂ R n , K is its closure, co K is its closed convex hull, K is its (negative) polar cone, i.e. K := {q ∈ R n | q, k ≤ 0 ∀ k ∈ K} and K ⊥ is its orthogonal complement, i.e. K ⊥ := {q ∈ R n | q, k = 0 ∀ k ∈ K}.
Given a matrix A of dimension n × m we denote by A T its transpose, a matrix of dimension m × n. By S(n) we denote the set of symmetric n × n-matrices and by S -(n) the subset of symmetric seminegative n × n-matrices. Finally, for Banach spaces X and Y and a bounded linear map L : X → Y , the norm of L is the operator norm, i.e. L := sup x =1 Lx . Below W 1,1 ([0, 1]; R n ) stands for the space of absolutely continuous maps from [0, 1] to R n and C k (R n ; R m ) for the space of k-times continuously differentiable maps from R n to R m . The space of continuous maps is denoted by

C(R n ; R m ). For 1 ≤ p ≤ ∞, L p ([0, 1]; R n ) denotes the Lebesgue space, in particular, for u ∈ L p ([0, 1]; R n ), |u| p is integrable if p < ∞, respectively u is essentially bounded if p = ∞. The usual norm of L p ([0, 1]; R n ) is denoted by • p .
For a mapping f : R n → R m , partial derivatives (if they exist) are indicated by a subscript referring to the differentiation variable, hence for instance f x (x 0 , u 0 ) := ∂ ∂x f (x 0 , u 0 ). Second-order partial derivatives are indicated by a double subscript, i.e. f xu (x 0 , u 0 ) := ∂ 2 ∂x∂u f (x 0 , u 0 ). Moreover, we will simplify the notation for the bilinear form

f xu (x 0 , u 0 )(y, u) by writing f xu (x 0 , u 0 )yu. Consider a subset K ⊂ R n . A map ϕ : [0, 1] × K → R m is a Carathéodory map if ϕ(•, x) is Lebesgue measurable for all x ∈ K and ϕ(t, •) is continuous on K for almost all t ∈ [0, 1].
Next, we recall some definitions concerning tangent sets. The distance between a point x ∈ R n and a subset K ⊂ R n is defined by dist K (x) := inf k∈K |x -k|. Let T be a metric space and {K τ } τ ∈T be a family of subsets of R n . The lower limit of {K τ } at τ 0 ∈ T in the Peano-Kuratowski sense is given by Liminf

τ →τ 0 K τ := v ∈ R n lim τ →τ 0 dist Kτ (v) = 0 .
First-and second-order adjacent subsets are defined in the following way.

Definition. Let K ⊂ R n and x ∈ K. The adjacent cone to K at x is the set,

T K (x) := Liminf h→0+ K -x h .
Further, let u ∈ R n . The second-order adjacent subset to K at (x, u) is the set, T

K (x, u) := Liminf h→0+ K -x -hu h 2 . (2) 
Observe that if T

(2)

K (x, u) = ∅, then u ∈ T K (x). The set T (2) K (x, u) is closed for every u, but, in general, the set (u, v) ∈ R n × R n | v ∈ T (2)
K (x, u) is not closed. We refer to [27, pp. 638-641] for historical comments and a huge bibliography on second order tangents and second order derivatives of functions. See also [START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF] for various definitions of first and higher order tangent cones and their properties. The dual notion to tangent cones are normal cones. Here we use the normal cone N K (x) := T K (x) . It is closed and convex, and coincides with the normal cone of convex analysis when K is convex. With every q ∈ N K (x) we associate the set of second-order "normals":

N (2) K (x; q) := Q ∈ S(n) q, w + 1 2 Qy, y ≤ 0, ∀ y ∈ T K (x) ∩ {q} ⊥ , ∀w ∈ T (2) 
K (x, y) .

By convention we set N

(2)

K (x; q) = S(n) whenever T (2) 
K (x, y) = ∅ for all y ∈ T K (x) ∩ {q} ⊥ . Observe that N

(2) K (x; q) is a closed and convex, possibly empty, set. Clearly N (2)

K (x; q) + S -(n) = N (2) K (x; q). Observe that if T K (x) ∩ {q} ⊥ = {0}, then N (2) K (x; q) = S(n). Moreover S -(n) ⊂ N (2) K (x; 0). Remark 2.1.
To the best of our knowledge this definition of second-order normals never appeared in the literature before [START_REF] Frankowska | Jacobson type necessary optimality conditions for general control systems[END_REF], where we used it to express the second-order transversality conditions. A second-order normal cone was defined in [START_REF] Bardi | Invariant sets for controlled degenerate diffusions: a viscosity solutions approach[END_REF] (without using second-order tangents) by

N (2) K (x) := (q, Q) ∈ R n × S(n) q, k -x + 1 2 Q(k -x), k -x ≤ o(|k -x| 2 ), ∀k ∈ K ,
where lim h→0+ o(h 2 )/h 2 = 0. For every (q, Q) ∈ N

K (x), the vector q is a proximal normal to K at x. We would like to underline that for every proximal normal q to K at x there exists

Q ∈ S(n) such that (q, Q) ∈ N (2) K (x). Observe that if (q, Q) ∈ N (2) K (x), then q ∈ N K (x) and Q ∈ N (2)
K (x; q). It is not difficult to construct an example of K, x and q = 0 such that N

(2) K (x; q) is nonempty and, at the same time, N

K (x) = {0}. The set N (2) (2) 
K (x; q) is better adapted to express the second-order optimality conditions below. Example 2.2. Consider twice continuously differentiable functions ψ 1 , . . . , ψ r : R n → R and

K = r j=1 {x ∈ R n | ψ j (x) ≤ 0} .
Let x ∈ K and denote by I(x) the set of all active indices, i.e. j ∈ I(x) if and only if ψ j (x) = 0. We assume that {∇ψ j (x) : j ∈ I(x)} are positively independent or, equivalently, 0 / ∈ co {∇ψ j (x) : j ∈ I(x)}. Then it is well known that

T K (x) = {y ∈ R n | ∇ψ j (x), y ≤ 0 ∀ j ∈ I(x)}, N K (x) = j∈I(x) R + ∇ψ j (x). Furthermore, T (2) 
K (x, y) = z ∈ R n | ∇ψ j (x), z + 1 2 ψ j (x)y, y ≤ 0, ∀ j ∈ I 1 (y) , (2.1) 
where I 1 (y) = {j ∈ I(x) : ∇ψ j (x), y = 0}. Moreover T

K (x, y) = R n whenever y ∈ T K (x) and I 1 (y) = ∅. Notice that this implies that under our assumptions, T

K (x, y) = ∅ for all y ∈ T K (x). Fix any 0 = q ∈ N K (x). In the same way as in [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF]Section 2] it follows that for every y ∈ T K (x) ∩ {q} ⊥ there exist z y ∈ T

(2) K (x, y) and α j (y) ≥ 0, in general depending on y, such that

q = r j=1 α j (y)∇ψ j (x) = j∈Π(y) α j (y)∇ψ j (x), q, z y = - 1 2 r j=1 α j (y)ψ j (x)yy,
where Π(y) ⊂ I 1 (y) is the set of all j ∈ I 1 (y) such that α j (y) > 0. Then for any Q ∈ N

(2) K (x; q) we have q, z y + 1 2 Qyy ≤ 0 = q, z y + 1 2 r j=1 α j (y)ψ j (x)yy.

Consequently Qyy ≤ r j=1 α j (y)ψ j (x)yy.

More can be said if {∇ψ j (x) : j ∈ I(x)} are linearly independent. Then {α j } r j=1 are uniquely defined and therefore they do not depend on y. Hence from (2.1) we deduce that r j=1

α j ψ j (x) ∈ N (2) K (x; q). Consequently, Q ∈ N (2)
K (x; q) if and only if Q ≤ r j=1 α j ψ j (x) on T K (x) ∩ {q} ⊥ , in the sense that for every y ∈ T K (x) ∩ {q} ⊥ , we have Qyy ≤ r j=1 α j ψ j (x) yy. In particular, if r = 1, then

N K (x) = R + ∇ψ 1 (x), T K (x) ∩ {∇ψ 1 (x)} ⊥ = {∇ψ 1 (x)} ⊥ and N (2) K (x; ∇ψ 1 (x)) = ψ 1 (x) + S -(∇ψ 1 (x)),
where S -(∇ψ 1 (x)) is the set of symmetric matrices that are seminegative on {∇ψ 1 (x)} ⊥ .

Definition. Let f : R n → [-∞, +∞] be an extended real-valued function and x ∈ dom(f ). A pair (q, Q) ∈ R n × S(n) is said to be a superjet of f at x if for some δ > 0 and for all y ∈ x + δB,

f (y) ≤ f (x) + q, y -x + 1 2 Q(y -x), y -x + o(|y -x| 2 ). (2.
2)

The set of all superjets of f at x is denoted by

J 2,+ f (x). Similarly, (q, Q) ∈ R n × S(n) is a subjet of f at x if (2.
2) holds with ≤ replaced by ≥. The set of all subjets of f at x is denoted by

J 2,-f (x). If f is equal to the indicator function of K ⊂ R n and x ∈ K, then J 2,-f (x) = N (2) 
K (x). If f is differentiable at x and semiconcave on a neighborhood of x with the semiconcavity constant c, then (∇f (x), c Id) ∈ J 2,+ f (x), see [6, Prop. 2.6, Rem. 2.5]. Notice that for any f ∈ C 1 (R n ; R) that is twice differentiable at x ∈ R n , (∇f (x), f (x)) ∈ J 2,+ f (x). We end this subsection by recalling the definitions of directional derivatives of set-valued maps.

Definition. Let F : R n R m be a set-valued map, locally Lipschitz around some x ∈ R n and let y ∈ F (x). The adjacent derivative dF (x, y) is the set-valued map defined by,

dF (x, y)(u) := Liminf h→0+ F (x + hu) -y h , ∀ u ∈ R n .
For v 1 ∈ dF (x, y)(u 1 ), define the set-valued map d 2 F (x, y, u 1 , v 1 ) by

d 2 F (x, y, u 1 , v 1 )(u 2 ) := Liminf h→0+ F (x + hu 1 + h 2 u 2 ) -y -hv 1 h 2 , ∀ u 2 ∈ R n .
Below, for a set-valued map [0, 1] × R n (t, x) F (t, x) and t 0 ∈ [0, 1] such that F (t 0 , •) is Lipschitz on a neighborhood of some x 0 ∈ R n , we denote the partial derivatives with respect to the second variable by a subscript x. That is d x F (t 0 , x 0 , y 0 ) is equal to the adjacent derivative of F (t 0 , •) at (x 0 , y 0 ) for any

y 0 ∈ F (t 0 , x 0 ). Similarly for a function [0, 1] × R n (t, x) → f (t, x), J 2,+
x f (t, x) and J 2,- x f (t, x) denote respectively the sets of superjets and subjets of f (t, •) at x.

Problem statement and assumptions

Consider a deterministic control system of the form

ẋ(t) = f (t, x(t), u(t)), u(t) ∈ U (t), a.e. in [0, 1], x(0) ∈ K 0 , (C) where f : [0, 1] × R n × R m → R n , the set-valued map U : [0, 1]
R m and K 0 ⊂ R n are given. Later on it will be convenient to use the following notation:

F (t, x) := co {f (t, x, u) | u ∈ U (t)}. A Lebesgue measurable map u : [0, 1] → R m such that u(t) ∈ U (t) a.e. in [0, 1] is called control.
The set of all controls is denoted by

U := {u : [0, 1] → R m is Lebesgue measurable | u(t) ∈ U (t) a.e.} .
Under standard assumptions on f , for any control u ∈ U and any initial state x 0 ∈ K 0 , there exists a unique solution x ∈ W 1,1 ([0, 1]; R n ) of the ordinary differential equation in (C) satisfying x(0) = x 0 , called a state trajectory. For a fixed initial state x 0 ∈ K 0 , the tuple (x, u) consisting of a control u ∈ U and the corresponding state trajectory x ∈ W 1,1 ([0, 1]; R n ) is called a process. The set of processes and the set of state trajectories are given by,

P s (x 0 ) := (x, u) ∈ W 1,1 ([s, 1]; R n ) × U x(s) = x 0 and ẋ(t) = f (t, x(t), u(t)) for a.e. t ∈ [s, 1] , S s (x 0 ) := x ∈ W 1,1 ([s, 1]; R n ) ∃u ∈ U such that (x, u) ∈ P s (x 0 ) .
To simplify the notation we set P(x 0 ) := P 0 (x 0 ) and S(x 0 ) := S 0 (x 0 ). Let X, Y be vector spaces, V ⊂ X and h be a single-or set-valued map from X to Y . Then h(V ) := v∈V h(v). Thus for instance P(K 0 ) := x 0 ∈K 0 P(x 0 ). The objective of the present work is to study second-order necessary optimality conditions for the Mayer optimal control problem:

Minimize x∈S(K 0 ) ϕ(x(0), x(1)), (P)
where the function ϕ : R n × R n → R that associates to any (x 1 , x 2 ) ∈ R n × R n a real is given. There are several notions of local minimizers of problem (P). Here we are interested by strong local minimizers.

Definition. A process (x, ū) ∈ P(K 0 ) is a strong local minimizer if there exists ρ > 0 such that for all (x, u)

∈ P(K 0 ), x -x ∞ ≤ ρ =⇒ ϕ(x(0), x(1)) ≥ ϕ(x(0), x(1)). (2.3)
It is a weak local minimizer if the left-hand side of (2.3) can be replaced by |x(0) -

x(0)| + u -ū ∞ ≤ ρ.
Given a strong local minimizer (x, ū) ∈ P(K 0 ) of problem (P) we impose the following assumptions:

Assumptions: There exists ρ > 0 such that the following properties are satisfied :

(A1) (a) For all (x, u) ∈ R n × R m , f (•, x, u) is measurable. For all (t, x) ∈ [0, 1] × R n , f (t, x, •) is continuous, f (t, x, U (t)
) is closed and there exists a 1 > 0 such that sup u∈U (t) |f (t, x, u)| ≤ a 1 (|x| + 1). Moreover, for every R > 0, there exists an integrable map k 

R : [0, 1] → R + such that for a.e. t ∈ [0, 1], |f (t, x, u) -f (t, y, u)| ≤ k R (t) |x -y| , ∀ x, y ∈ RB, ∀ u ∈ U (t); (b) For all t ∈ [0, 1] and u ∈ U (t), f (t, •, u) is twice continuously differentiable on x(t) + ρB, f x (t, x(t), •) is continuous on U (t),
f x (t, x, u) -f x (t, y, u) ≤ l(t) |x -y| , ∀ x, y ∈ x(t) + ρB, ∀ u ∈ U (t); (c) U : [0, 1] R m is measurable with closed nonempty images; (d) ϕ is differentiable.

Second-order necessary optimality conditions

We state here pointwise second-order necessary optimality conditions for the Mayer problem (P).

General case

For optimal control problems, first-order necessary optimality conditions are given by the celebrated maximum principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF] which states that if (x, ū) ∈ P(K 0 ) is a strong local minimizer, then the (unique)

solution p ∈ W 1,1 ([0, 1]; R n ) of the so-called adjoint equation -ṗ(t) = f x (t, x(t), ū(t)) T p(t), a.e. -p(1) = ∇ x 2 ϕ(x(0), x(1)), (3.1) 
satisfies the transversality condition

p(0) -∇ x 1 ϕ(x(0), x(1)) ∈ N K 0 (x(0)), (3.2) 
and the maximality condition

H(t, x(t), p(t), ū(t)) = max u∈U (t) H(t, x(t), p(t), u), a.e., (3.3) 
where the Hamiltonian H is defined by (1.1). Observe that the maximality condition can be equivalently formulated in the following, less traditional way:

p(t), v ≤ 0, ∀ v ∈ T F (t,x(t)) ( ẋ(t)), a.e. ( 3.4) 
Let us also mention that using N K 0 (x(0)) in the transversality condition (3.2) is not very common: in [29, Prop. 6.4.4] a larger limiting normal cone is used. However, in the absence of final-point constraints, it is not difficult to show that the above stronger transversality condition (3.2) holds true. Moreover in (3.2), N K 0 (x(0)) may be replaced by the negative polar of the contingent cone to K at x(0). Not to complicate the discussion of second-order conditions, we stick to the adjacent tangents. Fix a triple (x, ū, p)

∈ P(K 0 ) × W 1,1 ([0, 1]; R n ) such that (x, ū
) is a strong local minimizer and p is the corresponding adjoint state, i.e. p satisfies (3.1) -(3.3). To simplify the notation [t] replaces (t, x(t), p(t), ū(t)) when evaluating the Hamiltonian H or (t, x(t), ū(t)) when evaluating the dynamics f . The closed set of maximizing controls at t ∈ [0, 1] and the set of critical initial directions are defined respectively by

U (t) := z ∈ U (t) H(t, x(t), p(t), z) = max u∈U (t) H(t, x(t), p(t), u) , Γ 0 := y 0 ∈ T K 0 (x(0)) p(0) -∇ x 1 ϕ(x(0), x(1)), y 0 = 0 . (3.5)
By [2, Thm. 8.2.9] the set-valued map U (•) is measurable and (3.3) implies that ū(t) ∈ U (t) a.e. It will be convenient to have the following notation:

D(t) := co (∆f [t, u], ∆f x [t, u]) u ∈ U (t) , where ∆f [t, u] := f (t, x(t), u) -f [t] and ∆f x [t, u] := f x (t, x(t), u) -f x [t]. Finally, let Y (•) denote the (fundamental) solution of the linear system Ẏ (t) = f x [t]Y (t), a.e. in [0, 1], Y (0) = Id. (3.6)
We are ready to state the main result of this section:

Theorem 3.1. Let (x, ū) ∈ P(K 0 ) be a strong local minimizer of problem (P). Assume (A1) holds true and

p ∈ W 1,1 ([0, 1]; R n ) solves (3.1). Then for every Ψ ∈ S(2n) satisfying (∇ϕ(x(0), x(1)), Ψ) ∈ J 2,+ ϕ(x(0), x(1)) and Ψ i ∈ S(n), i = 1, 2 such that Ψ = Ψ 1 Ψ 0 Ψ T 0 Ψ 2 , the solution W ∈ W 1,1 ([0, 1]; S(n)) of the matrix differential equation Ẇ (t) = -H px [t]W (t) -W (t)H xp [t] -H xx [t], a.e. W (1) = -Ψ 2 , (3.7) 
satisfies the second-order transversality condition

W (0) -Ψ 1 -2Ψ 0 Y (1) ∈ N (2) K 0 x(0); p(0) -∇ x 1 ϕ(x(0), x(1)) , (3.8) 
and the second-order maximality condition

max (v,M )∈D(t) M T p(t) + W (t)v, v = 0, a.e. in [0, 1]. (3.9)
Observe that since ū(t) ∈ U (t) a.e. we have (0, 0) ∈ D(t). Hence the maximum in the above expression is attained on optimal control ū. Therefore the above theorem can be seen as a second-order maximum principle. Its proof is postponed to Section 6 below and is based on a second-order variational equation which is studied in Section 5.

Remark 3.2. Taking the maximum in (3.9) only over (∆f

[t, u], ∆f x [t, u]) u ∈ U (t) , we obtain max u∈U (t) (H x (t, x(t), u) -H x [t]) T + W (t) (f (t, x(t), u) -f [t]) , f (t, x(t), u) -f [t] = 0, a.e. (3.10)
which is a necessary optimality condition similar to the one from [START_REF] Lou | Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure[END_REF] derived for a Bolza optimal control problem with a fixed initial state. Moreover, for a fixed t ∈ [0, 1], k = n + n 2 and fixed u 1 , . . . , u k+1 ∈ U (t) condition (3.9) implies that max

λ∈Λ k k+1 i=1 λ i ∆f x [t, u i ] T p(t) + W (t) k+1 i=1 λ i ∆f [t, u i ], k+1 i=1 λ i ∆f [t, u i ] = 0, (3.11) 
where Λ k := (λ 1 , . . . , λ k+1 )

k+1 i=1 λ i = 1, λ i ≥ 0 ∀i . Therefore (3.11
) is equivalent to testing the copositivity of the matrix -(M + V T W (t))V where

M :=    p(t) T ∆f x [t, u 1 ] . . . p(t) T ∆f x [t, u k+1    , V T :=    ∆f [t, u 1 ] T . . . ∆f [t, u k+1 ] T    .
We refer to [START_REF] Hiriart-Urruty | A variational approach to copositive matrices[END_REF] and the bibliography contained therein for a survey of this important problem of optimisation theory.

Corollary 3.3. In Theorem 3.1 assume in addition that the state and control variables are separated, that is there exist

f 1 : [0, 1] × R n → R n and f 2 : [0, 1] × R m → R n satisfying assumptions (A1) (a), (b) such that f (t, x, u) = f 1 (t, x) + f 2 (t, u) ∀ x ∈ R n , u ∈ R m .
Then for a.e. t ∈ [0, 1] the matrix W (t) is seminegative on the closed convex cone spanned by the set

f 2 (t, Ū (t)) -f 2 (t, ū(t)).
We end this section with a few comments on the mapping W (•) which we call the second-order adjoint matrix. Let R(t, t 0 ) := Y (t)Y -1 (t 0 ) denote the resolvent. Then it is not difficult to check that

W (t) = -R(1, t) T Ψ 2 R(1, t) + 1 t R(s, t) T H xx [s]R(s, t)ds, ∀ t ∈ [0, 1].
The next result follows directly from this formula and the first-order maximality condition. 

f (x, u) =      u 1 u 1 -u 2 x 1 T if u 1 ∈ [0, 1] u 1 1 2 u 1 -u 2 x 1 T if u 1 ∈ [-1, 1], U = [-1, 1] × [0, 1],
where subscripts indicate the components of vectors. Denoting the initial and terminal state by x S and x E respectively, initial constraints and cost function are defined by

K 0 = {(0, 0)} and ϕ(x S , x E ) = -(x E 1 ) 2 sign(x E 1 ) + 1 2 (x E 2 ) 2 sign(x E 2 ).
The Hamiltonian corresponding to this problem is

H(x, p, u) = p 1 u 1 + p 2 (u 1 -u 2 x 1 ) if u 1 ∈ [0, 1] p 1 u 1 + p 2 1 2 u 1 -u 2 x 1 otherwise.
Let us consider a candidate of optimality (x, ū) with ū1 ≡ 0. Then it is easy to see that x1 ≡ x2 ≡ 0 and it follows directly from the adjoint equation (3.1) that p1 ≡ p2 ≡ 0. Consequently,

H(x(t), p(t), u) = 0 ∀u ∈ U, ∀t ∈ [0, 1].
Thus the maximality condition (3.3) is trivially satisfied and

U (t) = U for all t ∈ [0, 1].
Noticing that (

-2 |x 1 (1)| |x 2 (1)| ,     0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 1     ) ∈ J 2,+ ϕ(x S , x E
), the corresponding second-order adjoint equation is

Ẇ (t) = 2ū 2 (t)W 12 (t) ū2 (t)W 22 (t) ū2 (t)W 22 (t) 0 , W (1) = 2 0 0 -1 . It follows that W 22 ≡ -1, W 12 (t) = W 21 (t) = 1 t ū2 (s)ds ≥ 0 for all t ∈ [0, 1]. Similarly, 0 ≤ 2ū 2 (t)W 12 (t) = Ẇ11 (t) ≤ 2, W 11 (1) = 2.
(3.12)

The second-order maximality condition (3.9) requires in particular that for almost all t ∈ [0, 1],

0 = max u∈U W (t)f (x(t), u), f (x(t), u) = W 11 (t)u 2 1 (t) + 2W 12 (t)u 2 1 -u 2 1 if u 1 ∈ [0, 1], W 11 (t)u 2 1 + W 12 (t)u 2 1 -1 4 u 2 1
otherwise.

However, from (3.12) it is clear that W 11 (t) > 1 on a set of positive measure. Hence the second-order condition is violated for all u ∈ U (t) = U with u 1 = 0 and the candidate (x, ū) cannot be optimal.

Case of dynamics differentiable in the control variable

Let (x, ū) ∈ P(K 0 ) be a strong local minimizer of (P) and p ∈ W Here we impose, in addition to (A1), the following regularity assumptions for ρ > 0 as in (A1).

(A2) (a) For almost all t ∈ [0, 1], f (t, •, •) is twice differentiable on (x(t) + ρB) × (ū(t) + ρB);

(b) There exists c 1 > 0 s.t. for a.e. t ∈ [0, 1], ∀ x, y ∈ x(t) + ρB, ∀ u, v ∈ ū(t) + ρB,

f u [t] ≤ c 1 and f (t, x, u) -f (t, y, v) ≤ c 1 (|x -y| + |u -v|),
where for every t, f (t, x, u) denotes the derivative of the map (x, u) → f (t, x, u);

(c) There exists an integrable

c 2 : [0, 1] → R + such that for a.e. t ∈ [0, 1], ∀ x, y ∈ x(t) + ρB, ∀ u, v ∈ ū(t) + ρB, f (t, x, u) -f (t, y, v) ≤ c 2 (t)(|x -y| + |u -v|),
where for every t, f (t, x, u) denotes the Hessian of the map (x, u) → f (t, x, u);

(d) ϕ is twice Fréchet differentiable.
We introduce the set of "non-singular" times :

A := {t ∈ [0, 1] | H u [t] = 0} , (3.13) 
and observe that, by (3.3), for a.e. t ∈ A, ū(t) belongs to the boundary of U (t).

Theorem 3.6. Let (x, ū) ∈ P(K 0 ) be a strong local minimizer of (P), (A1), (A2) hold true and

p ∈ W 1,1 ([0, 1]; R n ) solve (3.1). Set Ψ 0 := ∂ 2 ϕ ∂x 1 x 2 (x(0), x(1)), Ψ 1 := ∂ 2 ϕ ∂x 2 1 (x(0), x(1)), Ψ 2 := ∂ 2 ϕ ∂x 2 2 (x(0), x(1)).
Then the solution W ∈ W 1,1 ([0, 1]; S(n)) of (3.7) satisfies the transversality condition (3.8). Furthermore, for a.e. t ∈ [0, 1] and for every u ∈ T U (t) (ū(t)) such that either

(i) t ∈ A, H u [t]u = 0 and H u [t]v + 1 2 u T H uu [t]u = 0 for some v ∈ T (2) 
U (t) (ū(t), u), or (ii) t ∈ [0, 1]\A and u T H uu [t]u = 0, we have f u [t] T (H ux [t] + W (t)f u [t]) u, u ≤ 0. (3.14)
Observe that, by the maximality condition (3.3), for a.e. t ∈ [0, 1], and all

u ∈ T U (t) (ū(t)) ∩ H u [t] ⊥ , H u [t]v + 1 2 u T H uu [t]u ≤ 0, ∀ v ∈ T (2) 
U (t) (ū(t), u). (3.15) 
Hence (i) says that, for the given u ∈ T U (t) (ū(t)) ∩ H u [t] ⊥ the maximum over the left-hand side of the above inequality is attained and is equal to 0. 

P (t) contained in T U (t) (ū(t)). Then the above theorem implies that f u [t] T H ux [t] + f u [t] T W (t)f u [t] is seminegative definite on P (t).
b) The proof of Theorem 3.6 provided below actually allows to use a larger subset of tangents. Namely, (i) can be replaced by

t ∈ A, H u [t]u = 0 and H u [t]v + 1 2 u T H uu [t]u = 0 for some v satisfying (u, v) ∈ {(α, β) | β ∈ T (2) 
U (t) (ū(t), α)}. Moreover, using the relaxation theorem, (see for instance [START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF]Thm. 10.4.4]), the statement could be generalized by replacing u in (3.14) with k+1 i=1 λ i u i where k ∈ N, λ ∈ Λ k with Λ k defined as in Remark 3.2 and u i satisfying the same assumptions as u in Theorem 3.6 for all i ∈ {1, . . . , k + 1}. c) To the best of our knowledge, the above result is the first extension of the Jacobson inequality from [START_REF] Jacobson | A new necessary condition of optimality for singular control problems[END_REF], originally stated for U (•) ≡ [a, b] for some -∞ < a < b < +∞, a system affine with respect to controls and H u [•] = 0, to such a general framework. The Jacobson inequality was generalized by Jacobson and Speyer in [START_REF] Jacobson | Necessary and sufficient conditions for optimality for singular control problems: A limit approach[END_REF] 

to multidimensional U ≡ [a, b] × .... × [a, b]. These authors have shown that f u [t] T H ux [t] + f u [t] T W (t)f u [t]
is seminegative definite assuming that the control system is affine, H u [•] = 0 and that the optimal control is piecewise continuous and takes values in the interior of U . Let us underline again that the existence theorems in optimal control theory do not guarantee such structural properties of optimal controls. The above Theorem and Remark b) imply the following corollary.

Corollary 3.8. In Theorem 3.6 assume in addition that the state and control variables are separated, that is there exist

f 1 : [0, 1] × R n → R n and f 2 : [0, 1] × R m → R n satisfying assumptions (A1) (a), (b) and (A2) (a), (b), (c) such that f (t, x, u) = f 1 (t, x) + f 2 (t, u) ∀ x ∈ R n , u ∈ R m .
If ū is singular in the classical sense, that is H u [t] = 0 and H uu [t] = 0 a.e., then for a.e. t ∈ [0, 1] the matrix

f u [t] T W (t)f u [t] is seminegative on the closed convex cone co T U (t) (ū(t)).
Example 3.9. Let the set-valued map U : [0, 1] R m be given by the inequality constraints satisfying H u [t]u = 0, there exist α j (t, u) ≥ 0, j = 1, ..., s and v ∈ T

U (t) := s j=1 u ∈ R m c j (t, u) ≤ 0 , where c 1 , . . . , c s : [0, 1] × R m → R
(2)

U (t) (ū(t), u) such that H u [t] = s j=1 α j (t, u)c j u (t, ū(t)), H u [t]v = - 1 2 s j=1 α j (t, u)c j uu (t, ū(t))uu,
and

H u [t]v + 1 2 s j=1 α j (t, u)c j uu (t, ū(t))uu ≤ 0, ∀ v ∈ T (2) 
U (t) (ū(t), u). If t / ∈ A, then set α j (t, u) = 0 for all u ∈ T U (t) (ū(t)). Thus sup v∈T (2) 
U (t) (ū(t),u) H u [t]v = - 1 2 s j=1 α j (t, u)c j uu (t, ū(t))uu.
If in addition {∇ u c j (t, ū(t))} s j=1 are linearly independent, then the choice of α j (t, u) is unique (up to a set of measure zero) and independent from u. Consequently we get the following corollary: Corollary 3.10. Under the assumptions of Theorem 3.6, suppose that the set-valued map U : [0, 1] R m is as in Example 3.9 and for almost all t ∈ [0, 1], {∇ u c j (t, ū(t))} s j=1 are linearly independent. Then the solution W ∈ W 1,1 ([0, 1]; S(n)) of (3.7) satisfies the transversality condition (3.8) and there exist measurable, uniquely defined (up to a set of measure zero) α j : [0, 1] → R + , j = 1, ..., r such that for almost all t ∈ [0, 1], (i) α j (t)c j (t, ū(t)) = 0 for all j ∈ {1, . . . , s}; Proof of Corollary 3.10. As recalled before, whenever {∇ u c j (t, ū(t))} s j=1 are linearly independent, α j (t, u) from Example 3.9 are unique and independent of u. The existence of measurable α j : [0, 1] → R + such that (i) and (ii) of Corollary 3.10 are satisfied follows. Theorem 3.6 yields (iii).

(ii) H u [t] = s j=1 α j (t)c j u (t, ū(t)); (iii) max u∈U 0 (t) f u [t] T (H ux [t] + W (t)f u [t]) u, u = 0, where U 0 (t) :=    u ∈ T U (t) (ū(t)) H u [t]u = 0, u T H uu [t]u -u T   s j=1 α j (t)c j uu (t, ū(t))   u = 0    . ( 3 
Example 3.12. Consider the Mayer problem with the following dynamics and cost function

f (x, u) = u 1 u 1 -u 2 -x 2 1 + 1 2 x 2 2 + 8u 2 2 T , ϕ(x S , x E ) = x E 3 ,
where subscripts indicate the components of vectors and x S , x E denote the start and end point. Inital and control constraints are given by

K 0 = {(0, 0, 0)}, U = {(u 1 , u 2 ) ∈ [0, 1] × [0, 1] | u 2 ≤ u 1 } .
Notice that standard results guarantee the existance of a global minimizer of this problem.

The corresponding adjoint equation (3.1) for a candidate (x, ū) ∈ P(0) is

     -    ṗ1 (t) ṗ2 (t) ṗ3 (t)    =    0 0 -2x 1 (t) 0 0 x2 (t) 0 0 0       x1 (t) x2 (t) x3 (t)    , -    p1 (1) p2 (1) p3 (1) 
   =    0 0 1    .
Taking the candidate minimizer ū ≡ 0 we find readily that in this case x1 ≡ x2 ≡ p1 ≡ p2 ≡ 0 and p3 ≡ -1. It follows then that H(x(t), p(t), u) = -8u 2 2 which is maximized for u 2 = ū2 (t) = 0 for all t ∈ [0, 1]. Therefore ū satisfies the maximum principle (3.3). Notice also that since H uu [t] = 0, Goh type necessary conditions cannot be applied.

Simple computations show that H

u [t] ≡ H ux [t] ≡ 0. Moreover, noticing that u T H uu u = -16u 2 2 = 0 ∀u ∈ (v 1 , v 2 ) ∈ T U ((0, 0)) v 2 = 0 ,
the second-order optimality condition from Theorem 3.6 reads

f u [t] T W (t)f u [t]u, u ≤ 0 ∀u ∈ (v 1 , v 2 ) ∈ T U ((0, 0)) v 2 = 0 .
Solving the second-order adjoint equation (3.7) we find that

f u [t] T W (t)f u [t]u, u = (1 -t)u 2 1 > 0 ∀t ∈ [0, 1[, u ∈ (v 1 , v 2 ) ∈ T U ((0, 0)) v 1 > 0, v 2 = 0 ,
violating the second-order necessary condition. Hence (x, ū) cannot be optimal.

Second-order sensitivity relations

In this section we assume that ϕ does not depend on the first variable, i.e. ϕ : R n → R. Using the super/subjets of the value function along optimal trajectories, we derive sensitivity relations for the first-and second-order adjoints p and W , solving respectively (3.1) and (3.7). Proofs of the results of this section are deferred to Section 7.

The value function V : [0, 1] × R n → R associated with the Mayer problem (P) is defined by

V (t, x) := inf {ϕ(z(1)) | z ∈ S t (x)} . (4.1)
This function was introduced by Bellman and Isaacs in 50ies and has been studied by many researchers. The interested reader can find in [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control[END_REF][START_REF] Vinter | Optimal Control[END_REF] extended discussions on value functions. It is well known that if x ∈ S(x) is an optimal solution of (P), then the adjoint state p solving (3.1) satisfies

-p(t) ∈ ∂ + x V (t, x(t)), ∀t ∈ [0, 1],
where ∂ + x V (t, x(t)) denotes the superdifferential of V (t, •) at x(t), see for instance [2, Def. 6.5.7] for the definition of the superdifferential. The main result of this section is an analogous second-order sensitivity relation involving first-and second-order adjoints.

Theorem 4.1. Let x ∈ S t 0 (x 0 ) satisfy V (t 0 , x 0 ) = ϕ(x(1)). Assume (A1) and let Ψ 2 ∈ S(n) be such that (∇ϕ(x(1)), Ψ 2 ) ∈ J 2,+ ϕ(x(1)), p ∈ W 1,1 ([t 0 , 1]; R n ) and W ∈ W 1,1 ([t 0 , 1]; S(n)) be solutions of (3.1) and (3.7) respectively. Then

(-p(t), -W (t)) ∈ J 2,+ x V (t, x(t)), ∀t ∈ [t 0 , 1].
The statement of Theorem 4.1 can be interpreted as follows. If (-p T , -W T ) ∈ J 2,+ x V (1, x(1)), then this property propagates backward in time along the trajectory x for the solutions of the first-and second-order adjoint equations with terminal conditions given by pT and W T . Actually, if we replace the superjet by the subjet then a related sensitivity inclusion propagates forward in time.

Theorem 4.2. Let x ∈ S t 0 (x 0 ) be such that V (t 0 , x 0 ) = ϕ(x(1)). Assume (A1) and let p ∈ W 1,1 ([t 0 , 1]; R n ) be the corresponding solution of the adjoint equation

(3.1) defined on [t 0 , 1]. If for some W 0 ∈ S(n) we have (-p(t 0 ), -W 0 ) ∈ J 2,- x V (t 0 , x 0 ) then for the solution W ∈ W 1,1 ([t 0 , 1]; S(n)) of Ẇ (t) + H px [t]W (t) + W (t)H xp [t] + H xx [t] = 0, W (t 0 ) = W 0 ,
the following sensitivity relation holds true :

(-p(t), -W (t)) ∈ J 2,- x V (t, x(t)), ∀t ∈ [t 0 , 1].
Remark 4.3. Let x, p, and W be as in Theorem 4.1. By Theorem 4.2, if there exists t 0 ∈ [0, 1] such that (-p(t 0 ), -W (t 0 )) ∈ J 2,- x V (t 0 , x(t 0 )), then (-p(t), -W (t)) ∈ J 2,- x V (t, x(t)) for all t ≥ t 0 . In particular, from [6, Remark 2.8] it follows that in this case the value function is differentiable with respect to x along the optimal trajectory and (-p(t), -W (t)) is the jet of V (t, •) at x(t) for all t ∈ [t 0 , 1].

Variational equations

Second-order variational equations have been recently studied in [START_REF] Frankowska | A second-order maximum priniciple in optimal control under state constraints[END_REF][START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF][START_REF]Feasible perturbations of control systems with pure state constraints and applications to second-order optimality conditions[END_REF] for control systems, resp. differential inclusions with state constraints. In [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF][START_REF]Feasible perturbations of control systems with pure state constraints and applications to second-order optimality conditions[END_REF] differentiability of f with respect to the control is required. In [START_REF] Frankowska | A second-order maximum priniciple in optimal control under state constraints[END_REF] a second-order variational inclusion is given in a very general context by using second-order jets to the velocity set of the differential inclusion. In this section we are going to use this abstract result to provide second-order variational equations which are well adapted for the derivation of our second-order necessary optimality conditions. We recall first, for the convenience of the reader, [START_REF] Frankowska | A second-order maximum priniciple in optimal control under state constraints[END_REF]Thm. 3.3] in the case when state constraints are absent. The hypotheses of Theorem 3.1 are imposed throughout this section.

Second-order variational inclusions

Consider a reference trajectory x ∈ S(x 0 ) where x 0 ∈ K 0 . The set of admissible first-order variations V (1) (x) at x is the set of all absolutely continuous maps y ∈ W 1,1 ([0, 1]; R n ) satisfying, (i) ẏ(t) ∈ d x F (t, x(t), ẋ(t))(y(t)), for a.e. t ∈ [0, 1];

(ii) y(0) ∈ T K 0 (x 0 ); (iii) there exists an integrable function 1 : [0, 1] → R + and h 0 > 0 such that for a.e.

t ∈ [0, 1], dist F (t,x(t)+hy(t)) ( ẋ(t) + h ẏ(t)) ≤ 1 (t)h 2 , ∀ h ∈ [0, h 0 ].
For a given admissible first-order variation y ∈ V (1) (x), we abbreviate (t, x(t), ẋ(t), y(t), ẏ(t)) by [t] (for t ∈ [0, 1] such that the derivatives ẋ(t), ẏ(t) do exist) and define the set of admissible second-order variations V (2) (x, y) as the set of absolutely continuous maps

w ∈ W 1,1 ([0, 1]; R n ) satisfying, (i) ẇ(t) ∈ d 2 x F [t](w(t)), for a.e. t ∈ [0, 1]; (ii) w(0) ∈ T (2) 
K 0 (x 0 , y(0)).

Theorem 5.1 ([12]

). Assume (A1) (a). Let x ∈ S(x 0 ) for some x 0 ∈ K 0 , y ∈ V (1) (x) and w ∈ V (2) (x, y).

Consider any sequences

h i → 0+, w 0 i → w(0) such that x 0 + h i y(0) + h 2 i w 0 i ∈ K 0 . Then there exist x i ∈ S(x 0 + h i y(0) + h 2 i w 0 i ), such that 1 h 2 i (x i -x -h i y) converge to w uniformly on [0, 1] when i → ∞.
We work below with some subsets of the admissible first-and second-order variations. For the first-order variations we use the following classical linearization of control system (C):

ẏ(t) = f x [t]y(t) + v(t), v(t) ∈ T F (t,x(t)) ( ẋ(t)),
a.e. in [0, 1], y(0) ∈ T K 0 (x(0)).

(5.1)

To simplify the notations define,

V 1 := v ∈ L 1 ([0, 1]; R m ) v(t) ∈ T F (t,x(t)) ( ẋ(t)) a.e. ,
and the solution map Lin :

T K 0 (x(0)) × V 1 → W 1,1 ([0, 1]; R n ),
associating with any y 0 ∈ T K 0 (x(0)) and v ∈ V 1 the unique solution of (5.1) satisfying y(0) = y 0 . By [START_REF] Frankowska | The maximum principle for an optimal solution to a differential inclusion with end point constraints[END_REF] (see also [START_REF] Frankowska | The maximum principle for an optimal solution to a differential inclusion with end point constraints[END_REF]Section 5]) for a.e. t ∈ [0, 1] and all ξ ∈ R n ,

f x [t]ξ + T F (t,x(t)) ( ẋ(t)) ⊂ d x F (t, x(t), ẋ(t))(ξ). (5.2)
Our next aim is to provide a second-order approximation similar to (5.1) which is convenient for the derivation of second-order necessary optimality conditions.

Second-order variational equation for control systems

For an arbitrary control u ∈ U we define similarly to Section 3 the map δf

[u] : [0, 1] → R n by δf [u](t) = ∆f [t, u(t)] ∈ T F (t,x(t)) ( ẋ(t)).
The map δf x [u] : [0, 1] → R n×n is defined analogously. With any x 0 ∈ K 0 , (x, ū) ∈ P(x 0 ), u ∈ U, y 0 ∈ T K 0 (x(0)) and y = Lin(y 0 , δf [u]) we associate the second-order approximation,

ẇ(t) = f x [t]w(t) + ∆f x [t, u(t)]y(t) + 1 2 f xx [t]y(t)y(t), a.e. in [0, 1], w(0) ∈ T (2) 
K 0 (x 0 , y 0 ).

(5.

3)

The set of solutions to this linear equation is denoted by : Lin

2 (δf x [u], y) := w ∈ W 1,1 ([0, 1]; R n ) w is solution of (5.3) .
As we show below, for every u ∈ U, y = Lin(y 0 , δf [u]) and w ∈ Lin 2 (δf x [u], y) we have y ∈ V (1) (x) and w ∈ V (2) (x, y) which leads to the following Corollary of Theorem 5.1:

Corollary 5.2. Assume (A1)(a)-(c). Let y 0 ∈ T K 0 (x(0)), u ∈ U, y = Lin(y 0 , δf [u]) and w ∈ Lin 2 (δf x [u], y). Then for any sequences Proof of Corollary 5.2. By Theorem 5.1 we have to show that y ∈ V (1) (x) and w ∈ V (2) (x, y). Define R = x ∞ + 1.

h i → 0+, w 0 i → w(0) such that x(0) + h i y(0) + h 2 i w 0 i ∈ K 0 there exist x i ∈ S(x(0) + h i y(0) + h 2 i w 0 i ) satisfying, lim i→∞ 1 h 2 i x + h i y + h 2 i w -x i ∞ = 0.
Step 1: We start by showing that y ∈ V (1) (x). By (5.2) it suffices to prove that y satisfies property (iii) of the definition of admissible first-order variations. We know that for a.e. t and for all h > 0,

ẋ(t) + h ẏ(t) = f [t] + f x [t]hy(t) + h∆f [t, u(t)].
On the other hand, since

f (t, x(t) + hy(t), ū(t)) -f [t] = h 0 f x (t, x(t) + sy(t), ū(t))y(t)ds,
by the Lipschitz continuity of f x , we get for almost every t ∈ [0, 1] and for all h > 0 sufficiently small,

|f (t, x(t) + hy(t), ū(t)) -f [t] -f x [t]hy(t)| ≤ h 0 |f x (t, x(t) + sy(t), ū(t)) -f x [t]| |y(t)| ds ≤ 1 2 l(t) y 2 ∞ h 2 .
(5.4)

Similarly, taking h > 0 small enough, we get

|f (t, x(t) + hy(t), u(t)) -f (t, x(t) + hy(t), ū(t)) -∆f [t, u(t)]| ≤ 2k R (t)h y ∞ . (5.5)
Finally, by the convexity of F (t, x(t) + hy(t)), for all small h > 0,

F (t, x(t) + hy(t)) (1 -h)f (t, x(t) + hy(t), ū(t)) + hf (t, x(t) + hy(t), u(t)),
which together with (5.4)-(5.5) implies (iii) for

1 (•) := y 2 ∞ l(•) + 2 y ∞ k R (•).
Step 2: It remains to show that for a.e. t ∈ [0, 1],

f x [t]w + ∆f x [t, u(t)]y(t) + 1 2 f xx [t]y(t)y(t) ⊂ d 2 x F [t](w), ∀ w ∈ R n . (5.6) 
Fix t such that the last inequality in (A1)(a) holds true, w ∈ R n and let h > 0 be small enough. By the convexity of F (t, x),

F (t, x(t) + hy(t) + h 2 w) (1 -h)f (t, x(t) + hy(t) + h 2 w, ū(t)) + hf (t, x(t) + hy(t) + h 2 w, u(t)). (5.7) 
On the other hand, by Taylor's expansion,

(1 -h)f (t, x(t) + hy(t) + h 2 w, ū(t)) = f [t] + hf x [t]y(t) + h 2 f x [t]w + h 2 2 f xx [t]y(t)y(t) + o(h 2 ) -h f (t, x(t) + hy(t), ū(t)) + f (t, x(t) + hy(t) + h 2 w, ū(t)) -f (t, x(t) + hy(t), ū(t)) ,
which, by the Lipschitz continuity of f with respect to x, similarly to (5.5), leads to

(1 -h)f (t, x(t) + hy(t) + h 2 w, ū(t)) = f [t] + hf x [t]y(t) + h 2 f x [t]w + h 2 2 f xx [t]y(t)y(t) -hf (t, x(t) + hy(t), ū(t)) + o(h 2 ) = f [t] + hf x [t]y(t) + h 2 f x [t]w + h 2 2 f xx [t]y(t)y(t) -hf [t] -h 2 f x [t]y(t) + o(h 2 ).
(

Similarly,

f (t, x(t) + hy(t) + h 2 w, u(t)) = f (t, x(t) + hy(t), u(t)) + o(h) = (f (t, x(t), u(t)) + hf x (t, x(t), u(t))y(t)) + o(h). (5.9) 
Consequently, (5.7)-(5.9) together imply that for a.e. t ∈ [0, 1]

F (t, x(t) + hy(t) + h 2 w) f [t] + h (f x [t]y(t) + ∆f [t, u(t)]) + h 2 f x [t]w + 1 2 f xx [t]y(t)y(t) + ∆f x [t, u(t)]y(t) + o(h 2 ) = ẋ(t) + h ẏ(t) + h 2 f x [t]w + ∆f x [t, u(t)]y(t) + 1 2 f xx [t]y(t)y(t) + o(h 2 ),
which proves that (5.6) is satisfied a.e. in [0, 1].

Proofs of the second-order optimality conditions

In this section we provide the proofs of the second-order necessary optimality conditions from Section 3. Most of them are based on variational equations and a second-order adjoint equation.

Proof of Theorem 3.1

To simplify notations we introduce the set

U := u ∈ U | u(t) ∈ U (t) for a.e. t ∈ [0, 1] .
Step 1: Let y 0 ∈ Γ 0 , u ∈ U and y = Lin(y 0 , δf [u]). We claim that, ∇ϕ(x(0), x(1)), (y(0), y(1)) = 0. (

Indeed, using integration by parts and the properties of the adjoint state we find that, ∇ϕ(x(0), x(1)), (y(0), y(1)) = -

1 0 ṗ(t), y(t) + p(t), ẏ(t) dt + ∇ x 1 ϕ(x(0), x(1)) -p(0), y 0 = - 1 0 p(t), ∆f [t, u(t)] dt + ∇ x 1 ϕ(x(0), x (1) 
) -p(0), y 0 .

Since (y 0 , u) ∈ Γ 0 × U, the right-hand side of the above equality is zero and the conclusion follows.

Step 2: Fix Ψ ∈ S(2n) as in the statement of our theorem and let u ∈ U. We show next that the unique matrix solution W ∈ W 1,1 ([0, 1]; R n×n ) of the second-order adjoint equation (3.7) satisfies

1 0 Y (t) T W (t)∆f [t, u(t)] + ∆f x [t, u(t)] T p(t) , t 0 Y -1 (s)∆f [s, u(s)]ds dt ≤ 0. ( 6.2) 
Let y 0 ∈ Γ 0 , y = Lin(y 0 , δf [u]), w ∈ Lin 2 (δf x [u], y) be arbitrary and let the sequences h i → 0+, w 0 i → w(0) and x i ∈ S(x(0) + h i y(0) + h 2 i w 0 i ) be as in Corollary 5.2. Then for all i large enough 0 ≤ ϕ(x i (0), x i (1)) -ϕ(x(0), x(1)).

From the uniform convergence of x i to x and the definition of the superjet we deduce that 0 ≤ ϕ (x(0), x(1))

x i (0) -x(0)

x i (1) -x(1) + 1 2 x i (0) -x(0) x i (1) -x(1) T Ψ 1 Ψ 0 Ψ T 0 Ψ 2 x i (0) -x(0) x i (1) -x(1) + o( x i -x 2 ∞ ),
which, by Corollary 5.2, implies that

0 ≤ ϕ (x(0), x (1) 
)

h i y(0) + h 2 i w(0) h i y(1) + h 2 i w(1) + h 2 i 2 y(0) y (1) 
T

Ψ 1 Ψ 0 Ψ T 0 Ψ 2 y(0) y(1) + o(h 2 i ).
Thanks to (6.1) we can divide both sides of the last inequality by h 2 i and pass to the limit as i → +∞ which leads to

0 ≤ ϕ (x(0), x (1)) w(0) w(1) + 1 2 y(0) y(1) 
T

Ψ 1 Ψ 0 Ψ T 0 Ψ 2 y(0) y (1) . (6.3) 
Next, consider the (unique) solution W of the matrix differential equation (3.7). One readily checks that if W solves (3.7), then so does W T . Hence W (t) is a symmetric matrix for all t ∈ [0, 1]. Using this, the properties of the adjoint state and assumption (A1), we can rewrite inequality (6.3) as follows: p(0), w(0) -p(1), w(1) + ∇ x 1 ϕ(x(0), x(1)) -p(0), w(0) + y(0), Ψ 0 y(1)

+ 1 2
( Ψ 1 y(0), y(0) -W (1)y(1), y(1) ) ≥ 0. (6.4)

Similarly to step 1 we note that, p

-p(0), w(0) = 1 0 ( ṗ(t), w(t) + p(t), ẇ(t) ) dt = 1 0 ∆f x [t, u(t)] T p(t) + 1 2 p(t) T f xx [t]y(t), y(t) dt. (1), w(1) 
By the definition of W ,

-W (1)y(1), y(1) 
= -W (1)y(1), y(1)

+ 1 0 Ẇ (t) + f x [t] T W (t) + W (t)f x [t] + p(t) T f xx [t] y(t), y(t) dt. (6.6) 
Using the integration by parts and that W (t) is symmetric for any t, we find -W (1)y(1), y(1)

+ 1 0 Ẇ (t)y(t), y(t) dt = -W (1)y(1), y(1) + 1 0 d dt W y, y (t) -W (t) ẏ(t), y(t) -W (t)y(t), ẏ(t) dt = -W (0)y(0), y(0) - 1 0 ( W (t)y(t), ẏ(t) + W (t) ẏ(t), y(t) ) dt. (6.7) 
By the very definition of y we know that

1 0 f x [t] T W (t) + W (t)f x [t] y(t), y(t) dt - 1 0 ( W (t)y(t), ẏ(t) + W (t) ẏ(t), y(t) ) dt = - 1 0 ( W (t)y(t), ∆f [t, u(t)] + W (t)∆f [t, u(t)], y(t) ) dt = -2 1 0 W (t)∆f [t, u(t)], y(t) dt. (6.8) 
Combining equations (6.6)-(6.8) we obtain,

-W (1)y(1), y(1) = -W (0)y 0 , y 0 - 1 0 2 W (t)∆f [t, u(t)], y(t) dt + 1 0 p(t) T f xx [t]y(t), y(t) dt.
This and (6.4)-(6.5) lead to the inequality

-p(0) -∇ x 1 ϕ(x(0), x(1)), w(0) - 1 2 (W (0) -Ψ 1 ) y 0 , y 0 + Ψ 0 y(1), y 0 - 1 0 W (t)∆f [t, u(t)] + ∆f x [t, u(t)] T p(t), y(t) dt ≥ 0. (6.9) Let u = ū. Then δf [u] ≡ 0, δf x [u] ≡ 0 and y(1) = Y (1) 
y 0 . Hence it follows from (6.9) that for all y 0 ∈ Γ 0 and all w 0 ∈ T

K 0 (x(0), y 0 ) p(0) -∇ x 1 ϕ(x(0), x(1)), w 0 + 1 2 (W (0) -Ψ 1 -2Ψ 0 Y (1)) y 0 , y 0 ≤ 0, (2) 
which allows to conclude that W (0

) -Ψ 1 -2Ψ 0 Y (1) ∈ N (2) 
K 0 (x(0); p(0) -∇ x 1 ϕ(x(0), x(1))) . Let y 0 = 0 ∈ Γ 0 , w(0) = 0 ∈ T (2)
K 0 (x(0), 0). Since for any u ∈ U, y = Lin(0, δf [u]) is given by

y(t) = t 0 Y (t)Y -1 (s)∆f [s, u(s)]ds,
it follows from (6.9) that inequality (6.2) is verified for all u ∈ U.

Step 3: We deduce from (6.2) that for a.e. t ∈ [0, 1], .11) This part of the proof uses the standard ideas of needle variations of controls, as in [START_REF] Lou | Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure[END_REF]. We provide the details for the reader convenience. To simplify the notations we introduce the following maps:

W (t)∆f [t, u] + ∆f x [t, u] T p(t), ∆f [t, u] ≤ 0, ∀ u ∈ U (t). ( 6 
G(t, u) := Y (t) T W (t)∆f [t, u] + ∆f x [t, u] T p(t) and G(t, u) := Y -1 (t)∆f [t, u].
Let u ∈ U. By our assumptions ess-sup t∈[0,1] {|G(t, u(t))| + |G(t, u(t))|} =: C < +∞. Note that the set 

E :=    t ∈ [0, 1[ lim α→+0 1 α t+α t   G(s, u(s)) |G(s, u(s))| 2 G(s, u(s))   ds =   G(t, u(t)) |G(t, u(t))| 2 G(t, u(t))      , is of full measure in [0, 1]. We then fix an arbitrary β ∈ E such that |G(β, u(β))| ≤ C, α ∈ ]0,
+ β+α β (t -β)G(t, u(t))dt, G(β, u(β)) - β+α β (t -β)G(β, u(β))dt, G(β, u(β)) ≤ 2 α 2 β+α β (t -β)G(t, u(t)), 1 t -β t β G(s, u(s))ds -G(β, u(β)) dt + 2 α 2 β+α β (t -β) G(t, u(t)) -G(β, u(β)) dt, G(β, u(β)) ≤ 2C α 2 β+α β (t -β) 1 t -β t β G(s, u(s))ds -G(β, u(β)) dt + 2C α 2 β+α β (t -β) G(t, u(t)) -G(β, u(β)) dt.
From Hölder's inequality we obtain 

2 α 2 β+α β t β G(t, u(t)), G(s, u(s)) ds dt -G(β, u(β)), G(β, u(β)) ≤ 2C α 2 sup r∈]β,β+α] 1 r -β r β G(s, u(s))ds -G(β, u(β)) β+α β (t -β)dt + 2C α 2 β+α β (t -β) 2 dt 1 2 β+α β |G(t, u(t)) -G(β, u(β))| 2 dt 1 2 = C sup r∈]β,β+α] 1 r -β r β G(s, u(s))ds -G(β, u(β)) + 2C 1 α 3 β+α β (t -β) 2 dt 1 2 • • 1 α β+α β |G(t, u(t))| 2 + |G(β, u(β)| 2 -2 G(t, u(t)), G(β, u(β)) dt 1 2 = C sup r∈]β,β+α] 1 r -β r β G(s, u(s))ds -G(β, u(β)) + 2C √ 3 1 α β+α β |G(t, u(t))| 2 + |G(β, u(β))| 2 -2 G(t, u(t)), G(β, u(β)) dt 1 
max (v,M )∈{(∆f [t,u],∆fx[t,u]) | u∈U (t)} M T p(t) + W (t)v, v = 0.
Set k = n + n 2 and consider the optimisation problem Minimize ϕ(x(0), x(1)), over trajectories x(•) of the control system ẋ(t) = Σ k+1 i=1 λ i (t)f (t, x(t), u i (t)), ∀ i, u i ∈ U, (λ 1 (t), ..., λ k+1 (t)) ∈ Λ k a.e. in [0, 1], x(0) ∈ K 0 .

In the above we consider only measurable functions λ i . By the relaxation Theorem, see for instance [START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF]Thm. 10.4.4], the process (x, ū, ...., ū k+1 , 1, 0, ..., 0 k ) is a local minimizer for this new problem. Furthermore the corresponding first and second-order adjoint states are still p and W . Moreover the set corresponding to (∆f [t, u], ∆f x [t, u]) u ∈ U (t) for this new problem is equal to D(t). Therefore the maximality condition (3.9) follows.

Necessary optimality conditions in integral form

To prove Theorem 3.6, we shall use a second-order necessary optimality condition in integral form that we describe next. Define

J 2 K 0 (x(0)) = (y 0 , w 0 ) ∈ R n × R n ∀ h i → 0+, ∃ (y i 0 , w i 0 ) → (y 0 , w 0 ), p(0) -∇ x 1 ϕ(x(0), x(1)), y i 0 = 0, x(0) + h i y i 0 + h 2 i w i 0 ∈ K 0 ,
is measurable and therefore the set-valued map

Q(t) := i≥1 s≥1 Q i s (t),
is also measurable and has closed images containing zero. Proposition 6.2. For every t ∈ [0, 1] we have J 2 (t) = Q(t).

Proof. Fix (u, v) ∈ J 2 (t). Then for every q ∈ Q + there exist (u q , v q ) ∈ R m × R m such that lim q→0+ (u q , v q ) = (u, v), H u [t]u q = 0 and ū(t) + qu q + q 2 v q ∈ U (t). The sequence of sets { Q i s (t)} i is nondecreasing (with respect to i). Let i ≥ 1 be such that |(u, v)| < i. Then for all q ∈ Q + sufficiently small we have |(u q , v q )| ≤ i and therefore (u q , v q ) ∈ Q i q (t) for all small q ∈ Q + . Fix an integer s ≥ 1. Then for all small r > 0 we have (u, v)

∈ q∈Q + ∩(0,r) Q i q (t) + 1 s B . Since s ≥ 1 is arbitrary, we deduce that (u, v) ∈ s≥1 Q i s (t). Thus (u, v) ∈ Q(t). Conversely, let (u, v) ∈ Q(t) and h k → 0+. We have to show that there exist (u k , v k ) → (u, v) such that H u [t]u k = 0 and ū(t) + h k u k + h 2 k v k ∈ U (t). It is not restrictive to assume that h k ∈ Q + . Fix s ≥ 1. Then there exist i and (ũ k , ṽk ) ∈ Q i h k (t) such that (u, v) ∈ (ũ k , ṽk ) + 2 s B for all large k. In particular H u [t]ũ k = 0 and ū(t) + h k ũk + h 2 k ṽk ∈ U (t). Letting s tend to ∞, we construct a sequence (u k , v k ) as desired. Proposition 6.3. Consider (u, v) ∈ L ∞ ([0, 1]; R m × R m ) such that (u(t), v(t)) ∈ J 2 (t) a.e. in A. Then for every sequence h k → 0+ there exists a bounded sequence (u k , v k ) ∈ L ∞ ([0, 1]; R m × R m ) converging to (u, v) a.e. in A such that H u [t]u k (t) = 0 and ū(t) + h k u k (t) + h 2 k v k (t) ∈ U (t) for a.e. t ∈ A.
Proof. We may assume that (u(t), v(t)) = 0 for t / ∈ A. Observe that for any fixed t ∈ [0, 1] the sequence of sets P i (t) := s≥1 Q i s (t) is increasing with respect to i. Furthermore, by Proposition 6.2, lim i→∞ dist P i (t) ((u(t), v(t))) = 0. This and [2, Cor. 8.2.13] imply that we can find measurable selections (u i (t), v i (t)) ∈ P i (t) converging to (u, v) a.e. such that

dist P i (t) ((u(t), v(t))) = |(u(t), v(t)) -(u i (t), v i (t))| ≤ |(u(t), v(t))|.
Hence the sequence (u i , v i ) ∞ is bounded by 2 (u, v) ∞ . Observe next that if the claim of our proposition is valid for every such (u i , v i ), then, given a sequence h k → 0+ we can construct (u k , v k ) for (u, v) as in the claim. It remains to prove our proposition for every i ≥ 1 and any bounded measurable selection (u(t), v(t)) ∈ P i (t). Consider such i and (u, v). Fix s ≥ 1 and for every rational r > 0 and t ∈ [0, 1] define

R s r (t) := q∈Q + ∩(0,r) Q i q (t) + 1 s B .
Notice that for every integer s ≥ 1 the family of sets R s r (t) is decreasing with respect to r. Hence lim

r→0+, r∈Q + dist R s r (t) ((u(t), v(t))) = 0 a.e.,
and we deduce that lim 

k→∞ dist Q i h k (t)+ 1 s B ((u(t), v(t))) = 0. Since the set valued map t Q i h k (t)+
∞ sequence (u k , v k ) of measurable functions converging pointwise to (u, v) such that H u [t]u k (t) = 0 and ū(t) + h k u k (t) + h 2 k v k (t) ∈ U (t) a.e.
We are now ready for the proof of Theorem 6.1 which, in its remaining part, is similar to the one of [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF]Thm. 4.1] (but in the presence of initial point constraints), and so we skip some details. It is also similar to [18, Proof of Thm. 3.2], but for the Mayer problem instead of the Bolza one. Proposition 6.3 allows us to avoid additional assumptions imposed on u in [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF]Thm. 3.2].

Proof of Theorem 6.1. Fix (u(•), v(•)) ∈ M (2) (ū), (y 0 , w 0 ) ∈ J 2 K 0 (x(0)) and let y be the solution of (6.17). We claim that it is not restrictive to assume that (u(•), v(•)) is essentially bounded. Indeed, define

u i (t) = u(t) if |u(t)| + |v(t)| ≤ i, 0 otherwise, v i (t) = v(t) if |u(t)| + |v(t)| ≤ i, 0 otherwise. 
Then (u i , v i ) ∈ M 2 (ū) converge to (u, v) almost everywhere. Let y i be the solution of (6.17) with u replaced by u i . Then y i converge to y uniformly on [0, 1]. Observe that if Φ(u i , v i , y 0 , w 0 ) ≥ 0 for all large i, then, using the Lebesgue dominated convergence theorem and taking the limit we get Φ(u, v, y 0 , w 0 ) ≥ 0. We continue the proof assuming that u, v are essentially bounded. Fix any sequence h i → 0+. By Proposition 6.3 there exists a bounded in Let (y i 0 , w i 0 ) be as in the definition of J 2 K 0 (x(0)) for (y 0 , w 0 ) and our sequence h i . For every i ∈ N large enough consider the solution

L ∞ ([0, 1]; R m × R m ) family {(ũ i , ṽi )} i∈N such that H u [t]ũ i (t) = 0, ū(t) + h i ũi (t) + h 2 i ṽi (t) ∈ U (t), lim i→∞ (ũ i (t), ṽi (t)) = (u(t), v ( 
x i : [0, 1] → R n of the system ẋi (t) = f (t, x i (t), ū(t) + h i u i (t) + h 2 i v i (t)), x i (0) = x(0) + h i y i 0 + h 2 i w i 0 .
By the variational equation (x i -x)/h i converge uniformly to y. Moreover, for all large i ∈ N we have ϕ(x i (0), x i (1)) ≥ ϕ(x(0), x(1)). By the Taylor expansion and the properties of the adjoint state, setting y i = (x i -x)/h i we obtain similarly to [13, Proof of Thm. 4 Let us consider such a measurable selection (u(•), v(•)), y 0 ∈ Γ 0 , w 0 ∈ T

.1], 0 ≤ ϕ(x i (0), x i (1)) -ϕ(x(0), x(1)) = h 2 i ∇ x 1 ϕ(x(0), x(1)) -p(0), w 0 + 1 0 H x [t]h i y i (t) dt - 1 0 p(t), ẋi (t) -ẋ(t) dt + h 2 i 2 ϕ (x(0), x ( 
K 0 (x(0), y 0 ) and let y be the solution of (6.17). By Theorem 6.1, ∇ x 1 ϕ(x(0), x(1)) -p(0), w 0 + 1 2 (y 0 , y(1)) T ϕ (x(0), x(1))(y 0 , y(1)) In the same way as in the proof of Theorem 3.1, taking u(•) = 0, we deduce from the above inequality that W satisfies the second-order transversality condition (3.8) with Ψ = -ϕ (x(0), x(1)). Let y 0 = 0 ∈ Γ 0 and w 0 = 0 ∈ T

-
K 0 (x(0), 0). Then

y(t) = t 0 Y (t)Y -1 (s)f u [s]u(s)ds,
where Y is the fundamental solution of system (3.6). By the last inequality, integrating by parts as in (6.6) and (6.7), we obtain We show next that the integral on the right-hand side of (7.6) is of order o(|x t -x(t)| 2 ). Since (x, p) and (x, p) are solutions of (7.2) we find that for every t ∈ [t 0 , 1] For more details see for instance [START_REF] Cannarsa | Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control[END_REF][START_REF] Caroff | Conjugate points and shocks in nonlinear optimal control[END_REF]. With this observation (7. This, together with (7.6) completes the proof.

Proof of Theorem 4.2

The proof of Theorem 4.2 follows along the same lines as the proof of Theorem 4.1. We therefore just provide the main ideas. Since (-p(t 0 ), -W 0 ) ∈ J 2,- x V (t 0 , x(t 0 )), we can use the characterization of the subjets, see for instance [6, Prop. 2.6], to deduce the existence of a function g ∈ C 2 (R n ; R) such that g(•) ≤ V (t 0 , •), g(x 0 ) = V (t 0 , x 0 ), (∇g(x 0 ), g (x 0 )) = (-p(t 0 ), -W 0 ). (7.10)

Consider next the Hamiltonian system ẋ(t) = ∇ p H(t, x(t), p(t)), x(t 0 ) = x S , -ṗ(t) = ∇ x H(t, x(t), p(t)), -p(t 0 ) = ∇g(x S ). (7.11) Clearly (x, p) solves (7.11) with x S = x(t 0 ) = x 0 . Introducing the time transformation τ : t → 1 -t + t 0 , notice that if (x, p) solves (7.11) for some x S ∈ R n , then (x τ , p τ ) := (x(τ (t)), p(τ (t))) solves (7. 

Remark 3 . 7 .

 37 a) If f is affine in u and U is equal to a (time independent) polyhedron in R m , then H uu = 0 and 0 ∈ T (2) U (s) (ū(s), u) for any u ∈ T U (s) (ū(s)) and a.e. s ∈ [0, 1]. Therefore inequality (3.14) holds true for any u ∈ T U (t) (ū(t)) ∩ H u [t] ⊥ . With every t ∈ [0, 1] let us associate the largest subspace

Remark 5 . 3 .

 53 It is possible to show that in the above statement δf [u] and δf x [u] could be replaced by any v and M such that (v, M ) ∈ (w, N ) : [0, 1] → R n × R n×n measurable (w(t), N (t)) ∈ D(t) a.e. . However, for the proof of Theorem 3.1 the statement of Corollary 5.2 is sufficient.

F

  (s) := (u, v) ∈ J 2 (s) H u [s]v + 1 2 u T H uu [s]u = 0 , G(s) := u ∈ T U (t) (ū(t)) u T H uu [s]u = 0 ,are measurable and have closed images. DefineF (s) := F (s) if s ∈ A, {(u, 0) | u ∈ G(s)} if s ∈ [0, 1]\A.Then F (•) is also measurable and has closed images. Moreover 0 ∈ F (s) for a.e. s ∈ [0, 1]. This and the Castaing representation theorem, see for instance[START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF] Chapter 8], imply that it is sufficient to prove (3.8) and that for every bounded measurable selection (u(s), v(s)) ∈ F (s) a.e. the following inequality holds true for a.e. t ∈ [0, 1] f u [t] T (H ux [t] + W (t)f u [t]) u(t), u(t) ≤ 0. (6.21)

1 t 1 tW 1 2 1 t-

 1111 s), x(s) -x(s) ds = ∇ x H[s], x(s) -x(s) + -p(s), ∇ p H(s, x(s), p(s)) -∇ p H[s] ds. (7.7)Similarly, using that W solves (7.3) we obtain-)(x(s) -x(s)), x(s) -x(s) ds = -(s) ∇ p H(s, x(s), p(s)) -∇ p H[s] , x(s) -x(s) ds -H px [s]W (s) -W (s)H xp [s] -H xx [s] (x(s) -x(s)), x(s) -x(s) ds. (7.8)Consider the variational system of (7.2) obtained by differentiating the solution map of (7.2) with respect tox T , Ẋ(s) = H xp [s]X(s), X(1) = Id, -Ṗ (s) = H xx [s]X(s) + H px[s]P (t), -P (1) = φ (x T ). Then W (s) = P (s)X(s) -1 , and therefore, W (s) (x(s) -x(s)) = p(s) -p(s) + o s (|x(1) -x(1)|), ∀s ∈ [t, 1].

  and there exists a 2 > 0 such that sup u∈U (t) f

x (t, x(t), u) ≤ a 2 for a.e. t ∈ [0, 1]. Furthermore, there exists an integrable map l : [0, 1] → R + such that for a.e. t ∈ [0, 1]

  Example 3.5. Consider a Mayer problem where the dynamics and control constraints are given by

Corollary 3.4. If Ψ 2 is positive semidefinite and H xx [t] is negative semidefinite for almost all t ∈ [0, 1], then W (t) is negative semidefinite for all t ∈ [0, 1]. Consequently, (p(t), W (t)) ∈ N (2) F (t,x(t)) ( ẋ(t)), a.e.

  are Carathéodory functions. Assume that for a.e. t ∈ [0, 1] and for every j ∈ {1, . . . , s}, c j (t, •) is twice continuously differentiable and {∇ u c j (t, ū(t)) | j = 1, ..., s} are positively independent. If (x, ū), p are as in Theorem 3.6, then, by(3.4), for a.e. t ∈ [0, 1] and for every u ∈ T U (t) (ū(t)) we haveH u [t]u ≤ 0. That is ∇ u H[t] ∈ N U (t) (ū(t)). By Example 2.2, for a.e. t ∈ A and for every u ∈ T U (t) (ū(t))

  for t ∈ E 1 . It follows from[START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF] Thm. 8.2.9] that Ω(•) is measurable. Furthermore Ω(t) is nonempty and closed a.e. Hence there exists a measurable selection ũ(t) ∈ Ω(t) for all t ∈ [0, 1]. It is clear that ũ ∈ U but (6.14) is violated. This yields the desired contradiction and completes Step 3.

	Consequently, from the choice of β we conclude that
	lim α→+0	2 α 2	β	β+α	β	t	G(t, u(t)), G(s, u(s)) ds dt = G(β, u(β)), G(β, u(β)) .	(6.13)
	It follows therefore from (6.12) and (6.13) that for all u ∈ U we have
					G(t, u(t)), G(t, u(t)) ≤ 0,	for a.e. t ∈ [0, 1].	(6.14)
	To complete the proof we show that (6.14) implies (6.11) using a contradiction argument. If (6.11) is
	not satisfied then there exist ε > 0 and a set of positive measure E 1 ⊂ [0, 1] such that for all t ∈ E 1 ,
					∃ u ∈ U (t) satisfying	G(t, u), G(t, u) ≥ ε.	(6.15)
	Define the set-valued map Ω : [0, 1]	R m by Ω(t) = {ū(t)} for every t ∈ [0, 1]\E 1 and
					Ω(t) := u ∈ U (t) G(t, u), G(t, u) ≥ ε ,
	Step 4: It follows directly from (6.11) that for a.e. t ∈ [0, 1]
									2
									.

  1 s B is measurable and has closed nonempty images containing zero, by [2, Cor. 8.2.13 and Thm. 8.2.9] there exists a measurable selection (ũ k (t), ṽk (t)) ∈ Q i h k (t) such that lim k→∞ dist (ũ k (t),ṽ k (t))+ 1 s B ((u(t), v(t))) = 0 a.e. and |(ũ k (t), ṽk (t)) -(u(t), v(t))| ≤ |(u(t), v(t))| + 1/s. Moreover, H u [t]ũ k (t) = 0 and ū(t) + h k ũk (t) + h 2 k ṽk (t) ∈ U (t). Making s to converge to ∞ we construct a bounded in L

  (s)f u [s]u(s)ds dt ≤ 0. Finally, defining G(t, u) := Y (t) T (H ux [t] + W (t)f u [t]) u and G(t, u) := Y -1 (t)f u [t]uwe can repeat the arguments of Step 3 of the proof of Theorem 3.1 to deduce the pointwise statement (6.21) which completes the proof.where we used (7.1) and that V (1, x) = ϕ(x) for all x ∈ R n . Hence (7.1) impliesV (t, x t ) -V (t, x(t)) ≤ ∇ϕ(x(1)), x(1) -x(1) + 1 2 Ψ 2 (x(1) -x(1)), x(1) -x(1) + o(|x(1) -x(1)| 2 ). (7.5) By Gronwall's lemma and the Lipschitz continuity of f with respect to x, there exists a constant c > 0 such that for all s ∈ [t, 1], |x(s) -x(s)| ≤ c |x t -x(t)| . This implies that for all s ∈ [t, 1], we can replace rest terms of order o(|x(s) -x(s)| 2 ) by rest terms of order o(|x t -x(t)| 2 ). Using this and the properties of p and W we deduce from (7.5) that V (t, x t ) -V (t, x(t))

	1 Y -1 ≤ -p(1), x(1) -x(1) + Y (t) T (H ux [t] + W (t)f u [t]) u(t), t 1 2 -W (1)(x(1) -x(1)), x(1) -x(1) + o(|x t -x(t)| 2 ) ≤ -p(t), x t -x(t) + 1 2 -W (t)(x
	0	0

t -x(t)), x t -x(t) + o(|x t -x(t)| 2 ) + 1 t d ds -p(s), x(s) -x(s) + 1 2 -W (s)(x(s) -x(s)), x(s) -x(s) ds.

(7.6)

  H(s, x(s), p(s)) -∇ p H[s], p(s) -p(s) + o s (|x t -x(t)| 2 ) ds.Finally, since p(s), ∇ p H(s, x(s), p(s)) = H(s, x(s), p(s)) and similarly p(s), ∇ p H[s] = H[s], (7.7) and (7.9) lead to

							8) becomes
			-	1 2	t	1	d ds	W (s)(x(s) -x(s)), x(s) -x(s) ds
					=	t -	1	1	1 2	H xx [s](x(s) -x(s)), x(s) -x(s) + H px [s](p(s) -p(s)), x(s) -x(s) ds ∇ p (7.9)
							t
	t	1	d ds			-p(s), x(s) -x(s) +	1 2	-W (s)(x(s) -x(s)), x(s) -x(s) ds
		=	t	1	1 2	H

xx [s](x(s) -x(s)), x(s) -x(s) + H px [s](p(s) -p(s)), x(s) -x(s) -H(s, x(s), p(s)) + H[s] + ∇ x H[s], x(s) -x(s) + ∇ p H[s], p(s) -p(s) + o s (|x t -x(t)| 2 ) ds. Since H(t, •, •) is of class C 2 in

a neighborhood of Ω t (x(1) + ρB), it is not difficult to verify via Taylor's formula and the dominated convergence theorem that

1 t d ds -p(s), x(s) -x(s) + 1 2 -W (s)(x(s) -x(s)), x(s) -x(s) ds = o(|x t -x(t)| 2 ).

  2) with x τ (1) = x S and Hamiltonian H τ (t, x, p) := -H(τ (t), x, p). Moreover, W τ (t) := W (τ (t)) is a solution of equation (7.3) with H[t] replaced by H τ (t, xτ (t), pτ (t)) and φ (x(1)) replaced by g (x τ (1)). As in the proof of Theorem 4.1 we deduce that for some ρ > 0 and all t ∈ [t 0 , 1] the set

Dt := {x(t) | (x, p) solves (7.11), x S ∈ x(t 0 ) + ρB} ,

The first author was partially supported by the Gaspard Monge Program for Optimisation and Operational Research, Jacques Hadamard Mathematical Foundation (FMJH). The second author was supported by the SNSF.

The above sets are closed, contain zero and for every (u, v) ∈ J 2 (t) we have u ∈ T U (t) (ū(t)) and H u [t]u = 0. Moreover, if u ∈ T U (t) (ū(t)) is such that H u [t]u = 0 and v ∈ T

(2) U (t) (ū(t), u), then (u, v) ∈ J 2 (t). Finally, as we prove in Proposition 6.2 below, J 2 (•) is measurable. This will allow us to apply a measurable selection theorem to deduce pointwise necessary conditions from the integral necessary conditions. Define the local critical cone, at ū ∈ U by (6.16) and the set of admissible second-order variations of ū by

Consider the linearized system

and define the quadratic functional Φ : for any (u

)

where y(•) is the solution of (6.17). The second-order necessary optimality condition below generalizes [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF]Thm 4.1] to problems with initial state constraints. It uses a larger set M (2) (ū) of admissible second-order variations of ū than in [START_REF] Frankowska | Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint[END_REF]. For this reason the next result is stronger than [13, Theorem 4.1].

Theorem 6.1. Let (x, ū) ∈ P(K 0 ) be a strong local minimizer of (P), (A1), (A2) hold true and

We first prove two useful propositions. It is not restrictive to assume that ū(t) ∈ U (t) for every t ∈ [0, 1].

For any i ∈ N and t ∈ [0, 1] define

By [2, Thm. 8.2.9], t V i (t) is measurable and has closed images. Then, by the same theorem, for all q ∈ Q + , the set-valued map

, is also measurable and has closed images. Consequently, for every integer s ≥ 1 the set valued map

7 Proofs of the second-order sensitivity relations

Clearly assumption (A1) implies that H( 

where x T ∈ R n . Notice that for x T = x(1), (x, p) is a solution of (7.2). Moreover, it follows from the definition of H and assumption (A1) that for all x T ∈ R n in a sufficiently small neighborhood of x(1) there exists a unique solution of (7.2). We associate with x and p the matrix differential equation

where [t] := (t, x(t), p(t)). Notice that its unique solution is the second-order adjoint state W ∈ W 

Proof of Theorem 4.1

Let x, p and W be as in the statement of Theorem 4.1 and φ be a function satisfying (7.1). Fix an arbitrary t ∈ [t 0 , 1]. Since D t is an open neighborhood of x(t), it suffices to show that for all x t ∈ R n such that (x t , p t ) ∈ Ω t (x(1) + ρB) for some p t ∈ R n we have

Let (x, p) be a solution of (7.2) such that (x t , p t ) := (x(t), p(t)) ∈ Ω t (x(1) + ρB). Using that the value function is non-decreasing along feasible trajectories and constant along optimal trajectories, we get

is open and W (t)(x(t) -x(t)) = p(t) -p(t) + o t (|x(t 0 ) -x(t 0 )|). It suffices therefore to prove that for all (x, p) solving (7.11) with x S ∈ x(t 0 ) + ρB and all t ∈ [t 0 , 1] we have

Fix t ∈ [t 0 , 1] and let (x, p) be a solution of (7.11) with x S ∈ x(t 0 ) + ρB. Then it follows from the dynamic programming principle and (7.10) that

Still using (7.10) this leads to