
HAL Id: hal-03753942
https://hal.science/hal-03753942

Submitted on 19 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pointwise second-order necessary optimality conditions
and second-order sensitivity relations in optimal control

Hélène Frankowska, Daniel Hoehener

To cite this version:
Hélène Frankowska, Daniel Hoehener. Pointwise second-order necessary optimality conditions and
second-order sensitivity relations in optimal control. Journal of Differential Equations, 2017, 262 (12),
pp.5735-5772. �10.1016/j.jde.2017.02.013�. �hal-03753942�

https://hal.science/hal-03753942
https://hal.archives-ouvertes.fr


Pointwise Second-Order Necessary Optimality Conditions and

Second-Order Sensitivity Relations in Optimal Control∗

Hélène Frankowska† Daniel Hoehener‡

December 5, 2016

Abstract

This paper is devoted to pointwise second-order necessary optimality conditions for the Mayer
problem arising in optimal control theory. We first show that with every optimal trajectory it is
possible to associate a solution p(·) of the adjoint system (as in the Pontryagin maximum principle)
and a matrix solution W (·) of an adjoint matrix differential equation that satisfy a second-order
transversality condition and a second-order maximality condition. These conditions seem to be a
natural second-order extension of the maximum principle. We then prove a Jacobson like necessary
optimality condition for general control systems and measurable optimal controls that may be only
“partially singular” and may take values on the boundary of control constraints. Finally we investigate
the second-order sensitivity relations along optimal trajectories involving both p(·) and W (·).

Key words: Optimal control; Second-order necessary optimality conditions; Singular control;
Jacobson condition; Sensitivity relations; Second-order maximum principle.

AMS subject classification: 49K15.

1 Introduction

Consider the Mayer optimal control problem

Minimize ϕ(x(0), x(1)),

over trajectories x(·) of the control system{
ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t), a.e. in [0, 1],

x(0) ∈ K0,

where f : [0, 1]× Rn × Rm → Rn, ϕ : Rn × Rn → R, U(t) ⊂ Rm for t ∈ [0, 1] and the set of initial point
constraints K0 ⊂ Rn. Admissible controls are measurable selections of U(·). If (x̄, ū) is an optimal
trajectory-control pair, then it is well known that, under standard assumptions on f, the (unique)
solution p̄(·) of the adjoint system

− ˙̄p(t) = fx(t, x̄(t), ū(t))T p̄(t), −p̄(1) = ∇x2ϕ(x̄(0), x̄(1)),
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satisfies the maximality condition

〈p̄(t), f(t, x̄(t), ū(t))〉 = max
u∈U(t)

〈p̄(t), f(t, x̄(t), u)〉, a.e.

and the transversality condition

p̄(0)−∇x1ϕ(x̄(0), x̄(1)) ∈ NK0(x̄(0)),

where NK0(x̄(0)) is a normal cone to K0 at x̄(0) and ∇x1ϕ denotes the partial derivative of ϕ with
respect to the first variable (for a moment we do not make precise which normal cones we consider,
to avoid technicalities in the introduction). This maximality condition however, in general, does not
single out ū(t) because the maximum may be attained by several u ∈ U(t). Let us denote the set of all
maximizers by

U(t) :=

{
z ∈ U(t)

∣∣∣∣ 〈p̄(t), f(t, x̄(t), z)〉 = max
u∈U(t)

〈p̄(t), f(t, x̄(t), u)〉
}
.

An important ongoing research in optimal control theory concerns refining the set U(t) in order to
restrict further the candidates for optimality. Several necessary optimality conditions can be found in
the control literature of the 70ies including the Goh and the Jacobson conditions, [16, 21]. These results
were usually assuming that U is time independent, that optimal control ū takes values in the interior of
U and that it is also piecewise continuous, which is often not the case. Both the Goh and the Jacobson
conditions are pointwise conditions. The Goh necessary condition was generalized in various ways by
many authors, see for instance [1, 14, 28] and the references therein.
There is also a rich literature on second-order optimality conditions in integral form which hold under
less restrictive assumptions than the pointwise conditions, see for instance [4, 5, 9, 13, 15, 18, 23, 24, 25]
and the references therein. However, conditions in integral form are not simple to check as they must
be satisfied on a set of functions instead of pointwise.
The aim of our work is to prove a second-order maximum principle and the Jacobson inequality
in a very general situation that we describe now. To simplify the discussion, let us assume that
ϕ(x1, x2) = ϕ1(x1) +ϕ2(x2) for all x1, x2 ∈ Rn, where ϕi : Rn → R are twice continuously differentiable
functions. Recall that the (unmaximized) Hamiltonian H : [0, 1]× Rn × Rn × Rm → R is defined by,

H(t, x, p, u) = 〈p, f(t, x, u)〉 . (1.1)

Set [t] := (t, x̄(t), p̄(t), ū(t)) and denote by Hxx[t] the partial Hessian of H with respect to x at [t]. The
notations Hxp[t] and Hpx[t] are similarly defined. Consider the solution W of the matrix differential
equation {

Ẇ (t) = −Hpx[t]W (t)−W (t)Hxp[t]−Hxx[t], a.e.

W (1) = −ϕ′′2(x̄(1)).

Our results imply, in particular, that p̄, W satisfy the following second-order maximality condition

max
u∈U(t)

〈(
fx(t, x̄(t), u)T − fx[t]T

)
p̄(t) +W (t) (f(t, x̄(t), u)− f [t]) , f(t, x̄(t), u)− f [t]

〉
= 0,

and the second-order transversality condition

W (0)− ϕ′′1(x̄(0)) ∈ N (2)
K0

(
x̄(0); p̄(0)−∇ϕ1(x̄(0))

)
,

where [t] = (t, x̄(t), ū(t)) and N
(2)
K0

denotes an appropriate second-order normal cone to K0.
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The above two relations are similar to those of the Pontryagin maximum principle but use second-order
normals and second-order adjoints instead of the first-order ones. An earlier result of this nature
was obtained in [22] for a Bolza problem with a fixed initial point and time independent control sets.
However in [22] some ad hoc relaxation arguments and a special type linearization of control system
are used, which would not allow to treat more complex problems involving state constraints. Our
proof is more direct, since we use the classical Filippov-Ważewski relaxation theorem in the form of
differential inclusion and a linearization of this differential inclusion. Such techniques allow to investigate
state constrained problems as well, see [12, 18, 19]. Furthermore, thanks to the relaxation theorem,
(fx(t, x̄(t), u), f(t, x̄(t), u)) may be replaced by convex combinations of such elements for u ∈ U(t), see
Theorem 3.1 in Section 3.
When, in addition, f is differentiable with respect to u, then the second-order necessary optimality
condition from [13, 18] in the form of an integral inequality can be extended to problems with initial point
constraints. Actually we improve [13, Theorem 4.1] by allowing a larger set of admissible second-order
variations of ū, see Theorem 6.1 from Section 6. We would like to underline here that Theorem 3.1
is deduced from the integral inequality (6.2) that is different from the one in Theorem 6.1. More
generally, Theorems 3.1 and 6.1 are not comparable between them : the first one holds true without
the differentiability assumptions on data with respect to u and concerns controls maximizing the
Hamiltonian, while the second one supposes differentiability of data with respect to u and concerns
critical variations of controls.
In the difference with [13, 18], admissible second-order variations are defined here by using closed jets to
U(t) at ū(t), instead of second-order tangents whose graph, being not closed in general, may be difficult
to apply to deduce pointwise conditions.
The obtained integral inequality implies, in turn, a pointwise inequality, leading to a very general
formulation of the Jacobson type necessary optimality condition for measurable optimal controls, see
Theorem 3.6 below. Such inequality was previously derived for affine with respect to control systems,
time independent (box-type) U , piecewise continuous optimal controls taking values in the interior of U
and Hu[·] = 0. Since piecewise continuity of optimal controls does not hold in general, and typically
optimal controls take values on the boundary of U , our extension is a major breakthrough avoiding to
impose structural assumptions on optimal controls.
In particular, if the boundary of U(t) is sufficiently smooth and ū(·) is singular in the sense that
Hu[t] = 0, Huu[t] = 0 a.e., our generalisation of the Jacobson inequality implies that for a.e. t ∈ [0, 1],〈

fu[t]T (Hux[t] +W (t)fu[t])u, u
〉
≤ 0,

for every u tangent to U(t) at ū(t). Thus, whenever ū(t) belongs to the interior of the set U(t), we get the
inequality from [20]: fu[t]T (Hux[t] +W (t)fu[t]) ≤ 0. Actually the second-order maximality condition
and the above inequality look somewhat similar. Still Theorem 3.1 does not imply Theorem 3.6.
To complete our study, we also investigate the sensitivity relations for the value function V : [0, 1]×Rn →
R of the Mayer problem. Similarly to the first-order case where −p̄(t) is an element of the superdifferential
of V (t, ·) at x̄(t), we show that (−p̄(t),−W (t)) belongs to the second-order superjet of V (t, ·) at x̄(t)
for all t ∈ [0, 1]. In the difference with [6], where the Riccati equation was used, our matrix differential
equation does not contain a quadratic term. For this reason W (·) does not escape to infinity, unlike in
[6], and the sensitivity relations derived here hold true on the whole interval [0, 1]. These sensitivity
relations are in turn less precise than those in [6] and do not allow to investigate the local C2 regularity
of the value function.
The outline of the paper is as follows. In Section 2 we provide some preliminaries and formulate the
main assumptions. Section 3 presents our main results on second-order necessary optimality conditions,
while Section 4 deals with sensitivity relations. Section 5 is devoted to the second-order variational
equations. Proofs are given in Sections 6 and 7.
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2 Problem statement and notations

2.1 Preliminaries

Throughout the paper n,m, r, s ∈ N are integers and R+, Q+ are nonnegative reals and rationals, respec-
tively. We denote the norm in Rn by |·|, 〈·, ·〉 is the standard inner product and B := {x ∈ Rn | |x| < 1}
stands for the open unit ball. For a set K ⊂ Rn, K is its closure, coK is its closed convex hull, K	 is its
(negative) polar cone, i.e. K	 := {q ∈ Rn | 〈q, k〉 ≤ 0 ∀ k ∈ K} and K⊥ is its orthogonal complement,
i.e. K⊥ := {q ∈ Rn | 〈q, k〉 = 0 ∀ k ∈ K}. Given a matrix A of dimension n×m we denote by AT its
transpose, a matrix of dimension m× n. By S(n) we denote the set of symmetric n× n-matrices and
by S−(n) the subset of symmetric seminegative n× n-matrices. Finally, for Banach spaces X and Y
and a bounded linear map L : X → Y , the norm of L is the operator norm, i.e. ‖L‖ := sup‖x‖=1 ‖Lx‖.
Below W 1,1([0, 1];Rn) stands for the space of absolutely continuous maps from [0, 1] to Rn and Ck(Rn;Rm)
for the space of k-times continuously differentiable maps from Rn to Rm. The space of continuous maps
is denoted by C(Rn;Rm). For 1 ≤ p ≤ ∞, Lp([0, 1];Rn) denotes the Lebesgue space, in particular, for
u ∈ Lp([0, 1];Rn), |u|p is integrable if p <∞, respectively u is essentially bounded if p =∞. The usual
norm of Lp([0, 1];Rn) is denoted by ‖·‖p.
For a mapping f : Rn → Rm, partial derivatives (if they exist) are indicated by a subscript referring to
the differentiation variable, hence for instance fx(x0, u0) := ∂

∂xf(x0, u0). Second-order partial derivatives

are indicated by a double subscript, i.e. fxu(x0, u0) := ∂2

∂x∂uf(x0, u0). Moreover, we will simplify the
notation for the bilinear form fxu(x0, u0)(y, u) by writing fxu(x0, u0)yu.
Consider a subset K ⊂ Rn. A map ϕ : [0, 1]×K → Rm is a Carathéodory map if ϕ(·, x) is Lebesgue
measurable for all x ∈ K and ϕ(t, ·) is continuous on K for almost all t ∈ [0, 1].
Next, we recall some definitions concerning tangent sets. The distance between a point x ∈ Rn and a
subset K ⊂ Rn is defined by distK(x) := infk∈K |x− k|. Let T be a metric space and {Kτ}τ∈T be a
family of subsets of Rn. The lower limit of {Kτ} at τ0 ∈ T in the Peano-Kuratowski sense is given by

Liminf
τ→τ0

Kτ :=

{
v ∈ Rn

∣∣∣∣ lim
τ→τ0

distKτ (v) = 0

}
.

First- and second-order adjacent subsets are defined in the following way.

Definition. Let K ⊂ Rn and x ∈ K. The adjacent cone to K at x is the set,

T [K(x) := Liminf
h→0+

K − x
h

.

Further, let u ∈ Rn. The second-order adjacent subset to K at (x, u) is the set,

T
[(2)
K (x, u) := Liminf

h→0+

K − x− hu
h2

.

Observe that if T
[(2)
K (x, u) 6= ∅, then u ∈ T [K(x). The set T

[(2)
K (x, u) is closed for every u, but, in general,

the set
{

(u, v) ∈ Rn × Rn | v ∈ T [(2)
K (x, u)

}
is not closed. We refer to [27, pp. 638-641] for historical

comments and a huge bibliography on second order tangents and second order derivatives of functions.
See also [2] for various definitions of first and higher order tangent cones and their properties.
The dual notion to tangent cones are normal cones. Here we use the normal cone N [

K(x) := T [K(x)	. It
is closed and convex, and coincides with the normal cone of convex analysis when K is convex.
With every q ∈ N [

K(x) we associate the set of second-order “normals”:

N
[(2)
K (x; q) :=

{
Q ∈ S(n)

∣∣∣∣ 〈q, w〉+
1

2
〈Qy, y〉 ≤ 0, ∀ y ∈ T [K(x) ∩ {q}⊥, ∀w ∈ T [(2)

K (x, y)

}
.
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By convention we set N
[(2)
K (x; q) = S(n) whenever T

[(2)
K (x, y) = ∅ for all y ∈ T [K(x) ∩ {q}⊥. Observe

that N
[(2)
K (x; q) is a closed and convex, possibly empty, set. Clearly N

[(2)
K (x; q) + S−(n) = N

[(2)
K (x; q).

Observe that if T [K(x) ∩ {q}⊥ = {0}, then N
[(2)
K (x; q) = S(n). Moreover S−(n) ⊂ N [(2)

K (x; 0).

Remark 2.1. To the best of our knowledge this definition of second-order normals never appeared in
the literature before [11], where we used it to express the second-order transversality conditions.
A second-order normal cone was defined in [3] (without using second-order tangents) by

N (2)
K (x) :=

{
(q,Q) ∈ Rn × S(n)

∣∣∣∣ 〈q, k − x〉+
1

2
〈Q(k − x), k − x〉 ≤ o(|k − x|2), ∀k ∈ K

}
,

where limh→0+ o(h
2)/h2 = 0. For every (q,Q) ∈ N (2)

K (x), the vector q is a proximal normal to K at x.
We would like to underline that for every proximal normal q to K at x there exists Q ∈ S(n) such that

(q,Q) ∈ N (2)
K (x).

Observe that if (q,Q) ∈ N (2)
K (x), then q ∈ N [

K(x) and Q ∈ N [(2)
K (x; q). It is not difficult to construct an

example of K, x and q 6= 0 such that N
[(2)
K (x; q) is nonempty and, at the same time, N (2)

K (x) = {0}.
The set N

[(2)
K (x; q) is better adapted to express the second-order optimality conditions below.

Example 2.2. Consider twice continuously differentiable functions ψ1, . . . , ψr : Rn → R and

K =
r⋂
j=1

{x ∈ Rn | ψj(x) ≤ 0} .

Let x ∈ K and denote by I(x) the set of all active indices, i.e. j ∈ I(x) if and only if ψj(x) = 0. We
assume that {∇ψj(x) : j ∈ I(x)} are positively independent or, equivalently, 0 /∈ co {∇ψj(x) : j ∈ I(x)}.
Then it is well known that

T [K(x) = {y ∈ Rn | 〈∇ψj(x), y〉 ≤ 0 ∀ j ∈ I(x)}, N [
K(x) =

∑
j∈I(x)

R+∇ψj(x).

Furthermore,

T
[(2)
K (x, y) =

{
z ∈ Rn | 〈∇ψj(x), z〉+

1

2
〈ψ′′j (x)y, y〉 ≤ 0, ∀ j ∈ I1(y)

}
, (2.1)

where I1(y) = {j ∈ I(x) : 〈∇ψj(x), y〉 = 0}. Moreover T
[(2)
K (x, y) = Rn whenever y ∈ T [K(x) and

I1(y) = ∅. Notice that this implies that under our assumptions, T
[(2)
K (x, y) 6= ∅ for all y ∈ T [K(x).

Fix any 0 6= q ∈ N [
K(x). In the same way as in [13, Section 2] it follows that for every y ∈ T [K(x)∩ {q}⊥

there exist zy ∈ T [(2)
K (x, y) and αj(y) ≥ 0, in general depending on y, such that

q =
r∑
j=1

αj(y)∇ψj(x) =
∑

j∈Π(y)

αj(y)∇ψj(x), 〈q, zy〉 = −1

2

r∑
j=1

αj(y)ψ′′j (x)yy,

where Π(y) ⊂ I1(y) is the set of all j ∈ I1(y) such that αj(y) > 0. Then for any Q ∈ N [(2)
K (x; q) we have

〈q, zy〉+
1

2
Qyy ≤ 0 = 〈q, zy〉+

1

2

r∑
j=1

αj(y)ψ′′j (x)yy.

Consequently Qyy ≤
∑r

j=1 αj(y)ψ′′j (x)yy.

5



More can be said if {∇ψj(x) : j ∈ I(x)} are linearly independent. Then {αj}rj=1 are uniquely defined
and therefore they do not depend on y. Hence from (2.1) we deduce that

r∑
j=1

αjψ
′′
j (x) ∈ N [(2)

K (x; q).

Consequently, Q ∈ N [(2)
K (x; q) if and only if Q ≤

∑r
j=1 αjψ

′′
j (x) on T [K(x) ∩ {q}⊥, in the sense that for

every y ∈ T [K(x) ∩ {q}⊥, we have Qyy ≤
(∑r

j=1 αjψ
′′
j (x)

)
yy.

In particular, if r = 1, then N [
K(x) = R+∇ψ1(x), T [K(x) ∩ {∇ψ1(x)}⊥ = {∇ψ1(x)}⊥ and

N
[(2)
K (x;∇ψ1(x)) = ψ′′1(x) + S−(∇ψ1(x)),

where S−(∇ψ1(x)) is the set of symmetric matrices that are seminegative on {∇ψ1(x)}⊥.

Definition. Let f : Rn → [−∞,+∞] be an extended real-valued function and x ∈ dom(f). A pair
(q,Q) ∈ Rn × S(n) is said to be a superjet of f at x if for some δ > 0 and for all y ∈ x+ δB,

f(y) ≤ f(x) + 〈q, y − x〉+
1

2
〈Q(y − x), y − x〉+ o(|y − x|2). (2.2)

The set of all superjets of f at x is denoted by J2,+f(x). Similarly, (q,Q) ∈ Rn × S(n) is a subjet of f
at x if (2.2) holds with ≤ replaced by ≥. The set of all subjets of f at x is denoted by J2,−f(x).

If f is equal to the indicator function of K ⊂ Rn and x ∈ K, then J2,−f(x) = N (2)
K (x). If f is

differentiable at x and semiconcave on a neighborhood of x with the semiconcavity constant c, then
(∇f(x), c Id) ∈ J2,+f(x), see [6, Prop. 2.6, Rem. 2.5]. Notice that for any f ∈ C1(Rn;R) that is twice
differentiable at x ∈ Rn, (∇f(x), f ′′(x)) ∈ J2,+f(x).
We end this subsection by recalling the definitions of directional derivatives of set-valued maps.

Definition. Let F : Rn  Rm be a set-valued map, locally Lipschitz around some x ∈ Rn and let
y ∈ F (x). The adjacent derivative dF (x, y) is the set-valued map defined by,

dF (x, y)(u) := Liminf
h→0+

F (x+ hu)− y
h

, ∀ u ∈ Rn.

For v1 ∈ dF (x, y)(u1), define the set-valued map d2F (x, y, u1, v1) by

d2F (x, y, u1, v1)(u2) := Liminf
h→0+

F (x+ hu1 + h2u2)− y − hv1

h2
, ∀ u2 ∈ Rn.

Below, for a set-valued map [0, 1]×Rn 3 (t, x) F (t, x) and t0 ∈ [0, 1] such that F (t0, ·) is Lipschitz on
a neighborhood of some x0 ∈ Rn, we denote the partial derivatives with respect to the second variable
by a subscript x. That is dxF (t0, x0, y0) is equal to the adjacent derivative of F (t0, ·) at (x0, y0) for any
y0 ∈ F (t0, x0).
Similarly for a function [0, 1]×Rn 3 (t, x) 7→ f(t, x), J2,+

x f(t, x) and J2,−
x f(t, x) denote respectively the

sets of superjets and subjets of f(t, ·) at x.
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2.2 Problem statement and assumptions

Consider a deterministic control system of the form{
ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t), a.e. in [0, 1],

x(0) ∈ K0,
(C)

where f : [0, 1]× Rn × Rm → Rn, the set-valued map U : [0, 1] Rm and K0 ⊂ Rn are given. Later on
it will be convenient to use the following notation:

F (t, x) := co {f(t, x, u) | u ∈ U(t)}.

A Lebesgue measurable map u : [0, 1]→ Rm such that u(t) ∈ U(t) a.e. in [0, 1] is called control. The set
of all controls is denoted by

U := {u : [0, 1]→ Rm is Lebesgue measurable | u(t) ∈ U(t) a.e.} .

Under standard assumptions on f , for any control u ∈ U and any initial state x0 ∈ K0, there exists a
unique solution x ∈ W 1,1([0, 1];Rn) of the ordinary differential equation in (C) satisfying x(0) = x0,
called a state trajectory. For a fixed initial state x0 ∈ K0, the tuple (x, u) consisting of a control u ∈ U
and the corresponding state trajectory x ∈W 1,1([0, 1];Rn) is called a process. The set of processes and
the set of state trajectories are given by,

Ps(x0) :=
{

(x, u) ∈W 1,1([s, 1];Rn)× U
∣∣ x(s) = x0 and ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ [s, 1]

}
,

Ss(x0) :=
{
x ∈W 1,1([s, 1];Rn)

∣∣ ∃u ∈ U such that (x, u) ∈ Ps(x0)
}
.

To simplify the notation we set P(x0) := P0(x0) and S(x0) := S0(x0). Let X,Y be vector spaces,
V ⊂ X and h be a single- or set-valued map from X to Y . Then h(V ) :=

⋃
v∈V h(v). Thus for instance

P(K0) :=
⋃
x0∈K0

P(x0). The objective of the present work is to study second-order necessary optimality
conditions for the Mayer optimal control problem:

Minimize
x∈S(K0)

ϕ(x(0), x(1)), (P)

where the function ϕ : Rn×Rn → R that associates to any (x1, x2) ∈ Rn×Rn a real is given. There are
several notions of local minimizers of problem (P). Here we are interested by strong local minimizers.

Definition. A process (x̄, ū) ∈ P(K0) is a strong local minimizer if there exists ρ̄ > 0 such that for all
(x, u) ∈ P(K0),

‖x− x̄‖∞ ≤ ρ̄ =⇒ ϕ(x(0), x(1)) ≥ ϕ(x̄(0), x̄(1)). (2.3)

It is a weak local minimizer if the left-hand side of (2.3) can be replaced by |x(0)− x̄(0)|+‖u− ū‖∞ ≤ ρ̄.

Given a strong local minimizer (x̄, ū) ∈ P(K0) of problem (P) we impose the following assumptions:

Assumptions: There exists ρ > 0 such that the following properties are satisfied :

(A1) (a) For all (x, u) ∈ Rn × Rm, f(·, x, u) is measurable. For all (t, x) ∈ [0, 1] × Rn, f(t, x, ·) is
continuous, f(t, x, U(t)) is closed and there exists a1 > 0 such that supu∈U(t) |f(t, x, u)| ≤
a1(|x|+ 1). Moreover, for every R > 0, there exists an integrable map kR : [0, 1]→ R+ such
that for a.e. t ∈ [0, 1],

|f(t, x, u)− f(t, y, u)| ≤ kR(t) |x− y| , ∀ x, y ∈ RB, ∀u ∈ U(t);
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(b) For all t ∈ [0, 1] and u ∈ U(t), f(t, ·, u) is twice continuously differentiable on x̄(t) + ρB,
fx(t, x̄(t), ·) is continuous on U(t), and there exists a2 > 0 such that supu∈U(t) ‖fx(t, x̄(t), u)‖ ≤
a2 for a.e. t ∈ [0, 1]. Furthermore, there exists an integrable map l : [0, 1]→ R+ such that
for a.e. t ∈ [0, 1]

‖fx(t, x, u)− fx(t, y, u)‖ ≤ l(t) |x− y| , ∀ x, y ∈ x̄(t) + ρB, ∀ u ∈ U(t);

(c) U : [0, 1] Rm is measurable with closed nonempty images;

(d) ϕ is differentiable.

3 Second-order necessary optimality conditions

We state here pointwise second-order necessary optimality conditions for the Mayer problem (P).

3.1 General case

For optimal control problems, first-order necessary optimality conditions are given by the celebrated
maximum principle [26] which states that if (x̄, ū) ∈ P(K0) is a strong local minimizer, then the (unique)
solution p̄ ∈W 1,1([0, 1];Rn) of the so-called adjoint equation{

−ṗ(t) = fx(t, x̄(t), ū(t))T p(t), a.e.

−p(1) = ∇x2ϕ(x̄(0), x̄(1)),
(3.1)

satisfies the transversality condition

p̄(0)−∇x1ϕ(x̄(0), x̄(1)) ∈ N [
K0

(x̄(0)), (3.2)

and the maximality condition

H(t, x̄(t), p̄(t), ū(t)) = max
u∈U(t)

H(t, x̄(t), p̄(t), u), a.e., (3.3)

where the Hamiltonian H is defined by (1.1). Observe that the maximality condition can be equivalently
formulated in the following, less traditional way:

〈p̄(t), v〉 ≤ 0, ∀ v ∈ TF (t,x̄(t))( ˙̄x(t)), a.e. (3.4)

Let us also mention that using N [
K0

(x̄(0)) in the transversality condition (3.2) is not very common: in
[29, Prop. 6.4.4] a larger limiting normal cone is used. However, in the absence of final-point constraints,
it is not difficult to show that the above stronger transversality condition (3.2) holds true. Moreover in
(3.2), N [

K0
(x̄(0)) may be replaced by the negative polar of the contingent cone to K at x̄(0). Not to

complicate the discussion of second-order conditions, we stick to the adjacent tangents.
Fix a triple (x̄, ū, p̄) ∈ P(K0) × W 1,1([0, 1];Rn) such that (x̄, ū) is a strong local minimizer and p̄
is the corresponding adjoint state, i.e. p̄ satisfies (3.1) - (3.3). To simplify the notation [t] replaces
(t, x̄(t), p̄(t), ū(t)) when evaluating the Hamiltonian H or (t, x̄(t), ū(t)) when evaluating the dynamics f .
The closed set of maximizing controls at t ∈ [0, 1] and the set of critical initial directions are defined
respectively by

U(t) :=

{
z ∈ U(t)

∣∣∣∣ H(t, x̄(t), p̄(t), z) = max
u∈U(t)

H(t, x̄(t), p̄(t), u)

}
,

Γ0 :=
{
y0 ∈ T [K0

(x̄(0))
∣∣∣ 〈p̄(0)−∇x1ϕ(x̄(0), x̄(1)), y0〉 = 0

}
.

(3.5)

8



By [2, Thm. 8.2.9] the set-valued map U(·) is measurable and (3.3) implies that ū(t) ∈ U(t) a.e. It will
be convenient to have the following notation:

D(t) := co
{

(∆f [t, u],∆fx[t, u])
∣∣ u ∈ U(t)

}
,

where ∆f [t, u] := f(t, x̄(t), u)− f [t] and ∆fx[t, u] := fx(t, x̄(t), u)− fx[t]. Finally, let Y (·) denote the
(fundamental) solution of the linear system{

Ẏ (t) = fx[t]Y (t), a.e. in [0, 1],

Y (0) = Id.
(3.6)

We are ready to state the main result of this section:

Theorem 3.1. Let (x̄, ū) ∈ P(K0) be a strong local minimizer of problem (P). Assume (A1) holds
true and p̄ ∈ W 1,1([0, 1];Rn) solves (3.1). Then for every Ψ ∈ S(2n) satisfying (∇ϕ(x̄(0), x̄(1)),Ψ) ∈
J2,+ϕ(x̄(0), x̄(1)) and Ψi ∈ S(n), i = 1, 2 such that

Ψ =

(
Ψ1 Ψ0

ΨT
0 Ψ2

)
,

the solution W ∈W 1,1([0, 1];S(n)) of the matrix differential equation{
Ẇ (t) = −Hpx[t]W (t)−W (t)Hxp[t]−Hxx[t], a.e.

W (1) = −Ψ2,
(3.7)

satisfies the second-order transversality condition

W (0)−Ψ1 − 2Ψ0Y (1) ∈ N [(2)
K0

(
x̄(0); p̄(0)−∇x1ϕ(x̄(0), x̄(1))

)
, (3.8)

and the second-order maximality condition

max
(v,M)∈D(t)

〈
MT p̄(t) +W (t)v, v

〉
= 0, a.e. in [0, 1]. (3.9)

Observe that since ū(t) ∈ U(t) a.e. we have (0, 0) ∈ D(t). Hence the maximum in the above expression
is attained on optimal control ū. Therefore the above theorem can be seen as a second-order maximum
principle. Its proof is postponed to Section 6 below and is based on a second-order variational equation
which is studied in Section 5.

Remark 3.2. Taking the maximum in (3.9) only over
{

(∆f [t, u],∆fx[t, u])
∣∣ u ∈ U(t)

}
, we obtain

max
u∈U(t)

〈
(Hx(t, x̄(t), u)−Hx[t])T +W (t) (f(t, x̄(t), u)− f [t]) , f(t, x̄(t), u)− f [t]

〉
= 0, a.e. (3.10)

which is a necessary optimality condition similar to the one from [22] derived for a Bolza optimal
control problem with a fixed initial state. Moreover, for a fixed t ∈ [0, 1], k = n + n2 and fixed
u1, . . . , uk+1 ∈ U(t) condition (3.9) implies that

max
λ∈Λk

〈
k+1∑
i=1

λi∆fx[t, ui]
T p̄(t) +W (t)

k+1∑
i=1

λi∆f [t, ui],

k+1∑
i=1

λi∆f [t, ui]

〉
= 0, (3.11)
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where Λk :=
{

(λ1, . . . , λk+1)
∣∣∣ ∑k+1

i=1 λi = 1, λi ≥ 0 ∀i
}

. Therefore (3.11) is equivalent to testing the

copositivity of the matrix −(M + V TW (t))V where

M :=

 p̄(t)T∆fx[t, u1]
...

p̄(t)T∆fx[t, uk+1

 , V T :=

 ∆f [t, u1]T

...
∆f [t, uk+1]T

 .

We refer to [17] and the bibliography contained therein for a survey of this important problem of
optimisation theory.

Corollary 3.3. In Theorem 3.1 assume in addition that the state and control variables are separated,
that is there exist f1 : [0, 1]× Rn → Rn and f2 : [0, 1]× Rm → Rn satisfying assumptions (A1) (a), (b)
such that

f(t, x, u) = f1(t, x) + f2(t, u) ∀ x ∈ Rn, u ∈ Rm.

Then for a.e. t ∈ [0, 1] the matrix W (t) is seminegative on the closed convex cone spanned by the set
f2(t, Ū(t))− f2(t, ū(t)).

We end this section with a few comments on the mapping W (·) which we call the second-order adjoint
matrix. Let R(t, t0) := Y (t)Y −1(t0) denote the resolvent. Then it is not difficult to check that

W (t) = −R(1, t)TΨ2R(1, t) +

∫ 1

t
R(s, t)THxx[s]R(s, t)ds, ∀ t ∈ [0, 1].

The next result follows directly from this formula and the first-order maximality condition.

Corollary 3.4. If Ψ2 is positive semidefinite and Hxx[t] is negative semidefinite for almost all t ∈ [0, 1],

then W (t) is negative semidefinite for all t ∈ [0, 1]. Consequently, (p̄(t),W (t)) ∈ N (2)
F (t,x̄(t))(

˙̄x(t)), a.e.

Example 3.5. Consider a Mayer problem where the dynamics and control constraints are given by

f(x, u) =


(
u1 u1 − u2x1

)T
if u1 ∈ [0, 1](

u1
1
2u1 − u2x1

)T
if u1 ∈ [−1, 1],

U = [−1, 1]× [0, 1],

where subscripts indicate the components of vectors. Denoting the initial and terminal state by xS and
xE respectively, initial constraints and cost function are defined by

K0 = {(0, 0)} and ϕ(xS , xE) = −(xE1 )2sign(xE1 ) +
1

2
(xE2 )2sign(xE2 ).

The Hamiltonian corresponding to this problem is

H(x, p, u) =

{
p1u1 + p2(u1 − u2x1) if u1 ∈ [0, 1]

p1u1 + p2

(
1
2u1 − u2x1

)
otherwise.

Let us consider a candidate of optimality (x̄, ū) with ū1 ≡ 0. Then it is easy to see that x̄1 ≡ x̄2 ≡ 0
and it follows directly from the adjoint equation (3.1) that p̄1 ≡ p̄2 ≡ 0. Consequently,

H(x̄(t), p̄(t), u) = 0 ∀u ∈ U, ∀t ∈ [0, 1].

Thus the maximality condition (3.3) is trivially satisfied and U(t) = U for all t ∈ [0, 1].
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Noticing that (

(
−2 |x̄1(1)|
|x̄2(1)|

)
,


0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 1

) ∈ J2,+ϕ(xS , xE), the corresponding second-order adjoint

equation is

Ẇ (t) =

(
2ū2(t)W12(t) ū2(t)W22(t)
ū2(t)W22(t) 0

)
, W (1) =

(
2 0
0 −1

)
.

It follows that W22 ≡ −1, W12(t) = W21(t) =
∫ 1
t ū2(s)ds ≥ 0 for all t ∈ [0, 1]. Similarly,

0 ≤ 2ū2(t)W12(t) = Ẇ11(t) ≤ 2, W11(1) = 2. (3.12)

The second-order maximality condition (3.9) requires in particular that for almost all t ∈ [0, 1],

0 = max
u∈U
〈W (t)f(x̄(t), u), f(x̄(t), u)〉 =

{
W11(t)u2

1(t) + 2W12(t)u2
1 − u2

1 if u1 ∈ [0, 1],

W11(t)u2
1 +W12(t)u2

1 − 1
4u

2
1 otherwise.

However, from (3.12) it is clear that W11(t) > 1 on a set of positive measure. Hence the second-order
condition is violated for all u ∈ U(t) = U with u1 6= 0 and the candidate (x̄, ū) cannot be optimal.

3.2 Case of dynamics differentiable in the control variable

Let (x̄, ū) ∈ P(K0) be a strong local minimizer of (P) and p̄ ∈W 1,1([0, 1];Rn) solve (3.1). When f is
differentiable also with respect to u we can derive pointwise optimality conditions involving tangent
cones to U(t) at ū(t), where t ∈ [0, 1]. We would like to underline that results of this section are also
valid for weak local minimizers. Indeed, if (x̄, ū) is a weak local minimizer, we can always replace U(t)
by U1(t) := U(t) ∩ (ū(t) + εB) with appropriately chosen ε > 0. Then (x̄, ū) becomes a strong local
minimizer for the Mayer problem with U(t) replaced by U1(t).
Here we impose, in addition to (A1), the following regularity assumptions for ρ > 0 as in (A1).

(A2) (a) For almost all t ∈ [0, 1], f(t, ·, ·) is twice differentiable on (x̄(t) + ρB)× (ū(t) + ρB);

(b) There exists c1 > 0 s.t. for a.e. t ∈ [0, 1], ∀x, y ∈ x̄(t) + ρB, ∀u, v ∈ ū(t) + ρB,

‖fu[t]‖ ≤ c1 and
∥∥f ′(t, x, u)− f ′(t, y, v)

∥∥ ≤ c1(|x− y|+ |u− v|),

where for every t, f ′(t, x, u) denotes the derivative of the map (x, u) 7→ f(t, x, u);

(c) There exists an integrable c2 : [0, 1] → R+ such that for a.e. t ∈ [0, 1], ∀x, y ∈ x̄(t) + ρB,
∀u, v ∈ ū(t) + ρB, ∥∥f ′′(t, x, u)− f ′′(t, y, v)

∥∥ ≤ c2(t)(|x− y|+ |u− v|),

where for every t, f ′′(t, x, u) denotes the Hessian of the map (x, u) 7→ f(t, x, u);

(d) ϕ is twice Fréchet differentiable.

We introduce the set of ”non-singular” times :

A := {t ∈ [0, 1] | Hu[t] 6= 0} , (3.13)

and observe that, by (3.3), for a.e. t ∈ A, ū(t) belongs to the boundary of U(t).
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Theorem 3.6. Let (x̄, ū) ∈ P(K0) be a strong local minimizer of (P), (A1), (A2) hold true and
p̄ ∈W 1,1([0, 1];Rn) solve (3.1). Set

Ψ0 :=
∂2ϕ

∂x1x2
(x̄(0), x̄(1)), Ψ1 :=

∂2ϕ

∂x2
1

(x̄(0), x̄(1)), Ψ2 :=
∂2ϕ

∂x2
2

(x̄(0), x̄(1)).

Then the solution W ∈W 1,1([0, 1];S(n)) of (3.7) satisfies the transversality condition (3.8). Furthermore,
for a.e. t ∈ [0, 1] and for every u ∈ T [U(t)(ū(t)) such that either

(i) t ∈ A, Hu[t]u = 0 and Hu[t]v + 1
2u

THuu[t]u = 0 for some v ∈ T [(2)
U(t)(ū(t), u),

or
(ii) t ∈ [0, 1]\A and uTHuu[t]u = 0,

we have 〈
fu[t]T (Hux[t] +W (t)fu[t])u, u

〉
≤ 0. (3.14)

Observe that, by the maximality condition (3.3), for a.e. t ∈ [0, 1], and all u ∈ T [U(t)(ū(t)) ∩Hu[t]⊥,

Hu[t]v +
1

2
uTHuu[t]u ≤ 0, ∀ v ∈ T [(2)

U(t)(ū(t), u). (3.15)

Hence (i) says that, for the given u ∈ T [U(t)(ū(t)) ∩Hu[t]⊥ the maximum over the left-hand side of the
above inequality is attained and is equal to 0.

Remark 3.7. a) If f is affine in u and U is equal to a (time independent) polyhedron in Rm, then

Huu = 0 and 0 ∈ T [(2)
U(s)(ū(s), u) for any u ∈ T [U(s)(ū(s)) and a.e. s ∈ [0, 1]. Therefore inequality (3.14)

holds true for any u ∈ T [U(t)(ū(t)) ∩Hu[t]⊥. With every t ∈ [0, 1] let us associate the largest subspace

P (t) contained in T [U(t)(ū(t)). Then the above theorem implies that fu[t]THux[t] + fu[t]TW (t)fu[t] is

seminegative definite on P (t).

b) The proof of Theorem 3.6 provided below actually allows to use a larger subset of tangents. Namely,
(i) can be replaced by

t ∈ A, Hu[t]u = 0 and Hu[t]v+ 1
2u

THuu[t]u = 0 for some v satisfying (u, v) ∈ {(α, β) |β ∈ T [(2)
U(t)(ū(t), α)}.

Moreover, using the relaxation theorem, (see for instance [2, Thm. 10.4.4]), the statement could be
generalized by replacing u in (3.14) with

∑k+1
i=1 λiui where k ∈ N, λ ∈ Λk with Λk defined as in

Remark 3.2 and ui satisfying the same assumptions as u in Theorem 3.6 for all i ∈ {1, . . . , k + 1}.

c) To the best of our knowledge, the above result is the first extension of the Jacobson inequality from
[20], originally stated for U(·) ≡ [a, b] for some −∞ < a < b < +∞, a system affine with respect to
controls and Hu[·] = 0, to such a general framework. The Jacobson inequality was generalized by
Jacobson and Speyer in [21] to multidimensional U ≡ [a, b] × .... × [a, b]. These authors have shown
that fu[t]THux[t] + fu[t]TW (t)fu[t] is seminegative definite assuming that the control system is affine,
Hu[·] = 0 and that the optimal control is piecewise continuous and takes values in the interior of U .
Let us underline again that the existence theorems in optimal control theory do not guarantee such
structural properties of optimal controls.

The above Theorem and Remark b) imply the following corollary.

Corollary 3.8. In Theorem 3.6 assume in addition that the state and control variables are separated,
that is there exist f1 : [0, 1]× Rn → Rn and f2 : [0, 1]× Rm → Rn satisfying assumptions (A1) (a), (b)
and (A2) (a), (b), (c) such that

f(t, x, u) = f1(t, x) + f2(t, u) ∀ x ∈ Rn, u ∈ Rm.
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If ū is singular in the classical sense, that is Hu[t] = 0 and Huu[t] = 0 a.e., then for a.e. t ∈ [0, 1] the
matrix fu[t]TW (t)fu[t] is seminegative on the closed convex cone co T [U(t)(ū(t)).

Example 3.9. Let the set-valued map U : [0, 1] Rm be given by the inequality constraints

U(t) :=
s⋂
j=1

{
u ∈ Rm

∣∣ cj(t, u) ≤ 0
}
,

where c1, . . . , cs : [0, 1]× Rm → R are Carathéodory functions. Assume that for a.e. t ∈ [0, 1] and for
every j ∈ {1, . . . , s}, cj(t, ·) is twice continuously differentiable and {∇ucj(t, ū(t)) | j = 1, ..., s} are
positively independent.
If (x̄, ū), p̄ are as in Theorem 3.6, then, by (3.4), for a.e. t ∈ [0, 1] and for every u ∈ T [U(t)(ū(t)) we have

Hu[t]u ≤ 0. That is ∇uH[t] ∈ N [
U(t)(ū(t)). By Example 2.2, for a.e. t ∈ A and for every u ∈ T [U(t)(ū(t))

satisfying Hu[t]u = 0, there exist αj(t, u) ≥ 0, j = 1, ..., s and v̄ ∈ T [(2)
U(t)(ū(t), u) such that

Hu[t] =
s∑
j=1

αj(t, u)cju(t, ū(t)), Hu[t]v̄ = −1

2

s∑
j=1

αj(t, u)cjuu(t, ū(t))uu,

and

Hu[t]v +
1

2

s∑
j=1

αj(t, u)cjuu(t, ū(t))uu ≤ 0, ∀ v ∈ T [(2)
U(t)(ū(t), u).

If t /∈ A, then set αj(t, u) = 0 for all u ∈ T [U(t)(ū(t)). Thus

sup
v∈T [(2)

U(t)
(ū(t),u)

Hu[t]v = −1

2

s∑
j=1

αj(t, u)cjuu(t, ū(t))uu.

If in addition {∇ucj(t, ū(t))}sj=1 are linearly independent, then the choice of αj(t, u) is unique (up to a
set of measure zero) and independent from u. Consequently we get the following corollary:

Corollary 3.10. Under the assumptions of Theorem 3.6, suppose that the set-valued map U : [0, 1] Rm
is as in Example 3.9 and for almost all t ∈ [0, 1], {∇ucj(t, ū(t))}sj=1 are linearly independent. Then

the solution W ∈W 1,1([0, 1];S(n)) of (3.7) satisfies the transversality condition (3.8) and there exist
measurable, uniquely defined (up to a set of measure zero) αj : [0, 1] → R+, j = 1, ..., r such that for
almost all t ∈ [0, 1],

(i) αj(t)c
j(t, ū(t)) = 0 for all j ∈ {1, . . . , s};

(ii) Hu[t] =
∑s

j=1 αj(t)c
j
u(t, ū(t));

(iii) maxu∈U0(t)

〈
fu[t]T (Hux[t] +W (t)fu[t])u, u

〉
= 0, where

U0(t) :=

u ∈ T [U(t)(ū(t))

∣∣∣∣∣∣ Hu[t]u = 0, uTHuu[t]u− uT
 s∑
j=1

αj(t)c
j
uu(t, ū(t))

u = 0

 . (3.16)

Remark 3.11. As mentioned earlier, by the maximum principle, for a.e. t ∈ [0, 1] and for any
u ∈ T [U(t)(ū(t)) satisfying Hu[t]u = 0 also (3.15) holds true. The set U0(t) is therefore the natural choice
for the set of maximizing directions.
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Proof of Corollary 3.10. As recalled before, whenever {∇ucj(t, ū(t))}sj=1 are linearly independent,
αj(t, u) from Example 3.9 are unique and independent of u. The existence of measurable αj : [0, 1]→ R+

such that (i) and (ii) of Corollary 3.10 are satisfied follows. Theorem 3.6 yields (iii).

Example 3.12. Consider the Mayer problem with the following dynamics and cost function

f(x, u) =
(
u1 u1 − u2 −x2

1 + 1
2x

2
2 + 8u2

2

)T
, ϕ(xS , xE) = xE3 ,

where subscripts indicate the components of vectors and xS , xE denote the start and end point. Inital
and control constraints are given by

K0 = {(0, 0, 0)}, U = {(u1, u2) ∈ [0, 1]× [0, 1] | u2 ≤ u1} .

Notice that standard results guarantee the existance of a global minimizer of this problem.
The corresponding adjoint equation (3.1) for a candidate (x̄, ū) ∈ P(0) is−

 ˙̄p1(t)

˙̄p2(t)

˙̄p3(t)

 =

0 0 −2x̄1(t)

0 0 x̄2(t)

0 0 0


x̄1(t)

x̄2(t)

x̄3(t)

 , −

p̄1(1)

p̄2(1)

p̄3(1)

 =

0

0

1

 .

Taking the candidate minimizer ū ≡ 0 we find readily that in this case x̄1 ≡ x̄2 ≡ p̄1 ≡ p̄2 ≡ 0 and
p̄3 ≡ −1. It follows then that H(x̄(t), p̄(t), u) = −8u2

2 which is maximized for u2 = ū2(t) = 0 for all
t ∈ [0, 1]. Therefore ū satisfies the maximum principle (3.3). Notice also that since Huu[t] 6= 0, Goh
type necessary conditions cannot be applied.
Simple computations show that Hu[t] ≡ Hux[t] ≡ 0. Moreover, noticing that

uTHuuu = −16u2
2 = 0 ∀u ∈

{
(v1, v2) ∈ T [U ((0, 0))

∣∣∣ v2 = 0
}
,

the second-order optimality condition from Theorem 3.6 reads〈
fu[t]TW (t)fu[t]u, u

〉
≤ 0 ∀u ∈

{
(v1, v2) ∈ T [U ((0, 0))

∣∣∣ v2 = 0
}
.

Solving the second-order adjoint equation (3.7) we find that〈
fu[t]TW (t)fu[t]u, u

〉
= (1− t)u2

1 > 0 ∀t ∈ [0, 1[, u ∈
{

(v1, v2) ∈ T [U ((0, 0))
∣∣∣ v1 > 0, v2 = 0

}
,

violating the second-order necessary condition. Hence (x̄, ū) cannot be optimal.

4 Second-order sensitivity relations

In this section we assume that ϕ does not depend on the first variable, i.e. ϕ : Rn → R. Using the
super/subjets of the value function along optimal trajectories, we derive sensitivity relations for the
first- and second-order adjoints p̄ and W , solving respectively (3.1) and (3.7). Proofs of the results of
this section are deferred to Section 7.
The value function V : [0, 1]× Rn → R associated with the Mayer problem (P) is defined by

V (t, x) := inf {ϕ(z(1)) | z ∈ St(x)} . (4.1)
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This function was introduced by Bellman and Isaacs in 50ies and has been studied by many researchers.
The interested reader can find in [7, 29] extended discussions on value functions. It is well known that
if x̄ ∈ S(x) is an optimal solution of (P), then the adjoint state p̄ solving (3.1) satisfies

−p̄(t) ∈ ∂+
x V (t, x̄(t)), ∀t ∈ [0, 1],

where ∂+
x V (t, x̄(t)) denotes the superdifferential of V (t, ·) at x̄(t), see for instance [2, Def. 6.5.7] for

the definition of the superdifferential. The main result of this section is an analogous second-order
sensitivity relation involving first- and second-order adjoints.

Theorem 4.1. Let x̄ ∈ St0(x0) satisfy V (t0, x0) = ϕ(x̄(1)). Assume (A1) and let Ψ2 ∈ S(n) be such
that (∇ϕ(x̄(1)),Ψ2) ∈ J2,+ϕ(x̄(1)), p̄ ∈ W 1,1([t0, 1];Rn) and W ∈ W 1,1([t0, 1];S(n)) be solutions of
(3.1) and (3.7) respectively. Then

(−p̄(t),−W (t)) ∈ J2,+
x V (t, x̄(t)), ∀t ∈ [t0, 1].

The statement of Theorem 4.1 can be interpreted as follows. If (−p̄T ,−WT ) ∈ J2,+
x V (1, x̄(1)), then

this property propagates backward in time along the trajectory x̄ for the solutions of the first- and
second-order adjoint equations with terminal conditions given by p̄T and WT . Actually, if we replace
the superjet by the subjet then a related sensitivity inclusion propagates forward in time.

Theorem 4.2. Let x̄ ∈ St0(x0) be such that V (t0, x0) = ϕ(x̄(1)). Assume (A1) and let p̄ ∈
W 1,1([t0, 1];Rn) be the corresponding solution of the adjoint equation (3.1) defined on [t0, 1]. If for some
W0 ∈ S(n) we have (−p̄(t0),−W0) ∈ J2,−

x V (t0, x0) then for the solution W ∈W 1,1([t0, 1];S(n)) of{
Ẇ (t) +Hpx[t]W (t) +W (t)Hxp[t] +Hxx[t] = 0,

W (t0) = W0,

the following sensitivity relation holds true :

(−p̄(t),−W (t)) ∈ J2,−
x V (t, x̄(t)), ∀t ∈ [t0, 1].

Remark 4.3. Let x̄, p̄, and W be as in Theorem 4.1. By Theorem 4.2, if there exists t0 ∈ [0, 1]
such that (−p̄(t0),−W (t0)) ∈ J2,−

x V (t0, x̄(t0)), then (−p̄(t),−W (t)) ∈ J2,−
x V (t, x̄(t)) for all t ≥ t0. In

particular, from [6, Remark 2.8] it follows that in this case the value function is differentiable with
respect to x along the optimal trajectory and (−p̄(t),−W (t)) is the jet of V (t, ·) at x̄(t) for all t ∈ [t0, 1].

5 Variational equations

Second-order variational equations have been recently studied in [12, 18, 19] for control systems, resp.
differential inclusions with state constraints. In [18, 19] differentiability of f with respect to the control
is required. In [12] a second-order variational inclusion is given in a very general context by using
second-order jets to the velocity set of the differential inclusion. In this section we are going to use this
abstract result to provide second-order variational equations which are well adapted for the derivation
of our second-order necessary optimality conditions.
We recall first, for the convenience of the reader, [12, Thm. 3.3] in the case when state constraints are
absent. The hypotheses of Theorem 3.1 are imposed throughout this section.
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5.1 Second-order variational inclusions

Consider a reference trajectory x̄ ∈ S(x0) where x0 ∈ K0. The set of admissible first-order variations
V(1)(x̄) at x̄ is the set of all absolutely continuous maps y ∈W 1,1([0, 1];Rn) satisfying,

(i) ẏ(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)), for a.e. t ∈ [0, 1];

(ii) y(0) ∈ T [K0
(x0);

(iii) there exists an integrable function `1 : [0, 1]→ R+ and h0 > 0 such that for a.e. t ∈ [0, 1],

distF (t,x̄(t)+hy(t))( ˙̄x(t) + hẏ(t)) ≤ `1(t)h2, ∀ h ∈ [0, h0].

For a given admissible first-order variation y ∈ V(1)(x̄), we abbreviate (t, x̄(t), ˙̄x(t), y(t), ẏ(t)) by [t] (for
t ∈ [0, 1] such that the derivatives ˙̄x(t), ẏ(t) do exist) and define the set of admissible second-order
variations V(2)(x̄, y) as the set of absolutely continuous maps w ∈W 1,1([0, 1];Rn) satisfying,

(i) ẇ(t) ∈ d2
xF [t](w(t)), for a.e. t ∈ [0, 1];

(ii) w(0) ∈ T [(2)
K0

(x0, y(0)).

Theorem 5.1 ([12]). Assume (A1) (a). Let x̄ ∈ S(x0) for some x0 ∈ K0, y ∈ V(1)(x̄) and w ∈ V(2)(x̄, y).
Consider any sequences hi → 0+, w0

i → w(0) such that x0 + hiy(0) + h2
iw

0
i ∈ K0. Then there exist

xi ∈ S(x0 + hiy(0) + h2
iw

0
i ), such that 1

h2i
(xi − x̄− hiy) converge to w uniformly on [0, 1] when i→∞.

We work below with some subsets of the admissible first- and second-order variations. For the first-order
variations we use the following classical linearization of control system (C):{

ẏ(t) = fx[t]y(t) + v(t), v(t) ∈ TF (t,x̄(t))( ˙̄x(t)), a.e. in [0, 1],

y(0) ∈ T [K0
(x̄(0)).

(5.1)

To simplify the notations define,

V1 :=
{
v ∈ L1([0, 1];Rm)

∣∣ v(t) ∈ TF (t,x̄(t))( ˙̄x(t)) a.e.
}
,

and the solution map Lin: T [K0
(x̄(0)) × V1 → W 1,1([0, 1];Rn), associating with any y0 ∈ T [K0

(x̄(0))
and v ∈ V1 the unique solution of (5.1) satisfying y(0) = y0. By [10] (see also [10, Section 5]) for a.e.
t ∈ [0, 1] and all ξ ∈ Rn,

fx[t]ξ + TF (t,x̄(t))( ˙̄x(t)) ⊂ dxF (t, x̄(t), ˙̄x(t))(ξ). (5.2)

Our next aim is to provide a second-order approximation similar to (5.1) which is convenient for the
derivation of second-order necessary optimality conditions.

5.2 Second-order variational equation for control systems

For an arbitrary control u ∈ U we define similarly to Section 3 the map δf [u] : [0, 1]→ Rn by

δf [u](t) = ∆f [t, u(t)] ∈ TF (t,x̄(t))( ˙̄x(t)).

The map δfx[u] : [0, 1] → Rn×n is defined analogously. With any x0 ∈ K0, (x̄, ū) ∈ P(x0), u ∈ U ,
y0 ∈ T [K0

(x̄(0)) and y = Lin(y0, δf [u]) we associate the second-order approximation,{
ẇ(t) = fx[t]w(t) + ∆fx[t, u(t)]y(t) + 1

2fxx[t]y(t)y(t), a.e. in [0, 1],

w(0) ∈ T [(2)
K0

(x0, y0).
(5.3)
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The set of solutions to this linear equation is denoted by :

Lin2(δfx[u], y) :=
{
w ∈W 1,1([0, 1];Rn)

∣∣ w is solution of (5.3)
}
.

As we show below, for every u ∈ U , y = Lin(y0, δf [u]) and w ∈ Lin2(δfx[u], y) we have y ∈ V(1)(x̄) and
w ∈ V(2)(x̄, y) which leads to the following Corollary of Theorem 5.1:

Corollary 5.2. Assume (A1)(a)-(c). Let y0 ∈ T [K0
(x̄(0)), u ∈ U , y = Lin(y0, δf [u]) and w ∈

Lin2(δfx[u], y). Then for any sequences hi → 0+, w0
i → w(0) such that x̄(0) +hiy(0) +h2

iw
0
i ∈ K0 there

exist xi ∈ S(x̄(0) + hiy(0) + h2
iw

0
i ) satisfying,

lim
i→∞

1

h2
i

∥∥x̄+ hiy + h2
iw − xi

∥∥
∞ = 0.

Remark 5.3. It is possible to show that in the above statement δf [u] and δfx[u] could be replaced by
any v and M such that (v,M) ∈

{
(w,N) : [0, 1]→ Rn × Rn×n measurable

∣∣ (w(t), N(t)) ∈ D(t) a.e.
}

.
However, for the proof of Theorem 3.1 the statement of Corollary 5.2 is sufficient.

Proof of Corollary 5.2. By Theorem 5.1 we have to show that y ∈ V(1)(x̄) and w ∈ V(2)(x̄, y). Define
R = ‖x̄‖∞ + 1.
Step 1: We start by showing that y ∈ V(1)(x̄). By (5.2) it suffices to prove that y satisfies property
(iii) of the definition of admissible first-order variations. We know that for a.e. t and for all h > 0,

˙̄x(t) + hẏ(t) = f [t] + fx[t]hy(t) + h∆f [t, u(t)].

On the other hand, since

f(t, x̄(t) + hy(t), ū(t))− f [t] =

∫ h

0
fx(t, x̄(t) + sy(t), ū(t))y(t)ds,

by the Lipschitz continuity of fx, we get for almost every t ∈ [0, 1] and for all h > 0 sufficiently small,

|f(t, x̄(t) + hy(t), ū(t))− f [t]− fx[t]hy(t)| ≤
∫ h

0
|fx(t, x̄(t) + sy(t), ū(t))− fx[t]| |y(t)| ds

≤ 1

2
l(t) ‖y‖2∞ h

2.

(5.4)

Similarly, taking h > 0 small enough, we get

|f(t, x̄(t) + hy(t), u(t))− f(t, x̄(t) + hy(t), ū(t))−∆f [t, u(t)]| ≤ 2kR(t)h ‖y‖∞ . (5.5)

Finally, by the convexity of F (t, x̄(t) + hy(t)), for all small h > 0,

F (t, x̄(t) + hy(t)) 3 (1− h)f(t, x̄(t) + hy(t), ū(t)) + hf(t, x̄(t) + hy(t), u(t)),

which together with (5.4)-(5.5) implies (iii) for `1(·) := ‖y‖2∞ l(·) + 2 ‖y‖∞ kR(·).
Step 2: It remains to show that for a.e. t ∈ [0, 1],

fx[t]w + ∆fx[t, u(t)]y(t) +
1

2
fxx[t]y(t)y(t) ⊂ d2

xF [t](w), ∀ w ∈ Rn. (5.6)

Fix t such that the last inequality in (A1)(a) holds true, w ∈ Rn and let h > 0 be small enough. By the
convexity of F (t, x),

F (t, x̄(t) + hy(t) + h2w) 3 (1− h)f(t, x̄(t) + hy(t) + h2w, ū(t)) + hf(t, x̄(t) + hy(t) + h2w, u(t)). (5.7)
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On the other hand, by Taylor’s expansion,

(1− h)f(t, x̄(t) + hy(t) + h2w, ū(t)) = f [t] + hfx[t]y(t) + h2fx[t]w +
h2

2
fxx[t]y(t)y(t) + o(h2)

− h
[
f(t, x̄(t) + hy(t), ū(t)) +

(
f(t, x̄(t) + hy(t) + h2w, ū(t))− f(t, x̄(t) + hy(t), ū(t))

)]
,

which, by the Lipschitz continuity of f with respect to x, similarly to (5.5), leads to

(1− h)f(t, x̄(t) + hy(t) + h2w, ū(t))

= f [t] + hfx[t]y(t) + h2fx[t]w +
h2

2
fxx[t]y(t)y(t)− hf(t, x̄(t) + hy(t), ū(t)) + o(h2)

= f [t] + hfx[t]y(t) + h2fx[t]w +
h2

2
fxx[t]y(t)y(t)− hf [t]− h2fx[t]y(t) + o(h2).

(5.8)

Similarly,

f(t, x̄(t) + hy(t) + h2w, u(t)) = f(t, x̄(t) + hy(t), u(t)) + o(h)

= (f(t, x̄(t), u(t)) + hfx(t, x̄(t), u(t))y(t)) + o(h).
(5.9)

Consequently, (5.7)-(5.9) together imply that for a.e. t ∈ [0, 1]

F (t, x̄(t) + hy(t) + h2w)

3 f [t] + h (fx[t]y(t) + ∆f [t, u(t)]) + h2

(
fx[t]w +

1

2
fxx[t]y(t)y(t) + ∆fx[t, u(t)]y(t)

)
+ o(h2)

= ˙̄x(t) + hẏ(t) + h2

(
fx[t]w + ∆fx[t, u(t)]y(t) +

1

2
fxx[t]y(t)y(t)

)
+ o(h2),

which proves that (5.6) is satisfied a.e. in [0, 1].

6 Proofs of the second-order optimality conditions

In this section we provide the proofs of the second-order necessary optimality conditions from Section 3.
Most of them are based on variational equations and a second-order adjoint equation.

6.1 Proof of Theorem 3.1

To simplify notations we introduce the set

U :=
{
u ∈ U | u(t) ∈ U(t) for a.e. t ∈ [0, 1]

}
.

Step 1: Let y0 ∈ Γ0, u ∈ U and y = Lin(y0, δf [u]). We claim that,

〈∇ϕ(x̄(0), x̄(1)), (y(0), y(1))〉 = 0. (6.1)

Indeed, using integration by parts and the properties of the adjoint state we find that,

〈∇ϕ(x̄(0), x̄(1)), (y(0), y(1))〉 = −
∫ 1

0
〈 ˙̄p(t), y(t)〉+ 〈p̄(t), ẏ(t)〉 dt+ 〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), y0〉

= −
∫ 1

0
〈p̄(t),∆f [t, u(t)]〉 dt+ 〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), y0〉 .

Since (y0, u) ∈ Γ0 × U , the right-hand side of the above equality is zero and the conclusion follows.
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Step 2: Fix Ψ ∈ S(2n) as in the statement of our theorem and let u ∈ U . We show next that the
unique matrix solution W ∈W 1,1([0, 1];Rn×n) of the second-order adjoint equation (3.7) satisfies∫ 1

0

〈
Y (t)T

(
W (t)∆f [t, u(t)] + ∆fx[t, u(t)]T p̄(t)

)
,

∫ t

0
Y −1(s)∆f [s, u(s)]ds

〉
dt ≤ 0. (6.2)

Let y0 ∈ Γ0, y = Lin(y0, δf [u]), w ∈ Lin2(δfx[u], y) be arbitrary and let the sequences hi → 0+,
w0
i → w(0) and xi ∈ S(x̄(0) + hiy(0) + h2

iw
0
i ) be as in Corollary 5.2. Then for all i large enough

0 ≤ ϕ(xi(0), xi(1))− ϕ(x̄(0), x̄(1)).

From the uniform convergence of xi to x̄ and the definition of the superjet we deduce that

0 ≤ ϕ′(x̄(0), x̄(1))

(
xi(0)− x̄(0)
xi(1)− x̄(1)

)
+

1

2

(
xi(0)− x̄(0)
xi(1)− x̄(1)

)T (
Ψ1 Ψ0

ΨT
0 Ψ2

)(
xi(0)− x̄(0)
xi(1)− x̄(1)

)
+ o(‖xi − x̄‖2∞),

which, by Corollary 5.2, implies that

0 ≤ ϕ′(x̄(0), x̄(1))

(
hiy(0) + h2

iw(0)
hiy(1) + h2

iw(1)

)
+
h2
i

2

(
y(0)
y(1)

)T (
Ψ1 Ψ0

ΨT
0 Ψ2

)(
y(0)
y(1)

)
+ o(h2

i ).

Thanks to (6.1) we can divide both sides of the last inequality by h2
i and pass to the limit as i→ +∞

which leads to

0 ≤ ϕ′(x̄(0), x̄(1))

(
w(0)
w(1)

)
+

1

2

(
y(0)
y(1)

)T (
Ψ1 Ψ0

ΨT
0 Ψ2

)(
y(0)
y(1)

)
. (6.3)

Next, consider the (unique) solution W of the matrix differential equation (3.7). One readily checks
that if W solves (3.7), then so does W T . Hence W (t) is a symmetric matrix for all t ∈ [0, 1]. Using
this, the properties of the adjoint state and assumption (A1), we can rewrite inequality (6.3) as follows:

〈p̄(0), w(0)〉 − 〈p̄(1), w(1)〉+ 〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), w(0)〉+ 〈y(0),Ψ0y(1)〉

+
1

2
(〈Ψ1y(0), y(0)〉 − 〈W (1)y(1), y(1)〉) ≥ 0. (6.4)

Similarly to step 1 we note that,

〈p̄(1), w(1)〉 − 〈p̄(0), w(0)〉 =

∫ 1

0
(〈 ˙̄p(t), w(t)〉+ 〈p̄(t), ẇ(t)〉) dt

=

∫ 1

0

〈
∆fx[t, u(t)]T p̄(t) +

1

2
p̄(t)T fxx[t]y(t), y(t)

〉
dt.

(6.5)

By the definition of W ,

− 〈W (1)y(1), y(1)〉

= −〈W (1)y(1), y(1)〉+

∫ 1

0

〈(
Ẇ (t) + fx[t]TW (t) +W (t)fx[t] + p̄(t)T fxx[t]

)
y(t), y(t)

〉
dt.

(6.6)

Using the integration by parts and that W (t) is symmetric for any t, we find

− 〈W (1)y(1), y(1)〉+

∫ 1

0

〈
Ẇ (t)y(t), y(t)

〉
dt

= −〈W (1)y(1), y(1)〉+

∫ 1

0

(
d

dt
〈Wy, y〉(t)− 〈W (t)ẏ(t), y(t)〉 − 〈W (t)y(t), ẏ(t)〉

)
dt

= −〈W (0)y(0), y(0)〉 −
∫ 1

0
(〈W (t)y(t), ẏ(t)〉+ 〈W (t)ẏ(t), y(t)〉) dt.

(6.7)
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By the very definition of y we know that∫ 1

0

〈(
fx[t]TW (t) +W (t)fx[t]

)
y(t), y(t)

〉
dt−

∫ 1

0
(〈W (t)y(t), ẏ(t)〉+ 〈W (t)ẏ(t), y(t)〉) dt

= −
∫ 1

0
(〈W (t)y(t),∆f [t, u(t)]〉+ 〈W (t)∆f [t, u(t)], y(t)〉) dt

= −2

∫ 1

0
〈W (t)∆f [t, u(t)], y(t)〉 dt.

(6.8)

Combining equations (6.6)-(6.8) we obtain,

−〈W (1)y(1), y(1)〉 = −〈W (0)y0, y0〉 −
∫ 1

0
2 〈W (t)∆f [t, u(t)], y(t)〉 dt+

∫ 1

0

〈
p̄(t)T fxx[t]y(t), y(t)

〉
dt.

This and (6.4)-(6.5) lead to the inequality

− 〈p̄(0)−∇x1ϕ(x̄(0), x̄(1)), w(0)〉 − 1

2
〈(W (0)−Ψ1) y0, y0〉+ 〈Ψ0y(1), y0〉

−
∫ 1

0

〈
W (t)∆f [t, u(t)] + ∆fx[t, u(t)]T p̄(t), y(t)

〉
dt ≥ 0. (6.9)

Let u = ū. Then δf [u] ≡ 0, δfx[u] ≡ 0 and y(1) = Y (1)y0. Hence it follows from (6.9) that for all

y0 ∈ Γ0 and all w0 ∈ T [(2)
K0

(x̄(0), y0)

〈p̄(0)−∇x1ϕ(x̄(0), x̄(1)), w0〉+
1

2
〈(W (0)−Ψ1 − 2Ψ0Y (1)) y0, y0〉 ≤ 0, (6.10)

which allows to conclude that W (0)−Ψ1 − 2Ψ0Y (1) ∈ N [(2)
K0

(x̄(0); p̄(0)−∇x1ϕ(x̄(0), x̄(1))) .

Let y0 = 0 ∈ Γ0, w(0) = 0 ∈ T [(2)
K0

(x̄(0), 0). Since for any u ∈ U , y = Lin(0, δf [u]) is given by

y(t) =

∫ t

0
Y (t)Y −1(s)∆f [s, u(s)]ds,

it follows from (6.9) that inequality (6.2) is verified for all u ∈ U .

Step 3: We deduce from (6.2) that for a.e. t ∈ [0, 1],〈
W (t)∆f [t, u] + ∆fx[t, u]T p̄(t),∆f [t, u]

〉
≤ 0, ∀ u ∈ U(t). (6.11)

This part of the proof uses the standard ideas of needle variations of controls, as in [22]. We provide
the details for the reader convenience. To simplify the notations we introduce the following maps:

G(t, u) := Y (t)T
(
W (t)∆f [t, u] + ∆fx[t, u]T p̄(t)

)
and G(t, u) := Y −1(t)∆f [t, u].

Let u ∈ U . By our assumptions ess-supt∈[0,1] {|G(t, u(t))|+ |G(t, u(t))|} =: C < +∞. Note that the set

E :=

t ∈ [0, 1[

∣∣∣∣∣∣ lim
α→+0

1

α

∫ t+α

t

 G(s, u(s))

|G(s, u(s))|2
G(s, u(s))

 ds =

 G(t, u(t))

|G(t, u(t))|2
G(t, u(t))

 ,
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is of full measure in [0, 1]. We then fix an arbitrary β ∈ E such that |G(β, u(β))| ≤ C, α ∈ ]0, 1− β[
and define,

uα(t) :=

{
u(t) if t ∈ [β, β + α],

ū(t) otherwise.

It is clear that uα ∈ U . It follows from (6.2) that

0 ≥
∫ 1

0

(∫ t

0
〈G(t, uα(t)), G(s, uα(s))〉 ds

)
dt =

∫ β+α

β

(∫ t

β
〈G(t, u(t)), G(s, u(s))〉 ds

)
dt. (6.12)

Observe that∣∣∣∣ 2

α2

∫ β+α

β

(∫ t

β
〈G(t, u(t)), G(s, u(s))〉 ds

)
dt− 〈G(β, u(β)), G(β, u(β))〉

∣∣∣∣
=

∣∣∣∣ 2

α2

[∫ β+α

β

(∫ t

β

〈
(t− β)G(t, u(t)),

1

t− β
G(s, u(s))

〉
ds− 〈(t− β)G(t, u(t)), G(β, u(β))〉

)
dt

+

〈∫ β+α

β
(t− β)G(t, u(t))dt,G(β, u(β))

〉
−
〈∫ β+α

β
(t− β)G(β, u(β))dt,G(β, u(β))

〉]∣∣∣∣
≤
∣∣∣∣ 2

α2

∫ β+α

β

〈
(t− β)G(t, u(t)),

1

t− β

∫ t

β
G(s, u(s))ds−G(β, u(β))

〉
dt

∣∣∣∣
+

∣∣∣∣ 2

α2

〈∫ β+α

β
(t− β)

(
G(t, u(t))− G(β, u(β))

)
dt,G(β, u(β))

〉∣∣∣∣
≤ 2C

α2

∫ β+α

β

(
(t− β)

∣∣∣∣ 1

t− β

∫ t

β
G(s, u(s))ds−G(β, u(β))

∣∣∣∣) dt
+

2C

α2

∫ β+α

β

∣∣(t− β)
(
G(t, u(t))− G(β, u(β))

)∣∣ dt.
From Hölder’s inequality we obtain∣∣∣∣ 2

α2

∫ β+α

β

(∫ t

β
〈G(t, u(t)), G(s, u(s))〉 ds

)
dt− 〈G(β, u(β)), G(β, u(β))〉

∣∣∣∣
≤ 2C

α2
sup

r∈]β,β+α]

{∣∣∣∣ 1

r − β

∫ r

β
G(s, u(s))ds−G(β, u(β))

∣∣∣∣} ∫ β+α

β
(t− β)dt

+
2C

α2

(∫ β+α

β
(t− β)2dt

) 1
2
(∫ β+α

β
|G(t, u(t))− G(β, u(β))|2 dt

) 1
2

= C sup
r∈]β,β+α]

{∣∣∣∣ 1

r − β

∫ r

β
G(s, u(s))ds−G(β, u(β))

∣∣∣∣}+ 2C

(
1

α3

∫ β+α

β
(t− β)2dt

) 1
2

·

·
(

1

α

∫ β+α

β

(
|G(t, u(t))|2 + |G(β, u(β)|2 − 2 〈G(t, u(t)),G(β, u(β))〉

)
dt

) 1
2

= C sup
r∈]β,β+α]

{∣∣∣∣ 1

r − β

∫ r

β
G(s, u(s))ds−G(β, u(β))

∣∣∣∣}

+
2C√

3

(
1

α

∫ β+α

β

(
|G(t, u(t))|2 + |G(β, u(β))|2 − 2 〈G(t, u(t)),G(β, u(β))〉

)
dt

) 1
2

.
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Consequently, from the choice of β we conclude that

lim
α→+0

2

α2

∫ β+α

β

(∫ t

β
〈G(t, u(t)), G(s, u(s))〉 ds

)
dt = 〈G(β, u(β)), G(β, u(β))〉 . (6.13)

It follows therefore from (6.12) and (6.13) that for all u ∈ U we have

〈G(t, u(t)), G(t, u(t))〉 ≤ 0, for a.e. t ∈ [0, 1]. (6.14)

To complete the proof we show that (6.14) implies (6.11) using a contradiction argument. If (6.11) is
not satisfied then there exist ε > 0 and a set of positive measure E1 ⊂ [0, 1] such that for all t ∈ E1,

∃ u ∈ U(t) satisfying 〈G(t, u), G(t, u)〉 ≥ ε. (6.15)

Define the set-valued map Ω : [0, 1] Rm by Ω(t) = {ū(t)} for every t ∈ [0, 1]\E1 and

Ω(t) :=
{
u ∈ U(t)

∣∣ 〈G(t, u), G(t, u)〉 ≥ ε
}
,

for t ∈ E1. It follows from [2, Thm. 8.2.9] that Ω(·) is measurable. Furthermore Ω(t) is nonempty and
closed a.e. Hence there exists a measurable selection ũ(t) ∈ Ω(t) for all t ∈ [0, 1]. It is clear that ũ ∈ U
but (6.14) is violated. This yields the desired contradiction and completes Step 3.

Step 4: It follows directly from (6.11) that for a.e. t ∈ [0, 1]

max
(v,M)∈{(∆f [t,u],∆fx[t,u]) | u∈U(t)}

〈
MT p̄(t) +W (t)v, v

〉
= 0.

Set k = n+ n2 and consider the optimisation problem

Minimize ϕ(x(0), x(1)),

over trajectories x(·) of the control system{
ẋ(t) = Σk+1

i=1 λi(t)f(t, x(t), ui(t)), ∀ i, ui ∈ U , (λ1(t), ..., λk+1(t)) ∈ Λk a.e. in [0, 1],

x(0) ∈ K0.

In the above we consider only measurable functions λi.
By the relaxation Theorem, see for instance [2, Thm. 10.4.4], the process

(x̄, ū, ...., ū︸ ︷︷ ︸
k+1

, 1, 0, ..., 0︸ ︷︷ ︸
k

)

is a local minimizer for this new problem. Furthermore the corresponding first and second-order adjoint
states are still p̄ and W . Moreover the set corresponding to

{
(∆f [t, u],∆fx[t, u])

∣∣ u ∈ U(t)
}

for this
new problem is equal to D(t). Therefore the maximality condition (3.9) follows.

6.2 Necessary optimality conditions in integral form

To prove Theorem 3.6, we shall use a second-order necessary optimality condition in integral form that
we describe next. Define

J2
K0

(x̄(0)) =
{

(y0, w0) ∈ Rn × Rn
∣∣ ∀hi → 0+, ∃ (yi0, w

i
0)→ (y0, w0),

〈p̄(0)−∇x1ϕ(x̄(0), x̄(1)), yi0〉 = 0, x̄(0) + hiy
i
0 + h2

iw
i
0 ∈ K0

}
,
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J2(t) = {(u, v) ∈ Rn × Rn | ∀hi → 0+, ∃ (ui, vi)→ (u, v), Hu[t]ui = 0, ū(t) + hiui + h2
i vi ∈ U(t)}.

The above sets are closed, contain zero and for every (u, v) ∈ J2(t) we have u ∈ T [U(t)(ū(t)) andHu[t]u = 0.

Moreover, if u ∈ T [U(t)(ū(t)) is such that Hu[t]u = 0 and v ∈ T [(2)
U(t)(ū(t), u), then (u, v) ∈ J2(t). Finally,

as we prove in Proposition 6.2 below, J2(·) is measurable. This will allow us to apply a measurable
selection theorem to deduce pointwise necessary conditions from the integral necessary conditions.
Define the local critical cone, at ū ∈ U by

Cloc(ū) := {u(·) ∈ L1([0, 1];Rm) | u(t) ∈ T [U(t)(ū(t)) and Hu[t]u(t) = 0 a.e. in [0, 1]}, (6.16)

and the set of admissible second-order variations of ū by

M(2)(ū) =
{

(u, v) ∈ L2([0, 1];Rm)× L1([0, 1];Rm) | u ∈ Cloc(ū), (u(t), v(t)) ∈ J2(t) a.e. in A
}
.

Consider the linearized system{
ẏ(t) = fx[t]y(t) + fu[t]u(t), a.e. in [0, 1],
y(0) = y0,

(6.17)

and define the quadratic functional Φ : for any (u(·), v(·)) ∈ L2([0, 1];Rm) × L1([0, 1];Rm) and any
y0 ∈ Rn, w0 ∈ Rn,

Φ(u, v, y0, w0) := 〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), w0〉+
1

2
(y0, y(1))Tϕ′′(x̄(0), x̄(1))(y0, y(1))

−
1∫

0

(
Hu[t]v(t) +

1

2
y(t)THxx[t]y(t) + u(t)THxu[t]y(t) +

1

2
u(t)THuu[t]u(t)

)
dt,

where y(·) is the solution of (6.17). The second-order necessary optimality condition below generalizes [13,
Thm 4.1] to problems with initial state constraints. It uses a larger setM(2)(ū) of admissible second-order
variations of ū than in [13]. For this reason the next result is stronger than [13, Theorem 4.1].

Theorem 6.1. Let (x̄, ū) ∈ P(K0) be a strong local minimizer of (P), (A1), (A2) hold true and
p̄ ∈W 1,1([0, 1];Rn) solve (3.1). Then

Φ(u, v, y0, w0) ≥ 0 for all (u, v) ∈M(2)(ū) and (y0, w0) ∈ J2
K0

(x̄(0)).

We first prove two useful propositions. It is not restrictive to assume that ū(t) ∈ U(t) for every t ∈ [0, 1].
For any i ∈ N and t ∈ [0, 1] define

V i(t) := {(u, v) ∈ Rm × Rm | |(u, v)| ≤ i, Hu[t]u = 0} .

By [2, Thm. 8.2.9], t V i(t) is measurable and has closed images. Then, by the same theorem, for all
q ∈ Q+, the set-valued map

Qiq(t) :=
{

(u, v) ∈ V i(t)
∣∣ ū(t) + qu+ q2v ∈ U(t)

}
,

is also measurable and has closed images. Consequently, for every integer s ≥ 1 the set valued map
Q̂is : [0, 1] Rm defined by

Q̂is(t) :=
⋃
r∈Q+

⋂
q∈Q+∩(0,r)

(
Qiq(t) +

1

s
B

)
,

23



is measurable and therefore the set-valued map

Q(t) :=
⋃
i≥1

⋂
s≥1

Q̂is(t),

is also measurable and has closed images containing zero.

Proposition 6.2. For every t ∈ [0, 1] we have J2(t) = Q(t).

Proof. Fix (u, v) ∈ J2(t). Then for every q ∈ Q+ there exist (uq, vq) ∈ Rm × Rm such that

limq→0+(uq, vq) = (u, v), Hu[t]uq = 0 and ū(t) + quq + q2vq ∈ U(t). The sequence of sets {Q̂is(t)}i is
nondecreasing (with respect to i). Let i ≥ 1 be such that |(u, v)| < i. Then for all q ∈ Q+ sufficiently
small we have |(uq, vq)| ≤ i and therefore (uq, vq) ∈ Qiq(t) for all small q ∈ Q+. Fix an integer s ≥ 1.

Then for all small r > 0 we have (u, v) ∈
⋂
q∈Q+∩(0,r)

(
Qiq(t) + 1

sB
)
. Since s ≥ 1 is arbitrary, we deduce

that (u, v) ∈
⋂
s≥1 Q̂

i
s(t). Thus (u, v) ∈ Q(t).

Conversely, let (u, v) ∈ Q(t) and hk → 0+. We have to show that there exist (uk, vk)→ (u, v) such that
Hu[t]uk = 0 and ū(t) + hkuk + h2

kvk ∈ U(t). It is not restrictive to assume that hk ∈ Q+. Fix s ≥ 1.
Then there exist i and (ũk, ṽk) ∈ Qihk(t) such that (u, v) ∈ (ũk, ṽk) + 2

sB for all large k. In particular

Hu[t]ũk = 0 and ū(t) + hkũk + h2
kṽk ∈ U(t). Letting s tend to ∞, we construct a sequence (uk, vk) as

desired.

Proposition 6.3. Consider (u, v) ∈ L∞([0, 1];Rm×Rm) such that (u(t), v(t)) ∈ J2(t) a.e. in A. Then
for every sequence hk → 0+ there exists a bounded sequence (uk, vk) ∈ L∞([0, 1];Rm × Rm) converging
to (u, v) a.e. in A such that Hu[t]uk(t) = 0 and ū(t) + hkuk(t) + h2

kvk(t) ∈ U(t) for a.e. t ∈ A.

Proof. We may assume that (u(t), v(t)) = 0 for t /∈ A. Observe that for any fixed t ∈ [0, 1] the sequence
of sets P i(t) :=

⋂
s≥1 Q̂

i
s(t) is increasing with respect to i. Furthermore, by Proposition 6.2, limi→∞

distP i(t)((u(t), v(t))) = 0. This and [2, Cor. 8.2.13] imply that we can find measurable selections

(ui(t), vi(t)) ∈ P i(t) converging to (u, v) a.e. such that

distP i(t)((u(t), v(t))) = |(u(t), v(t))− (ui(t), vi(t))| ≤ |(u(t), v(t))|.

Hence the sequence ‖(ui, vi)‖∞ is bounded by 2‖(u, v)‖∞. Observe next that if the claim of our
proposition is valid for every such (ui, vi), then, given a sequence hk → 0+ we can construct (uk, vk) for
(u, v) as in the claim.
It remains to prove our proposition for every i ≥ 1 and any bounded measurable selection (u(t), v(t)) ∈
P i(t). Consider such i and (u, v). Fix s ≥ 1 and for every rational r > 0 and t ∈ [0, 1] define

Rsr(t) :=
⋂

q∈Q+∩(0,r)

(
Qiq(t) +

1

s
B

)
.

Notice that for every integer s ≥ 1 the family of sets Rsr(t) is decreasing with respect to r. Hence

lim
r→0+, r∈Q+

distRsr(t)((u(t), v(t))) = 0 a.e.,

and we deduce that
lim
k→∞

distQihk (t)+ 1
s
B((u(t), v(t))) = 0.

Since the set valued map t Qihk(t)+ 1
sB is measurable and has closed nonempty images containing zero,

by [2, Cor. 8.2.13 and Thm. 8.2.9] there exists a measurable selection (ũk(t), ṽk(t)) ∈ Qihk(t) such that
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limk→∞ dist(ũk(t),ṽk(t))+ 1
s
B((u(t), v(t))) = 0 a.e. and |(ũk(t), ṽk(t)) − (u(t), v(t))| ≤ |(u(t), v(t))| + 1/s.

Moreover, Hu[t]ũk(t) = 0 and ū(t) + hkũk(t) + h2
kṽk(t) ∈ U(t). Making s to converge to ∞ we construct

a bounded in L∞ sequence (uk, vk) of measurable functions converging pointwise to (u, v) such that
Hu[t]uk(t) = 0 and ū(t) + hkuk(t) + h2

kvk(t) ∈ U(t) a.e.

We are now ready for the proof of Theorem 6.1 which, in its remaining part, is similar to the one of
[13, Thm. 4.1] (but in the presence of initial point constraints), and so we skip some details. It is also
similar to [18, Proof of Thm. 3.2], but for the Mayer problem instead of the Bolza one. Proposition 6.3
allows us to avoid additional assumptions imposed on u in [18, Thm. 3.2].

Proof of Theorem 6.1. Fix (u(·), v(·)) ∈ M(2)(ū), (y0, w0) ∈ J2
K0

(x̄(0)) and let y be the solution of
(6.17). We claim that it is not restrictive to assume that (u(·), v(·)) is essentially bounded. Indeed,
define

ui(t) =

{
u(t) if |u(t)|+ |v(t)| ≤ i,
0 otherwise,

vi(t) =

{
v(t) if |u(t)|+ |v(t)| ≤ i,
0 otherwise.

Then (ui, vi) ∈ M2(ū) converge to (u, v) almost everywhere. Let yi be the solution of (6.17) with u
replaced by ui. Then yi converge to y uniformly on [0, 1]. Observe that if Φ(ui, vi, y0, w0) ≥ 0 for
all large i, then, using the Lebesgue dominated convergence theorem and taking the limit we get
Φ(u, v, y0, w0) ≥ 0.
We continue the proof assuming that u, v are essentially bounded. Fix any sequence hi → 0+. By
Proposition 6.3 there exists a bounded in L∞([0, 1];Rm × Rm) family {(ũi, ṽi)}i∈N such that

Hu[t]ũi(t) = 0, ū(t) + hiũi(t) + h2
i ṽi(t) ∈ U(t), lim

i→∞
(ũi(t), ṽi(t)) = (u(t), v(t)) for a.e. t ∈ A.

By [18, Prop. 4.1] there exists a bounded in L∞([0, 1];Rm) family {ûi}i∈N such that for all i we have
ū(t) + hiûi(t) ∈ U(t) a.e. in [0, 1] and limi→∞ ûi(t) = u(t). Define the new controls

ui(t) =

{
ũi(t) if t ∈ A,
ûi(t) otherwise,

vi(t) =

{
ṽi(t) if t ∈ A,
0 otherwise.

Let (yi0, w
i
0) be as in the definition of J2

K0
(x̄(0)) for (y0, w0) and our sequence hi. For every i ∈ N large

enough consider the solution xi : [0, 1]→ Rn of the system

ẋi(t) = f(t, xi(t), ū(t) + hiui(t) + h2
i vi(t)), xi(0) = x̄(0) + hiy

i
0 + h2

iw
i
0.

By the variational equation (xi − x̄)/hi converge uniformly to y. Moreover, for all large i ∈ N we have
ϕ(xi(0), xi(1)) ≥ ϕ(x̄(0), x̄(1)). By the Taylor expansion and the properties of the adjoint state, setting
yi = (xi − x̄)/hi we obtain similarly to [13, Proof of Thm. 4.1],

0 ≤ ϕ(xi(0), xi(1))− ϕ(x̄(0), x̄(1))

= h2
i 〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), w0〉+

∫ 1

0
Hx[t]hiyi(t) dt−

∫ 1

0
〈p̄(t), ẋi(t)− ˙̄x(t)〉 dt

+
h2
i

2
〈ϕ′′(x̄(0), x̄(1))(y0, y(1)), (y0, y(1))〉+ o(h2

i ),

(6.18)

and∫ 1

0
〈p̄(t), ẋi(t)− ˙̄x(t)〉dt =

∫ 1

0

(
Hx[t]hiyi(t) +Hu[t]h2

i v(t) +
h2
i

2
〈Hxx[t]y(t), y(t)〉

+ h2
i 〈Hux[t]u(t), y(t)〉+

h2
i

2
〈Huu[t]u(t), u(t)〉

)
dt+ o(h2

i ). (6.19)
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From (6.18) and (6.19) we deduce that

0 ≤ h2
i 〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), w0〉+

h2
i

2
〈ϕ′′(x̄(0), x̄(1))(y0, y(1)), (y0, y(1))〉

− h2
i

∫ 1

0

(
Hu[t]v(t) +

1

2
〈Hxx[t]y(t), y(t)〉+ 〈Hxu[t]y(t), u(t)〉+

1

2
〈Huu[t]u(t), u(t)〉

)
dt+ o(h2

i ).

(6.20)

Dividing by h2
i and passing to the limit we end the proof.

6.3 Proof of Theorem 3.6

By [2, Thm. 8.2.9 and 8.5.1] and Proposition 6.2 the set-valued maps [0, 1] 3 s F̂ (s) and [0, 1] 3 s 
G(s) given by

F̂ (s) :=

{
(u, v) ∈ J2(s)

∣∣∣∣ Hu[s]v +
1

2
uTHuu[s]u = 0

}
,

G(s) :=
{
u ∈ T [U(t)(ū(t))

∣∣∣ uTHuu[s]u = 0
}
,

are measurable and have closed images. Define

F (s) :=

{
F̂ (s) if s ∈ A,
{(u, 0) | u ∈ G(s)} if s ∈ [0, 1]\A.

Then F (·) is also measurable and has closed images. Moreover 0 ∈ F (s) for a.e. s ∈ [0, 1]. This and the
Castaing representation theorem, see for instance [2, Chapter 8], imply that it is sufficient to prove (3.8)
and that for every bounded measurable selection (u(s), v(s)) ∈ F (s) a.e. the following inequality holds
true for a.e. t ∈ [0, 1] 〈

fu[t]T (Hux[t] +W (t)fu[t])u(t), u(t)
〉
≤ 0. (6.21)

Let us consider such a measurable selection (u(·), v(·)), y0 ∈ Γ0, w0 ∈ T [(2)
K0

(x̄(0), y0) and let y be the
solution of (6.17). By Theorem 6.1,

〈∇x1ϕ(x̄(0), x̄(1))− p̄(0), w0〉+
1

2
(y0, y(1))Tϕ′′(x̄(0), x̄(1))(y0, y(1))

−
1∫

0

(1

2
y(t)THxx[t]y(t) + u(t)THxu[t]y(t)

)
dt ≥ 0.

In the same way as in the proof of Theorem 3.1, taking u(·) = 0, we deduce from the above inequality that
W satisfies the second-order transversality condition (3.8) with Ψ = −ϕ′′(x̄(0), x̄(1)). Let y0 = 0 ∈ Γ0

and w0 = 0 ∈ T [(2)
K0

(x̄(0), 0). Then

y(t) =

∫ t

0
Y (t)Y −1(s)fu[s]u(s)ds,

where Y is the fundamental solution of system (3.6). By the last inequality, integrating by parts as in
(6.6) and (6.7), we obtain∫ 1

0

〈
Y (t)T (Hux[t] +W (t)fu[t])u(t),

∫ t

0
Y −1(s)fu[s]u(s)ds

〉
dt ≤ 0.

Finally, defining G(t, u) := Y (t)T (Hux[t] +W (t)fu[t])u and G(t, u) := Y −1(t)fu[t]u we can repeat the
arguments of Step 3 of the proof of Theorem 3.1 to deduce the pointwise statement (6.21) which
completes the proof.
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7 Proofs of the second-order sensitivity relations

Define H : [0, 1]× Rn × Rn → R by

H(t, x, p) = 〈p, f(t, x, ū(t))〉 .

Clearly assumption (A1) implies that H(·, x, p) is measurable for all (x, p) ∈ Rn × Rn, H(t, ·, ·) is
twice differentiable on (x̄(t) + ρB)× Rn for all t ∈ [0, 1] and Hpp(t, x, p) ≡ 0. Since (∇ϕ(x̄(1)),Ψ2) ∈
J2,+ϕ(x̄(1)), it follows from [6, Prop. 2.6] that there exists φ ∈ C2(Rn;R) such that

ϕ ≤ φ, ϕ(x̄(1)) = φ(x̄(1)) and
(
∇ϕ(x̄(1)),Ψ2) = (∇φ(x̄(1)), φ′′(x̄(1))

)
. (7.1)

Consider the Hamiltonian system{
ẋ(t) = ∇pH(t, x(t), p(t)), x(1) = xT ,

−ṗ(t) = ∇xH(t, x(t), p(t)), p(1) = −∇φ(xT ),
(7.2)

where xT ∈ Rn. Notice that for xT = x̄(1), (x̄, p̄) is a solution of (7.2). Moreover, it follows from the
definition of H and assumption (A1) that for all xT ∈ Rn in a sufficiently small neighborhood of x̄(1)
there exists a unique solution of (7.2). We associate with x̄ and p̄ the matrix differential equation{

Ṙ(t) +Hpx[t]R(t) +R(t)Hxp[t] +Hxx[t] = 0,

R(1) = −φ′′(x̄(1)),
(7.3)

where [t] := (t, x̄(t), p̄(t)). Notice that its unique solution is the second-order adjoint state W ∈
W 1,1([0, 1]; S(n)) from Theorem 3.1. Finally, for an open set O such that x̄(1) ∈ O and t ∈ [0, 1], set

Ωt(O) := {(x(t), p(t)) | (x, p) solves (7.2) and xT ∈ O} .

Remark 7.1. Using standard arguments, one can show that it follows from (A1) that there exists
ρ̃ > 0, such that H(t, ·, ·) is twice continuously differentiable in a ρ/2-neighborhood of Ωt(x̄(1) + ρ̃B)
for all t ∈ [0, 1]. Similarly one can show that there exists an integrable function k̃ : [0, 1]→ R+ such

that for almost all t ∈ [0, 1], ∂H
∂(x,p)(t, ·, ·) is k̃(t)-Lipschitz on Ωt(x̄(1) + ρ̃B).

By [8, Thm. 2.3] and Remark 7.1 for all t ∈ [t0, 1], the setDt := {x(t) | (x, p) solves (7.2), xT ∈ x̄(1) + ρ̃B} ,
is open and Ωt(x̄(1) + ρ̃B) is the graph of a C1-map.

7.1 Proof of Theorem 4.1

Let x̄, p̄ and W be as in the statement of Theorem 4.1 and φ be a function satisfying (7.1). Fix an
arbitrary t ∈ [t0, 1]. Since Dt is an open neighborhood of x̄(t), it suffices to show that for all xt ∈ Rn
such that (xt, pt) ∈ Ωt(x̄(1) + ρ̃B) for some pt ∈ Rn we have

V (t, xt)− V (t, x̄(t)) ≤ 〈−p̄(t), xt − x̄(t)〉+
1

2
〈−W (t)(xt − x̄(t)), xt − x̄(t)〉+ o(|xt − x̄(t)|2). (7.4)

Let (x, p) be a solution of (7.2) such that (xt, pt) := (x(t), p(t)) ∈ Ωt(x̄(1) + ρ̃B). Using that the value
function is non-decreasing along feasible trajectories and constant along optimal trajectories, we get

V (t, xt)− V (t, x̄(t)) ≤ V (1, x(1))− V (1, x̄(1)) ≤ φ(x(1))− φ(x̄(1)),
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where we used (7.1) and that V (1, x) = ϕ(x) for all x ∈ Rn. Hence (7.1) implies

V (t, xt)− V (t, x̄(t))

≤ 〈∇ϕ(x̄(1)), x(1)− x̄(1)〉+
1

2
〈Ψ2(x(1)− x̄(1)), x(1)− x̄(1)〉+ o(|x(1)− x̄(1)|2).

(7.5)

By Gronwall’s lemma and the Lipschitz continuity of f with respect to x, there exists a constant c > 0
such that for all s ∈ [t, 1],

|x(s)− x̄(s)| ≤ c |xt − x̄(t)| .

This implies that for all s ∈ [t, 1], we can replace rest terms of order o(|x(s)− x̄(s)|2) by rest terms of
order o(|xt − x̄(t)|2). Using this and the properties of p̄ and W we deduce from (7.5) that

V (t, xt)− V (t, x̄(t))

≤ 〈−p̄(1), x(1)− x̄(1)〉+
1

2
〈−W (1)(x(1)− x̄(1)), x(1)− x̄(1)〉+ o(|xt − x̄(t)|2)

≤ 〈−p̄(t), xt − x̄(t)〉+
1

2
〈−W (t)(xt − x̄(t)), xt − x̄(t)〉+ o(|xt − x̄(t)|2)

+

∫ 1

t

d

ds

(
〈−p̄(s), x(s)− x̄(s)〉+

1

2
〈−W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉

)
ds.

(7.6)

We show next that the integral on the right-hand side of (7.6) is of order o(|xt − x̄(t)|2). Since (x, p)
and (x̄, p̄) are solutions of (7.2) we find that for every t ∈ [t0, 1]∫ 1

t

d

ds
〈−p̄(s), x(s)− x̄(s)〉 ds

=

∫ 1

t

(〈
∇xH[s], x(s)− x̄(s)

〉
+
〈
−p̄(s),∇pH(s, x(s), p(s))−∇pH[s]

〉)
ds. (7.7)

Similarly, using that W solves (7.3) we obtain

− 1

2

∫ 1

t

d

ds
〈W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉 ds

= −
∫ 1

t

〈
W (s)

(
∇pH(s, x(s), p(s))−∇pH[s]

)
, x(s)− x̄(s)

〉
ds

− 1

2

∫ 1

t

〈(
−Hpx[s]W (s)−W (s)Hxp[s]−Hxx[s]

)
(x(s)− x̄(s)), x(s)− x̄(s)

〉
ds.

(7.8)

Consider the variational system of (7.2) obtained by differentiating the solution map of (7.2) with
respect to xT , {

Ẋ(s) = Hxp[s]X(s), X(1) = Id,

−Ṗ (s) = Hxx[s]X(s) +Hpx[s]P (t), −P (1) = φ′′(xT ).

Then W (s) = P (s)X(s)−1, and therefore,

W (s) (x(s)− x̄(s)) = p(s)− p̄(s) + os(|x(1)− x̄(1)|), ∀s ∈ [t, 1].
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For more details see for instance [6, 8]. With this observation (7.8) becomes

− 1

2

∫ 1

t

d

ds
〈W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉 ds

=

∫ 1

t

(
1

2

〈
Hxx[s](x(s)− x̄(s)), x(s)− x̄(s)

〉
+
〈
Hpx[s](p(s)− p̄(s)), x(s)− x̄(s)

〉)
ds

−
∫ 1

t

(〈
∇pH(s, x(s), p(s))−∇pH[s], p(s)− p̄(s)

〉
+ os(|xt − x̄(t)|2)

)
ds.

(7.9)

Finally, since
〈
p(s),∇pH(s, x(s), p(s))

〉
= H(s, x(s), p(s)) and similarly

〈
p̄(s),∇pH[s]

〉
= H[s], (7.7)

and (7.9) lead to∫ 1

t

d

ds

(
〈−p̄(s), x(s)− x̄(s)〉+

1

2
〈−W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉

)
ds

=

∫ 1

t

(
1

2

〈
Hxx[s](x(s)− x̄(s)), x(s)− x̄(s)

〉
+
〈
Hpx[s](p(s)− p̄(s)), x(s)− x̄(s)

〉
−H(s, x(s), p(s))

+H[s] +
〈
∇xH[s], x(s)− x̄(s)

〉
+
〈
∇pH[s], p(s)− p̄(s)

〉
+ os(|xt − x̄(t)|2)

)
ds.

Since H(t, ·, ·) is of class C2 in a neighborhood of Ωt(x̄(1) + ρ̃B), it is not difficult to verify via Taylor’s
formula and the dominated convergence theorem that∫ 1

t

d

ds

(
〈−p̄(s), x(s)− x̄(s)〉+

1

2
〈−W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉

)
ds = o(|xt − x̄(t)|2).

This, together with (7.6) completes the proof.

7.2 Proof of Theorem 4.2

The proof of Theorem 4.2 follows along the same lines as the proof of Theorem 4.1. We therefore just
provide the main ideas.
Since (−p̄(t0),−W0) ∈ J2,−

x V (t0, x̄(t0)), we can use the characterization of the subjets, see for instance
[6, Prop. 2.6], to deduce the existence of a function g ∈ C2(Rn;R) such that

g(·) ≤ V (t0, ·), g(x0) = V (t0, x0), (∇g(x0), g′′(x0)) = (−p̄(t0),−W0). (7.10)

Consider next the Hamiltonian system{
ẋ(t) = ∇pH(t, x(t), p(t)), x(t0) = xS ,

−ṗ(t) = ∇xH(t, x(t), p(t)), −p(t0) = ∇g(xS).
(7.11)

Clearly (x̄, p̄) solves (7.11) with xS = x̄(t0) = x0. Introducing the time transformation τ : t 7→ 1− t+ t0,
notice that if (x, p) solves (7.11) for some xS ∈ Rn, then (xτ , pτ ) := (x(τ(t)), p(τ(t))) solves (7.2) with
xτ (1) = xS and Hamiltonian Hτ (t, x, p) := −H(τ(t), x, p). Moreover, Wτ (t) := W (τ(t)) is a solution of
equation (7.3) with H[t] replaced by Hτ (t, x̄τ (t), p̄τ (t)) and φ′′(x̄(1)) replaced by g′′(x̄τ (1)). As in the
proof of Theorem 4.1 we deduce that for some ρ̃ > 0 and all t ∈ [t0, 1] the set

D̃t := {x(t) | (x, p) solves (7.11), xS ∈ x̄(t0) + ρ̃B} ,
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is open and W (t)(x(t)− x̄(t)) = p(t)− p̄(t) + ot(|x(t0)− x̄(t0)|). It suffices therefore to prove that for
all (x, p) solving (7.11) with xS ∈ x̄(t0) + ρ̃B and all t ∈ [t0, 1] we have

V (t, x(t))− V (t, x̄(t)) ≥ 〈−p̄(t), x(t)− x̄(t)〉+
1

2
〈−W (t)(x(t)− x̄(t)), x(t)− x̄(t)〉+ o(|x(t)− x̄(t)|2).

Fix t ∈ [t0, 1] and let (x, p) be a solution of (7.11) with xS ∈ x̄(t0) + ρ̃B. Then it follows from the
dynamic programming principle and (7.10) that

V (t, x(t))− V (t, x̄(t)) ≥ V (t0, xS)− V (t0, x̄(t0)) ≥ g(xS)− g(x̄(t0)).

Still using (7.10) this leads to

V (t, x(t))− V (t, x̄(t))

≥ 〈−p̄(t0), xS − x̄(t0)〉+
1

2
〈−W (t0)(xS − x̄(t0)), xS − x̄(t0)〉+ o(|xS − x̄(t0)|2)

= 〈−p̄(t), x(t)− x̄(t)〉+
1

2
〈−W (t)(x(t)− x̄(t)), x(t)− x̄(t)〉+ o(|xS − x̄(t0)|2)

−
∫ t

t0

d

ds

(
〈−p̄(s), x(s)− x̄(s)〉+

1

2
〈−W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉

)
ds.

Similar arguments as those used in the proof of Theorem 4.1 can be employed to show that∫ t

t0

d

ds

(
〈−p̄(s), x(s)− x̄(s)〉+

1

2
〈−W (s)(x(s)− x̄(s)), x(s)− x̄(s)〉

)
ds+ o(|xS − x̄(t0)|2)

= o(|x(t)− x̄(t)|2),

which completes the proof.
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