
HAL Id: hal-03753936
https://hal.science/hal-03753936

Submitted on 19 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First and second order necessary conditions for
stochastic optimal controls

Hélène Frankowska, Haisen Zhang, Xu Zhang

To cite this version:
Hélène Frankowska, Haisen Zhang, Xu Zhang. First and second order necessary conditions
for stochastic optimal controls. Journal of Differential Equations, 2017, 268 (6), pp.2949-3015.
�10.1016/j.jde.2019.09.045�. �hal-03753936�

https://hal.science/hal-03753936
https://hal.archives-ouvertes.fr


First and second order necessary conditions for
stochastic optimal controls

Hélène Frankowska∗, Haisen Zhang† and Xu Zhang‡

Abstract

The main purpose of this paper is to establish the first and second order necessary
optimality conditions for stochastic optimal controls using the classical variational anal-
ysis approach. The control system is governed by a stochastic differential equation, in
which both drift and diffusion terms may contain the control variable and the set of
controls is allowed to be nonconvex. Only one adjoint equation is introduced to derive
the first order necessary condition; while only two adjoint equations are needed to state
the second order necessary conditions for stochastic optimal controls.

Key words: Stochastic optimal control, Malliavin calculus, necessary conditions, adjacent
cone, variational equation, adjoint equation.

AMS subject classifications: Primary 93E20; Secondary 49J53, 60H07, 60H10.

1. Introduction

Let T > 0 and (Ω,F ,F, P ) be a complete filtered probability space (satisfying the usual
conditions), on which a 1-dimensional standard Wiener process W (·) is defined such that
F = {Ft}0≤t≤T is the natural filtration generated by W (·) (augmented by all the P -null sets).

Let us consider the following controlled stochastic differential equation{
dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), t ∈ [0, T ],
x(0) = x0 ∈ K,

(1.1)
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with the cost functional

J(u(·), x0) = E
[ ∫ T

0

f(t, x(t), u(t))dt+ g(x(T ))
]
. (1.2)

Here u(·) is the control variable with values in a closed nonempty subset U of Rm (for some
fixed m ∈ N), x(·) is the state variable with values in Rn (for some given n ∈ N), K is a closed
nonempty subset in Rn, and b, σ : [0, T ]×Rn×Rm×Ω→ Rn, f : [0, T ]×Rn×Rm×Ω→ R
and g : Rn × Ω → R are given functions (satisfying suitable conditions to be stated later).
As usual, when the context is clear, we omit the ω (∈ Ω) argument in the defined functions.

Denote by 〈·, ·〉 and | · | respectively the inner product and norm in Rn or Rm, which can
be identified from the contexts, by B(X) the Borel σ-field of a metric space X, and by Uad
the set of B([0, T ])⊗F -measurable and F-adapted stochastic processes with values in U such

that E
∫ T

0
|u(t, ω)|2dt <∞. Any u(·) ∈ Uad is called an admissible control, the corresponding

state x(·;x0) of (1.1) with initial datum x0 ∈ K is called an admissible state, and (x, u, x0)
is called an admissible triple. An admissible triple (x̄, ū, x̄0) is called optimal if

J(ū(·), x̄0) = inf
u(·)∈Uad
x0∈K

J(u(·), x0). (1.3)

The purpose of this paper is to establish first and second order necessary optimality
conditions for problem (1.3). We refer to [4, 5, 16, 21] and references cited therein for some
early works on this subject. Although the stochastic optimal control theory was developing
almost simultaneously with the deterministic one, its results are much less fruitful than those
obtained for the deterministic control systems. The main reasons are due to some essential
difficulties (or new phenomena) when the diffusion term of the stochastic control system
depends on the control variable and the control region lacks convexity. In contrast with
the deterministic case, for stochastic optimal control problems when spike variations are
used as perturbations, the cost functional needs to be expanded up to the second order and
two adjoint equations have to be introduced to derive the first order necessary optimality
conditions. A stochastic maximum principle for this general case was established in [27]. On
the other hand, to derive the second order necessary optimality conditions, the cost functional
needs to be expanded up to the forth order and four adjoint equations have to be introduced,
see [34]. Consequently, these necessary conditions narrow the field of applications, since
they require so many adjoint equations and considerably strong smoothness assumptions
(with respect to the state variable x) on the coefficients of the control system and the cost
functional.

Can we use just one adjoint equation (resp. two adjoint equations) to derive a first
(resp. second) order necessary condition for the above general stochastic optimal control
problem? To answer this question, let us first turn back to the special case of convex control
constraint. When the control region is convex, the usual convex variation can be used
to construct a control perturbation. Only one adjoint equation is needed to establish the
first order necessary condition (see [4]) and two adjoint equations are needed to establish
the second order necessary condition (see [33]) for stochastic optimal controls. The main
advantage of using the convex variations instead of the spike ones, is the fact that, it avoids
efficiently the difficulties brought by perturbations with respect to the measure. However,
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when the control region is nonconvex, the traditional convex variations cannot be used,
since there may exist a control u(·) in the set of admissible controls Uad such that v := u− ū
is not an admissible direction to construct a control perturbation (of the optimal control
ū). Nevertheless, if the perturbation direction v is chosen so that for any ε > 0 one can
find a vε converging to v (in a suitable sense) when ε → 0+ and satisfying ū + εvε ∈ Uad,
then the variational approach can be adopted to deal with some optimal control problems
having nonconvex control regions (we call it the classical variational analysis approach).
Indeed, this method has been used extensively in optimization and optimal control theory
in the deterministic setting. Using this method, in [17, 11], some second order integral type
necessary conditions for deterministic optimal controls were established. It was shown in
[10, 12] that these necessary conditions imply pointwise ones.

In this paper, we shall use the classical variational analysis approach to establish the
first and second order necessary optimality conditions for stochastic optimal controls in the
general setting, that is, when the control region is allowed to be nonconvex and the control
variable enters also into the diffusion term of the control system. Let us recall that, when
the diffusion term does NOT depend on the control variable, cf. [1, 23, 30], the situation is
more or less similar to the deterministic setting like the one in [11, 22]. Compared to the
existing results for the case of general control constraints obtained by the spike variations
([27, 34]), the main advantage of the classical variational analysis approach is due to weaker
smoothness requirements imposed on the coefficients of the control system and the cost
functional (with respect to the state variable x) and to fewer adjoint equations needed
to state these conditions. Previously the first and second order integral type necessary
conditions for stochastic optimal controls with convex control constraints were derived in [6]
using the convex (first order) variations of optimal control. In the difference with [6], our
variational approach is also valid when the control region is nonconvex and, since the second
order variations of the control region are used in this paper, the corresponding second order
necessary condition is more effective than the one of [6] even in the case of convex control
constraints (see Example 4.1 below).

In a sense, our work can be viewed as a refinement of known optimality conditions for
stochastic control problems. To see it, let us return, for a moment, to the deterministic
optimal control problem, i.e., when the functions σ(·) ≡ 0, b(·), f(·), g(·), x(·) and u(·) in
(1.1)–(1.2) are independent from the sample point ω, and also, for the sake of simplicity, let
K = {x0} for some fixed x0 ∈ Rn. Consider an optimal pair (x̄, ū) and the solution ψ(·) to
the following ordinary differential equation,{

ψ̇(t) = −bx(t, x̄(t), ū(t))>ψ(t) + fx(t, x̄(t), ū(t)), t ∈ [0, T ],
ψ(T ) = −∇g(x̄(T )).

(1.4)

Define the (deterministic) Hamiltonian

H(t, x, u, ψ) := 〈ψ, b(t, x, u)〉 − f(t, x, u), ∀ (t, x, u, ψ) ∈ [0, T ]× Rn × Rm × Rn.

Then the following Pontryagin maximum principle ([28]) holds

H(t, x̄(t), ū(t), ψ(t)) = max
v∈U

H(t, x̄(t), v, ψ(t)), a.e. t ∈ [0, T ]. (1.5)
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Clearly, when U is a finite set, condition (1.5) provides an effective way to compute “ū(·)”;
while when U is convex, condition (1.5) yields〈

Hu(t, x̄(t), ū(t), ψ(t)), v − ū(t)
〉
≤ 0, ∀ v ∈ U, a.e. t ∈ [0, T ]. (1.6)

What about other types of U? Are there other necessary conditions for optimal pairs?
The classical monograph [28] was followed by numerous works addressing the above issues
and refinements of known results on optimal control problems in the deterministic finite
dimensional setting. In this respect, we refer to [3, 7, 10, 14, 15, 17, 19, 20, 26] for high
order necessary conditions when the first-order necessary conditions turn out to be trivial
and to [26] for a discussion on “bang-bang” controls which are very useful in applications. A
very natural question concerns the stochastic counterpart of the above results. Surprisingly,
very little is known about high order conditions in the stochastic framework! Indeed, as
an interesting comparison, we mention that, there exists at least five research monographs
([3, 7, 14, 19, 26]) devoted to deterministic high order necessary conditions but one can find
only a very few published articles ([1, 6, 23, 30, 33]) for their stochastic analogues.

The outline of the paper is as follows. In Section 2, we collect some notations and
introduce some spaces and preliminary results that will be used later. In Section 3, we derive
the first order necessary conditions for stochastic optimal controls. Section 4 is devoted to
establishing second order necessary conditions. Finally, in the Appendix, we give the proofs
of two technical results from Sections 3 and 4.

Some of preliminary results of this paper are announced (without proofs) in [13].

2. Preliminaries

This section is of preliminary nature, in which we shall introduce some useful notations and
spaces, and recall some concepts and results from the set-valued analysis and the Malliavin
calculus.

2.1. Notations and spaces

In this subsection, we introduce some notations and spaces which will be used in the sequel.
Denote by C∞b (Rn;Rm) the set of C∞-smooth functions from Rn to Rm with bounded

partial derivatives. Let Rn×m be the space of all n ×m-real matrices. For any A ∈ Rn×m,
denote by A> its transpose and by |A| =

√
tr{AA>} the norm of A. Also, write Sn :=

{
A ∈

Rn×n
∣∣ A> = A

}
.

Let ϕ : [0, T ]×Rn×Rm×Ω→ Rd (d ∈ N) be a given function. For a.e. (t, ω) ∈ [0, T ]×Ω,
we denote by ϕx(t, x, u, ω) and ϕu(t, x, u, ω) respectively the first order partial derivatives of
ϕ with respect to x and u at (t, x, u, ω), by ϕ(x,u)2(t, x, u, ω) the Hessian of ϕ with respect to
(x, u) at (t, x, u, ω), and by ϕxx(t, x, u, ω), ϕxu(t, x, u, ω) and ϕuu(t, x, u, ω) respectively the
second order partial derivatives of ϕ with respect to x and u at (t, x, u, ω).

For any α, β ∈ [1,+∞) and t ∈ [0, T ], we denote by LβFt(Ω;Rn) the space of Rn-valued,
Ft measurable random variables ξ such that E |ξ|β < +∞; by Lβ([0, T ]×Ω;Rn) the space of

Rn-valued, B([0, T ]) ⊗ F -measurable processes ϕ such that ‖ϕ‖β :=
[
E
∫ T

0
|ϕ(t, ω)|βdt

] 1
β <

+∞; by LβF(Ω;Lα(0, T ;Rn)) the space of Rn-valued, B([0, T ]) ⊗ F -measurable, F-adapted
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processes ϕ such that ‖ϕ‖α,β :=
[
E
( ∫ T

0
|ϕ(t, ω)|αdt

) β
α
] 1
β < +∞; by LβF(Ω;C([0, T ];Rn)) the

space of Rn-valued, B([0, T ]) ⊗ F -measurable and F-adapted continuous processes ϕ such

that ‖ϕ‖∞,β :=
[
E
(

supt∈[0,T ] |ϕ(t, ω)|β
)] 1

β < +∞; by L∞([0, T ] × Ω;Rn) the space of Rn-
valued, B([0, T ])⊗F -measurable processes ϕ such that ‖ϕ‖∞ := ess sup(t,ω)∈[0,T ]×Ω|ϕ(t, ω)| <
+∞ and by Lβ(0, T ;LβF([0, T ]×Ω;Rn)) the Rn-valued, B([0, T ])⊗B([0, T ])⊗F measurable

functions ϕ such that ‖ϕ‖β :=
[
E
∫ T

0

∫ T
0
|ϕ(s, t, ω)|βdsdt

] 1
β < +∞ and for any t ∈ [0, T ], the

process ϕ(·, t, ·) is F-adapted.
Let us recall that on a given filtered probability space, any F-progressively measurable

process is B([0;T ])⊗F -measurable and F-adapted, and every B([0;T ])⊗F -measurable and
F-adapted process has an F-progressively measurable modification (see [32, Proposition 2.8]).

2.2. Some concepts and results from the set-valued analysis

In this subsection, we recall some concepts and results from the set-valued analysis. We refer
the reader to [2] for more details.

Let X be a Banach space with norm ‖ · ‖X , and denote by X∗ the dual space of X.
For any subset K ⊂ X, denote by ∂K, intK and clK its boundary, interior and closure,
respectively. K is called a cone if αx ∈ K for any α ≥ 0 and x ∈ K. Define the distance
between a point x ∈ X and K by dist (x,K) := inf

y∈K
‖y − x‖X . Define the metric projection

of x onto K by ΠK(x) := {y ∈ K | ‖y − x‖X = dist (x,K)}.

Definition 2.1. For x ∈ K, the adjacent cone T bK(x) to K at x is defined by

T bK(x) :=
{
v ∈ X

∣∣∣ lim
ε→0+

dist (x+ εv,K)

ε
= 0
}
.

If in the above limε→0+ is replaced by lim infε→0+ , then we obtain a larger cone, the
so called contingent cone TBK (x) to K at x. When K is convex, the adjacent cone and the
contingent cone coincide with each other, and

T bK(x) = cl
{
α(y − x)

∣∣∣ α ≥ 0, y ∈ K
}
.

It is not difficult to realize that v ∈ T bK(x) if and only if for any ε > 0 there exists a
vε ∈ X such that vε → v (in X) as ε→ 0+, and x+ εvε ∈ K.

Definition 2.2. For any x ∈ K and v ∈ T bK(x), the second order adjacent subset to K at
(x, v) is defined by

T
b(2)
K (x, v) :=

{
h ∈ X

∣∣∣ lim
ε→0+

dist (x+ εv + ε2h,K)

ε2
= 0
}
.

Similarly to the above, h ∈ T b(2)
K (x, v) if and only if for any ε > 0 there exists an hε ∈ X

such that hε → h (in X) as ε→ 0+ and x+ εv + ε2hε ∈ K.
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Remark 2.1. Clearly, 0 ∈ T bK(x) for any x ∈ K and αv ∈ T bK(x) for any α > 0 and
v ∈ T bK(x). Therefore, T bK(x) is a nonempty closed cone. T bK(x) = X for any x ∈ intK.

Also, T
b(2)
K (x, 0) = T bK(x). When K is convex, y− x ∈ T bK(x) and 0 ∈ T b(2)

K (x, y− x) for any

x ∈ K and y ∈ K. When v 6= 0, the set T
b(2)
K (x, v), in general, may not be a cone and it

may be an empty set (some examples can be found in [2, section 4.7]).

The dual cone of the tangent cone T bK(x), denoted by N b
K(x), is called the normal cone

of K at x, i.e.,

N b
K(x) :=

{
ξ ∈ X∗

∣∣∣ 〈ξ, v〉 ≤ 0, ∀ v ∈ T bK(x)
}
.

When K is convex, N b
K(x) reduces to the normal cone NK(x) of the convex analysis, where

NK(x) :=
{
ξ ∈ X∗

∣∣∣ 〈ξ, y − x〉 ≤ 0, ∀ y ∈ K
}
.

When X is a Hilbert space, for any ξ ∈ N b
K(x) the second order normal cone to K at (x, ξ)

is defined by

N
b(2)
K (x, ξ) :=

{
ζ ∈ S(X)

∣∣∣ 〈ξ, h〉+
1

2
〈ζv, v〉 ≤ 0, ∀ v ∈ T bK(x) ∩ {ξ}⊥, ∀ h ∈ T b(2)

K (x, v)
}
,

where S(X) is the space of symmetric, continuous linear operators from X to X and {ξ}⊥ :=
{v ∈ X | 〈ξ, v〉 = 0}.

In the following, we recall a classical example in which the closed set K is defined by
finitely many equalities and inequalities.

Example 2.1. When K ⊂ Rn is given by inequality and equality constraints and a constraint
qualification holds true, there are exact expressions for the first and second order tangent sets.
More precisely, consider twice continuously differentiable functions ϕ1, ..., ϕp : Rn → R and
ψ1, . . . , ψr : Rn → R (for some p, r ∈ N), set ϕ = (ϕ1, ..., ϕp) and define

K =
{
x ∈ Rn

∣∣ϕ(x) = 0, ψj(x) ≤ 0, ∀ j = 1, ..., r
}
.

If there are no equality, resp. inequality, constraints in the definition of K, then the terms
involving ϕ, ϕi, resp. ψj, are absent in the discussion below and p, resp. r, is equal to zero.

Let x ∈ K and denote by I(x) the set of all active indices, i.e. j ∈ I(x) if and only if
ψj(x) = 0. We assume that the Mangasarian-Fromowitz constraint qualification holds true:
the Jacobian ϕ′(x) is surjective and there exists a v0 ∈ Rn such that

ϕ′(x)v0 = 0, 〈∇ψj(x), v0〉 < 0, ∀ j ∈ I(x).

In the absence of equality constraints this is equivalent to the assumption that {∇ψj(x) | j ∈
I(x)} are positively independent or, equivalently, 0 /∈ co {∇ψj(x) | j ∈ I(x)}. Then it is well
known, see for instance [2, pp. 150–151] that

T bK(x) =
{
v ∈ Rn

∣∣ ϕ′(x)v = 0, 〈∇ψj(x), v〉 ≤ 0, ∀ j ∈ I(x)
}
,

N b
K(x) =

p∑
i=1

R∇ϕi(x) +
∑
j∈I(x)

R+∇ψj(x).
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If there are no equality constraints and I(x) = ∅, then T bK(x) = Rn and therefore N b
K(x) =

{0}.
Fix any v ∈ T bK(x) and consider the set Iv(x) = {j ∈ I(x) | 〈∇ψj(x), v〉 = 0}. Then the

same proof as in [2, p.177] (given there only for the second order contingent set) implies that

T
b(2)
K (x, v) =

{
h ∈ Rn

∣∣∣∣ 〈∇ϕi(x), h〉+
1

2
〈ϕ′′i (x)v, v〉 = 0, ∀ i = 1, · · · , p

and 〈∇ψj(x), h〉+
1

2
〈ψ′′j (x)v, v〉 ≤ 0, ∀ j ∈ Iv(x)

}
.

Thus, under our assumptions, T
b(2)
K (x, v) 6= ∅ for all v ∈ T bK(x).

Observe that N
b(2)
K (x, 0) is equal to the set of all symmetric (n × n)-matrices that are

seminegative on T bK(x).
If I(x) 6= ∅, denote by i1, ..., ik all the active indices (for some k ≤ r). In the expressions

below the terms involving ϕi, resp. ψij , are absent when there are no equality constraints,
resp. when I(x) = ∅.

Fix any 0 6= q ∈ N b
K(x). Then for some reals {µi}pi=1, λj ≥ 0, j = 1, ..., k

q =

p∑
i=1

µi∇ϕi(x) +
k∑
j=1

λj∇ψij(x).

To express N
b(2)
K (x, q) we could apply the same method as in [11]. In order to simplify

the discussion, we assume that {∇ϕ1(x), · · · ,∇ϕp(x)}
⋃
{∇ψj(x) | j ∈ Iv(x)} are linearly

independent for every v ∈ T bK(x) ∩ {q}⊥ different from zero.
Let v ∈ T bK(x) ∩ {q}⊥. If I(x) 6= ∅, then 0 = 〈q, v〉 =

〈∑k
j=1 λj∇ψij(x), v

〉
, which yields

λj〈∇ψij(x), v〉 = 0 for every j = 1, ..., k. Hence, λj = 0 whenever ij /∈ Iv(x). Furthermore, if
the equality constraints are absent, then Iv(x) 6= ∅ for every v ∈ T bK(x)∩{q}⊥. Consequently,

〈q, h〉+
1

2

p∑
i=1

µi〈ϕ′′i (x)v, v〉+
1

2

k∑
j=1

λj〈ψ′′ij(x)v, v〉 ≤ 0, ∀ h ∈ T [(2)
K (x, v).

Therefore, by arbitrariness of v ∈ T bK(x) ∩ {q}⊥,

Q :=

p∑
i=1

µiϕ
′′
i (x) +

k∑
j=1

λjψ
′′
ij

(x) ∈ N b(2)
K (x, q).

Observe that if a symmetric (n × n)-matrix Q is so that 〈Qv, v〉 ≤ 〈Qv, v〉 for every v ∈
T bK(x) ∩ {q}⊥, denoted by Q ≤ Q, then Q ∈ N b(2)

K (x, q).
We show next that Q is the largest second order normal in the above sense. Fix any

Q ∈ N b(2)
K (x, q). Let v ∈ T bK(x) ∩ {q}⊥. If v = 0, then 〈Qv, v〉 ≤ 〈Qv, v〉. Assume next that

v 6= 0. If Iv(x) 6= ∅, consider the set {j1, ..., jm} of all the indices that belong to Iv(x). Define
the (n× (p+m))-matrix A such that its s-th column is ∇ϕs(x) for 1 ≤ s ≤ p and ∇ψjs−p(x)
for p+ 1 ≤ s ≤ p+m (we set m = 0 if Iv(x) = ∅). By the linear independence assumption,
we show that for any 0 6= v ∈ T bK(x) ∩ {q}⊥ there exists zv ∈ Rn satisfying

z>v A = −1

2

(
〈ϕ′′1(x)v, v〉, ..., 〈ϕ′′p(x)v, v〉, 〈ψ′′j1(x)v, v〉, ..., 〈ψ′′jm(x)v, v〉

)
.
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Hence zv ∈ T b(2)
K (x, v) and 〈q, zv〉 = −1

2

∑p
i=1 µi〈ϕ′′i (x)v, v〉 − 1

2

∑k
j=1 λj〈ψ′′ij(x)v, v〉. Thus

〈q, zv〉+
1

2
〈Qv, v〉 ≤ 0 = 〈q, zv〉+

1

2

p∑
i=1

µi〈ϕ′′i (x)v, v〉+
1

2

r∑
j=1

λj〈ψ′′j (x)v, v〉.

Consequently Q ≤ Q in the above sense.
However, in general, closed sets do not have the above representation. We refer to [11]

for a very simple example of a set K given by union of two intervals in R2, where the first
and second order tangents can be easily computed, but, at the same time, K does not satisfy
the constraint qualification assumption.

We would like to underline here that to prove the celebrated Pontryagin maximum princi-
ple in optimal control just a particular subset of tangents to the set of controlled trajectories
was used. The computation of the whole tangent cone is, in general, not possible. Simi-
larly, we do not need to know the whole set of the second order tangents to eliminate some
candidates for optimality.

Let (Ξ,G ) be a measurable space, and F : Ξ ; 2X be a set-valued map. For any
ξ ∈ Ξ, F (ξ) is called the value of F at ξ. The domain of F is the subset of all ξ ∈ Ξ
such that F (ξ) is nonempty, i.e., Dom (F ) := {ξ ∈ Ξ | F (ξ) 6= ∅}. F is called measurable
if F−1(A) := {ξ ∈ Ξ | F (ξ) ∩ A 6= ∅} ∈ G for any A ∈ B(X). Clearly, the domain of a
measurable set-valued map is measurable.

The following result is a special case of [2, Theorem 8.5.1].

Lemma 2.1. Suppose (Ξ,G , µ) is a complete σ-finite measure space, X is a separable Banach
space, p ≥ 1 and K is a closed nonempty subset in X. Define

K :=
{
ϕ(·) ∈ Lp(Ξ,G , µ;X)

∣∣ ϕ(ξ) ∈ K, µ–a.e. ξ ∈ Ξ
}
.

Then for any ϕ(·) ∈ K, the set-valued map T bK(ϕ(·)): ξ ; T bK(ϕ(ξ)) is G -measurable, and

T :=
{
ψ(·) ∈ Lp(Ξ,G , µ;X)

∣∣ ψ(ξ) ∈ T bK(ϕ(ξ)), µ–a.e. ξ ∈ Ξ
}
⊂ T bK(ϕ(·)).

The following result is a special case of [2, Corollary 8.2.13].

Lemma 2.2. Suppose (Ξ,G , µ) is a complete σ-finite measure space, X is a separable Ba-
nach space, K is a closed nonempty subset in X and ϕ(·) is a G -measurable single-valued
mapping. Then the projection mapping ξ  ΠK(ϕ(ξ)) is G -measurable, and there exists a
G -measurable, X-valued selection ψ(·) such that ‖ψ(ξ)− ϕ(ξ)‖X = dist (ϕ(ξ), K), µ-a.e.

As in [18], we call a measurable set-valued map ζ : (Ω,F) ; 2Rm a set-valued random
variable, and, we call a map Γ : [0, T ]×Ω ; 2Rm a measurable set-valued stochastic process
if Γ is B([0, T ])⊗F -measurable. We say that Γ is F-adapted if Γ(t) is Ft-measurable for any
t ∈ [0, T ]. Define

G :=
{
A ∈ B([0, T ])⊗F

∣∣ At ∈ Ft, ∀ t ∈ [0, T ]
}
, (2.1)

where At := {ω ∈ Ω | (t, ω) ∈ A} is the section of A. Obviously, G is a sub-σ-algebra of
B([0, T ])⊗F . As pointed in [18, p. 96], the following result holds.
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Lemma 2.3. A set-valued stochastic process Γ : [0, T ]×Ω ; 2Rm is B([0, T ])⊗F-measurable
and F-adapted if and only if Γ is G -measurable.

Obviously, Uad is a nonempty closed subset of the Banach space L2
F(Ω;L2(0, T );Rm).

Using Lemmas 2.1 and 2.3, the following result was derived in [31]. It is useful later in
getting the desired pointwise first order necessary condition.

Lemma 2.4. ([31, Lemma 4.6]) Let U be closed, ũ(·) ∈ Uad, and F : [0, T ]× Ω→ Rm be a
B([0, T ])×F-measurable and F-adapted process such that

E
∫ T

0

〈F (t), v(t)〉 dt ≤ 0, ∀ v(·) ∈ T bUad(ũ(·)).

Then,
〈F (t, ω), v〉 ≤ 0, ∀ v ∈ T bU(ũ(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω.

2.3. Some concepts and results from the Malliavin calculus

In this subsection, we recall some concepts and results from the Malliavin calculus (see [25]
for a detailed discussion on this topic).

For any η ∈ L2(0, T ), write W(η) =
∫ T

0
η(t)dW (t). Define

S :=
{
ζ = ϕ(W(η1), W(η2), · · · , W(ηd))

∣∣∣ ϕ ∈ C∞b (Rd;Rn),

η1, η2, · · · , ηd ∈ L2(0, T ), d ∈ N
}
.

(2.2)

Clearly, S is a linear subspace of L2
FT (Ω;Rn). For any ζ ∈ S (as in (2.2)), its Malliavin

derivative is defined as follows:

Dsζ :=
d∑
i=1

ηi(s)
∂ϕ

∂xi
(W(η1), W(η2), · · · , W(ηd)), a.e. s ∈ [0, T ], a.s.

Write

|||ζ|||2 :=
[
E |ζ|2 + E

∫ T

0

|Dsζ|2ds
] 1

2
.

Obviously, ||| · |||2 is a norm on S. It is shown in [25] that the operator D has a closed
extension to the space D1,2(Rn), the completion of S with respect to the norm ||| · |||2. When
ζ ∈ D1,2(Rn), the following Clark–Ocone representation formula holds:

ζ = E ζ +

∫ T

0

E (Dsζ | Fs)dW (s). (2.3)

Furthermore, if ζ is Ft-measurable, then Dsζ = 0 for any s ∈ (t, T ].
Let L1,2(Rn) denote the space of processes ϕ ∈ L2([0, T ]× Ω;Rn) such that

(i) For a.e. t ∈ [0, T ], ϕ(t, ·) ∈ D1,2(Rn);
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(ii) the function D·ϕ(·, ·) : [0, T ]×[0, T ]×Ω→ Rn admits a B([0, T ]×[0, T ])⊗F -measurable
version;

(iii) |||ϕ|||1,2 :=
[
E
∫ T

0

|ϕ(t, ω)|2dt+ E
∫ T

0

∫ T

0

|Dsϕ(t, ω)|2dsdt
] 1

2 < +∞.

Denote by L1,2
F (Rn) the set of all F-adapted processes in L1,2(Rn).

In addition, write

L1,2
2+ (Rn) :=

{
ϕ ∈ L1,2(Rn)

∣∣∣ ∃ D+ϕ ∈ L2([0, T ]× Ω;Rn) s. t. for any small ε > 0,

fε(s) := sup
s<t<(s+ε)∧T

E
∣∣Dsϕ(t, ω)−D+ϕ(s, ω)

∣∣2 <∞, a.e. s ∈ [0, T ],

fε(·) is measurable on [0, T ], and lim
ε→0+

∫ T

0

fε(s)ds = 0

}
;

L1,2
2−(Rn) :=

{
ϕ ∈ L1,2(Rn)

∣∣∣ ∃ D−ϕ ∈ L2([0, T ]× Ω;Rn) s. t. for any small ε > 0,

gε(s) := sup
(s−ε)∨0<t<s

E
∣∣Dsϕ(t, ω)−D−ϕ(s, ω)

∣∣2 <∞, a.e. s ∈ [0, T ],

gε(·) is measurable on [0, T ], and lim
ε→0+

∫ T

0

gε(s)ds = 0

}
.

Set L1,2
2 (Rn) = L1,2

2+ (Rn) ∩ L1,2
2−(Rn) and define

∇ϕ = D+ϕ+D−ϕ, ∀ ϕ ∈ L1,2
2 (Rn).

When ϕ is F-adapted, Dsϕ(t, ω) = 0 a.s. for any t < s. In this case, D−ϕ = 0 and
∇ϕ = D+ϕ a.e. t ∈ [0, T ], a.s. Denote by L1,2

2,F(Rn) the set of all F-adapted processes in

L1,2
2 (Rn).

Roughly speaking, an element ϕ ∈ L1,2
2 (Rn) is a stochastic process whose Malliavin

derivative has suitable continuity on some neighborhood of {(t, t) | t ∈ [0, T ]}. Examples
of such processes can be found in [25]. Especially, if (s, t) 7→ Dsϕ(t, ω) is continuous from
Vδ := {(s, t)

∣∣ |s − t| < δ, s, t ∈ [0, T ]} (for some δ > 0) to L2
FT (Ω;Rn), then ϕ ∈ L1,2

2 (Rn)
and, D+ϕ(t, ω) = D−ϕ(t, ω) = Dtϕ(t, ω) a.e. t ∈ [0, T ], a.s.

3. First order necessary conditions

In this section, we study the first order necessary optimality conditions for the optimal
control problem (1.3). Firstly, we introduce the notion of local minimizer for the problem
(1.3).
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Definition 3.1. An admissible triple (x̄, ū, x̄0) ∈ L2
F(Ω;C([0, T ];Rn))× Uad ×K is called a

local minimizer for the problem (1.3) if there exists a δ > 0 such that J(u, x0) ≥ J(ū, x̄0) for
any admissible triple (x, u, x0) ∈ L2

F(Ω;C([0, T ];Rn))×Uad ×K satisfying ‖u− ū‖2 < δ and
|x̄0 − x0| < δ.

In this section, we need the following assumptions:

(C1) The control region U is nonempty and closed.

(C2) The functions b, σ, f and g satisfy the following:

(i) For any (x, u) ∈ Rn × Rm, the stochastic processes b(·, x, u, ·) : [0, T ]× Ω→ Rn

and σ(·, x, u, ·) : [0, T ] × Ω → Rn are B([0, T ]) ⊗ F-measurable and F-adapted.
For a.e. (t, ω) ∈ [0, T ] × Ω, the functions b(t, ·, ·, ω) : Rn × Rm → Rn and
σ(t, ·, ·, ω) : Rn × Rm → Rn are differentiable and

(x, u) 7→ (bx(t, x, u, ω), bu(t, x, u, ω), σx(t, x, u, ω), σu(t, x, u, ω))

is uniformly continuous in x ∈ Rn and u ∈ Rm. There exist a constant L > 0
and a nonnegative η ∈ LβF(Ω;L2(0, T ;R)) with η(T, ·) ∈ LβFT (Ω;R) and β ≥ 1
such that for a.e. (t, ω) ∈ [0, T ]× Ω and for any x ∈ Rn and u ∈ Rm,

|b(t, 0, u, ω)|+ |σ(t, 0, u, ω)| ≤ L(η(t, ω) + |u|),
|bx(t, x, u, ω)|+ |bu(t, x, u, ω)| ≤ L,

|σx(t, x, u, ω)|+ |σu(t, x, u, ω)| ≤ L;

(ii) For any (x, u) ∈ Rn × Rm, the stochastic process f(·, x, u, ·) : [0, T ] × Ω → R is
B([0, T ]) ⊗ F-measurable and F-adapted, and the random variable g(x, ·) is FT -
measurable. For a.e. (t, ω) ∈ [0, T ]×Ω, the functions f(t, ·, ·, ω) : Rn×Rm → R
and g(·, ω) : Rn → R are differentiable, and for any x, x̃ ∈ Rn and u, ũ ∈ Rm,

|f(t, x, u, ω)| ≤ L(η(t, ω)2 + |x|2 + |u|2),

|fx(t, 0, u, ω)|+ |fu(t, 0, u, ω)| ≤ L(η(t, ω) + |u|),
|fx(t, x, u, ω)− fx(t, x̃, ũ, ω)|+ |fu(t, x, u, ω)− fu(t, x̃, ũ, ω)|
≤ L(|x− x̃|+ |u− ũ|),
|g(x, ω)| ≤ L(η(T, ω)2 + |x|2), |gx(0, ω)| ≤ Lη(T, ω),

|gx(x, ω)− gx(x̃, ω)| ≤ L|x− x̃|.

When the condition (C2) is satisfied, the state x (of (1.1)) is uniquely defined by any
given initial datum x0 ∈ Rn and admissible control u ∈ Uad, and the cost functional (1.2)
is well-defined on Uad. In what follows, C represents a generic positive constant (depending
only on T , β, η(·) and L), which may be different from one place to another.

The following known result ([24]) is useful in the sequel.
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Lemma 3.1. Assume (C2). Then, for any x0 ∈ Rn, β ≥ 1 and u ∈ LβF(Ω;L2(0, T ;Rm)), the

state equation (1.1) admits a unique solution x ∈ LβF(Ω;C([0, T ]; Rn)), and for any t ∈ [0, T ]
the following estimate holds:

E
(

sup
s∈[0,t]

|x(s, ω)|β
)
≤ CE

[
|x0|β +

(∫ t

0

|b(s, 0, u(s), ω)|ds
)β

+
(∫ t

0

|σ(s, 0, u(s), ω)|2ds
)β

2
]
.

(3.1)
Moreover, if x̃ is the solution to (1.1) corresponding to (x̃0, ũ) ∈ Rn × LβF(Ω;L2(0, T ; Rm)),
then, for any t ∈ [0, T ],

E
(

sup
s∈[0,t]

|x(s, ω)− x̃(s, ω)|β
)
≤ CE

[
|x0 − x̃0|β +

(∫ t

0

|u(s, ω)− ũ(s, ω)|2ds
)β

2
]
. (3.2)

Now, let us introduce the classical first order variational control system. Let ū, v, vε ∈
LβF(Ω;L2(0, T ;Rm)) (β ≥ 1) and ν0, ν

ε
0 ∈ Rn satisfying vε → v in LβF(Ω;L2(0, T ;Rm)) and

νε0 → ν0 in Rn as ε → 0+. For uε := ū + εvε and xε0 := x0 + ενε0, let xε be the state of
(1.1) corresponding to the control uε and the initial datum xε0, and put δxε = xε − x̄. For
ϕ = b, σ, f , denote

ϕx(t) = ϕx(t, x̄(t), ū(t)), ϕu(t) = ϕu(t, x̄(t), ū(t)).

Consider the following linearized stochastic control system:{
dy1(t) =

(
bx(t)y1(t) + bu(t)v(t)

)
dt+

(
σx(t)y1(t) + σu(t)v(t)

)
dW (t), t ∈ [0, T ],

y1(0) = ν0.
(3.3)

We first establish the following estimates.

Lemma 3.2. Let (C2) hold and β ≥ 1. Then, for any ū, v, vε, ν0, ν
ε
0 and δxε as above

‖y1‖β∞,β ≤ C
(
|ν0|β + ‖v‖β2,β

)
, ‖δxε‖β∞,β = O(εβ).

Furthermore,
‖rε1‖

β
∞,β → 0, as ε→ 0+, (3.4)

where rε1(t, ω) := δxε(t,ω)
ε
− y1(t, ω).

Proof. See Appendix A.

Next, define the Hamiltonian

H(t, x, u, p, q, ω) := 〈p, b(t, x, u, ω)〉+ 〈q, σ(t, x, u, ω)〉 − f(t, x, u, ω), (3.5)

where (t, x, u, p, q, ω) ∈ [0, T ]×Rn×Rm×Rn×Rn×Ω. We introduce the first order adjoint
equation for (3.3):{

dP1(t) = −
(
bx(t)

>P1(t) + σx(t)
>Q1(t)− fx(t)

)
dt+Q1(t)dW (t), t ∈ [0, T ],

P1(T ) = −gx(x̄(T )).
(3.6)

By [8] and (C2), for any β ≥ 1, if ū ∈ LβF(Ω;L2(0, T ;Rm)), the equation (3.6) admits a

unique strong solution (P1, Q1) ∈ LβF(Ω; C([0, T ];Rn))× LβF(Ω;L2(0, T ;Rn)).
We have the following result.
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Theorem 3.1. Let (C1)–(C2) hold. If (x̄, ū, x̄0) is a local minimizer for the problem (1.3),
then

E
∫ T

0

〈Hu(t), v(t)〉 dt ≤ 0, ∀ v ∈ T bUad(ū), (3.7)

and
P1(0) ∈ N b

K(x̄0), (3.8)

where (P1, Q1) is the solution to the first order adjoint equation (3.6) corresponding to
(x̄, ū, x̄0) and Hu(t) = Hu(t, x̄(t), ū(t), P1(t), Q1(t)).

Proof. Let v ∈ T bUad(ū) and ν0 ∈ T bK(x̄0). Then, for any ε > 0, there exist vε ∈ L2
F(Ω;L2(0, T ;

Rm)) and νε0 ∈ Rn such that ū+ εvε ∈ Uad, x̄0 + ενε0 ∈ K and

E
∫ T

0

|v(t)− vε(t)|2dt→ 0, |νε0 − ν0| → 0, as ε→ 0+.

Expanding the cost functional J(·) at ū, we have for all small ε > 0,

0 ≤ J(uε, xε0)− J(ū, x̄0)

ε

= E
∫ T

0

(∫ 1

0

〈
fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t)),

δxε(t)

ε

〉
dθ

+

∫ 1

0

〈fu(t, x̄(t), ū(t) + θεvε(t)), vε(t)〉 dθ
)
dt

+E
∫ 1

0

〈
gx(x̄(T ) + θδxε(T )),

δxε(T )

ε

〉
dθ

= E
∫ T

0

(
〈fx(t), y1(t)〉+ 〈fu(t), v(t)〉

)
dt+ E 〈gx(x̄(T )), y1(T )〉+ ρε1, (3.9)

where

ρε1 = E
∫ T

0

(∫ 1

0

〈
fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t))− fx(t),

δxε(t)

ε

〉
dθ

+

∫ 1

0

〈fu(t, x̄(t), ū(t) + θεvε(t))− fu(t), vε(t)〉 dθ

+

〈
fx(t),

δxε(t)

ε
− y1(t)

〉
+ 〈fu(t), vε(t)− v(t)〉

)
dt

+E
∫ 1

0

〈
gx(x̄(T ) + θδxε(T ))− gx(x̄(T )),

δxε(T )

ε

〉
dθ

+E
〈
gx(x̄(T )),

δxε(T )

ε
− y1(T )

〉
. (3.10)

By Lemma 3.2 (with β = 2) and (C2), it follows that∣∣∣E∫ T

0

∫ 1

0

〈
fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t))− fx(t),

δxε(t)

ε

〉
dθdt

∣∣∣
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≤
(
E
∫ T

0

∫ 1

0

∣∣fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t))− fx(t)
∣∣2dθdt) 1

2
(
E
∫ T

0

∣∣δxε(t)
ε

∣∣2dt) 1
2

≤ C
[
E
∫ T

0

(∣∣δxε(t)∣∣+
∣∣εvε(t)∣∣)2

dt
] 1

2 ·
(
E
∫ T

0

∣∣δxε(t)
ε

∣∣2dt) 1
2

→ 0, as ε→ 0+.

Similarly, we have ∣∣∣E∫ T

0

∫ 1

0

〈fu(t, x̄(t), ū(t) + θεvε(t))− fu(t), vε(t)〉 dθdt
∣∣∣

≤ C
(
E
∫ T

0

∣∣εvε(t)∣∣2dt) 1
2 ·
(
E
∫ T

0

∣∣vε(t)∣∣2dt) 1
2 → 0, ε→ 0+.

and ∣∣∣E∫ 1

0

〈
gx(x̄(T ) + θδxε(T ))− gx(x̄(T )),

δxε(T )

ε

〉
dθ
∣∣∣

≤ C
(
E
∣∣δxε(T )

∣∣2) 1
2 ·
(
E
∣∣δxε(T )

ε

∣∣2) 1
2 → 0, ε→ 0+.

Then, by (C2) and Lemma 3.2, we obtain that

lim
ε→0+

∣∣ρε1∣∣ ≤ lim sup
ε→0+

∣∣∣E∫ T

0

〈
fx(t),

δxε(t)

ε
− y1(t)

〉
dt
∣∣∣

+ lim sup
ε→0+

∣∣∣E∫ T

0

〈fu(t), vε(t)− v(t)〉 dt
∣∣∣

+ lim sup
ε→0+

∣∣∣E〈gx(x̄(T )),
δxε(T )

ε
− y1(T )

〉 ∣∣∣ = 0. (3.11)

Therefore, from (3.9) and (3.11), we conclude that

0 ≤ E
∫ T

0

(
〈fx(t), y1(t)〉+ 〈fu(t), v(t)〉

)
dt+ E 〈gx(x̄(T )), y1(T )〉 . (3.12)

By the duality between (3.3) and (3.6), we have

E 〈gx(x̄(T )), y1(T )〉 = −E 〈P1(T ), y1(T )〉

= −〈P1(0), ν0〉 − E
∫ T

0

(
〈P1(t), bx(t)y1(t)〉+ 〈P1(t), bu(t)v(t)〉

+ 〈Q1(t), σx(t)y1(t)〉+ 〈Q1(t), σu(t)v(t)〉
−
〈
bx(t)

>P1(t), y1(t)
〉
−
〈
σx(t)

>Q1(t), y1(t)
〉

+ 〈fx(t), y1(t)〉
)
dt

= −〈P1(0), ν0〉 − E
∫ T

0

(
〈P1(t), bu(t)v(t)〉+ 〈Q1(t), σu(t)v(t)〉+ 〈fx(t), y1(t)〉

)
dt.

(3.13)
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Substituting (3.13) in (3.12), we obtain that

0 ≤ −〈P1(0), ν0〉 − E
∫ T

0

(
〈P1(t), bu(t)v(t)〉+ 〈Q1(t), σu(t)v(t)〉 − 〈fu(t), v(t)〉

)
dt

= −〈P1(0), ν0〉 − E
∫ T

0

〈Hu(t), v(t)〉 dt. (3.14)

For v(·) = 0, (3.14) implies (3.8). On the other hand, for ν0 = 0 in (3.14), we have (3.7).
This completes the proof of Theorem 3.1.

From Theorem 3.1 and Lemma 2.4, it is easy to deduce the following pointwise first order
necessary condition.

Theorem 3.2. Let (C1)–(C2) hold. If (x̄, ū, x̄0) is a local minimizer for the problem (1.3),
then,

Hu(t, ω) ∈ N b
U(ū(t, ω)), a.e. t ∈ [0, T ], a.s. and P1(0) ∈ N b

K(x̄0). (3.15)

Remark 3.1. When the control set U and the initial state constraint set K are also convex,
N b
U(ū) and N b

K(x̄0) coincide with the normal cones of convex analysis. In this case, the
condition (3.15) becomes

Hu(t, ω) ∈ NU(ū(t, ω)) a.e. t ∈ [0, T ], a.s. and P1(0) ∈ NK(x̄0).

Remark 3.2. If T bU(ū(t, ω)) = {0} for a.e. (t, ω) ∈ [0, T ] × Ω, then N b
U(ū(t, ω)) = Rm, for

a.e. (t, ω) ∈ [0, T ]×Ω, and the first condition in (3.15) turns out to be trivial. It is the case,
for instance, when the control set U is a finite union of singletons. Therefore, to have the first
condition in (3.15) meaningful, U should have nontrivial tangent cones. It is not difficult to
verify that for every v ∈ T bUad(ū), and for a.e. (t, ω) ∈ [0, T ] × Ω, the vector v(t, ω) belongs
to the contingent cone TBU (ū(t, ω)) to U at ū(t, ω). Under some suitable assumptions on U ,
we have TBU (ū(t, ω)) = T bU(ū(t, ω)) a.e. in [0, T ] × Ω, see [2, Chapter 4] for more details.
Consequently, under some convenient structural assumptions on U , if T bUad(ū) 6= {0}, then
T bU(ū(t, ω)) 6= {0} on a set of positive measure.

Remark 3.3. Define

H(t, x, u, ω) := H(t, x, u, P1(t), Q1(t), ω)− 1

2
〈P2(t)σ(t, x̄(t), ū(t), ω), σ(t, x̄(t), ū(t), ω)〉

+
1

2

〈
P2(t)

(
σ(t, x, u, ω)−σ(t, x̄(t), ū(t), ω)

)
, σ(t, x, u, ω)− σ(t, x̄(t), ū(t), ω)

〉
,

where (P2, Q2) is the second order adjoint process with respect to (x̄, ū) (defined by (4.3) in
Section 4). The stochastic maximum principle (e.g. [27]) says that, if (x̄, ū) is an optimal
pair, then

H(t, x̄(t), ū(t), ω) = max
v∈U
H(t, x̄(t), v, ω), a.e. t ∈ [0, T ], a.s. (3.16)

When b, σ and f are differentiable with respect to the variable u, (3.16) implies that

〈Hu(t, ω), v〉 ≤ 0, ∀ v ∈ T bU(ū(t, ω)), a.e. t ∈ [0, T ], a.s,
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i.e., the first condition in (3.15) holds (when U is convex, this also coincides with the corre-
sponding result in [4]). However, to derive the maximum principle (3.16) one has to assume
that b, σ, f and g are differentiable up to the second order with respect to the variable x,
and the second order adjoint process (P2, Q2) should be introduced (even it does not appear
in the condition (3.15)). Therefore, in practice, under the usual structural assumptions on
U , it is more convenient to use the condition (3.15) directly.

In what follows we give a simple example to demonstrate how to use the condition (3.15)
to check if a given admissible control is not optimal.

Example 3.1. Let n = m = 2, T = 1, U = {(u1, u2) ∈ R2 | u1u2 = 0, u1 ∈ [−1, 1], u2 ∈
[−1, 1]}. Clearly, this U is neither a finite set nor convex in R2. Consider the control system

dx1(t) = (x2(t)− 1
2
)dt+ dW (t), t ∈ [0, 1],

dx2(t) = u1(t)dt+ u2(t)dW (t), t ∈ [0, 1],
x1(0) = 0, x2(0) = 0

(3.17)

with the cost functional

J(u) =
1

2
E|x1(1)−W (1)|2. (3.18)

Define the Hamiltonian of this optimal control problem

H(t, (x1, x2), (u1, u2), (p1
1, p

2
1), (q1

1, q
2
1), ω) = p1

1(x2 −
1

2
) + p2

1u1 + q1
1 + q2

1u2, (3.19)

for all (t, (x1, x2), (u1, u2), (p1
1, p

2
1), (q1

1, q
2
1), ω) ∈ [0, 1] × R2 × R2 × R2 × R2 × Ω. In what

follows, we show that the control (u1(t), u2(t)) ≡ (0, 0) is not a local minimizer.
Obviously, the corresponding solution to the control system (3.17) is

(x1(t), x2(t)) = (W (t)− t

2
, 0), (3.20)

and the first order adjoint equation is
dP 1

1 (t) = Q1
1(t)dW (t), t ∈ [0, 1],

dP 2
1 (t) = −P 1

1 (t)dt+Q2
1(t)dW (t), t ∈ [0, 1],

P 1
1 (1) = 1

2
, P 2

1 (1) = 0
(3.21)

It is easy to verify that the solution to (3.21) is

(P 1
1 (t), Q1

1(t)) = (
1

2
, 0), (P 2

1 (t), Q2
1(t)) = (

1− t
2

, 0), a.e. (t, ω) ∈ [0, 1]× Ω. (3.22)

Note that even though the Mangasarian-Fromowitz constraint qualification does not hold at
(0, 0), we can easily obtain that

T bU((0, 0)) = {(v1, v2) ∈ R2 | v1v2 = 0}.

By the first order condition in (3.15),

〈Hu(t), v〉 = P 2
1 (t)v1 ≤ 0, ∀ v = (v1, v2) ∈ T bU((0, 0)).

16



Since P 2
1 (t) = 1

2
(1− t) > 0 for any t ∈ [0, 1), a.s., chose (v1, v2) = (1, 0) we have

P 2
1 (t)v1 =

1

2
(1− t) > 0, a.e. (t, ω) ∈ [0, 1]× Ω,

which is a contradiction. Therefore, (u1(t), u2(t)) ≡ (0, 0) is not an local minimizer.
Actually, choosing (ū1(t), ū2(t)) ≡ (1, 0), we find that the corresponding state is

(x̄1(t), x̄2(t)) =
(t2

2
− t

2
+W (t), t

)
, ∀ (t, ω) ∈ [0, 1]× Ω, (3.23)

and hence x̄1(1) = W (1), i.e., the cost functional attains its minimum 0 and (ū1(t), ū2(t)) ≡
(1, 0) is the global minimizer. In addition, a simple calculation shows that the corresponding
first order adjoint process is

(P 1
1 (t), Q1

1(t)) = (0, 0), (P 2
1 (t), Q2

1(t)) = (0, 0), ∀ (t, ω) ∈ [0, 1]× Ω, (3.24)

which implies that the condition (3.15) is trivially satisfied.

Remark 3.4. The approach proposed in Theorems 3.1–3.2 can be applied to more general
control problems. We refer the reader to [31] for the optimal control problems involving
stochastic Volterra integral equations.

4. Second order necessary conditions

In this section, we investigate the second order necessary conditions for the local minimizers
(x̄, ū, x̄0) of (1.3). In addition to the assumptions (C1) and (C2), we suppose that

(C3) The functions b, σ, f and g satisfy the following:

(i) For a.e. (t, ω) ∈ [0, T ] × Ω, the functions b(t, ·, ·, ω) : Rn × Rm → Rn and
σ(t, ·, ·, ω) : Rn × Rm → Rn are twice differentiable and

(x, u) 7→ (b(x,u)2(t, x, u, ω), σ(x,u)2(t, x, u, ω))

is uniformly continuous in x ∈ Rn and u ∈ Rm, and,

|b(x,u)2(t, x, u, ω)|+ |σ(x,u)2(t, x, u, ω)| ≤ L, ∀ (x, u) ∈ Rn × Rm;

(ii) For a.e. (t, ω) ∈ [0, T ] × Ω, the functions f(t, ·, ·, ω) : Rn × Rm → R and
g(·, ω) : Rn → R are twice continuously differentiable, and for any x, x̃ ∈ Rn

and u, ũ ∈ Rm,
|f(x,u)2(t, x, u, ω)| ≤ L,
|f(x,u)2(t, x, u, ω)− f(x,u)2(t, x̃, ũ, ω)| ≤ L(|x− x̃|+ |u− ũ|),
|gxx(x, ω)| ≤ L, |gxx(x, ω)− gxx(x̃, ω)| ≤ L|x− x̃|.

For ϕ = b, σ, f , denote

ϕxx(t) = ϕxx(t, x̄(t), ū(t)), ϕxu(t) = ϕxu(t, x̄(t), ū(t)), ϕuu(t) = ϕuu(t, x̄(t), ū(t)).
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4.1. Integral-type second order necessary conditions

In this subsection, we consider first the integral-type second order necessary conditions for
the local minimizers of (1.3).

Let ū, v, h, hε ∈ L2β
F (Ω;L4(0, T ; Rm)) (β ≥ 1) and ν0, $0, $

ε
0 ∈ Rm be such that hε

converges to h in L2β
F (Ω;L4(0, T ;Rm)) and $ε

0 → $0 in Rm as ε→ 0+. Set

uε := ū+ εv + ε2hε, xε0 := x̄0 + εν0 + ε2$ε
0.

Denote by xε the solution of (1.1) corresponding to the control uε and the initial datum
xε0. Put

δxε = xε − x̄, δuε = εv + ε2hε.

Similarly to [17], we introduce the following second-order variational equation:
dy2(t) =

(
bx(t)y2(t) + 2bu(t)h(t) + y1(t)>bxx(t)y1(t) + 2v(t)>bxu(t)y1(t)

+v(t)>buu(t)v(t)
)
dt+

(
σx(t)y2(t) + 2σu(t)h(t) + y1(t)>σxx(t)y1(t)

+2v(t)>σxu(t)y1(t) + v(t)>σuu(t)v(t)
)
dW (t), t ∈ [0, T ],

y2(0) = 2$0,

(4.1)

where y1 is the solution to the first variational equation (3.3) (for v(·) and ν0 as above). We
have the following estimates.

Lemma 4.1. Let (C2)–(C3) hold and β ≥ 1. Then, for ū, v, h, hε ∈ L2β
F (Ω;L4(0, T ;Rm))

and ν0, $0, $
ε
0 ∈ Rm as above, we have

‖y2‖β∞,β ≤ C(|$0|β + |ν0|2β + ‖v‖2β
4,2β + ‖h‖β2,β).

Furthermore,
‖rε2‖

β
∞,β → 0, ε→ 0+, (4.2)

where,

rε2(t, ω) :=
δxε(t, ω)− εy1(t, ω)

ε2
− 1

2
y2(t, ω).

Proof. See Appendix B.

We now introduce the following adjoint equation for (4.1):
dP2(t) = −

(
bx(t)

>P2(t) + P2(t)bx(t) + σx(t)
>P2(t)σx(t) + σx(t)

>Q2(t)

+Q2(t)σx(t) +Hxx(t)
)
dt+Q2(t)dW (t), t ∈ [0, T ],

P2(T ) = −gxx(x̄(T )),

(4.3)

where Hxx(t) = Hxx(t, x̄(t), ū(t), P1(t), Q1(t)) with (P1(·), Q1(·)) given by (3.6).
By [8] and (C2)–(C3), it is easy to check that, if ū ∈ LβF(Ω;L2(0, T ;Rm)), (4.3) admits

a unique strong solution (P2(·), Q2(·)) ∈ LβF(Ω;C([0, T ]; Sn)) × LβF(Ω;L2(0, T ; Sn)) for any
β ≥ 1.
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To simplify the notation, we define

S(t, x, u, y1, z1, y2, z2, ω) := Hxu(t, x, u, y1, z1, ω) + bu(t, x, u, ω)>y2 (4.4)

+σu(t, x, u, ω)>z2 + σu(t, x, u, ω)>y2σx(t, x, u, ω),

where (t, x, u, y1, z1, y2, z2, ω) ∈ [0, T ]× Rn × Rm × Rn × Rn × Sn × Sn × Ω, and denote

S(t) = S(t, x̄(t), ū(t), P1(t), Q1(t), P2(t), Q2(t)), t ∈ [0, T ]. (4.5)

Let ū ∈ Uad ∩ L4
F(Ω;L4(0, T ;Rm)). Define

Υū :=
{
v ∈ L2

F(Ω;L2(0, T ;Rm))
∣∣∣ 〈Hu(t, ω), v(t, ω)〉 = 0 a.e. t ∈ [0, T ], a.s.

}
,

and the set of admissible second order variations by

Aū :=
{

(v, h) ∈ L4
F(Ω;L4(0, T ;Rm))× L4

F(Ω;L4(0, T ;Rm))
∣∣∣

h(t, ω) ∈ T b(2)
U (ū(t, ω), v(t, ω)), a.e. t ∈ [0, T ], a.s.

}
.

Denote

A1
ū :=

{
v ∈ L4

F(Ω;L4(0, T ;Rm))
∣∣∣ ∃ h ∈ L4

F(Ω;L4(0, T ;Rm)), s.t. (v, h) ∈ Aū
}
.

We have the following result.

Theorem 4.1. Let (C1)–(C3) hold and (x̄, ū, x̄0) be a local minimizer for the problem (1.3)
with ū ∈ L4

F(Ω;L4(0, T ;Rm)). Then for the adjoint process P1 defined by (3.6) (relative to
(x̄, ū, x̄0)) and for all (v, h) ∈ Aū satisfying v ∈ Υū,

E
∫ T

0

(
2 〈Hu(t), h(t)〉+ 〈Huu(t)v(t), v(t)〉

+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉+ 2 〈S(t)y1(t), v(t)〉
)
dt ≤ 0, (4.6)

and
P2(0) ∈ N b(2)

K (x, P1(0)). (4.7)

Proof. We borrow some ideas from [11, proof of Theorem 2].
From the definition of the second order adjacent set, we deduce that, if (v, h) ∈ Aū, then

v(t, ω) ∈ T bU(ū(t, ω)), a.e. (t, ω) ∈ [0, T ]×Ω, and for any ε > 0, there exist an r(ε, t, ω) ∈ Rm

such that

ū(t, ω) + εv(t, ω) + ε2h(t, ω) + r(ε, t, ω) ∈ U, r(ε, t, ω) = o(ε2), a.e. (t, ω) ∈ [0, T ]× Ω.

Furthermore, let `(t, ω) = |h(t, ω)| + 1, then for a.e. (t, ω) ∈ [0, T ] × Ω there exists a
ρ(t, ω) > 0 such that

dist(ū(t, ω) + εv(t, ω), U)

≤ |ū(t, ω) + εv(t, ω)− (ū(t, ω) + εv(t, ω) + ε2h(t, ω) + r(ε, t, ω))|
= |ε2h(t, ω) + r(ε, t, ω)| ≤ ε2`(t, ω), ∀ ε ∈ [0, ρ(t, ω)].

(4.8)
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Motivated by the inequality (4.8), we introduce the following subset of Aū:

A∗ū =
{

(v, h) ∈ Aū
∣∣ ∃ a ρ0 > 0 (independent of (t, ω)) such that

dist(ū(t, ω) + εv(t, ω), U) ≤ ε2`(t, ω), ∀ ε ∈ [0, ρ0]
}
.

We fist prove that (4.6) and (4.7) hold for any (v, h) ∈ A∗ū satisfying v ∈ Υū. Fix such a
(v, h) ∈ A∗ū and a corresponding ρ0 > 0.

Using similar arguments as those in the proof of [17, Proposition 4.2], we now prove that

v ∈ T bUad(ū) and h ∈ T b(2)
Uad (ū, v).

Define
αε(t, ω) = dist(ū(t, ω) + εv(t, ω), U).

The distance function being Lipschitz continuous, αε is a B([0, T ]) ⊗ F -measurable and F-
adapted process. Furthermore, since, v(t, ω) ∈ T bU(ū(t, ω)) a.s., we have αε(t, ω)/ε → 0 a.e.
(t, ω) ∈ [0, T ]× Ω as ε→ 0+.

On the other hand, U being a closed set in Rm, for a.e. (t, ω) ∈ [0, T ]× Ω there exists a
uε(t, ω) ∈ U such that

αε(t, ω) = |uε(t, ω)− ū(t, ω)− εv(t, ω)| ≤ ε2`(t, ω) ∀ ε ∈ [0, ρ0].

Using Lemma 2.2, we show that uε admits a B([0, T ]) ⊗ F -measurable and F-adapted ver-
sion (Note that the metric projection mapping (t, ω)  ΠU(ū(t, ω) + εv(t, ω)) may not be
B([0;T ])⊗F -measurable, since ([0, T ]×Ω,B([0;T ])⊗F , dt×dP ) is not complete. Therefore,
we can only obtain a measurable selection of (t, ω) ΠU(ū(t, ω)+εv(t, ω)) on the completion
of this product measure space and then modify this selection to be a B([0, T ])⊗F -measurable
process.) To simplify the notation, we still denote this version by uε.

For vε = (uε − ū)/ε, we have

|vε(t, ω)− v(t, ω)| =
∣∣∣uε(t, ω)− ū(t, ω)

ε
− v(t, ω)

∣∣∣ =
∣∣∣αε(t, ω)

ε

∣∣∣ ≤ ε`(t, ω).

Since (v, h) ∈ A∗ū, it follows that vε ∈ L4
F(Ω;L4(0, T ;Rm)) and, by the dominated convergence

theorem, vε → v in L4
F(Ω;L4(0, T ;Rm)) as ε→ 0+. By the definition of vε, we get ū(t, ω) +

εvε(t, ω) = uε(t, ω) ∈ U , a.e. (t, ω) ∈ [0, T ]× Ω. This proves that v ∈ T bUad(ū).
Similarly, define

γε(t, ω) = dist(ū(t, ω) + εv(t, ω) + ε2h(t, ω), U).

Then, γε is B([0, T ]) ⊗ F -measurable and F-adapted, and, because h(t, ω) ∈ T
b(2)
U (ū(t, ω),

v(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω, γε(t, ω)/ε2 → 0 a.e. (t, ω) ∈ [0, T ]× Ω as ε→ 0+.
Choose a B([0, T ])⊗F -measurable and F-adapted processes wε(t, ω) ∈ U , such that

γε(t, ω) = |wε(t, ω)− ū(t, ω)− εv(t, ω)− ε2h(t, ω)|, a.e. (t, ω) ∈ [0, T ]× Ω

and define

hε =
wε − ū− εv

ε2
.
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Then,

|hε(t, ω)− h(t, ω)| =
∣∣∣wε − ū(t, ω)− εv(t, ω)

ε2
− h(t, ω)

∣∣∣
≤

∣∣∣uε − ū(t, ω)− εv(t, ω)− ε2h(t, ω)

ε2

∣∣∣ ≤ αε(t, ω)

ε2
+ |h(t, ω)|

≤ `(t, ω) + |h(t, ω)|, a.e. (t, ω) ∈ [0, T ]× Ω,

and hence hε ∈ L4
F(Ω;L4(0, T ;Rm)). Moreover, by the definition of hε,

ū(t, ω) + εv(t, ω) + ε2hε(t, ω) = wε(t, ω) ∈ U, a.e. (t, ω) ∈ [0, T ]× Ω,

and

|hε(t, ω)− h(t, ω)| =
∣∣∣γε(t, ω)

ε2

∣∣∣→ 0, a.e. (t, ω) ∈ [0, T ]× Ω.

By the dominated convergence theorem, hε → h in L4
F(Ω;L4(0, T ;Rm)) as ε → 0+. This

proves that h ∈ T b(2)
Uad (ū, v).

Let ν0 ∈ T bK(x̄0) ∩ {P1(0)}⊥ and $0 ∈ T b(2)
K (x̄0, ν0).

Define uε = ū+ εv + ε2hε and let xε0, δxε and δuε be defined as above. Denote f̃ εxx(t) :=∫ 1

0
(1−θ)fxx(t, x̄(t)+θδxε(t), ū(t)+θδuε(t))dθ. Mappings f̃ εxu(t), f̃

ε
uu(t) and g̃εxx(T ) are defined

in a similar way.
Expanding the cost functional J at ū, we get

J(uε)− J(ū)

ε2

=
1

ε2
E
∫ T

0

(
〈fx(t), δxε(t)〉+ 〈fu(t), δuε(t)〉+

〈
f̃ εxx(t)δx

ε(t), δxε(t)
〉

+2
〈
f̃ εxu(t)δx

ε(t), δuε(t)
〉

+
〈
f̃ εuu(t)δu

ε(t), δuε(t)
〉)

dt

+
1

ε2
E
(
〈gx(x̄(T )), δxε(T )〉+ 〈g̃εxx(x̄(T ))δxε(T ), δxε(T )〉

)
= E

∫ T

0

[1

ε
〈fx(t), y1(t)〉+

1

2
〈fx(t), y2(t)〉+

1

ε
〈fu(t), v(t)〉+ 〈fu(t), h(t)〉

+
1

2

(
〈fxx(t)y1(t), y1(t)〉+ 2 〈fxu(t)y1(t), v(t)〉+ 〈fuu(t)v(t), v(t)〉

)]
dt

+E
(1

ε
〈gx(x̄(T )), y1(T )〉+

1

2
〈gx(x̄(T )), y2(T )〉

+
1

2
〈gxx(x̄(T ))y1(T ), y1(T )〉

)
+ ρε2,

where

ρε2 = E
∫ T

0

(
〈fx(t), rε2(t)〉+ 〈fu(t), hε(t)− h(t)〉

)
dt+ E 〈gx(x̄(T )), rε2(T )〉

+E
∫ T

0

[(〈
f̃ εxx(t)

δxε(t)

ε
,
δxε(t)

ε

〉
− 1

2
〈fxx(t)y1(t), y1(t)〉

)
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+
(

2

〈
f̃ εxu(t)

δxε(t)

ε
,
δuε(t)

ε

〉
− 〈fxu(t)y1(t), v(t)〉

)
+
(〈

f̃ εuu(t)
δuε(t)

ε
,
δuε(t)

ε

〉
− 1

2
〈fuu(t)v(t), v(t)〉

)]
dt

+E
(〈

g̃εxx(x̄(T ))
δxε(T )

ε
,
δxε(T )

ε

〉
− 1

2
〈gxx(x̄(T ))y1(T ), y1(T )〉

)
.

In the same way as in the proof of Lemma 4.1, we find that limε→0+ ρ
ε
2 = 0. On the other

hand, by (3.13) and, recalling that v ∈ Υū, ν0 ∈ {P1(0)}⊥, we have

1

ε
E
∫ T

0

(
〈fx(t), y1(t)〉+ 〈fu(t), v(t)〉

)
dt+

1

ε
E 〈gx(x̄(T )), y1(T )〉

= −1

ε
〈P1(0), ν0〉 −

1

ε
E
∫ T

0

〈Hu(t), v(t)〉 dt = 0.

Therefore,

0 ≤ lim
ε→0+

J(uε(·))− J(ū(·))
ε2

= E
∫ T

0

[1

2
〈fx(t), y2(t)〉+ 〈fu(t), h(t)〉

+
1

2

(
〈fxx(t)y1(t), y1(t)〉+ 2 〈fxu(t)y1(t), v(t)〉+ 〈fuu(t)v(t), v(t)〉

)]
dt

+
1

2
E
(
〈gx(x̄(T )), y2(T )〉+ 〈gxx(x̄(T ))y1(T ), y1(T )〉

)
.

(4.9)

By Itô’s formula,

E 〈gx(x̄(T )), y2(T )〉 = −E 〈P1(T ), y2(T )〉 (4.10)

= −2 〈P1(0), $0〉 − E
∫ T

0

(
2 〈P1(t), bu(t)h(t)〉+

〈
P1(t), y1(t)>bxx(t)y1(t)

〉
+2
〈
P1(t), v(t)>bxu(t)y1(t)

〉
+
〈
P1(t), v(t)>buu(t)v(t)

〉
+ 2 〈Q1(t), σu(t)h(t)〉

+
〈
Q1(t), y1(t)>σxx(t)y1(t)

〉
+ 2

〈
Q1(t), v(t)>σxu(t)y1(t)

〉
+
〈
Q1(t), v(t)>σuu(t)v(t)

〉
+ 〈fx(t), y2(t)〉

)
dt,

and

E 〈gxx(x̄(T ))y1(T ), y1(T )〉 = −E 〈P2(T )y1(T ), y1(T )〉 (4.11)

= −〈P2(0)ν0, ν0〉 − E
∫ T

0

(
2 〈P2(t)y1(t), bu(t)v(t)〉+ 2 〈P2(t)σx(t)y1(t), σu(t)v(t)〉

+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉+ 2 〈Q2(t)σu(t)v(s), y1(t)〉 − 〈Hxx(t)y1(t), y1(t)〉
)
dt.

Substituting (4.10) and (4.11) into (4.9) yields

0 ≥ 〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉
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+E
∫ T

0

[(
〈P1(t), bu(t)h(t)〉+ 〈Q1(t), σu(t)h(t)〉 − 〈fu(t), h(t)〉

)
+

1

2

( 〈
P1(t), v(t)>buu(t)v(t)

〉
+
〈
Q1(t), v(t)>σuu(t)v(t)

〉
− 〈fuu(t)v(t), v(t)〉

)
+

1

2
〈P2(t)σu(t)v(t), σu(t)v(t)〉+

( 〈
P1(t), v(t)>bxu(t)y1(t)

〉
+
〈
Q1(t), v(t)>σxu(t)y1(t)

〉
− 〈fxu(t)y1(t), v(t)〉+

〈
bu(t)

>P2(t)y1(t), v(t)
〉

+
〈
σu(t)

>P2(t)σx(t)y1(t), v(t)
〉

+
〈
σu(t)

>Q2(t)y1(t), v(t)
〉 )]

dt

= 〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+

1

2
E
∫ T

0

(
2 〈Hu(t), h(t)〉

+ 〈Huu(t)v(t), v(t)〉+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉+ 2 〈S(t)y1(t), v(t)〉
)
dt.

Then, letting v(·) = h(·) = 0 we obtain (4.7) and letting ν0 = $0 = 0, we obtain (4.6), for
any (v, h) ∈ A∗ū satisfying v ∈ Υū.

To prove (4.6) for any (v, h) ∈ Aū satisfying v ∈ Υū, define

Ei := {(t, ω) ∈ [0, T ]× Ω | dist(ū(t, ω) + εv(t, ω), U) ≤ ε2`(t, ω), ∀ ε ∈ (0,
1

i
]}.

It can be proved that Ei is B([0, T ]) ⊗ F -measurable, the family {Ei}∞i=1 is nondecreasing
and

⋃∞
i=1 Ei is of full measure in [0, T ]×Ω. For any i ∈ N and (v, h) ∈ Aū satisfying v ∈ Υū,

define

vi(t, ω) :=

{
v(t, ω), (t, ω) ∈ Ei,

0, otherwise,
hi(t, ω) :=

{
h(t, ω), (t, ω) ∈ Ei,

0, otherwise.

Then, (vi, hi) ∈ A∗ū and vi ∈ Υū. Hence,

E
∫ T

0

(
2
〈
Hu(t), h

i(t)
〉

+
〈
Huu(t)v

i(t), vi(t)
〉

+
〈
P2(t)σu(t)v

i(t), σu(t)v
i(t)
〉

+ 2
〈
S(t)yi1(t), vi(t)

〉 )
dt ≤ 0, (4.12)

where yi1 is the solution to the first order variational equation (3.3) with v replaced by vi.
Since vi → v, hi → h in L4

F(Ω;L4(0, T ;Rm)) as i→∞, we have yi1 → y1 in L4
F(Ω;C([0, T ];Rn)).

Passing to the limit in inequality (4.12), we finally obtain (4.6). This completes the proof of
Theorem 4.1.

In what follows, we shall give a consequence of Theorem 4.1 for the case when U is
represented by finitely many mixed constraints, i.e.,

U =
{
u ∈ Rm

∣∣ϕi(u) = 0, ∀ i = 1, ..., p, ψj(u) ≤ 0, ∀ j = 1, ..., r
}
,

where ϕ1, ..., ϕp : Rn → R and ψ1, . . . , ψr : Rn → R (for some p, r ∈ N) are twice continuously
differentiable functions and for any u ∈ U ,

{∇ϕ1(u), · · · ,∇ϕp(u)}
⋃
{∇ψj(u) | j ∈ I(u)} are linearly independent. (4.13)
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Moreover, there exist two constants L ≥ 0 and ρ > 0 such that for every u ∈ U ,

|ϕ′′i (u)| ≤ L, i = 1, ..., p,

|ψ′′j (u)| ≤ L, j ∈ I(u),

ρBIm(Γu) ⊂ ΓuBRp+k , (4.14)

where I(u) is the set of all active indices at u, Γu := (∇ϕ1(u), ...,∇ϕp(u),∇ψi1(u), ..., ψik(u))
with i1, ..., ik ∈ I(u) being all active indices for some k ≤ r, and BIm(Γu) and BRp+k are
respectively the unit balls in the image space of Γu and Rp+k.

We observe that (4.13) implies (4.14) with a ρ depending on u. In the above we required
ρ to be independent of u to obtain the following result.

Corollary 4.1. Let U be as above, (C2)–(C3) hold and (x̄, ū, x̄0) be a local minimizer for
the problem (1.3) with ū ∈ L4

F(Ω;L4 (0,T ;Rm)). Then there exist µi(·) ∈ L2
F(Ω;L2(0, T ;R)),

i = 1, ..., p and λj(·) ∈ L2
F(Ω;L2(0, T ; R+)), j = 1, ..., r such that for any v(·) ∈ Υū ∩

L4
F(Ω;L4(0, T ;Rm)) satisfying v(t, ω) ∈ T bU(ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × Ω and the corre-

sponding solution y1 of equation (3.3) we have

E
∫ T

0

(
〈Huu(t)v(t), v(t)〉+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉+ 2 〈S(t)y1(t), v(t)〉

−
p∑
i=1

µi(t) 〈ϕ′′i (ū(t))v(t), v(t)〉 −
∑

j∈Iv(ū(t))

λj(t)
〈
ψ′′j (ū(t))v(t), v(t)

〉 )
dt ≤ 0, (4.15)

where
Iv(ū(t, ω)) = {j ∈ I(ū(t, ω)) | 〈∇ψj(ū(t, ω)), v(t, ω)〉 = 0}.

Proof. The proof of this result is similar to that of [11, Theorem 3]. Obviously, condition
(4.13) implies the Mangasarian-Fromowitz constraint qualification. By Example 2.1, for any
(t, ω),

N b
U(ū(t, ω)) =

p∑
i=1

R∇ϕi(ū(t, ω)) +
∑

j∈I(ū(t,ω))

R+∇ψj(ū(t, ω)).

Then, by the first order condition (3.15), we have

Hu(t, ω) ∈
p∑
i=1

R∇ϕi(ū(t, ω)) +
∑

j∈I(ū(t,ω))

R+∇ψj(ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω.

Define

Γ(t, ω) = {(µ1, ..., µp, λ1, ..., λr) ∈ Rp+r |λj ≥ 0, j = 1, ..., r, λjψj(ū(t, ω)) = 0},

and

G(t, ω, (µ1, ..., µp, λ1, ..., λr)) =

p∑
i=1

µi∇ϕi(ū(t, ω)) +
r∑
j=1

λj∇ψj(ū(t, ω)).
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By Filippov’s theorem (see [2, Theorem 8.2.10]), there exists a G ∗-measurable selection

γ∗(t, ω) = (µ∗1(t, ω), ..., µ∗p(t, ω), λ∗1(t, ω), ..., λ∗r(t, ω)) ∈ Γ(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω

such that

Hu(t, ω) =

p∑
i=1

µ∗i (t, ω)∇ϕi(ū(t, ω)) +
∑

j∈I(ū(t,ω))

λ∗j(t, ω)∇ψj(ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω

where G ∗ is the completion of G and G is defined by (2.1). By assumption (4.13) the process
γ∗(·) is uniquely determined (up to a set of measure zero). Since Rm is separable, there
exists a G -measurable modification of γ∗(·):

γ(·) = (µ1(·), ..., µp(·), λ1(·), ..., λr(·)).

By Lemma 2.3, γ(·) is B([0, T ])⊗F -measurable and F-adapted and

Hu(t, ω) =

p∑
i=1

µi(t, ω)∇ϕi(ū(t, ω)) +
∑

j∈I(ū(t,ω))

λj(t, ω)∇ψj(ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω

(4.16)
By [9, Theorem 2.1] and assumption (4.14), for a.e. (t, ω) ∈ [0, T ]× Ω

|µi(t, ω)| ≤ 1

ρ
|Hu(t, ω)|, ∀ i = 1, ..., p, λj(t, ω) ≤ 1

ρ
|Hu(t, ω)|, ∀ j ∈ I(ū(t, ω)). (4.17)

On the other hand, when j /∈ I(ū(t, ω)), λj(t, ω) = 0 and therefore also λj(t, ω) ≤ 1
ρ
|Hu(t, ω)|.

Since Hu(·) ∈ L2
F(Ω;L2(0, T ;Rm)), we deduce that µi(·) ∈ L2

F(Ω;L2(0, T ;R)), i = 1, ..., p,
and, λj(·) ∈ L2

F(Ω;L2(0, T ;R+)), j = 1, ..., r.
Let v(·) ∈ Υū ∩ L4

F(Ω;L4(0, T ;Rm)) satisfy v(t, ω) ∈ T bU(ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω.
Then

〈Hu(t, ω), v(t, ω)〉 = 0, a.e. (t, ω) ∈ [0, T ]× Ω. (4.18)

Combining (4.18) with (4.16), one has, for a.e. (t, ω) ∈ [0, T ]× Ω,∑
j∈I(ū(t,ω))

λj(t, ω) 〈∇ψj(ū(t, ω)), v(t, ω)〉 = 0.

Therefore, for a.e. (t, ω) ∈ [0, T ]×Ω and for any j /∈ Iv(ū(t, ω)), λj(t, ω) = 0. Consequently,

Hu(t, ω) =

p∑
i=1

µi(t, ω)∇ϕi(ū(t, ω)) +
∑

j∈Iv(ū(t,ω))

λj(t, ω)∇ψj(ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω.

(4.19)
On the other hand, for any (t, ω) ∈ [0, T ]× Ω, by Example 2.1,

∅ 6= T
b(2)
U (ū(t, ω), v(t, ω))

=

{
h ∈ Rm

∣∣∣∣ 〈∇ϕi(ū(t, ω)), h〉+
1

2
〈ϕ′′i (ū(t, ω))v(t, ω), v(t, ω)〉 = 0, ∀ i = 1, · · · , p,

and 〈∇ψj(ū(t, ω)), h〉+
1

2
〈ψ′′j (ū(t, ω))v(t, ω), v(t, ω)〉 ≤ 0, ∀ j ∈ Iv(ū(t, ω))

}
.

(4.20)
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It follows that, for any h ∈ T b(2)
U (ū(t, ω), v(t, ω)) and a.e. (t, ω) ∈ [0, T ]× Ω,

〈Hu(t, ω), h〉 ≤ −1

2

p∑
i=1

µi(t, ω) 〈ϕ′′i (ū(t, ω))v(t, ω), v(t, ω)〉

−1

2

∑
j∈Iv(ū(t,ω))

λj(t, ω)
〈
ψ′′j (ū(t, ω))v(t, ω), v(t, ω)

〉
,

(4.21)

which implies that

sup
h∈T b(2)U (ū(t,ω),v(t,ω))

〈Hu(t, ω), h〉 <∞, a.e. (t, ω) ∈ [0, T ]× Ω.

By (4.20), T
b(2)
U (ū(t, ω), v(t, ω)) is a polyhedral set, cf. [29, p. 43]. By [29, Corollary 3.53]

the supremum in the above is attained.
By [2, Theorems 8.2.11 and 8.2.9] (making a completion argumentation if necessary),

there exists a B([0, T ]) ⊗ F -measurable and F-adapted process h̃(·) such that h̃(t, ω) ∈
T
b(2)
U (ū(t, ω), v(t, ω)) a.e. in 0, T ]× Ω and〈

Hu(t, ω), h̃(t, ω)
〉

= sup
h∈T b(2)U (ū(t,ω),v(t,ω))

〈Hu(t, ω), h〉 , a.e. (t, ω) ∈ [0, T ]× Ω.

Then, for a.e. (t, ω) ∈ [0, T ]× Ω

µi(t, ω)
〈
∇ϕi(ū(t, ω)), h̃(t, ω)

〉
= −µi(t, ω)

2
〈ϕ′′i (ū(t, ω))v(t, ω), v(t, ω)〉 , ∀ i = 1, ..., p,

(4.22)
and,

λj(t, ω)
〈
∇ψj(ū(t, ω)), h̃(t, ω)

〉
≤−λj(t, ω)

2

〈
ψ′′j (ū(t, ω))v(t, ω), v(t, ω)

〉
, ∀ j ∈ Iv(ū(t, ω)).

Applying the same argument as at the end of Example 2.1 we show, using (4.19), that

λj(t, ω)
〈
∇ψj(ū(t, ω)), h̃(t, ω)

〉
= −λj(t, ω)

2

〈
ψ′′j (ū(t, ω))v(t, ω), v(t, ω)

〉
, ∀ j ∈ Iv(ū(t, ω)),

(4.23)
Combining (4.19), (4.22) with (4.23), one obtains that, for a.e. (t, ω) ∈ [0, T ]× Ω,〈

Hu(t, ω), h̃(t, ω)
〉

= −1

2

p∑
i=1

µi(t, ω) 〈ϕ′′i (ū(t, ω))v(t, ω), v(t, ω)〉

−1

2

∑
j∈Iv(ū(t,ω))

λj(t, ω)
〈
ψ′′j (ū(t, ω))v(t, ω), v(t, ω)

〉
.

(4.24)

Now, for any i ∈ N, define

vi(t, ω) :=

{
v(t, ω), if |h̃(t, ω)| ≤ i,

0, otherwise,
hi(t, ω) :=

{
h̃(t, ω), if |h̃(t, ω)| ≤ i,

0, otherwise,
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we have (vi(·), hi(·)) ∈ Aū and vi(·) ∈ Υū. Let yi1 be the solution to the first order variational
equation (3.3) corresponding to vi(·), then by (4.24) and condition (4.6), we obtain that

E
∫ T

0

( 〈
Huu(t)v

i(t), vi(t)
〉

+
〈
P2(t)σu(t)v

i(t), σu(t)v
i(t)
〉

+ 2
〈
S(t)yi1(t), vi(t)

〉
−

p∑
i=1

µi(t)
〈
ϕ′′i (ū(t))vi(t), vi(t)

〉
−
∑

j∈Iv(ū(t))

λj(t)
〈
ψ′′j (ū(t))vi(t), vi(t)

〉 )
dt ≤ 0. (4.25)

Passing to the limit in inequality (4.25), we finally obtain condition (4.15). This completes
the proof of Corollary 4.1.

In [6], in the special case of K = {x0}, the authors obtained the following integral-type
first and second order necessary conditions for stochastic optimal controls:

Theorem 4.2. Let (C2)–(C3) hold. If U is closed and convex and ū is an optimal control,
then

E
∫ T

0

〈Hu(t), v(t)〉 dt ≤ 0, ∀ v ∈ cl2,2
(
RUad(ū) ∩ L4

F(Ω;L4(0, T ;Rm))
)
. (4.26)

Furthermore, for any v(·) ∈ cl4,4
(
RUad(ū) ∩ L∞([0, T ] × Ω;Rm) ∩ Υū

)
the following second

order necessary condition holds:

E
∫ T

0

(
〈Hxx(t)y1(t), y1(t)〉+ 2 〈Hxu(t)y1(t), v(t)〉

+ 〈Huu(t)v(t), v(t)〉
)
dt+ E 〈gxx(x̄(T ))y1(T ), y1(T )〉 ≤ 0, (4.27)

where,
RUad(ū) :=

{
αu− αū

∣∣ u ∈ Uad, α ≥ 0
}
,

and cl2,2(A) and cl4,4(A) are respectively the closures of a set A under the norms ‖ · ‖2,2 and
‖ · ‖4,4.

Remark 4.1. There are three main differences between (4.6) and (4.27): First, the control
region is allowed to be nonconvex in (4.6). Second, the solutions to two adjoint equations
(3.6) and (4.3) are used in (4.6), and consequently, the second order term involving y1 (the
solution to the first order variational equation (3.3)) is absent in this condition.Third, the
condition (4.6) contains the second order adjacent vector h, while in (4.27) it is equal to zero,
cf. Remark 2.1. Our condition (4.6) is more effective in distinguishing optimal controls from
other admissible controls than (4.27), even if the diffusion term σ = 0, see [17]. See also the
examples (especially Example 4.2) that we shall give below.

Example 4.1. Let U be equal to the intersection of two closed balls in R2 of radii 1 and
centers at respectively (1, 0) and (−1√

2
, 1√

2
), T = 1, A ∈ R2×2, F = (F 1, F 2) : R2 → R+ × R

be a given function satisfying F (0) = 0, Fx(0) = 0, Fxx(0) = 0, and for some L > 0,

|Fx(x)|+ |Fxx(x)| ≤ L, ∀x ∈ R2.
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Consider the stochastic control system{
dx(t) =

[
F (x(t)) + u(t)

]
dt+ Au(t)dW (t), t ∈ [0, 1],

x(0) = 0,

with the cost functional
J(u(·)) = E

[
x1(1)− cos(x2(1))2

]
.

For this optimal control problem, the Hamiltonian is defined as

H(t, x, u, p, q, ω) := 〈p, F (x) + u〉+ 〈q, Au〉 ,

where (t, x, u, p, q, ω) ∈ [0, 1]× R2 × R2 × R2 × R2 × Ω.
Define ū(t) ≡ (0, 0). Then, the corresponding state x̄(t) ≡ (0, 0). Since F 1(x) ≥ 0 for

any x ∈ R2 and U ⊂ R+ × R, we deduce that E(x1(1)) ≥ 0 for any solution x = (x1, x2) of
the above stochastic system. Therefore ū is the global minimizer. Furthermore, the first and
the second order adjoint equations are{

dP1(t) = Q1(t)dW (t), t ∈ [0, 1],
P1(1) = (−1, 0)

(4.28)

and {
dP2(t) = Q2(t)dW (t), t ∈ [0, 1],
P2(1) = 0.

(4.29)

It is easy to see that the solution to equations (4.28) and (4.29) are P1(t) ≡ (−1, 0),
Q1(t) ≡ 0 and (P2(t), Q2(t)) ≡ (0, 0), respectively. Then,

Hu(t) = P1(t) + A>Q1(t) ≡ (−1, 0), Huu(t) + σ>u (t)P2(t)σu(t) ≡ 0, and S(t) ≡ 0.

By the definition of U , T bU((0, 0)) is the closed convex cone generated by {(0, 1), (1, 1)}.
Moreover (1

2
, 0) ∈ T b(2)

U ((0, 0), (0, 1)).
Then the first order necessary condition

〈Hu(t, ω), v〉 ≤ 0, ∀ v ∈ T bU((0, 0))

(which corresponds to the first condition in (3.15)) is satisfied and

Hxx(t) ≡ 0, Hxu(t) ≡ 0, Huu(t) ≡ 0, and gxx(x̄(1)) ≡ 0.

Therefore, the second order necessary condition (4.27) is satisfied trivially in this case and
does not contain any additional information with respect to the first order necessary condition
(4.26).

Comparatively, our second order necessary condition (4.6) provides more information
about the control ū. For example, let ṽ(t) ≡ (0, 1) and h̃(t) ≡ (1

2
, 0). Obviously ṽ ∈ Υū,

(ṽ, h̃) ∈ Aū, and condition (4.6) becomes

2E
∫ 1

0

〈
Hu(t), h̃(t)

〉
dt = −1 ≤ 0.

Noting that (1
2
, 0) /∈ T bU((0, 0)), the last inequality is different from the first order necessary

condition (3.7) and from the second order necessary condition (4.27).
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Example 4.2. Let n = m = 2, T = 1, and

U = {(u1, u2) ∈ R2 | |u1 + 1|2 + |u2|2 = 1} ∪ {(u1, u2) ∈ R2 | |u1 − 1|2 + |u2|2 = 1}.

Clearly, this U is neither a finite set nor convex in R2. One can easily check that

T bU((0, 0)) = {0} × R, T
b(2)
U ((0, 0), (0, 1)) 3 (

1

2
, 0).

Consider the control system
dx1(t) = (x2(t)− 1

2
)dt+ dW (t), t ∈ [0, 1],

dx2(t) = u1(t)dt+ |u2(t)|4dW (t), t ∈ [0, 1],
x1(0) = 0, x2(0) = 0

(4.30)

with the cost functional

J(u) = E
[1

2
|x1(1)−W (1)|2 +

∫ 1

0

|u2(t)|4dt
]
. (4.31)

Obviously, the only difference between (3.17) and (4.30) is that the coefficient “u2(t)” in the
first system is replaced by “ |u2(t)|4” in the second one and, since U is a bounded set, the
assumptions (C2)–(C3) are fulfilled.

The Hamiltonian of this optimal control problem is given by

H(t, (x1, x2), (u1, u2), (p1
1, p

2
1), (q1

1, q
2
1), ω) = p1

1(x2 −
1

2
) + p2

1u1 + q1
1 + q2

1|u2|4 − |u2|4,

for all (t, (x1, x2), (u1, u2), (p1
1, p

2
1), (q1

1, q
2
1), ω) ∈ [0, 1] × R2 × R2 × R2 × R2 × Ω. In what

follows, we show that the admissible control (u1(t), u2(t)) ≡ (0, 0) is not locally optimal.
The corresponding solution to the control system (4.30) is still given by (3.20), and

the first order adjoint equation is the same as in (3.21). Therefore (P 1
1 (t), Q1

1(t)) and
(P 2

1 (t), Q2
1(t)) are as in (3.22).

For the present problem,

Hu(t) = (P 2
1 (t), 4Q2

1(u2(t))3 − 4(u2(t))3) = (
1− t

2
, 0). (4.32)

Hence, the first order condition in (3.15),

〈Hu(t), v〉 = P 2
1 (t)v1 + 4(Q2

1 − 1)(u2(t))3v2 = 0, ∀ v = (v1, v2) ∈ T bU((0, 0))

is trivially satisfied, and therefore we need to check the second order condition (4.6). For
this, we observe that

Huu(t) =

[
0 0
0 0

]
, bx(t) =

[
0 1
0 0

]
, bu(t) =

[
0 0
1 0

]
, σx(t) = σu(t) =

[
0 0
0 0

]
.

(4.33)
We now choose a direction v = (v1, v2) = (0, 1) and ν0 = (0, 0). Then, the first order
variational equation (3.3) becomes{

dy1(t)
dt

= bx(t)y1(t), t ∈ [0, 1],
y1(0) = (0, 0),

(4.34)
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and hence y1(t) ≡ (0, 0). This, combined with (4.33), shows that the second condition in
(4.6) is specified as

E
∫ 1

0

〈Hu(t), h〉 dt ≤ 0, ∀ h ∈ T b(2)
U ((0, 0), (0, 1)). (4.35)

We now choose h = (1
2
, 0) in (4.35). By (4.32), we obtain that

E
∫ 1

0

〈Hu(t), h〉 dt =
1

8
> 0,

which is a contradiction. Therefore, (u1(t), u2(t)) ≡ (0, 0) is not locally optimal.

4.2. Pointwise second order necessary conditions

In this subsection, under some further assumptions, we shall deduce from the integral-type
second order necessary condition (4.6) a pointwise one. First, we introduce the following
notion.

Definition 4.1. We call ũ ∈ Uad partially singular in the classical sense if ũ satisfies H̃u(t) = 0, a.e. t ∈ [0, T ], a.s.,〈(
H̃uu(t) + σ̃u(t)

>P̃2(t)σ̃u(t)
)
v, v
〉

= 0, ∀ v ∈ T bU(ũ(t)), a.e. t ∈ [0, T ], a.s.
(4.36)

where x̃ is the state corresponding to ũ, H̃u(t) = Hu(t, x̃(t), ũ(t), P̃1(t), Q̃1(t)), and similarly

for H̃uu(t) and σ̃u(t). (P̃1, Q̃1) and (P̃2, Q̃2) are the adjoint processes given respectively by
(3.6) and (4.3) with (x̄, ū, x̄0) replaced by (x̃, ũ, x̃0). When (x̄, ū, x̄0) is a local minimizer
for the problem (1.3) and ū is singular, we call (x̄, ū, x̄0) a singular local minimizer (for the
problem (1.3)).

Remark 4.2. The definition of the singular control in (4.36) is much more general than that
in [33, Definition 3.3]. More precisely, by the maximality condition (3.16), if the control ũ is
optimal, the first and second necessary conditions in optimization theory immediately imply
that, for a.e. (t, ω) ∈ [0, T ]× Ω,〈

H̃u(t, ω), v
〉
≤ 0, ∀ v ∈ T bU(ũ(t, ω)).

Further, if
〈
H̃u(t, ω), v0

〉
= 0 for some v0 ∈ T bU(ũ(t, ω)), then for any h ∈ T b(2)

U (ũ(t, ω), v0),〈
H̃u(t, ω), h

〉
+

1

2

〈(
H̃uu(t, ω) + σ̃u(t, ω)>P̃2(t, ω)σ̃u(t, ω)

)
v0, v0

〉
≤ 0. (4.37)

Both Definition 4.1 and [33, Definition 3.3] imply that the corresponding singular controls
satisfy the above first and second order necessary condition trivially, but in Definition 4.1,
H̃uu(t) + σ̃u(t)

>P̃2(t)σ̃u(t) is only assumed to be degenerated, for a.e. [0, T ] × Ω, in the
directions from T bU(ũ(t)). We shall see in Example 4.3 below that for partially singular

controls, H̃uu(t) + σ̃u(t)
>P̃2(t)σ̃u(t) may be different from 0 on a subset of [0, T ]× Ω having

positive measure.
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By Theorem 4.1, it is easy to verify the following second order integral-type necessary
condition for the problem (1.3).

Theorem 4.3. Let (C1)–(C3) hold. If (x̄, ū, x̄0) is a singular local minimizer for the problem
(1.3) and ū ∈ L4

F(Ω;L4(0, T ;Rm)), then

E
∫ T

0

〈S(t)y1(t), v(t)〉 dt ≤ 0, ∀ v ∈ A1
ū. (4.38)

As underlined in [33], there are some essential difficulties to deduce from the above
integral type second order necessary condition a pointwise one. The main reason for it
is that the spike variations have to be used to get the pointwise second order necessary
condition from (4.38). Substituting the explicit expression for y1 into (4.38), the Itô integral
will appear in this condition. Thus there will be a “bad” term making impossible using the
Lebesgue differentiation theorem to derive the pointwise condition (see Subsection 3.2 in
[33] for more details). However, when S and v are regular enough, a method similar to the
one proposed in [33] can be used to establish the following pointwise second-order necessary
condition for stochastic singular optimal controls for the problem (1.3).

Theorem 4.4. Let (C1)–(C3) hold. If (x̄, ū, x̄0) is a singular local minimizer for the problem
(1.3), ū ∈ L4

F(Ω;L4(0, T ;Rm)) and S ∈ L1,2
2,F(Rm×n)∩L∞([0, T ]×Ω;Rm×n), then in addition to

the second order transversality condition (4.7), for any v ∈ L1,2
2,F(Rm)∩L∞([0, T ]×Ω;Rm)∩A1

ū,
the following pointwise second order necessary condition holds:

〈S(τ)bu(τ)v(τ), v(τ)〉+ 〈∇S(τ)σu(τ)v(τ), v(τ)〉 (4.39)

+ 〈S(τ)σu(τ)v(τ),∇v(τ)〉 ≤ 0, a.e. τ ∈ [0, T ], a.s.

Proof. The proof is similar to the one of [33, Theorem 3.13]. Let τ ∈ [0, T ), θ ∈ (0, T − τ),
Eθ = [τ, τ +θ) and choose A ∈ Fτ . For any v(·) ∈ L1,2

2,F(Rm)∩L∞([0, T ]×Ω;Rm)∩A1
ū, define

vθ,A(t, ω) =

{
v(t, ω), (t, ω) ∈ Eθ × A,
0, (t, ω) ∈

(
[0, T ]× Ω

)
\
(
Eθ × A

)
.

Clearly, vθ,A(·) ∈ A1
ū. Denote by yθ,A1 (·) the solution to the first order variational equation

(3.3) with v(·) replaced by vθ,A(·). By [32, Theorem 1.6.14, p.47], yθ,A1 (·) enjoys an explicit
representation:

yθ,A1 (t) = Φ(t)

∫ t

0

Φ(s)−1
(
bu(s)− σx(s)σu(s)

)
vθ,A(s)ds

+Φ(t)

∫ t

0

Φ(s)−1σu(s)v
θ,A(s)dW (s), (4.40)

where Φ(·) solves the following matrix-valued stochastic differential equation{
dΦ(t) = bx(t)Φ(t)dt+ σx(t)Φ(t)dW (t), t ∈ [0, T ],
Φ(0) = I,

(4.41)

and I stands for the identity matrix of dimension n.

31



From Theorem 4.3, it follows that

0 ≥ 1

θ2
E
∫ τ+θ

τ

〈
S(t)yθ,A1 (t), v(t)

〉
χAdt

=
1

θ2
E
∫ τ+θ

τ

〈
S(t)Φ(t)

∫ t

τ

Φ(s)−1
(
bu(s)− σx(s)σu(s)

)
v(s)χAds, v(t)

〉
χAdt

+
1

θ2
E
∫ τ+θ

τ

〈
S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt. (4.42)

By the Lebesgue differentiation theorem, it is immediate that for a.e. τ ∈ [0, T ),

lim
θ→0+

1

θ2
E
∫ τ+θ

τ

〈
S(t)Φ(t)

∫ t

τ

Φ(s)−1
(
bu(s)− σx(s)σu(s)

)
v(s)χAds, v(t)

〉
χAdt

=
1

2
E
( 〈

S(τ)
(
bu(τ)− σx(τ)σu(τ)

)
v(τ), v(τ)

〉
χA

)
. (4.43)

On the other hand, by (4.41)

1

θ2
E
∫ τ+θ

τ

〈
S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt (4.44)

=
1

θ2
E
∫ τ+θ

τ

〈
S(t)Φ(τ)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt

+
1

θ2
E
∫ τ+θ

τ

〈
S(t)

∫ t

τ

bx(s)Φ(s)ds

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt

+
1

θ2
E
∫ τ+θ

τ

〈
S(t)

∫ t

τ

σx(s)Φ(s)dW (s)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt.

By the properties of the Itô integral and the Lebesgue differentiation theorem, it can be
proved that

lim
θ→0+

1

θ2
E
∫ τ+θ

τ

〈
S(t)

∫ t

τ

bx(s)Φ(s)ds

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt

= 0, a.e. τ ∈ [0, T ), (4.45)

and

lim
θ→0+

1

θ2
E
∫ τ+θ

τ

〈
S(t)

∫ t

τ

σx(s)Φ(s)dW (s)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt

=
1

2
E
(
〈S(τ)σx(τ)σu(τ)v(τ), v(τ)〉χA

)
, a.e. τ ∈ [0, T ). (4.46)

Next, the assumptions on S and v yield

S(·)>v(·) ∈ L1,2
F (Rn) ∩ L∞([0, T ]× Ω;Rn).

Hence, by the Clark-Ocone formula, for a.e. t ∈ [0, T ),

S(t)>v(t) = E
(
S(t)>v(t)

)
+

∫ t

0

E
(
Ds
(
S(t)>v(t)

) ∣∣∣ Fs)dW (s). (4.47)
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Substituting (4.47) into the first term of the right hand of (4.44), it follows that

1

θ2
E
∫ τ+θ

τ

〈
S(t)Φ(τ)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt (4.48)

=
1

θ2

∫ τ+θ

τ

E
〈∫ t

τ

Φ(τ)Φ(s)−1σu(s)v(s)χAdW (s),E
(
S(t)>v(t)

)〉
χAdt

+
1

θ2

∫ τ+θ

τ

E
〈∫ t

τ

Φ(τ)Φ(s)−1σu(s)v(s)χAdW (s),

∫ t

0

E
(
Ds
(
S(t)>v(t)

)∣∣∣Fs)dW (s)

〉
χAdt

=
1

θ2

∫ τ+θ

τ

∫ t

τ

E
〈
Φ(τ)Φ(s)−1σu(s)v(s),Ds

(
S(t)>v(t)

)〉
χAdsdt.

Note that
Ds
(
S(t)>v(t)

)
=
(
DsS(t)>

)
v(t) + S(t)>Dsv(t).

Using the same argument as that in [33, Theorem 3.13], we conclude that there exists a
sequence {θ`}∞`=1 of positive numbers such that lim`→∞ θ` = 0, and

lim
`→∞

1

θ2
`

E
∫ τ+θ`

τ

〈
S(t)Φ(τ)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt (4.49)

=
1

2
E
( 〈
∇S(τ)>v(τ), σu(τ)v(τ)

〉
χA

)
+

1

2
E
( 〈

S(τ)>∇v(τ), σu(τ)v(τ)
〉
χA

)
, a.e. τ ∈ [0, T ).

Then, by (4.44), (4.49), one concludes that

lim
`→∞

1

θ2
`

E
∫ τ+θ`

τ

〈
S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)v(s)χAdW (s), v(t)

〉
χAdt (4.50)

=
1

2
E
(
〈S(τ)σx(τ)σu(τ)v(τ), v(τ)〉χA

)
+

1

2
E
( 〈
∇S(τ)>v(τ), σu(τ)v(τ)

〉
χA

)
+

1

2
E
( 〈

S(τ)>∇v(τ), σu(τ)v(τ)
〉
χA

)
, a.e. τ ∈ [0, T ).

Combining (4.42), (4.43) and (4.50), one has

0 ≥ E
(
〈S(τ)bu(τ)v(τ)), v(τ)〉χA

)
+ E

( 〈
∇S(τ)>v(τ), σu(τ)v(τ)

〉
χA

)
+E

( 〈
S(τ)>∇v(τ), σu(τ)v(τ)

〉
χA

)
, a.e. τ ∈ [0, T ).

Finally, by the arbitrariness of A ∈ Fτ , we deduce that the desired second order necessary
condition (4.39) holds. This completes the proof of Theorem 4.4.

If ū ∈ L1,2
2,F(Rm), U is a bounded closed convex set in Rm, v−ū(·) ∈ L1,2

2,F(Rm)∩L∞([0, T ]×
Ω;Rm)∩A1

ū holds true for any v ∈ U . Then, by Theorem 4.4 and the separability of U , one
has

〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉+ 〈∇S(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉
− 〈S(τ)σu(τ)(v − ū(τ)),∇ū(τ)〉 ≤ 0, ∀ v ∈ U, a.e. τ ∈ [0, T ], a.s., (4.51)

which coincides with [33, Theorem 3.13]. However, when the control set U is nonconvex,
some more assumptions as follows are required to establish a pointwise condition similar to
(4.51).
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(C4) For any u ∈ ∂U and v ∈ T bU(u), T
b(2)
U (u, v) 6= ∅.

When the control set U has a C2 boundary, the assumption (C4) holds, see [10].
From the proof of Theorem 4.4, we deduce the following result.

Corollary 4.2. Let (C1)–(C4) hold, (x̄, ū, x̄0) be a singular local minimizer for the problem
(1.3). If S ∈ L1,2

2,F(Rm×n), and the optimal control ū is a step function as below

ū(t, ω) =
k∑
i=1

li∑
j=1

uijχAijχ[ti,ti+1)(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω, (4.52)

where k ∈ N, 0 = t1 < · · · < tk+1 = T , li ∈ N, uij ∈ U and Aij ∈ Fti for i = 1, · · · , k
and j = 1, · · · , li, then, in addition to the second order transversality condition (4.7), the
following pointwise second order necessary condition holds:

〈S(τ, ω)bu(τ, ω)v, v〉+ 〈∇S(τ, ω)σu(τ, ω)v, v〉 ≤ 0, ∀ v ∈ T bU(ū(τ, ω)), a.e. τ ∈ [0, T ], a.s.

Proof. When ū(t, ω) is given as in (4.52), for any fixed i and j, ū(t, ω) has constant value uij
on [ti, ti+1)×Aij. Then, on [ti, ti+1)×Aij, let vij ∈ T bU(uij), hij ∈ T b(2)

U (uij, vij), τ ∈ [ti, ti+1),
θ ∈ (0, ti+1 − τ), Eθ = [τ, τ + θ) and choose A ∈ Fti . Define

vθ,A(t, ω) =

{
vij, (t, ω) ∈ Eθ × (A ∩ Aij),

0, otherwise,
hθ,A(t, ω) =

{
hij, (t, ω) ∈ Eθ × (A ∩ Aij),

0, otherwise.

It is clear that (vθ,A, hθ,A) ∈ Aū. Then, by similar arguments as in the proof of Theorem 4.4
and noting that the Malliavin derivative of the constant-valued process vij is equal to 0, we
obtain that

〈S(τ, ω)bu(τ, ω)vij, vij〉+ 〈∇S(τ, ω)σu(τ, ω)vij, vij〉 ≤ 0, a.e. (τ, ω) ∈ [ti, ti+1)× Aij.

By the closedness of the adjacent cone, the separability of Rm, the arbitrariness of i, j and
vij it follows that

〈S(τ, ω)bu(τ, ω)v, v〉+ 〈∇S(τ, ω)σu(τ, ω)v, v〉 ≤ 0, ∀ v ∈ T bU(ū(τ, ω)), a.e. τ ∈ [0, T ], a.s.

This completes the proof of Corollary 4.2.

Example 4.3. Let the optimal control problem be the one stated in Example 3.1. We have
shown that ū(t) = (ū1(t), ū2(t)) ≡ (1, 0) is the optimal control. In the following we will
prove that this optimal control is partially singular and satisfies the second order necessary
condition (4.2).

In Example 3.1 we obtained that the corresponding state (x̄1(t), x̄2(t)) is as in (3.23) and
the first order adjoint process (P1(t), Q1(t)) is as in (3.24). In addition, it is easy to see that
the second order adjoint equation is

d

[
P 1

2 (t) P 2
2 (t)

P 3
2 (t) P 4

2 (t)

]
=

[
0 −P 1

2 (t)
−P 1

2 (t) −P 2
2 (t)−P 3

2 (t)

]
dt+

[
Q1

2(t) Q2
2(t)

Q3
2(t) Q4

2(t)

]
dW (t), t∈ [0, 1],[

P 1
2 (1) P 2

2 (1)
P 3

2 (1) P 4
2 (1)

]
=

[
−1 0
0 0

]
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and its solution is([
P 1

2 (t) P 2
2 (t)

P 3
2 (t) P 4

2 (t)

]
,

[
Q1

2(t) Q2
2(t)

Q3
2(t) Q4

2(t)

])
=

([
−1 t− 1
t− 1 −t2 + 2t− 1

]
,

[
0 0
0 0

])
.

A direct calculation shows that

T bU((1, 0)) = {(v1, 0) ∈ R2 | v1 ≤ 0}.

Then, we have
Hu(t) = 0, Huu(t) = 0, ∀ (t, ω) ∈ [0, 1]× Ω,

σu(t)
>P2(t)σu(t) =

[
0 0
0 1

] [
−1 t− 1
t− 1 −t2 + 2t− 1

] [
0 0
0 1

]
=

[
0 0
0 −t2 + 2t− 1

]
and therefore〈(

Huu(t) + σu(t)
>P2(t)σu(t)

)
v, v
〉

= 0, ∀ v ∈ T bU(ū(t)), a.e. t ∈ [0, T ], a.s.

This means that ū(t) = (ū1(t), ū2(t)) ≡ (1, 0) is partially singular. Next, we prove that
ū(t) = (ū1(t), ū2(t)) ≡ (1, 0) satisfies the second order necessary condition in Corollary 4.2.
It is clear that

S(t) =

[
0 1
0 0

] [
−1 t− 1
t− 1 −t2 + 2t− 1

]
=

[
t− 1 −t2 + 2t− 1

0 0

]
Then, ∇S(t) ≡ 0, and

〈S(t)bu(t)v, v〉+ 〈∇S(t)σu(t)v, v〉 =
[
v1 0

] [ −t2 + 2t− 1 0
0 0

] [
v1

0

]
= −(t− 1)2v2

1 ≤ 0, ∀ v ∈ T bU(ū(t)), a.e. t ∈ [0, T ], a.s.

5. Appendix

In this section, we prove the two technical Lemmas 3.2 and 4.1. The fundamental idea
comes from the classical calculus, see also the related results in [4, 6] for the optimal control
problems with convex control constraints, and [27, 32] for the general control constraints.

A. Proof of Lemma 3.2

Proof. From (3.3) and Lemma 3.1 we deduce that

E
(

sup
t∈[0,T ]

|y1(t)|β
)
≤ CE

[
|ν0|β +

(∫ T

0

|bu(t)v(t)|dt
)β

+
(∫ T

0

|σu(t)v(t)|2dt
)β

2
]

≤ CE
[
|ν0|β +

(∫ T

0

|v(t)|2dt
)β

2
]
.
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Since vε(·) converges to v(·) in LβF(Ω;L2(0, T ;Rm)), and νε0 → ν0 in Rn as ε→ 0+, we deduce
from (3.2) that

E
(

sup
t∈[0,T ]

|δxε(t)|β
)
≤ CE

[
εβ|νε0|β +

(∫ T

0

|εvε(t)|2ds
)β

2
]

= O(εβ).

Consequently, by the Hölder inequality,

E
(

sup
t∈[0,T ]

|δxε(t)|
)
≤
[
E
(

sup
t∈[0,T ]

|δxε(t)|β
)]1/β

= O(ε) (A.1)

and

E
∫ T

0

|vε(t)− v(t)|dt ≤ C
[
E
(∫ T

0

|vε(t)− v(t)|2dt
)β

2
] 1
β → 0, ε→ 0+. (A.2)

Denote b̃εx(t) :=
∫ 1

0
bx(t, x̄(t) + θδxε(t), ū(t) + θεvε(t))dθ. Mappings b̃εu(t), σ̃

ε
x(t) and σ̃εu(t)

are defined in a similar way. Then, δxε(·) is the solution to the following stochastic differential
equation 

dδxε(t) =
(
b̃εx(t)δx

ε(t) + εb̃εu(t)vε(t)
)
dt

+
(
σ̃εx(t)δx

ε(t) + εσ̃εu(t)vε(t)
)
dW (t), t ∈ [0, T ],

δxε(0) = ενε0,

and rε1(·) satisfies the following stochastic differential equation
drε1(t) =

[
b̃εx(t)r

ε
1(t) +

(
b̃εx(t)− bx(t)

)
y1(t) + b̃εu(t)

(
vε(t)− v(t)

)
+
(
b̃εu(t)− bu(t)

)
v(t)

]
dt+

[
σ̃εx(t)r

ε
1(t) +

(
σ̃εx(t)− σx(t)

)
y1(t)

+σ̃εu(t)
(
vε(t)− v(t)

)
+
(
σ̃εu(t)− σu(t)

)
v(t)

]
dW (t), t ∈ [0, T ],

rε1(0) = νε0 − ν0.

(A.3)

For any sequence {εj}∞j=1 of positive numbers converging to 0 as j → ∞, we can find a
subsequence {jk}∞k=1 ⊂ N such that supt∈[0,T ] |δxεjk (t)| → 0 a.s. and εjkvεjk (t) → 0 a.s. for

a.e. t ∈ [0, T ], as k → ∞. The assumption (C2) yields,
∣∣(b̃εjkx (t) − bx(t))y1(t)

∣∣ → 0 a.s. for
a.e. t ∈ [0, T ], as k →∞. Hence,∣∣(b̃εjx (·)− bx(·))y1(·)

∣∣→ 0 in measure, as j →∞.

Then, using Lebesgue’s dominated convergence theorem, we conclude that

E
(∫ T

0

|
(
b̃εjx (t)− bx(t)

)
y1(t)|2dt

)β
2 → 0, j →∞. (A.4)

A slight modification of the above discussion shows that

E
(∫ T

0

|
(
b̃εju (t)− bu(t)

)
v(t)|2dt

)β
2

+ E
(∫ T

0

|
(
σ̃εjx (t)− σx(t)

)
y1(t)|2dt

)β
2
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+E
(∫ T

0

|
(
σ̃εju (t)− σu(t)

)
v(t)|2dt

)β
2 → 0, j →∞. (A.5)

On the other hand

E
(∫ T

0

|b̃εju (t)
(
vεj(t)− v(t)

)
|2dt
)β

2
+ E

(∫ T

0

|σ̃εju (t)
(
vεj(t)− v(t)

)
|2dt
)β

2

≤ CE
(∫ T

0

|vεj(t)− v(t)|2dt
)β

2 → 0, j →∞,

Therefore, by Lemma 3.1, we finally obtain that

E
(

sup
t∈[0,T ]

|rεj1 (t)|β
)
≤ CE

[
|νεj0 − ν0|β +

(∫ T

0

∣∣(b̃εjx (t)− bx(t)
)
y1(t) + b̃εju (t)

(
vεj(t)− v(t)

)
+

(
b̃εju (t)− bu(t)

)
v(t)

∣∣dt)β +
(∫ T

0

∣∣(σ̃εjx (t)− σx(t)
)
y1(t)

+ σ̃εju (t)
(
vεj(t)− v(t)

)
+
(
σ̃εju (t)− σu(t)

)
v(t)

∣∣2dt)β2 ]→ 0, j →∞.

The sequence εj → 0+ being arbitrary, the proof is complete.

B. Proof of Lemma 4.1

Proof. By Lemma 3.2 (with β replaced by 2β), we obtain that

E
(

sup
t∈[0,T ]

|y1(t)|2β
)
≤ CE

[
|ν0|2β +

(∫ T

0

|v(t)|2dt
)β]

. (B.1)

Then, by (4.1), Lemma 3.1 and the Hölder inequality, it follows that

E
(

sup
t∈[0,T ]

|y2(t)|β
)

≤ CE
[
|$0|β +

(∫ T

0

|2bu(t)h(t) + y1(t)>bxx(t)y1(t) + 2v(t)>bxu(t)y1(t)

+v(t)>buu(t)v(t)|dt
)β

+
(∫ T

0

|2σu(t)h(t) + y1(t)>σxx(t)y1(t)

+2v(t)>σxu(t)y1(t) + v(t)>σuu(t)v(t)|2dt
)β

2
]

≤ CE
[
|$0|β +

(∫ T

0

|h(t)|2dt
)β

2
+ sup

t∈[0,T ]

|y1(t)|2β

+ sup
t∈[0,T ]

|y1(t)|β ·
(∫ T

0

|v(t)|2dt
)β

2
+
(∫ T

0

|v(t)|4dt
)β

2
]

≤ CE
[
|$0|β + |ν0|2β +

(∫ T

0

|h(t)|2dt
)β

2
+
(∫ T

0

|v(t)|4dt
)β

2
]
.
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Denote b̃εxx(t) :=
∫ 1

0
(1− θ)bxx(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ. Mappings b̃εxu(t), b̃

ε
uu(t),

σ̃εxx(t), σ̃
ε
xu(t) and σ̃εuu(t) are defined in a similar way. Then, δxε satisfies the following

stochastic differential equation:

dδxε(t) =
(
bx(t)δx

ε(t) + bu(t)δu
ε(t) + δxε(t)>b̃εxx(t)δx

ε(t)

+2δxε(t)>b̃εxu(t)δu
ε(t) + δuε(t)>b̃εuu(t)δu

ε(t)
)
dt

+
(
σx(t)δx

ε(t) + σu(t)δu
ε(t) + δxε(t)>σ̃εxx(t)δx

ε(t)

+2δxε(t)>σ̃εxu(t)δu
ε(t) + δuε(t)>σ̃εuu(t)δu

ε(t)
)
dW (t), t ∈ [0, T ],

δxε(0) = εν0 + ε2$ε
0.

Therefore rε2 solves the following stochastic differential equation:

drε2(t) =
{
bx(t)r

ε
2(t) + bu(t)

(
hε(t)− h(t)

)
+
[( δxε(t)

ε

)>
b̃εxx(t)

(
δxε(t)
ε

)
− 1

2
y1(t)>bxx(t)y1(t)

]
+
[
2
( δxε(t)

ε

)>
b̃εxu(t)

( δuε(t)
ε

)
− y1(t)>bxu(t)v(t)

]
+
[(

δuε(t)
ε

)>
b̃εuu(t)

(
δuε(t)
ε

)
− 1

2
v(t)>buu(t)v(t)

]}
dt

+
{
σx(t)r

ε
2(t) + σu(t)

(
hε(t)− h(t)

)
+
[( δxε(t)

ε

)>
σ̃εxx(t)

(
δxε(t)
ε

)
− 1

2
y1(t)>σxx(t)y1(t)

]
+
[
2
( δxε(t)

ε

)>
σ̃εxu(t)

( δuε(t)
ε

)
− y1(t)>σxu(t)v(t)

]
+
[(

δuε(t)
ε

)>
σ̃εuu(t)

(
δuε(t)
ε

)
− 1

2
v(t)>σuu(t)v(t)

]}
dW (t), t ∈ [0, T ],

rε2(0) = $ε
0 −$0.

(B.2)

Since hε(·) converges to h(·) in L2β
F (Ω;L4(0, T ;Rm)),

E
(∫ T

0

∣∣∣bu(t)(hε(t)− h(t)
)∣∣∣dt)β + E

(∫ T

0

∣∣∣σu(t)(hε(t)− h(t)
)∣∣∣2dt)β2 → 0, ε→ 0+. (B.3)

On the other hand, by the Hölder inequality,

E
(∫ T

0

∣∣∣(δxε(t)
ε

)>
b̃εxx(t)

(δxε(t)
ε

)
− 1

2
y1(t)>bxx(t)y1(t)

∣∣∣dt)β
≤ CE

(∫ T

0

∣∣∣(δxε(t)
ε

)>
b̃εxx(t)

(δxε(t)
ε

)
− 1

2
y1(t)>bxx(t)y1(t)

∣∣∣2dt)β2
≤ CE

[ ∫ T

0

∣∣∣(δxε(t)
ε

)>(
b̃εxx(t)−

1

2
bxx(t)

)(δxε(t)
ε

)∣∣∣2dt]β2
+CE

[
sup
t∈[0,T ]

∣∣∣δxε(t)
ε
− y1(t)

∣∣∣β( sup
t∈[0,T ]

∣∣∣δxε(t)
ε

∣∣∣β + sup
t∈[0,T ]

|y1(t)|β
)]

38



≤ C
[
E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε

∣∣∣2β)]1/2[
E
(∫ T

0

∣∣∣b̃εxx(t)− 1

2
bxx(t)

∣∣∣4 · ∣∣∣δxε(t)
ε

∣∣∣4dt)β2 ]1/2

+C
[
E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε
− y1(t)

∣∣∣2β)] 1
2
[
E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε

∣∣∣2β + sup
t∈[0,T ]

|y1(t)|2β
)] 1

2
.(B.4)

Since hε converges to h in L2β
F (Ω;L4(0, T ;Rm)) and $ε

0 converges to $0 in Rm as ε → 0+,
by Lemma 3.1,

E
(

sup
t∈[0,T ]

|δxε(t)|2β
)
≤ CE

[
|εν0 + ε2$ε

0|2β +
(∫ T

0

|εv(t) + ε2hε(t)|2dt
)β]

= O(ε2β).

As in the proof of (3.4) in Lemma 3.2, we obtain that

E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε
− y1(t)

∣∣∣2β)→ 0, ε→ 0+.

For any sequence {εj}∞j=1 of positive numbers converging to 0 as j →∞, one can show that

bxx(·, x̄(·) + θδxεj(·), ū(·) + θδuεj(·))− bxx(·)→ 0, in measure, as j →∞.

Since

b̃εjxx(t)−
1

2
bxx(t) =

∫ 1

0

(1− θ)
(
bxx(t, x̄(t) + θδxεj(t), ū(t) + θδuεj(t))− bxx(t)

)
dθ,

from(C3), (B.4) and the Lebesgue dominated convergence theorem, we obtain that

E
(∫ T

0

∣∣∣(δxεj(t)
εj

)>
b̃εjxx(t)

(δxεj(t)
εj

)
− 1

2
y1(t)>bxx(t)y1(t)

∣∣∣dt)β → 0, as j →∞. (B.5)

Similarly,

E
(∫ T

0

∣∣∣2(δxεj(t)
εj

)>
b̃εjxu(t)

(δuεj(t)
εj

)
− y1(t)>bxu(t)v(t)

∣∣∣dt)β
≤ CE

(∫ T

0

∣∣∣2(δxεj(t)
εj

)>
b̃εjxu(t)

(δuεj(t)
εj

)
− y1(t)>bxu(t)v(t)

∣∣∣2dt)β/2
≤ C

[
E
(

sup
t∈[0,T ]

∣∣∣δxεj(t)
εj

∣∣∣2β)] 1
2
[
E
(∫ T

0

∣∣b̃εjxu(t)− 1

2
bxu(t)

∣∣4∣∣∣δuεj(t)
εj

∣∣∣4dt)β2 ] 1
2

+C
[
E
(

sup
t∈[0,T ]

∣∣∣δxεj(t)
εj

− y1(t)
∣∣∣)2β] 1

2
[
E
(∫ T

0

∣∣δuεj(t)
εj

∣∣4dt)β2 ] 1
2

+C
[
E
(

sup
t∈[0,T ]

|y1(t)|2β
)] 1

2
[
E
(∫ T

0

∣∣δuεj(t)
εj

− v(t)
∣∣4dt)β2 ] 1

2
,

which implies that

E
(∫ T

0

∣∣∣2(δxεj(t)
εj

)>
b̃εjxu(t)

(δuεj(t)
εj

)
− y1(t)>bxu(t)v(t)

∣∣∣dt)β → 0, j →∞. (B.6)
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In a similar way, we have

E
(∫ T

0

∣∣∣(δuεj(t)
εj

)>
b̃εjuu(t)

(δuεj(t)
εj

)
− 1

2
v>buu(t)v(t)

∣∣∣dt)β
≤ CE

(∫ T

0

∣∣∣(δuεj(t)
εj

)>(
b̃εjuu(t)−

1

2
buu(t)

)(δuεj(t)
εj

)∣∣∣2dt)β2
+CE

[ ∫ T

0

∣∣∣δuεj(t)
εj

− v(t)
∣∣∣2 · (∣∣∣δuεj(t)

εj

∣∣∣2 + |v(t)|2
)
dt
]β

2

≤ CE
(∫ T

0

∣∣∣δuεj(t)
εj

∣∣4∣∣b̃εjuu(t)− 1

2
buu(t)

∣∣2dt)β2
+CE

[ ∫ T

0

∣∣∣εjhεj(t)∣∣∣2 · (∣∣∣v(t) + εjhεj(t)
∣∣∣2 + |v(t)|2

)
dt
]β

2 → 0, j →∞. (B.7)

Applying the above method to the diffusion coefficient σ, we conclude that

E
(∫ T

0

∣∣∣(δxεj(t)
εj

)>
σ̃εjxx(t)

(δxεj(t)
εj

)
− 1

2
y1(t)>σxx(t)y1(t)

∣∣∣2dt)β2 → 0, j →∞, (B.8)

E
(∫ T

0

∣∣∣2(δxεj(t)
εj

)>
σ̃εjxu(t)

(δuεj(t)
εj

)
− y1(t)>σxu(t)v(t)

∣∣∣2dt)β2 → 0, j →∞. (B.9)

and

E
(∫ T

0

∣∣∣(δuεj(t)
εj

)>
σ̃εjuu(t)

(δuεj(t)
εj

)
− 1

2
v(t)>σuu(t)v(t)

∣∣∣2dt)β2 → 0, j →∞. (B.10)

By Lemma 3.1, and using (B.2), (B.3) and (B.5)–(B.10), we obtain that

E
[

sup
t∈[0,T ]

|rεj2 (t)|β
]

≤ C|$εj
0 −$0|β + CE

(∫ T

0

∣∣∣bu(t)(hεj(t)− h(t)
)∣∣∣dt)β

+CE
(∫ T

0

∣∣∣σu(t)(hεj(t)− h(t)
)∣∣∣2dt)β2

+CE
(∫ T

0

∣∣∣(δxεj(t)
εj

)>
b̃εjxx(t)

(δxεj(t)
εj

)
− 1

2
y1(t)>bxx(t)y1(t)

∣∣∣dt)β
+CE

(∫ T

0

∣∣∣2(δxεj(t)
εj

)>
b̃εjxu(t)

(δuεj(t)
εj

)
− y1(t)>bxu(t)v(t)

∣∣∣dt)β
+CE

(∫ T

0

∣∣∣(δuεj(t)
εj

)>
b̃εjuu(t)

(δuεj(t)
εj

)
− 1

2
v(t)>buu(t)v(t)

∣∣∣dt)β
+CE

(∫ T

0

∣∣∣(δxεj(t)
εj

)>
σ̃εjxx(t)

(δxεj(t)
εj

)
− 1

2
y1(t)>σxx(t)y1(t)

∣∣∣2dt)β2
+CE

(∫ T

0

∣∣∣2(δxεj(t)
εj

)>
σ̃εjxu(t)

(δuεj(t)
εj

)
− y1(t)>σxu(t)v(t)

∣∣∣2dt)β2
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+CE
(∫ T

0

∣∣∣(δuεj(t)
εj

)>
σ̃εjuu(t)

(δuεj(t)
εj

)
− 1

2
v(t)>σuu(t)v(t)

∣∣∣2dt)β2
→ 0, j →∞.

This proves (4.2). The sequence εj → 0+ being arbitrary, the proof is complete.
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