
HAL Id: hal-03753918
https://hal.science/hal-03753918v1

Preprint submitted on 19 Aug 2022 (v1), last revised 30 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalizing Lusztig’s total positivity
Olivier Guichard, Anna Wienhard

To cite this version:

Olivier Guichard, Anna Wienhard. Generalizing Lusztig’s total positivity. 2022. �hal-03753918v1�

https://hal.science/hal-03753918v1
https://hal.archives-ouvertes.fr


GENERALIZING LUSZTIG’S TOTAL POSITIVITY

OLIVIER GUICHARD AND ANNA WIENHARD

Abstract. We introduce the notion of Θ-positivity in real simple
Lie groups. This notion at the same time generalizes Lusztig’s
total positivity in split real Lie groups and invariant orders in Lie
groups of Hermitian type. We show that there are four families
of Lie groups which admit Θ-positive structures, and investigate
basic properties of Θ-positivity.

1. Introduction

The theory of totally positive matrices arose in the beginning of the
20th century through work of Schoenberg [Sch30] and Gantmacher and
Krein [GK35]. Total positivity has since become an important concept
in several mathematical fields. In the 1990’s the theory has been gen-
eralized widely by Lusztig [Lus98] who introduced the total positive
semigroup of a general split real semisimple Lie group. Lusztig’s total
positivity plays an important role in representation theory, cluster alge-
bras, and has many relations to other areas in mathematics as well as
in theoretical physics. In this article we introduce a generalization of
Lusztig’s total positivity in the context of real semisimple Lie groups G
that are not necessarily split. We call this generalization Θ-positivity
because it depends on the choice of a flag variety associated with G
which is determined by a subset Θ of the set of simple roots. The
notion of Θ-positivity generalizes at the same time Lusztig’s total posi-
tivity (when the group is split) as well as Lie semigroups of Lie groups
of Hermitian type, which are related to bi-invariant orders and causal
structures. We give a classification of simple Lie groups admitting a
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Θ-positive structure. Besides split real Lie groups and Hermitian Lie
groups of tube type, two further families admit a Θ-positive structure:
the groups locally isomorphic to indefinite orthogonal groups SO(p, q),
with 2 ≤ p < q, and an exceptional family, whose reduced root system
is of type F4 (cf. Theorem 1.1 below). To our knowledge, for these two
families no positive structure was known before.

Our interest in Θ-positivity arose from higher rank Teichmüller the-
ory, in particular from trying to find a unifying framework that explains
the similarities between Hitchin representations and maximal represen-
tations. The notion of Θ-positivity provides such a unifying systematic
framework. It also leads to several conjectures regarding higher rank
Teichmüller spaces, some of which have been formulated in [GW18] and
[Wie18], and partly proven in [Col20, AABC+19, BCGP+21], [GLW21],
and [BP21]. However, the reach of Θ-positivity goes far beyond higher
rank Teichmüller theory. For example, as we will discuss in a bit more
detail below, Θ-positivity suggests that Hermitian Lie groups of tube
type should be considered as groups of type A1 over non-commutative
algebras. Something, which has been made precise in [ABR+21] for
most classical groups.

Before we describe the notion of Θ-positivity and our results in more
detail, let us note that we described the notion of Θ-positivity several
years ago in a survey paper [GW18] with only few proofs and a hands on
description of the notion for indefinite orthogonal groups SO(p, q), 2 ≤
p < q. Several of the properties we described there have been already
used by other people. This article now finally gives the foundation of
Θ-positivity. We focus here on the structure of unipotent subgroups in
G and on Θ-positivity in generalized flag varieties. In particular, we
provide all the background needed to introduce positive configurations
in flag varieties, positive maps or positive representations of surface
groups. We give all the background and prove the results used in
[Col20], [AABC+19, BCGP+21], in [BP19], [BP21], as well as all results
used in [GLW21]. Ideas from this paper and [GLW21] were also used
in [BCL20]. In a forthcoming second foundational article we will focus
on the finer structure of Θ-positivity, including braid relations, Gauß
decomposition theorems, and geometric properties of positive elements
in G.

We now describe the results of the paper in more detail.

1.1. Θ-positive structures. Totally positive matrices are defined by
requiring all minors to be positive. Anne Whitney showed in [Whi52]
that the semigroup of totally positive, or more general totally non-
negative matrices can be generated by an explicit set of simple matrices.
This reduction theorem allowed the generalization of total positivity to
all simple split real Lie groups [Lus98]. The key building block in
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Lusztig’s approach is the construction of a closed non-negative semi-
group U≥0 in the unipotent radical U of the minimal parabolic sub-
group P of a split real Lie group G. This semigroup is constructed
as follows. The Lie algebra u can be described as the sum of the root
spaces gα for all positive roots α. Since G is split, any root space gα
is of dimension 1 and hence can be identified with R. Given the set
of simple positive roots ∆, we consider the map xα : gα ∼= R → U ,
s 7→ exp(s). The non-negative semigroup U≥0 is the semigroup gener-
ated by xα(R≥0), α ∈ ∆.

Turning to our situation, when G is a simple real Lie group, which is
not necessarily split. We consider a subset Θ ⊂ ∆ of the set of simple
roots. This defines a standard parabolic subgroup PΘ in G. (We choose
the convention so that P∆ is the minimal parabolic subgroup of G.)
The group PΘ is a semidirect product of a reductive Lie group LΘ and
its unipotent radical UΘ. The Lie algebra uΘ of UΘ carries a natural
action by LΘ and can hence be decomposed into its LΘ-/irreducible
pieces. For every simple root α ∈ Θ there is an irreducible piece uα,
which is now in general not of dimension 1. When G is split and ∆ = Θ
these would be precisely the root spaces gα.

We say that G admits a Θ-positive structure if it satisfies the fol-
lowing property. For every α ∈ Θ there exists an acute convex cone
cα ⊂ uα that is invariant under the action of L◦

Θ on uα.
We prove

Theorem 1.1 (see Theorem 3.4). A simple Lie group G admits a Θ-
positive structure if and only if the pair (G,Θ) belongs to the following
list:

(1) G is a split real form, and Θ = ∆;
(2) G is Hermitian of tube type and of real rank r and Θ = {αr},

where αr is the long simple restricted root;
(3) G is locally isomorphic to SO(p + 1, p + k), p > 1, k > 1

and Θ = {α1, . . . , αp}, where α1, . . . , αp are the long simple
restricted roots;

(4) G is the real form of F4, E6, E7, or of E8 whose reduced root
system is of type F4, and Θ = {α1, α2}, where α1, α2 are the
long simple restricted roots.

The cones cα ⊂ uα, α ∈ Θ allow to define the nonnegative semigroup
U≥0
Θ to be the sub-semigroup of UΘ generated by elements exp(v), with

v ∈ cα for some α ∈ Θ.
The reader might find this a rather ad-hoc construction, but in fact

we show that the existence of a Θ-positive structure can be character-
ized geometrically in terms of positive triples in flag varieties. To give
this geometric characterization the following theorem that relates the
existence of semigroups to the existence of Θ-positive structures plays
a crucial role.
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Theorem 1.2 (see Theorem 9.1). Let G be a connected simple Lie
group. Suppose that there is U+ ⊂ UΘ such that U+ is a closed L◦

Θ-
invariant semigroup of non-empty interior, which contains no nontriv-
ial invertible element. Then G admits a Θ-positive structure and the
semigroup U+ contains the semigroup U≥0

Θ .
If we further assume that the interior of U+ is contained in the open

Bruhat cell with respect to P opp
Θ , then U+ = U≥0

Θ .

Theorem 9.2 is a variant of this result that turns out to be useful to
relate Θ-positivity with positivity in flag varieties.

1.2. The unipotent positive semigroup and the Θ-Weyl group.

Whereas the definition of the nonnegative unipotent semigroup U≥0

in Lusztig’s work is straight forward, the definition of the positive
unipotent semigroup U>0 is a bit more tricky and involves the Weyl
group W . Recall that the Weyl group is generated by elements sα,
α ∈ ∆. There is a unique longest element w0 ∈ W . To construct the
positive unipotent semigroup U>0 one fixes a reduced expression of the
longest word w0 = sαi1

· · · sαik
. Making this choice Lusztig defines a

map Fw0 : gαi1
×· · ·×gαik

→ U , (s1, . . . , sk) 7→ exp(s1) · · · exp(sk). The

image of Rk
>0 ⊂ gαi1

× · · · × gαik
under this map Fw0 is the positive

unipotent semigroup. A key point is of course to show that this image
is independent of the choice of the reduced expression. In [Lus98] this
is done by giving explicit formulas for the change of coordinates given
by a braid relation, sisi+1si = si+1sisi+1, which are positive rational
functions (see Berenstein–Zelevinsky [BZ97] for explicit formulas for
the braid relations in the case of non simply laced Dynkin diagrams).
Since any two reduced expressions of w0 are related by a sequence of
braid relations, this thus proves that the image Fw0(R

k) is independent
of the chosen reduced expression.

In order to define the positive unipotent semigroup U>0
Θ when G

admits a Θ-positive structure, the role played by the Weyl group in
Lusztig’s total positivity is replaced by what we call the Θ-Weyl group
W (Θ), a subgroup of W generated by elements σα for all α ∈ Θ. For
all α ∈ Θ which are not connected to ∆rΘ, σα is just the reflection sα.
For the unique α ∈ Θ which is connected to ∆rΘ, σα is a specific word
in the subgroup generated by {α} ∪∆r Θ. It might a priori be a bit
surprising that this subgroup W (Θ) of W is natural isomorphic to the
Weyl group of a different root system. Even more, there is a natural
embedding of a split real Lie group of type W (Θ) into G. The Θ-Weyl
group W (Θ) now plays the same role as the Weyl group in order to
parametrize and define the positive unipotent semigroup.

Theorem 1.3 (see Theorem 8.1). Given a reduced expression σγ1 · · ·σγn

of the longest element wΘ
max ∈ W (Θ), the map F : cγ1 × · · ·× cγn → UΘ,

defined as the product of the exponential map on each factor, is proper
with the following properties
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(1) F |̊cγ1×···×c̊γn is open and injective.
(2) F (̊cγ1 × · · · × c̊γn) is contained in the open Bruhat cell Ωopp

Θ with
respect to P opp

Θ . In fact, it is a connected component of Ωopp
Θ ∩

UΘ.
(3) The image F (̊cγ1 × · · · × c̊γn) is independent of the reduced ex-

pression.

We set U>0
Θ := F (̊cγ1 × · · · × c̊γn) and call it the positive unipotent

semigroup. This is justified by the following theorem.

Theorem 1.4 (see Corollary 8.16). The set U>0
Θ is a semigroup, invari-

ant by conjugation by L◦
Θ. The closure of U>0

Θ is the non-negative semi-

group U≥0
Θ , and U>0

Θ is the interior of U≥0
Θ . Furthermore, U≥0

Θ U>0
Θ ⊂

U>0
Θ and U>0

Θ U≥0
Θ ⊂ U>0

Θ .

The proof of Theorem 1.4 relies on a fine understanding of the image
of the map F relative to the Bruhat decompositions of G with respect
to PΘ and with respect to P∆.

Of course the analogous construction can be made to define the non-
negative semigroup Uopp,≥0

Θ and the positive semigroup Uopp,>0
Θ in Uopp

Θ .

With this we define the Θ-nonnegative semigroup G≥0
Θ to be the

semigroup of G generated by Uopp,≥0
Θ , U≥0

Θ , and L◦
Θ, and the Θ-positive

semigroup G>0
Θ to be the semigroup of G generated by Uopp,>0

Θ , U>0
Θ ,

and L◦
Θ.

Remark 1.5. Note that to prove these results, we do not need to es-
tablish the explicit change of coordinates with respect to changing the
reduced expression of wΘ

max by a braid relation. However, to get a finer
understanding, it is in fact interesting to write down explicit braid re-
lations. In this paper we will only shortly discuss the braid relations
in the case that G = SO(p, q) derived from explicit matrix equations.
The more general treatment of braid relations involves Θ-versions of
universal enveloping algebras, adapting the strategy in [BZ97]. This
will be appear in a forthcoming paper in which we investigate the finer
properties of the positive semigroup G>0

Θ .

1.3. Positivity on flag varieties. We now turn our attention to the
flag variety FΘ

∼= G/PΘ. There is a unique flag fΘ ∈ FΘ fixed by PΘ

and a unique flag f opp
Θ ∈ FΘ fixed by P opp

Θ . It is well known that
the set of flags that are transverse to fΘ can be parametrized by UΘ.
The positive unipotent semigroup U>0

Θ thus allows us to introduce the
notion of positive n-tuple of flags in FΘ.

A n-tuple of flags (f0, f1, . . . , fn−2, f∞) is said to be Θ-positive if there
exist an element g ∈ G and u1, . . . , un−2 ∈ U>0

Θ such that g · (f opp
Θ , u1 ·

f opp
Θ , . . . , ui · · ·u1·f opp

Θ , . . . , un−2 · · ·u1·f opp
Θ , fΘ) = (f0, f1, . . . , fn−2, f∞).

A consequence of Theorem 1.4 is
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Theorem 1.6. The set of flags U>0
Θ · f opp

Θ is a connected component
of the set of flags that are transverse to fΘ and to f opp

Θ . The stabilizer
in G of a Θ-positive triple is compact.

Let us emphasize at this point, that in order to define Θ-positivity
we start with a rather algebraic condition — the existence of invari-
ant cones which leads to the existence of semigroups in the unipotent
group UΘ. However, investigating the induced notion of positive triples
in the flag variety FΘ we obtain a geometric characterization in terms of
positive triples of flags, which we show to be equivalent to the algebraic
definition.

Remark 1.7. The set of Θ-positive triples will in general not be con-
nected, but can consist of several connected components of the set of
pairwise transverse triples of flags. In Section 10 we introduce the
notion of diamonds which turns out be very helpful to keep track of
positivity of triples and more general n-tuples of flags. Diamonds can
be considered as generalized intervals, see also [GLW21].

Note that the split real Lie groups of type Bn, Cn and F4 admit two
Θ-positive structures, one for Θ = ∆ and one for Θ being a strict subset
of ∆. We prove that the natural projection F∆ → FΘ maps positive
n-tuples to positive n-tuples (Section 10.10).

1.4. The Θ-principal sl(2) and positive circles. For split real Lie
groups it is well known that they contain a distinguished conjugacy
class of three-dimensional simple subalgebras, the principal sl(2). This
principal sl(2) plays an important role in the construction of the Hitchin
fibration on the moduli space of Higgs bundles, and in particular for
the Hitchin section and consequently the Hitchin component [Hit92].
When G admits a Θ-positive structure, we determine a specific split
real subalgebra gΘ in the Lie algebra g of G, as well as a principal
three dimensional simple subalgebra in gΘ. We call this special sl(2)
the Θ-principal sl(2). This Θ-principal sl(2) gives rise to a positive
circle in the flag variety FΘ.

In Section 11.2 we state the explicit relation between the Θ-principal
sl(2) and the magical triples considers in [BCGP+21].

1.5. Positive representations and higher rank Teichmüller spaces.

Lusztig’s total positivity on the one hand and positive semigroups in
Hermitian Lie groups of tube type on the other play an important
role in higher rank Teichmüller theory. Both, Hitchin components and
spaces of maximal representations, have been characterized as positive
representations [Lab06, Gui05, FG06, BILW05, BIW03]. At the same
time, total positivity plays an important role in the construction of
cluster coordinates by Fock and Goncharov [FG06].

As Θ-positivity realizes total positivity in split real Lie groups and
Lie semigroups in Hermitian Lie groups of tube type as two incarnations
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of the same concept, it provides an interesting systematic framework
for higher rank Teichmüller spaces. This is based on the notion of
positive n-tuples in the flag variety FΘ, which allows us to introduce
the notion of positive representations.

Let π1(S) be the fundamental group of an oriented surface of nega-
tive Euler characteristic. Then the boundary ∂∞π1(S) carries a natural
partial ordering. Given a simple Lie group G with a Θ-positive struc-
ture, we call a representation ρ : π1(S) → G Θ-positive if there exists
a ρ-equivariant map from ∂∞π1(S) to the flag variety FΘ, which sends
every positive four-tuple of points in ∂∞π1(S) to a positive four-tuple
of flags in FΘ.

In [GW18] we conjectured that the set of positive representations
form higher rank Teichmüller spaces, i.e. it is open and closed and
consists entirely of discrete and faithful representations. Using several
of the results obtained in this paper, this conjecture has been proven
to a large extent in [GLW21] and [BP21], relying partly on [Col20,
BCGP+21].

However, Θ-positivity suggest an even deeper connection between
the different families of higher rank Teichmüller spaces, including ex-
tensions of Fock–Goncharov’s construction of cluster coordinates to
spaces of positive representations. The expectation is that the cluster
coordinates for positive representations into the Lie group G with re-
spect to its Θ-positive structure provide examples of non-commutative
cluster algebras of type W (Θ). This has been proven for the symplectic
group (as a Hermitian Lie group of tube type) in [ABR+21], where ap-
propriate non-commutative coordinates give a geometric realization of
the non-commutative cluster algebra of type A1 introduced in [BR18].

For further conjectures and questions regarding Θ-positivity, we refer
the reader to [Wie18].

2. Structure of parabolic subgroups

In this section we recall background on the structure of semisimple
Lie groups and their parabolic subgroups.

Note that unless explicitely stated otherwise all vector spaces, Lie
algebras, Lie groups, and their representations are defined over R.

2.1. Cartan involution. Let G be a connected real simple Lie group
with finite center and denote by g its Lie algebra. Let k be the Lie
algebra of a maximal compact subgroup K < G. Then g = k ⊕ k⊥

where k⊥ is the orthogonal of k with respect to the Killing form B on g.
We denote by τ the Cartan involution with respect to k, it is the Lie
algebra automorphism τ : g → g whose fixed point set is k and which
is an involution; namely τ |k = id and τ |k⊥ = − id.

2.2. Restricted roots. We now choose a maximal abelian subspace a

contained in k⊥; a is called a Cartan subspace. We denote by Σ =
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Σ(g, a) the system of restricted roots, i.e. Σ ⊂ a∗ is the set of nonzero
weights for the adjoint action of a on g; the corresponding weight spaces
are denoted gα (α ∈ Σ). When α ∈ a∗, the corresponding weight space
is

gα := {X ∈ g | ad(H)(X) = α(H)X for all H ∈ a}
and is called a root space when α ∈ Σ. The weight space g0 is the
centralizer zg(a) of a in g. Also zg(a) = m⊕a, where m = zk(a) = zg(a)∩k
is the centralizer of a in k and the sum is orthogonal with respect to
the Killing form B. Therefore we have a B-orthogonal decomposition
g = m⊕ a⊕⊕

α∈Σ gα.
For every root α ∈ Σ, the intersection of gα and k is trivial (reduced

to {0}) and one has τ(gα) = g−α.
We choose Σ+ ⊂ Σ a set of positive roots, and denote by Σ− the

set of negative roots. The set of simple roots is denoted by ∆ ⊂ Σ+.
The (open) Weyl chamber corresponding to this choice will be denoted
a+ = {X ∈ a | α(X) > 0, ∀α ∈ Σ+}; its closure ā+ is called the closed
Weyl chamber.

When α and β belong to Σ, the supremums p = sup{n ∈ N |
β − nα ∈ Σ} and q = sup{n ∈ N | β + nα ∈ Σ} are finite and the
subset {β + nα}n=−p,...,q is contained in Σ and is called the α-chain
containing β. The α-chain is called trivial when p = q = 0.

The Killing form induces, by restriction and duality, a Euclidean
scalar product (·, ·) on a∗. It is well known that either all the roots
have the same norm or the set of simple roots is the disjoint union
of two nonempty subsets ∆s and ∆l with the following properties: all
the elements of ∆s have the same norm, all the elements of ∆l have
the same norm, and the norm of elements in ∆l is greater than the
norm of elements in ∆s. Elements of ∆l are called long roots, elements
of ∆s are called short roots. For α ∈ ∆l and β ∈ ∆s, one has in fact
(α, α) = 2(β, β) except in the case of type G2 where (α, α) = 3(β, β).

Note that in general the root spaces gα are not necessarily 1-dimen-
sional. In fact they are all 1-dimensional if and only if g is the Lie
algebra of a split real form.

2.3. The sl2-triples. Even though the root spaces for a semisimple
real Lie algebra are not necessarily 1-dimensional, vectors in the root
spaces lead to embeddings of three dimensional simple subalgebras.

For every root α ∈ Σ and any non-zero element X in gα, one has
B(X, τ(X)) > 0 and the Lie bracket [X, τ(X)] belongs to a; there is
furthermore a (unique) positive multiple Xα of X such that (Xα, Yα :=
τ(Xα), Hα := [Xα, τ(Xα)]) is a sl2-triple (i.e. a triple (E, F,D) such
that D = [E, F ], [D,E] = 2E, and [D,F ] = −2F ). The element Hα =
[Xα, τ(Xα)] does not depend on the initial choice of X in gα. Clearly
H−α = −Hα. In particular, for any α ∈ Σ we obtain a morphism
πα : sl2(R) → g.
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Note that when α, β, and α+β belong to Σ, one has Hα+β = Hα+Hβ .

2.4. Representations and weights. Any (continuous) representa-
tion ρ : G → GL(V ) induces a Lie algebra morphism ρ∗ : g → End(V ).
The restriction of ρ∗ to a admits a weight decomposition

V =
⊕

λ∈R(V )

Vλ

where

Vλ := {v ∈ V | ρ∗(H)(v) = λ(H)v for all H ∈ a}
R(V ) := {λ ∈ a∗ | Vλ 6= {0}}.

The representation ρ will be called even if λ(Hα) is an even integer
for all λ ∈ R(V ) and α ∈ Σ (these numbers are already known to
be integers); note that it is enough to check this for λ ∈ R(V ) and
α ∈ ∆. In classical terms this means the inclusion R(V ) ⊂ 2P where
P = {λ ∈ a∗ | λ(Hα) ∈ Z, ∀α ∈ Σ} is the weight lattice.

The highest weight of the representation ρ (when it is defined) is the
greatest element of R(V ) for the (partial) order on a∗ defined by λ ≤ µ
⇔ λ(Hα) ≤ µ(Hα) for all α ∈ Σ+. Irreducible representations always
admit a highest weight λmax and such an irreducible representation is
even if and only if λmax(Hα) ∈ 2Z for every α ∈ ∆.

A representation will be called proximal if it admits a highest weight
and if the corresponding weight space is 1-dimensional. (In this article
we will use these notions mainly for representations of the semisimple
factor of the Levi components of parabolic subgroups, see below.)

2.5. The Weyl group. The subgroup W ⊂ GL(a∗) of automorphisms
of Σ is called the (restricted) Weyl group. It is a finite Coxeter group
generated by hyperplanes reflections {sα}α∈∆ such that sα(α) = −α.

When the simple restricted roots are numbered, i.e. when ∆ =
{α1, α2, . . . , αr}, we will rather write si instead of sαi

. The group W
is a subgroup of the orthogonal group associated with the Euclidean
scalar product on a∗ induced by the Killing form B. The closed Weyl
chamber ā+ is a fundamental domain for the action of W on a. The
Weyl chamber is also the convex cone generated by {Hα}α∈∆.

The Weyl group W is isomorphic to the quotient of the normalizer
NK(a) of a in K by the centralizer CK(a). In order to define an action
of the Weyl group (and of its subgroups) on the Lie algebra g and
its subspaces, we choose elements ẇ in NK(a) lifting the elements w
of W . For α in Σ, one way to choose the lift ṡα is to use the morphism
πα : sl2(R) → g (cf. Section 2.3). We can take ṡα = exp

(

±π
2
(Xα−Yα)

)

.
With this choice, the automorphism Ad(ṡα) of g is of order 2 or 4.

The above generating set {sα}α∈∆ of W permits the definition of a
word length function ℓ : W → N. It is well known that W admits a
unique element w∆ of longest length. This element w∆ is of order 2, it
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is the element of W (that we now see as acting on a) sending the Weyl
chamber a+ to its opposite −a+.

2.6. Parabolic subgroups. Let Θ ⊂ ∆ be a subset of the set of
simple roots. We set

uΘ =
∑

α∈Σ+
Θ

gα, u
opp
Θ =

∑

α∈Σ+
Θ

g−α

where Σ+
Θ = Σ+

r Span(∆rΘ), and we set

lΘ = zg(a)⊕
∑

α∈Span(∆rΘ)

(gα ⊕ g−α) = zg(a)⊕
⊕

α∈Span(∆rΘ)∩Σ+

(gα ⊕ g−α).

The standard parabolic subgroup PΘ associated with Θ ⊂ ∆ is the
normalizer in G of uΘ; it is also the normalizer of the Lie algebra
pΘ = lΘ ⊕ uΘ; one has pΘ = Lie(PΘ) and PΘ is its own normalizer. We
also denote by P opp

Θ the normalizer in G of uoppΘ .
The group PΘ is the semidirect product of its unipotent radical UΘ :=

exp(uΘ) and the Levi subgroup LΘ = PΘ ∩ P opp
Θ . We denote by L◦

Θ

the connected component of the identity in LΘ. The Lie algebra of LΘ

is lΘ. With this convention P∅ = G and P∆ is the minimal parabolic
subgroup.

The Lie algebra lθ is stable under the Cartan involution τ and is the
Lie algebra of LΘ. The intersection kθ = lθ ∩ k is a maximal compact
subalgebra of lθ; one has

kθ = m⊕
⊕

α∈Span(∆rΘ)∩Σ+

(gα ⊕ g−α) ∩ k,(2.1)

(gα ⊕ g−α) ∩ k = {X − τ(X)}X∈gα .

The commutator subgroup SΘ = [LΘ, LΘ] of LΘ is a semisimple real
Lie group whose restricted root system is given by the Dynkin diagram1

∆rΘ. A Cartan subspace for SΘ is

aΘ =
⊕

α∈∆rΘ

RHα

and a Weyl chamber in this Cartan subspace is
∑

α∈∆rΘ R>0Hα.

1This is a disadvantage of the convention, chosen in this paper, to index the
standard parabolic subgroups that the complement of Θ has to be taken here; the
other classical indexing convention (that amounts to exchanging Θ and ∆ r Θ in
the indexation) will make the Dynkin diagram associated with the semisimple part
more transparent but in return the decomposition of the unipotent radical uΘ will
be less natural.
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2.7. The flag variety. A subgroup of G conjugated to PΘ (for some
Θ ⊂ ∆) is a parabolic subgroup. A parabolic subalgebra of g is a subalge-
bra conjugated to some pΘ, such a subalgebra will sometimes be called
of type Θ. The space of all parabolic subalgebra of type Θ is called the
flag variety (of type Θ) and denoted by FΘ. The space FΘ is a subset
of a Grassmanian variety on the real vector space g and is endowed
with the induced topology. The flag variety FΘ is compact and the con-
jugation action of G on the subalgebras of g induces a continuous and
homogenous action on FΘ that naturally identifies with G/PΘ because
PΘ is the stabilizer of pΘ; it also naturally identifies with the space of
parabolic subgroups of type Θ

Since the parabolic subalgebra p
opp
Θ is conjugate to ẇ∆p

opp
Θ ẇ−1

∆ =
pι(Θ) where ι : ∆ → ∆ is the involution α 7→ −w∆ · α, the parabolic
subalgebra p

opp
Θ is also an element of Fι(Θ). In many cases below, the

involution ι is the identity on ∆.
The group G acts diagonally on FΘ × Fι(Θ). A pair (x, y) in FΘ ×

Fι(Θ) will be called transverse if it belongs to the G-orbit of (pΘ, p
opp
Θ ).

By definition, there is one orbit of transverse pairs and this orbit is
isomorphic to G/LΘ.

2.8. The group of automorphisms of g. We will denote by Aut(g) ⊂
GL(g) the group of automorphisms of the Lie algebra g. It is a Lie
group, that is not necessarily connected, and whose Lie algebra is equal
to g since g is semisimple.

By construction the group Aut(g) acts on the Lie algebra g and also
on the flag variety FΘ as this flag variety identifies with a space of
subalgebras of g.

Equally the adjoint action induces a morphism G → Aut(g) and the
actions of G and of Aut(g) on FΘ are related by this morphism.

2.9. The action of LΘ on uΘ. The Levi subgroup LΘ acts via the
adjoint action on uΘ. Let zΘ denote the center of lΘ and tΘ = zΘ ∩ a

its intersection with the Cartan subspace. One has

tΘ =
⋂

α∈∆rΘ

kerα,

and a is the B-orthogonal sum of aΘ and of tΘ. Then uΘ decomposes
into the weight spaces under the adjoint action of tΘ; for every β ∈ t∗Θ,
set

uβ := {N ∈ g | ad(Z)N = β(Z)N, ∀Z ∈ tΘ}.
These weight spaces are of course related to those of a:

(2.2) uβ =
∑

α∈Σ, α|tΘ=β

gα,

and are invariant under L◦
Θ.
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By a little abuse of notation, for an element β in Σ, we will denote
as well by β its restriction to tΘ and hence by uβ the corresponding
weight space. For such a β, one has

uβ =
∑

α∈Σ
α−β∈Span(∆rΘ)

gα.

This notation will be particularly used for the elements β of Θ.
The following results are established in [Kos10]:

Theorem 2.1. Each of the uβ is an irreducible representation of L◦
Θ.

The relation [uβ, uβ′] = uβ+β′ is satisfied, and uΘ is generated as a Lie
algebra by uβ, β ∈ Θ. Analogously u

opp
Θ is generated by u−β, β ∈ Θ.

2.10. Examples. In these examples, we use classical notation and
numbering for the root systems as set for example in [Hel01, Ch. X,
§3–4, p. 461–475] or in [Bou68, Ch. VI, Planches and §4, no 14]

(1) Let G be a split real form, and Θ = ∆. Then tΘ = a and uβ = gβ
for all β ∈ Σ+.

(2) Let G be a Lie group of Hermitian type. Then the root system is
of type Cr if G is of tube type, and of type BCr (non-reduced) if
G is not of tube type. Let ∆ = {α1, . . . , αr}, and let Θ = {αr} so
that PΘ is the stabilizer of a point in the Shilov boundary FΘ of
the Hermitian symmetric space associated with G. Then uΘ = uαr

if G is of tube type, and uΘ = uαr
⊕ u2αr

if G is not of tube type.
(3) Let G be a Hermitian Lie group of tube type. In this case Θ = {αr},

and uΘ = uαr
is abelian. We describe uαr

in more detail when the
real rank of G is 2 or 3.

For a Hermitian Lie group of tube type of real rank 2 the roots
that are equal to α2 modulo Rα1 are α2, α1+α2, 2α1+α2 = s1(α2),
and uα2 = gα2 ⊕gα1+α2 ⊕g2α1+α2 , where dim gα2 = 1 = dim g2α1+α2 ;
the integer a = dim gα1+α2 is not necessarily equal to 1. For the
symplectic group Sp(4,R), a = 1, for SU(2, 2), a = 2, for SO∗(8),
a = 4, and for SO(2, m), a = m−2 (in fact this last family contains,
up to isogeny, the three first examples, cf. [Hel01, p. 519]). In this
case, uα2 is equipped with a quadratic form of signature (1, a + 1)
that is invariant under the adjoint action of the Levi factor.

For a Hermitian Lie group of tube type of real rank 3 the roots
that are equal to α3 modulo the span of {α1, α2} are α3, α2 +
α3, 2α2 + α3 = s2(α3), α1 + α2 + α3 = s1(α2 + α3), α1 + 2α2 + α3 =
s2s1(α2 + α3), 2α1 + 2α2 + α3 = s1s2(α3), so uα3 = gα3 ⊕ gα2+α3 ⊕
gα1+α2+α3⊕gα1+2α2+α3⊕g2α2+α3⊕g2α1+2α2+α3 , where dim gα3 = 1 =
dim g2α2+α3 = dim g2α1+2α2+α3 , and dim gα1+α2+α3 = dim gα2+α3 =
dim gα1+2α2+α3 =: a. For the symplectic group Sp(6,R), a = 1, for
SU(3, 3), a = 2, for SO∗(12), a = 4, and for E7(−25), a = 8. In
these cases, the Lie algebra uα3 can be identified with the space of
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Hermitian 3× 3 matrices, over the reals (a = 1), the complex num-
bers (a = 2), the quaternions (a = 4), and the octonions (a = 8)
respectively.

3. Θ-positive structures

In this section we give the definition of Θ-positive structures and
their classification.

3.1. Definition and characterization.

Definition 3.1. Let G be a semisimple Lie group with finite center.
Let Θ ⊂ ∆ be a subset of simple roots. We say that G admits a Θ-
positive structure if for all β ∈ Θ there exists an L◦

Θ-invariant acute
nontrivial convex cone in uβ.

Recall that a convex cone is said acute if the only vector space con-
tained in its closure is {0} and a cone is said nontrivial if it is not
contained in {0}. Note that such invariant cones must be of nonempty
interior since the action of L◦

Θ on uβ is irreducible (Theorem 2.1).

Remark 3.2. In general it is not possible to request that the cones are
invariant under the entire Levi factor LΘ. If the space uβ contains an
L◦
Θ-invariant cone, then it contains exactly two L◦

Θ-invariant cones, cβ
and −cβ, that might be exchanged by LΘ.

Remark 3.3. A semisimple Lie group G is the almost product of its
simple factors; the subgroup L◦

Θ is equally the almost product of the
corresponding Levi factors and the decomposition of the Lie algebra uΘ
under the action of L◦

Θ is also compatible with this product structure.
This implies that it is enough to classify Lie groups G admitting a

Θ-positive structure under the additional hypothesis that G is a sim-
ple Lie group. Furthermore the different structural results given in the
sequel of the paper (for the positive unipotent semigroup, for the config-
urations of positive flags, etc.) will be stated only when the group G is
simple but immediately generalize to the case of semisimple Lie groups.

Theorem 3.4. Let G be a simple real Lie group, and let ∆ be the set
of positive roots. Then G admits a Θ-positive structure if and only if
the pair (G,Θ) belongs to one of the following four cases:

(1) G is a split real form, and Θ = ∆;
(2) G is Hermitian of tube type and of real rank r and Θ = {αr},

where αr is the long simple restricted root;
(3) G is locally isomorphic to SO(p + 1, p + k), p > 1, k > 1

and Θ = {α1, . . . , αp}, where α1, . . . , αp are the long simple
restricted roots;

(4) G is the real form of F4, E6, E7, or of E8 whose reduced root
system is of type F4, and Θ = {α1, α2}, where α1, α2 are the
long simple restricted roots.
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To prove this theorem we make use of the following fact, extracted
from [Ben00, Proposition 4.7] that refines Cartan–Helgason’s theorem.

Proposition 3.5. Let S be a connected semisimple Lie group, V a
real vector space, and π : S → GL(V ) an irreducible representation.
Then S preserves an acute closed convex cone c in V if and only if the
representation π is proximal and even.

In this case, the union of c̊ and of −c̊ is exactly the set of vectors
v ∈ V whose stabilizers is a maximal compact subgroup of S; more
precisely a vector v ∈ V belongs to c̊ or to −c̊ as soon as the Lie
algebra of its stabilizer contains a maximal compact subalgebra.

We shall need to understand a version of this proposition for repre-
sentations of reductive groups.

Proposition 3.6. Let L be a connected reductive Lie group and let
S = [L, L] be its semisimple part. Let π : L → GL(V ) be an irreducible
real representation.

(1) Suppose that there is an acute π(L)-invariant cone in V , then the
restriction π|S is as well irreducible (and hence proximal and even
by the previous proposition).

(2) Suppose that π|S is irreducible, even, and proximal (and hence there
is c ⊂ V a π(S)-invariant convex cone by the previous proposition),
then the cone c is equally π(L)-invariant.

Proof. The group L is the almost direct product of Z◦, the identity
component of its center Z, and of its semisimple part S. Let us denote
by a+ a Weyl chamber in a Cartan subspace of the Lie algebra of S.

Let us prove (1). By Schur’s lemma, the algebra EndL(V ) of L-
equivariant endomorphisms of V is a skew field and is hence isomorphic
to R, C or H; in other words, V is a vector space over a potentially
bigger field and the endomorphisms π(g), for g ∈ L, are linear with
respect to this field. Since there is a π(L)-invariant acute convex cone,
the representation π is proximal [Ben00, Proposition 1.2] in the sense
that there is an element g in L such that π(g) has a unique eigen-
value of highest modulus: this eigenvalue is real and the corresponding
eigenspace is of real dimension 1. As this eigenspace is invariant by
EndL(V ) we deduce that EndL(V ) = R. Furthermore, the image π(Z◦)
is included in EndL(V ) and this means that elements π(g), for g ∈ Z◦,
are homotheties of V . We deduce from this and the fact that L is the
almost product of Z◦ and S, that a subspace of V is π(L)-invariant
if and only if it is π(S)-invariant. Since π is by hypothesis an irre-
ducible representation of L, the restriction π|S is thus an irreducible
representation of S.

We now address (2). We need to show that c is invariant under the ac-
tion of π(Z◦). Similarly as above, we can prove that the elements π(z),
for z ∈ Z◦, are homotheties of positive dilation so that π(z)c = c for
any z ∈ Z◦ since c is a cone. This implies that c is π(L)-invariant. �
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Proof of Theorem 3.4. We apply Proposition 3.6 to the connected Lie
group L◦

Θ and Proposition 3.5 to S◦
Θ = [L◦

Θ, L
◦
Θ] for the irreducible

representations πβ : L
◦
Θ → GL(uβ), β ∈ Θ.

Recall that a Cartan subspace for S◦
Θ is aΘ =

⊕

α∈∆rΘ RHα. For
this proof it will be more convenient to work with the following Weyl
chamber of S◦

Θ
∑

α∈∆rΘ

−R>0Hα

that is opposite to the natural one, or, what amounts to the same, we
shall rather consider lowest weights and not highest weights of repre-
sentations (for the natural ordering).

The decomposition of Equation (2.2), p. 11 is

uβ = gβ ⊕
⊕

α∈Σ, α6=β
α−β∈Span(∆rΘ)

gα.

By properties of the root system Σ, any α in the above formula dif-
fers from β by a linear combination of the elements in ∆ r Θ with
nonnegative coefficients. This implies that (up to the abuse consisting
of considering the above decomposition indexed by the elements in a∗Θ
rather than by elements in a∗) the above is the weight space decompo-
sition of the S◦

Θ-module uβ. As a consequence, the lowest weight of this
representation is equal to β and the corresponding weight space is gβ .

Thus the condition that πβ has to be proximal is equivalent to the
condition that the root space gβ is one-dimensional (and this should
hold for all β ∈ Θ).

The evenness condition translates into the fact that β(Hα) is even
for all β ∈ Θ and all α ∈ ∆rΘ (cf. Section 2.4).

These necessary and sufficient criteria can be easily translated into
properties of the Dynkin diagram of the system of restricted roots Σ:

(1) ∀β ∈ Θ, the root space gβ is one-dimensional. (Representation
is proximal.)

(2) ∀β ∈ Θ, the node of the Dynkin diagram with label β is either
connected to the nodes in ∆ r Θ by a double arrow pointing
towards ∆rΘ, or it is not connected to ∆rΘ at all. (Repre-
sentation is even.)

Thus either we are in the case Θ = ∆ and the multiplicity one condition
implies that G is a split real form. Or we are in the case where Θ 6= ∆
in which case every arrow from Θ to ∆rΘ has to be a double arrow.
In this case there is exactly one double arrow in the Dynkin diagram ∆
and Θ must be the set of long simple roots.

Going through the Dynkin diagrams of the system of restricted roots
for all simple real Lie groups (see e.g. [Hel01, Ch. X, § 6 and Table VI
p. 532-4]) we deduce the above list of pairs (G,Θ). �
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By the classification of Dynkin diagrams (more accurately, from the
fact that a connected Dynkin diagram admits at most one double arrow
—cf. [Hel01, Ch. X, Lemma 3.18]), we observe that for all pairs (G,Θ)
admitting a Θ-positive structures, both sets Θ and ∆rΘ are connected.
When Θ 6= ∆, there is thus a unique root, αΘ ∈ Θ which is connected to
∆rΘ. The root αΘ will be called the special root. For all α ∈ Θr{αΘ}
we have that uα = gα and dim uα = 1. For αΘ, the vector space

uαΘ
=

∑

α∈Σ+
Θ,

α|tΘ=αΘ|tΘ

gα

is of dimension greater than or equal to 2 since there is a least one
other root in Σ congruent to αΘ modulo ∆rΘ.

3.2. The invariant cones. In this section we describe the invariant
cones in uα (α ∈ Θ) in more detail.

For every α ∈ Θ, we fix an L◦
Θ-invariant closed convex cone, which

we denote by cα ⊂ uα. This cone is unique up to the action of − id (cf.
Proposition 3.5). The interior of the cone cα ⊂ uα, which is denoted
by c̊α is a homogeneous space under the action of L◦

Θ. It is an acute
cone. For all α ∈ Θ r {αΘ} we have uα ∼= R, and the cone cα can be
identified with the cone R≥0 ⊂ R. The cones cαΘ

can be explicitely
described as well.

When G is of Hermitian of tube type, the cone cαΘ
⊂ uαΘ

can be
identified with one of the cones listed in the following table:

G r uαΘ
cαΘ

Sp(2n,R) n Sym(n,R) Sym≥0(n,R)
SU(n, n) n Herm(n,C) Herm≥0(n,C)
SO∗(4n) n Herm(n,H) Herm≥0(n,H)
EVII = E7(−25) 3 Herm(3,O) Herm≥0(3,O)
SO(2, 1 + k) 2 (R1,k, q1,k) {v ∈ R

1,k | v1 ≥ 0, q1,k(v) ≥ 0}
Table 1. The cones in the Hermitian cases; r is the real
rank of G

When G = SO(p+1, p+k), then uαi
∼= R for 1 ≤ i ≤ p−1, αΘ = αp,

and uαΘ
∼= (R1,k, q1,k) with cαΘ

= {v ∈ R
1,k | v1 ≥ 0, q1,k(v) ≥ 0} (q1,k

denotes the standard quadratic form of signature (1, k) on R
1+k).

When G is one group in the exceptional family with restricted Dynkin
diagram of type F4, then uα1

∼= R, and uα2 and the cone cα2 are given
by the following:

3.2.1. Homogeneity. The explicit description of the invariant cones eas-
ily implies the following proposition; this statement could also be estab-
lished with Lie algebra techniques in the spirit of the next paragraph
and independently of the classification.
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G uα2 cα2

FI = F4(4) Sym(3,R) Sym≥0(3,R)
EII = E6(2) Herm(3,C) Herm≥0(3,C)
EVI = E7(−5) Herm(3,H) Herm≥0(3,H)
EIX = E8(−24) Herm(3,O) Herm≥0(3,O)

Table 2. The nontrivial cone for groups in the excep-
tional family

Proposition 3.7. Let, for each α in Θ, cα be an L◦
Θ-invariant acute

convex cone in uα and let c̊α be its interior. Then the diagonal action
of L◦

Θ on
∏

α∈Θ c̊α is transitive and proper. More precisely the stabilizers
are maximal compact subgroups of L◦

Θ so that
∏

α∈Θ c̊α is a model of
the symmetric space associated to L◦

Θ.

3.2.2. Homogeneity under the group of automorphisms of g. We prove
here that the choices of the cones cα in uα (α ∈ Θ) is unimportant up
to the action of the group Aut(g). Precisely, we have

Proposition 3.8. For every {εα}α∈Θ in {±1}Θ, there is an element g
in Aut(g) such that

• for every α in Θ, the restriction g|uα is εα id.

One can even choose g such that

• the restriction g|g0 is + id, and
• for every α in Θ, there restriction g|u−α

is εα id.

Proof. Let us try to find g defined by g|gγ = µγ id for every γ in Σ ∪
{0} where µγ = ±1. The family {µγ} should satisfy the following
properties:

(1) For all γ and γ′ in Σ∪ {0} such that γ + γ′ belongs to Σ∪ {0},
µγ+γ′ = µγµγ′ (so that g is indeed an automorphism of g).

(2) One has µ0 = 1 and, for every α ∈ Θ and every γ in Σ that is
congruent to ±α modulo the span of ∆rΘ, µγ = εα.

For this we will define {µγ}γ∈Σ∪{0} to be the restriction to Σ ∪ {0} of
a group homomorphism φ : Span

Z
(∆) → {±1}. The property (1) is

then obviously satisfied as well as the equality µ0 = φ(0) = 1 and the
property (1) will be satisfied as well if φ is chosen so that

• φ(α) = εα for all α in Θ and φ(α) = 1 for all α in ∆rΘ. �

As a corollary of the two previous propositions we get

Corollary 3.9. The Levi factor of the parabolic subgroup of Aut(g)
associated with Θ acts transitively on

∏

α∈Θ

(

c̊α ∪ −c̊α
)

.

Remark 3.10. It is an interesting question to determine the orbits of
LΘ on the product

∏

α∈Θ

(

c̊α ∪ −c̊α
)

. For the cases not corresponding
to total positivity (i.e. when Θ 6= ∆), one has the following result:



18 O. GUICHARD AND A. WIENHARD

• When ♯Θ is even, the action of LΘ on
∏

α∈Θ

(

c̊α ∪ −c̊α
)

is tran-
sitive,

• When ♯Θ is odd, this action has two orbits.

3.3. Putting a hand on elements in the cones. We explain in this
paragraph an explicit construction of elements in the cones c̊α from
“standard” elements presenting the Lie algebra g. This will allow us
to construct what we call a Θ-base, which gives rise to a split real
Lie algebra gΘ < g (see Section 5) and a special sl2-triple in g (see
Section 11). To start we consider the following:

• for each α ∈ Θ, we choose once for all an element Xα in gα
such that, setting X−α = τ(Xα) and Hα = [Xα, X−α], the triple
(Xα, X−α, Hα) is an sl2-triple (cf. Section 2.3).

Since gα is of dimension 1, the element Xα is determined uniquely up
to sign.

For α 6= αΘ we have uα = gα, and thus (up to sign) we have that
Xα ∈ c̊α. For α = αΘ, we use the element Z0 := Xα ∈ gα as a starting
point to define a new element XαΘ

∈ c̊αΘ
, using the action of the Weyl

group of SΘ.
From the classification result (Theorem 3.4) we know that the semi-

simple Lie group SΘ is of type Ad where d is the cardinality of ∆rΘ.
In other words, we can enumerate ∆ rΘ = {χ1, . . . , χd} so that χ1 is
connected (by a double arrow) to the root αΘ and, for all i = 1, . . . , d−1,
χi is connected to χi+1. The corresponding reflections in the Weyl
group W will be denoted by s1, . . . , sd.

One has thus the following equalities:

s1(αΘ) = αΘ + 2χ1, si(αΘ) = αΘ for i > 1,

si(χi−1) = χi−1 + χi, si−1(χi) = χi + χi−1 for i > 1,

si(χi) = −χi for i ≥ 1,

si(χj) = χj if |i− j| > 1.

Lemma 3.11. The elements in the orbit of the special root αΘ under
the group W∆rΘ = 〈s1, . . . , sd〉 are the following:

γ0 = αΘ

γ1 = αΘ + 2χ1 = s1(αΘ)

γ2 = αΘ + 2χ1 + 2χ2 = s2s1(αΘ)

· · ·
γi = αΘ + 2χ1 + · · ·+ 2χi = si · · · s1(αΘ)

· · ·
γd = αΘ + 2χ1 + · · ·+ 2χd = sd · · · s1(αΘ).

In particular, those roots are equal to αΘ modulo the span of χ1, . . . , χd,
i.e. gγi ⊂ uαΘ

for all i.
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Proof. From the identities given before the lemma, one deduces

si(γk) = γk when |k − i| > 2

si(γi−1) = γi, si(γi) = γi−1 for i = 1, . . . , d

si(γi+1) = γi+1 for i = 1, . . . , d− 1.

From this we directly observe that the reflections s1, . . . , sd stabilize
the set {γ0, . . . , γd} and act transitively on it, hence the result since
W∆rΘ is generated by s1, . . . , sd. �

Recall (see Section 2) that we chose elements ṡi of G lifting the
elements si of W .

Proposition 3.12. The elements Z0 = Xα ∈ gαΘ
and

Z1 = Ad(ṡ1)Z0, Z2 = Ad(ṡ2)Z1, . . . , Zd = Ad(ṡd)Zd−1

do not depend on the choices of the lifts ṡi. They all belong to uαΘ
,

and are the elements of the orbit of Z0 under the group generated by
{ṡ1, . . . , ṡd}.
Proof. We use the notation introduced in the previous lemma.

By naturality one has that Ad(ṡi)gα = gsi(α). Therefore, for all
k = 0, . . . , d, Zk belongs to gγk which is contained in uαΘ

.
For each i = 1, . . . , d, let Xi in gχi

be such that, setting Yi = τ(Xi)
and Hi = [Xi, Yi], the triple (Xi, Yi, Hi) is an sl2-triple. Let also si be
the subalgebra of g generated by Xi, Hi, and Yi.

Among {γ0, γ1, . . . , γd}, the only elements contained in a nontrivial
χi-chain are γi−1 and γi. Furthermore, the chain containing them is
γi−1, γi−1 + χi, γi−1 + 2χi = γi. This means in particular that

gγi−1
⊕ gγi−1+χi

⊕ gγi

is invariant under the adjoint action of si and that the lowest weight
space for this action is the 1-dimensional space gγi−1

. Together with
the fact that γi−1(Hi) = −2, one gets that the si-module Wi generated
by gγi−1

is the irreducible 3-dimensional si-module.

Since furthermore Ad(ṡi) = exp
(

±π
2
ad(Xi−Yi)

)

(where the choice of
the lift ṡi influences the sign and could be the source of undeterminacy)
and since the action of exp(π(Xi − Yi)) is trivial on the irreducible 3-
dimensional module, we deduce (by induction on i) that Zi does not
depend on the choice of the lifts ṡj. Also the relation Ad(ṡi)Zi = Zi−1

follows and, with a similar but simpler argument, Ad(ṡi)Zk = Zk for
k 6= i − 1, i. From this the statement about the orbit of Z0 follows
readily. �

From this proposition we deduce

Theorem 3.13. With the notation of Proposition 3.12, the element
EαΘ

of uαΘ
defined by

EαΘ
:= Z0 + Z1 + · · ·+ Zd,



20 O. GUICHARD AND A. WIENHARD

which is the sum of the elements in the orbit of Z0 ∈ gαΘ
under the

action of the group W∆rΘ, belongs to the L◦
Θ-invariant open cone c̊α.

Proof. By Proposition 3.5 it is enough to show that the Lie algebra of
the stabilizer of Z0 + · · ·+ Zd contains kΘ. We already know that this
sum is invariant under the (lifted) action of the Weyl group W∆rΘ.

From this already known invariance and from the fact that the Lie
group SΘ is of type Ad and since in type A all the roots are in the same
Weyl group orbit, it is enough to establish the invariance by {X−τ(X) |
X ∈ gχ1} and the invariance by m = zk(a) (cf. Equation (2.1), p. 10).

The root space gαΘ
is a 1-dimensional representation of the (compact)

Lie algebra m and is thus the trivial representation. Hence the stabi-
lizer of Z0 contains m. By equivariance under the Weyl group W∆rΘ

we deduce that, for all k = 0, . . . , d, the stabilizer of Zk contains m.
Therefore the stabilizer of Z0 + · · ·+ Zd contains m.

Let now X be an element of gχ1, and let Y = τ(X). We want to
show that the stabilizer of Z0 + · · · + Zd contains X − Y . As the
conclusion holds trivially if X = 0, we can assume that X is non zero.
Up to multiplying X by a positive real number, we can assume that
(X, Y, [X, Y ]) is an sl2-triple. Denote by s the Lie algebra it generates.
By Proposition 3.12 and the analysis performed in its proof we know
that the s-module generated by Z0 contains Z1 = Ad(ṡ1)Z0 and is
the irreducible 3-dimensional s-module. Explicit knowledge of the 3-
dimensional irreducible sl2-module shows directly that the stabilizer of
Z0 + Z1 contains X − Y . By similar arguments, for every k = 2, . . . , d,
the stabilizer of Zk contains X − Y . From this we have the sought
for result: {X − τ(X) | X ∈ gχ1} is included in the stabilizer of
Z0 + · · ·+ Zd. �

Note that the elements Zi pairwise commute.

Lemma 3.14. For every i, j in {0, . . . , d}, the Lie bracket [Zi, Zj] is
zero.

Proof. For every i, j ∈ {0, . . . , d} the non zero weight γi + γj is not a
root, thus gγi+γj = {0}. Since [Zi, Zj] belongs to gγi+γj , the conclusion
follows. �

Example 3.15. We illustrate the construction of the elements above
in the example when G = Sp(2n,R) and Θ = {αn}. In this case
uαΘ

naturally identifies with Symn(R), the space of real n × n sym-
metric matrices and W∆rΘ is isomorphic to the symmetric group Sn

acting on Symn(R) by conjugation by the corresponding permutation
matrices and d = n − 1. We use the standard basis (Ei,j)1≤i,j≤n of
Mn(R) (the only non zero coefficient of Ei,j is in place (i, j) and is
equal to 1) so that {Ei,i}i ∪ {Ei,j + Ej,i}i<j is a basis of Symn(R).
The root space gαn

is equal (as a subspace of uαΘ
≃ Symn(R)) to

the line generated by E1,1. Thus, one can take Z0 = E1,1 and one
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has Z1 = E2,2, . . . , Zi = Ei+1,i+1, . . . , Zn−1 = En,n. Hence the sum
Eαn

= Z0 + · · ·+ Zn−1 is the identity matrix of Symn(R).

Note that if Eα ∈ c̊α is the element determined by choosing Xα ∈ gα,
then the element in uα determined by choosing −Xα ∈ gα is −Eα ∈
−c̊α. In completely analogous way, the choice of the element Yα ∈ g−α

determines an element Fα ∈ c̊oppα .

Definition 3.16. Let Eα ∈ c̊α, Fα ∈ c̊oppα be the elements constructed
as above, and set Dα := [Eα, Fα] for all α ∈ Θ. Then the family
(Eα, Fα, Dα)α∈Θ is called a Θ-base of g.

Remark 3.17. In the case when Θ = ∆, i.e. when G is a split real group,
the elements {Eα, Fα, Dα}α∈∆ are up to normalization the Chevalley or
Cartan–Weyl basis of g.

4. The Θ-Weyl group

This section starts the first investigation of the specific algebraic
properties that arise when a simple Lie group G admits a Θ-positive
structure. Here we focus on the Θ-Weyl group, a specific subgroup
of the Weyl group of G whose generators are chosen with respect to
the Bruhat decomposition (cf. Section 7). The Θ-Weyl group will be
crucial in the parametrization of the unipotent positive semigroup (cf.
Section 8).

Let W be the Weyl group of G. Recall that the generators corre-
sponding to the simple roots α ∈ ∆ are denoted by sα, and that ℓ(w)
is the length of an element w with respect to this generating set.

4.1. Longest elements and some involutions. Let again W∆rΘ be
the subgroup generated by sα with α ∈ ∆rΘ (for a subset F of ∆ the
subgroup generated by {sα}α∈F will be denoted by WF ). We denote
by w∆ the longest length element in W , and by w∆rΘ the longest length
element in W∆rΘ.

Lemma 4.1. [BT87, Proposition 3.9] The element wΘ
max ∈ W defined

by the equality

w∆ = wΘ
maxw∆rΘ

satisfies ℓ(w∆) = ℓ(wΘ
max) + ℓ(w∆rΘ). Furthermore wΘ

max is the unique
element of minimal length in the coset w∆W∆rΘ.

We want to apply this lemma when we consider the Weyl group asso-
ciated to the diagram {αΘ}∪∆rΘ ⊂ ∆. The Weyl group W{αΘ}∪∆rΘ

is naturally a subgroup of W . Applying Lemma 4.1 we then get the
following corollary.

Corollary 4.2. The element σαΘ
∈ W{αΘ}∪∆rΘ defined by the equality

w{αΘ}∪∆rΘ = σαΘ
w∆rΘ
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satisfies ℓ(w{αΘ}∪∆rΘ) = ℓ(σαΘ
)+ℓ(w∆rΘ), it is the element of minimal

length in the coset w{αΘ}∪∆rΘW∆rΘ.

Remark 4.3. Note that the Dynkin diagram {αΘ} ∪ ∆ r Θ is of type
Cd+1 where d is the cardinality of ∆rΘ.

We now establish that the above elements are of order 2:

Lemma 4.4. (1) The elements wΘ
max and σαΘ

are of order 2.
(2) Let W = 〈sα〉α∈∆ be a finite Coxeter group, let w∆ ∈ W be its

longest length element, and let α 7→ ᾱ be the involution of ∆ defined
by the equalities w∆sαw

−1
∆ = sᾱ. Let also Θ ⊂ ∆ be invariant by the

involution α 7→ ᾱ and denote by w∆rΘ the longest length element
of the finite Coxeter group 〈sα〉α∈∆rΘ. Finally set wr = w∆w

−1
∆rΘ.

Then
(a) The elements w∆ and w∆rΘ are of order 2.
(b) One has w∆w∆rΘw

−1
∆ = w∆rΘ.

(c) The element wr is of order 2 and commutes with w∆ and
with w∆rΘ.

Proof. For the item (1) we observe that in those cases, the involution
α 7→ ᾱ is the identity (this is always the case when a Dynkin diagram
has a multiple arrow), hence the result follows from item (2).

Let us prove (2). Point (2a) is classical and follows from the fact
that the inverse of a reduced expression of w∆ is a reduced expression
of w−1

∆ and hence uniqueness of the longest length element implies the
equality w−1

∆ = w∆. Point (2b) follows from the fact that if sα1 · · · sαN
is

a reduced expression of w∆rΘ then sᾱ1 · · · sᾱN
is a reduced expression of

w∆w∆rΘw
−1
∆ and hence the equality w∆w∆rΘw

−1
∆ = w∆rΘ holds again

from the uniqueness of the longest length element. Point (2c) is now an
immediate consequence of (2a) and (2b) and the definition of wr. �

4.2. The Θ-Weyl group and its generators.

Definition 4.5. We define the Θ-Weyl group to be the subgroup W (Θ)
of W generated by sα for all α ∈ Θ r {αΘ}, and σαΘ

; this generating
set is denoted by R(Θ).

Notation 4.6. In order to have more uniform notation later, we set,
for every α ∈ Θr {αΘ}, σα = sα. Hence R(Θ) = {σα}α∈Θ

Observe that when Θ = ∆ (hence when αΘ is not defined) one has
W (Θ) = W .

The next proposition shows that W (Θ) is a Coxeter group, even
more it is isomorphic to a Weyl group of a different root system.

Proposition 4.7. Let G be a simple Lie group admitting a Θ-positive
structure. Then (W (Θ), R(Θ)) is a Coxeter system of the following
type:
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(1) If G is a split real form and Θ = ∆, (W (Θ), R(Θ)) has the same
type as G.

(2) If G is of Hermitian tube type and of real rank r and if Θ = {αr},
then (W (Θ), R(Θ)) is of type A1.

(3) If G is locally isomorphic to SO(p + 1, p + k), p > 0, k > 1, and
Θ = {α1, . . . , αp}, then (W (Θ), R(Θ)) is of type Bp.

(4) If G is the real form of F4, E6, E7, or of E8, whose reduced root
system is of type F4, and Θ = {α1, α2}, then (W (Θ), R(Θ)) is of
type G2.

Proof. The proof follows from a case by case consideration.

(1) When G is a split real form, then Θ = ∆, then R(Θ) = {sα}α∈∆,
hence W (Θ) = W .

(2) Let G be of real rank r and of Hermitian tube type, and let
Θ = {αr} = {αΘ}. Consequently W (Θ) is generated by the single
order 2 element σαΘ

, thus the result.
(3) When G is locally isomorphic to SO(p + 1, p + k), p > 0, k > 1,

and Θ = {α1, . . . , αp}, one has αΘ = αp, and ∆ r Θ = {αp+1}.
The group W{αΘ}∪∆rΘ is the group generated by sp and sp+1 (re-
call that we write si instead of sαi

) and its longest length ele-
ment is wαΘ∪∆rΘ = spsp+1spsp+1. Since w∆rΘ = sp+1 and σαΘ

=
wαΘ∪∆rΘw

−1
∆rΘ we get that σαΘ

= spsp+1sp. Appendix A identifies
W{αΘ∪∆rΘ} (and its generating set) with the group of signed permu-
tation matrices of size p+ 1 (and its standard generating set); this
appendix also determines the pair (W (Θ), R(Θ)) which naturally
identify with the group of signed permutation matrices of size p
(and its standard generating set). This shows the result.

(4) When G is the real form of F4, E6, E7, E8, whose restricted root
system is of type F4, then Θ = {α1, α2} with αΘ = α2, and ∆rΘ =
{α3, α4}. We write si for sαi

and σ2 for σα2 . The following identities
are proved in Appendix B: σ2 = s2s3s4s2s3s2 and s1σ2s1σ2s1σ2 =
σ2s1σ2s1σ2s1 from which we deduce that W (Θ) is of type G2. �

4.3. The longest element of W (Θ).

Proposition 4.8. Let G be a simple Lie group admitting a Θ-positive
structure. Let w∆ be the longest length element in W , w∆rΘ the longest
length element in W∆rΘ, and wΘ

max = w∆w
−1
∆rΘ so that wΘ

max is the
unique element of minimal length in the coset w∆W∆rΘ (Lemma 4.1).
Then

(1) The elements wΘ
max and w∆rΘ commute: wΘ

maxw∆rΘ = w∆rΘw
Θ
max.

(2) The element wΘ
max belongs to W (Θ) and is the longest length ele-

ment of the Coxeter system (W (Θ), R(Θ)).

Proof. Property (1) was already noticed in Lemma 4.4.
We prove the property (2) by a case by case analysis.
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(1) In the case when G is a split real simple Lie group there is nothing
to prove.

(2) When G is a simple Lie group of Hermitian tube type, then wΘ
max =

σαΘ
, which is the longest length element in W (Θ) that is of type A1.

(3) When G = SO(p+1, p+k), p > 0, k > 1, ∆ = {α1, . . . , αp+1}, Θ =
{α1, . . . , αp} and ∆rΘ = {αp+1}. Writing as usual si for sαi

and for
short σp for σαp

(and σi = si for i < p), one has w∆rΘ = sp+1 and
a direct calculation performed in Appendix A gives the following
reduced expression for the longest length element w∆ (we adopt
here the notation xy = y−1xy in a group, one has thus (xy)z = xyz

and σp = s
sp
p+1):

w∆ = s
sp···s1
p+1 s

sp···s2
p+1 · · · sspsp−1

p+1 s
sp
p+1 sp+1(4.1)

wΘ
max = s

sp···s1
p+1 s

sp···s2
p+1 · · · sspsp−1

p+1 s
sp
p+1(4.2)

= σsp−1···s1
p σsp−1···s2

p · · ·σsp−1
p σp

= σσp−1···σ1
p σσp−1···σ2

p · · ·σσp−1
p σp.

In particular we get that wΘ
max belongs to W (Θ) and is the longest

length element of the Coxeter system (W (Θ), R(Θ)) of type Bp.
(4) When G is the real form of F4, E6, E7, E8, whose reduced root sys-

tem is of type F4, we have that ∆ = {α1, α2, α3, α4}, Θ = {α1, α2}
and ∆ r Θ = {α3, α4}. We write again si for sαi

, σ2 for σα2 , and
σ1 = s1. By Appendix B, σ2 = s2s3s4s2s3s2 = (s4s2)

s2s3 ; one has
w∆rΘ = ss34 and a direct calculation given in Appendix B gives the
following reduced expression for the longest length element

w∆ = (s4s2)
s2s3 s1 (s4s2)

s2s3 s1 (s4s2)
s2s3 s1 s

s3
4 ,(4.3)

thus

wΘ
max = (s4s2)

s2s3 s1 (s4s2)
s2s3 s1 (s4s2)

s2s3 s1(4.4)

= σ2σ1σ2σ1σ2σ1

this is precisely the longest length element of (W (Θ), R(Θ)) which
is of type G2. �

The previous proof also gives the following information about re-
duced expressions of elements in W (Θ).

Lemma 4.9. Let x be in W (Θ). Let σα1 · · ·σαk
be a reduced expression

of x in (W (Θ), R(Θ)). For each i between 1 and k let ni = ℓ(σα1)+· · ·+
ℓ(σαi

) (and set n0 = 0) and let sβni−1+1 · · · sβni
be a reduced expression

of σαi
in (W,∆). Then

sβ1 · · · sβnk

is a reduced expression of x in (W,∆).

Remark 4.10. Note that, when αi 6= αΘ, one has σαi
= sαi

and ni =
ni−1 + 1.
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Proof. Since σα1 · · ·σαk
is a prefix of a reduced expression of the longest

length element wΘ
max of (W (Θ), R(Θ)) and since prefixes of reduced

expressions in (W,∆) are again reduced expressions, it is enough to
prove the result for x = wΘ

max.
Rephrasing the question, it is enough to find a prefix of a reduced ex-

pression of w∆ and, in it, find successive expressions of elements that be-
long to R(Θ) that form together a reduced expression (in (W (Θ), R(Θ)))
of wΘ

max. We proceed now with a case by case analysis.
The result is obvious in the split case or in the Hermitian tube

type case. For the case of orthogonal groups, the reduced expression
of w∆ is found in Equation (4.1) and the prefix producing wΘ

max is in
Equation (4.2). For the F4 case the meaningful equations are (4.3)
and (4.4). �

The Θ-Weyl group W (Θ) and the reduced expression of its longest
element will be important to parametrize the positive semigroup. Be-
fore we describe this, we will emphasize the existence of a real split
subgroup of G that is of type W (Θ) (Section 5).

4.4. The Θ-length. We introduce now a function on the Weyl group W
that depends on Θ ⊂ ∆ and that has good properties when G admits
a Θ-positive structure.

Definition 4.11. The Θ-length is the biggest subadditive function

ℓΘ : W → N

such that ℓΘ(sα) = 1 for every α in Θ and ℓΘ(sα) = 0 for every α
in ∆rΘ.

More concretely, for every w in W , ℓΘ(w) is the minimal number of
occurrences of elements in {sα}α∈Θ when w is written as an expression
in the generating set {sα}α∈∆; in formula this gives

(4.5) ℓΘ(w) = min
{

k ∈ N | ∃N ∈ N, (α1, . . . , αN) ∈ ∆N with

w = sα1 · · · sαN
and k = ♯{j ≤ N | αj ∈ Θ}

}

.

Furthermore, for every function f : W → N such that f(ab) ≤ f(a)+
f(b) for every a, b in W (that is, f is subadditive) and such that f(sα) =
1 if α ∈ Θ and f(sα) = 0 if α ∈ ∆rΘ, then f ≤ ℓΘ.

When Θ = ∆, the Θ-length coincides with the length function on W
already introduced.

Lemma 4.12. The function ℓΘ is invariant under the subgroup W∆rΘ

generated by {sα}α∈∆rΘ: for every w ∈ W and every x ∈ W∆rΘ one
has ℓΘ(w) = ℓΘ(xw) = ℓΘ(wx).

Proof. By symmetry we will prove the equality only for right multipli-
cation by W∆rΘ.



26 O. GUICHARD AND A. WIENHARD

Let us show first that, for every w ∈ W and every x ∈ W∆rΘ,

ℓΘ(wx) ≤ ℓΘ(w).

Let N ∈ N and (α1, . . . , αN) ∈ ∆N be such that w = sα1 · · · sαN
and

ℓΘ(w) = ♯{j ≤ N | αj ∈ Θ}. Let also (αN+1, . . . , αM) ∈ (∆ r Θ)M−N

be such that x = sαN+1
· · · sαM

. With this, one has wx = sα1 · · · sαM

and ♯{j ≤ M | αj ∈ Θ} = ℓΘ(w) and thus ℓΘ(wx) ≤ ℓΘ(w).
Applying the above bound to the pair (wx, x−1) replacing (w, x), we

obtain ℓΘ((wx)x
−1) ≤ ℓΘ(wx) and hence the sought for equality since

(wx)x−1 = w. �

A direct reformulation is

Corollary 4.13. The Θ-length factors through the quotient

W∆rΘ\W/W∆rΘ

of W by the left-right action of W∆rΘ.

Lemma 4.14. Suppose that G admits a Θ-positive structure. The
minimum in Equation (4.5) is then achieved on reduced expressions;
more precisely, for every w ∈ W and for every (α1, . . . , αℓ(w)) ∈ ∆ℓ(w)

such that w = sα1 · · · sαℓ(w)
, one has

ℓΘ(w) = ♯{j ≤ ℓ(w) | αj ∈ Θ}.
Proof. For this proof we will denote, for every N ∈ N and every
(α1, . . . , αN) ∈ ∆N , by ℓ̂Θ(α1, . . . , αN) the number of occurrences of
elements in Θ in this finite sequence:

ℓ̂Θ(α1, . . . , αN) = ♯{j ≤ N | αj ∈ Θ}.
This function is additive:

ℓ̂Θ(α1, . . . , αN , αN+1, . . . , αM) = ℓ̂Θ(α1, . . . , αN) + ℓ̂Θ(αN+1, . . . , αM).

For an element w of W , one has, by definition, that ℓΘ(w) is the

infimum of the ℓ̂Θ(α1, . . . , αN) for (α1, . . . , αN) varying among the ex-
pressions of w: w = sα1 · · · sαN

.
If N ′ ≤ N and (α′

1, . . . α
′
N ′) is obtained form (α1, . . . , αN) by remov-

ing some of the entries, then ℓ̂Θ(α
′
1, . . . α

′
N ′) ≤ ℓ̂Θ(α1, . . . , αN).

If (α1, . . . , αN) and (β1, . . . , βN) differ by a braid relation then

ℓ̂Θ(α1, . . . , αN) = ℓ̂Θ(β1, . . . , βN).

Indeed, by the additivity of the function ℓ̂Θ on expressions, one needs
to check this equality only in the case when N = mα,α′ is the order of
sαsα′ (α, α′ ∈ ∆) and one has (αj, βj) = (α, α′) for every odd j ≤ N
and (αj , βj) = (α′, α) for every even j ≤ N . When α and α′ both

belong to Θ, we have ℓ̂Θ(α1, . . . , αN) = N and ℓ̂Θ(β1, . . . , βN) = N ;

When α and α′ both belong to ∆rΘ, we have ℓ̂Θ(α1, . . . , αN) = 0 and

ℓ̂Θ(β1, . . . , βN) = 0. The last case to consider (up to exchanging the 2
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sequences) is when α belongs to Θ and α′ belongs to ∆ r Θ; in this
case, we know that N = mα,α′ is even (cf. Theorem 3.4) and we have

ℓ̂Θ(α1, . . . , αN) = N/2 and ℓ̂Θ(β1, . . . , βN) = N/2. In every case, the

equality ℓ̂Θ(α1, . . . , αN) = ℓ̂Θ(β1, . . . , βN) holds.
The conclusions of the lemma follow from these remarks since:

• from every expression of w one can deduce a reduced expression
by applying successively a finite number of braid relations or
removing subexpressions of the form (α, α) (α ∈ ∆), and

• two reduced expressions of w can be obtained from one another
by applying successively a finite number of braid relations. �

The Θ-length gives a simple characterization of W∆rΘ.

Lemma 4.15. The subgroup W∆rΘ is the set of elements of zero Θ-
length:

W∆rΘ = {x ∈ W | ℓΘ(x) = 0}.
Proof. Indeed, for any x in W , the following are equivalent:

• ℓΘ(x) = 0
• there exist N ∈ N and α1, . . . , αN in ∆ such that x = sα1 · · · sαN

and {i ∈ {1, . . . , N} | αi ∈ Θ} = ∅,
• there exist N ∈ N and α1, . . . , αN in ∆ r Θ such that x =
sα1 · · · sαN

,
• x belongs to W∆rΘ. �

4.5. Normalizer.

Proposition 4.16. The group W (Θ) normalizes W∆rΘ:

W (Θ) ⊂ NW (W∆rΘ) = {x ∈ W | xW∆rΘx
−1 = W∆rΘ}.

Proof. Since N = NW (W∆rΘ) is a subgroup and since W (Θ) is gener-
ated by R(Θ), it is enough to prove that R(Θ) is contained in N .

Let α be in Θ. If α 6= αΘ, it means that there are no arrows in
the Dynkin diagram between α and ∆ r Θ; thus σα = sα commutes
with sβ for every β in ∆rΘ, this means that σα centralizes W∆rΘ and
in particular σα belongs to N .

If α = αΘ, then σα = w{αΘ}∪∆rΘw∆rΘ (cf. Corollary 4.2). It is
therefore enough to notice that w{αΘ}∪∆rΘ belongs to N . However we
know that in this situation the element w{αΘ}∪∆rΘ is in the center of
W{αΘ}∪∆rΘ, in particular it centralizes W∆rΘ and belongs to N . �

5. The split group of type W (Θ)

This section continues the investigation of the special algebraic prop-
erties arising from a Θ-positive structure. Here show the existence of
a real split Lie subalgebra on g. Besides being remarkable, this subal-
gebra will play a crucial role in some arguments (Section 8.7).
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In Section 3.3 we constructed a Θ-base (Eα, Fα, Dα)α∈Θ, with Eα

belonging to c̊α and Fα belonging to c̊oppα for α ∈ Θ. The aim of this
section is to prove that the Lie subalgebra gΘ generated by elements
of the Θ-base (Eα, Fα, Dα)α∈Θ is a split real Lie algebra of type W (Θ).
More precisely one has

Theorem 5.1. Let V = (Vα)α∈Θ belong to
∏

α∈Θ(̊cα ∪ −c̊α). Then
there exists a maximal compact subgroup H of G such that H ∩ L◦

Θ is
the stabilizer of V in L◦

Θ.
For every such H, let σ : g → g be the associated Cartan involution.

Then the Lie algebra generated by {Vα, σ(Vα)}α∈Θ is isomorphic to the
real split Lie algebra of type W (Θ).

Proof. Changing one component Vα of V to −Vα does not affect the
hypothesis nor the conclusion; hence we can as well assume that V be-
longs to

∏

α∈Θ c̊α.
Note that the conclusion of the theorem is plainly satisfied in the

split case for which one has W (Θ) = W and Vα = Eα for every α in ∆
(in this case, one chooses H to be the maximal compact subgroup K of
Section 2 so that σ is the Cartan involution fixed in Section 2.1). The
Lie algebra generated by {Vα, σ(Vα)}α∈∆ is then equal to g.

The case when ♯Θ = 1 (Hermitian groups) is also easy to deal with.
By the transitivity of the action of L◦

Θ on
∏

α∈Θ c̊α (Proposition 3.7)
it is enough to prove the result for one specific element in this product
of cones.

We can thus assume that, for every α in Θ, Vα = Eα (cf. Defi-
nition 3.16). We already observed (Theorem 3.13) that the Lie al-
gebra of the stabilizer of E = (Eα)α∈Θ contains the Lie algebra of
K ∩ L◦

Θ; therefore (cf. Proposition 3.5) the stabilizer of E in L◦
Θ is

equal to K ∩ L◦
Θ. The Cartan involution associated with the chosen

compact subgroup K of Section 2 is denoted by τ . As above (Defini-
tion 3.16) we set Fα = τ(Eα) and Dα = [Eα, Fα] (α ∈ Θ). We will
prove the conclusion wih H = K and σ = τ .

Let also Z0, . . . , Zd (where d = ♯∆ r Θ) be the elements given in
Section 3.3 and Theorem 3.13 so that EαΘ

= Z0 + · · · + Zd belongs
to the cone c̊αΘ

, and for each k = 0, . . . , d, setting Yk = τ(Zk) and
Dk = [Zk, Yk], the triple (Zk, Yk, Dk) is an sl2-triple. We observe that,
since the lifts ṡk belong to K and since Zk = Ad(ṡk)Zk−1, the relations
Yk = Ad(ṡk)Yk−1 and Dk = Ad(ṡk)Dk−1 hold.

For the rest of this proof we will write Θ = {α1, . . . , αp} (with p the
cardinality of Θ) with αp = αΘ and, for all i = 1, . . . , p−1, αi and αi+1

are connected in the Dynkin diagram.
In order to deduce that the Lie algebra generated by {Eα, Fα}α∈Θ is

of type W (Θ), it then suffices to prove that the family

Eα, Fα, Dα, (α ∈ Θ)
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satisfies the Serre’s relations. This means here that the following iden-
tities must be satisfied (cf. [Bou06, Ch. VIII, § 4, no 3, Théorème 1],
note that we are using here a different normalization for sl2-triples)

[Dαi
, Eαi

] = 2Eαi
, [Dαi

, Fαi
] = −2Fαi

, and(5.1)

[Eαi
, Fαi

] = Dαi
, ∀i ∈ {1, . . . , p}

[Eαi
, Fαj

] = 0, ∀i 6= j ∈ {1, . . . , p}(5.2)

[Eαi
, Eαj

] = 0, [Fαi
, Fαj

] = 0, [Dαi
, Eαj

] = 0, and(5.3)

[Dαi
, Fαj

] = 0, ∀i, j ∈ {1, . . . , p} with |i− j| > 1

(adEαi
)2Eαj

= 0, (adFαi
)2Fαj

= 0, [Dαi
, Eαj

] = −Eαj
, and(5.4)

[Dαi
, Fαj

] = Fαj
, ∀i ∈ {1, . . . , p− 1} and j ∈ {i± 1}

[Dαp
, Eαp−1 ] = −(d+ 1)Eαp−1 , [Dαp

, Fαp−1 ] = (d+ 1)Fαp−1(5.5)

(adEαp
)d+2Eαp−1 = 0, (adFαp

)d+2Fαp−1 = 0.(5.6)

Equations (5.1) are the fact that the triple (Eαi
, Fαi

, Dαi
) is an sl2-

triple. Equations (5.2) are inherited from the corresponding identities
in g, only the case when i or j is equal to p needs a comment. Let’s
consider, for example, i = p; one has Eαp

= EαΘ
= Z0 + Z1 + · · ·+ Zd,

and, for all k in {1, . . . , d}, Zk = Ad(ṡk)Zk−1. Since, from the known
identities in g, [Z0, Fαj

] = 0 and since Ad(ṡk)Fαj
= Fαj

for all k =
1, . . . , d, one gets that, for all k, [Zk, Fαj

] = Ad(ṡk)[Zk−1, Fαj
] = 0 and

also [Eαp
, Fαj

] =
∑d

k=0[Zk, Fαj
] = 0.

Equations (5.3) are also inherited from the corresponding identities
in g (with again a special treatment when one of the indices is equal
to p). Equations (5.4) equally follow from the known equalities in g.

We now prove Equations (5.5). Note first that Dαp
= D0 + D1 +

· · · + Dd. One has, again from identities valid in g, [D0, Eαp−1 ] =
−Eαp−1 . From the recursive relation Ad(ṡk)Dk−1 = Dk we deduce
that [Dk, Eαp−1 ] = −Eαp−1 and, summing over k, [Dαp

, Eαp−1 ] = −(d +
1)Eαp−1 . The identity with Fαp−1 follows by a similar argument (or by
applying τ).

Let us now address Equations (5.6). We will prove the seemingly

stronger identity (adEαp
)d+2 = 0. Since adEαp

=
∑d

k=0 adZk, one has

(adEαp
)d+2 =

∑

k0,...,kd+1

adZk0 adZk1 · · · adZkd+1
,

where each index km runs into {0, . . . , d}. Every term in this last sum
is zero: indeed the order in a product adZk0 adZk1 · · · adZkd+1

does
not matter (see Lemma 3.14) and, since d + 2 > d + 1, at least two
indices coincide km = kℓ so that adZk0 adZk1 · · · adZkd+1

= 0 since
(adZkℓ)

2 = 0. The equality (adFαp
)d+2 = 0 is a consequence of similar

arguments. �
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6. The nonnegative and positive semigroups

Let G be a simple real Lie group which admits a Θ-positive structure.
In this section we introduce the nonnegative semigroup U≥0

Θ and the
positive semigroup U>0

Θ in the unipotent radical UΘ of the parabolic
subgroup determined by Θ.

For every α ∈ Θ we fix an L◦
Θ-invariant closed cone, denoted by

cα ⊂ uα, and denote by c̊α its interior. For α ∈ Θ, the cone τ(cα)
contained in u−α (τ is the Cartan involution) will be denoted by coppα .

6.1. The nonnegative semigroup.

Definition 6.1. The unipotent nonnegative semigroup U≥0
Θ ⊂ UΘ is

the subsemigroup of UΘ generated by exp(cα), α ∈ Θ. The opposite

nonnegative semigroup Uopp,≥0
Θ ⊂ Uopp

Θ is the subsemigroup generated
by exp(coppα ), α ∈ Θ.

The unipotent nonnegative semigroups give rise to a semigroup in G.

Definition 6.2. The nonnegative semigroup G≥0
Θ ⊂ G is defined to be

the subsemigroup generated by U≥0
Θ , Uopp,≥0

Θ , and L◦
Θ.

Examples 6.3. (1) When G is a split real form, and Θ = ∆, then U≥0
Θ is

the nonnegative unipotent semigroup defined by Lusztig in [Lus94],
and G≥0

Θ = G≥0 is the semigroup of totally nonnegative elements
defined by Lusztig [Lus94, § 2.2].

(2) Let G be a Hermitian Lie group of tube type and Θ = {αr}. Then
U≥0
Θ = exp(cα) < UΘ, and G≥0

Θ is the contraction semigroup G≻0 ⊂
G [Kou95, Th. 4.9].

In particular note that when G is the real symplectic group, the
unique (up to isogeny) group which is split and of Hermitian type,
the nonnegative semigroups G≥0

∆ and G≥0
{αr}

are different.

(3) Also in the case when G is the split real form of F4 we have two
different semigroups, the nonnegative semigroup G≥0

Θ , where Θ =

{α3, α4} and Lusztig’s nonnegative semigroup G≥0
∆ .

6.2. The positive semigroup. To introduce the positive unipotent
semigroup we will follow the strategy of Lusztig in [Lus94]. More pre-
cisely, we will give an explicit parametrization of a subset of UΘ, which
a priori depends on the choice of a reduced expression of the longest
element in the Θ-Weyl group W (Θ). In a second step we will then show
that this subset is independent of this choice and is in fact a semigroup.

Consider the element wΘ
max ∈ W . In Section 4 we saw that W (Θ)

equipped with its generating system R(Θ) (cf. Definition 4.5) is a Cox-
eter system of Lie type (cf. Proposition 4.7), and that wΘ

max is the
longest length element in W (Θ).

We denote by N the length of wΘ
max and by W ⊂ ΘN the set of tuples

γ = (γ1, . . . , γN) such that wΘ
max = σγ1 · · ·σγN , i.e. (σγ1 , . . . , σγN ) is a

reduced expression of wΘ
max.
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For every γ in W, the product of cones cγ1 × · · ·× cγN is denoted cγ .
We define the map

Fγ : cγ −→ UΘ

(v1, . . . , vN) 7−→ exp(v1) · · · exp(vN ).

We first note that those maps are compatible with the adjoint and
conjugation actions of L◦

Θ:

Lemma 6.4. For every γ in W the map Fγ is L◦
Θ-equivariant.

Proof. Let ℓ be in L◦
Θ and let v = (v1, . . . , vN) be in cγ . The action

of ℓ on v is

ℓ · v = (Ad(ℓ)v1, . . . ,Ad(ℓ)vN)

and is again in cγ since the cones cα are L◦
Θ-invariant. The compatibility

of the exponential map with the adjoint and conjugation actions implies

Fγ(ℓ · v) = exp(Ad(ℓ)v1) · · · exp(Ad(ℓ)vN)
= ℓ exp(v1)ℓ

−1 · · · ℓ exp(vN)ℓ−1

= ℓ exp(v1) · · · exp(vN)ℓ−1 = ℓFγ(v)ℓ
−1,

which is the wanted equivariance property. �

The interior c̊γ is the product c̊γ1 × · · · × c̊γN and the restriction

of Fγ to c̊γ is denoted by F̊γ . Similar notation, copp
γ

, F opp
γ

, and F̊ opp
γ

are adopted for the maps into the opposite unipotent group.
We will prove in Section 8 that the image of F̊γ is independent of γ

and that it is a semigroup (similar statements hold for the maps F̊ opp
γ

).
This then allows us to make the following definition

Definition 6.5. The common image of the maps F̊γ (for γ in W) is the
unipotent positive semigroup U>0

Θ of UΘ. The opposite unipotent positive

semigroup Uopp,>0
Θ in Uopp

Θ is the common image of the maps F̊ opp
γ

.

The unipotent positive semigroups U>0
Θ , Uopp,>0

Θ give rise to a positive
semigroup in G.

Definition 6.6. The positive semigroup G>0
Θ ⊂ G is defined to be the

subsemigroup generated by U>0
Θ , Uopp,>0

Θ , and L◦
Θ.

7. Bruhat decomposition and cones

The first properties of the maps F̊γ that will be obtained in Section 8
are injectivity and transversality. In order to achieve this, we will need
a precise control of the Bruhat cells containing the elements exp(v)
when α ∈ Θ and v ∈ c̊α.
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7.1. Bruhat decomposition. We recall here that G can be decom-
posed under the left-right multiplication by P opp × P opp. These orbits
are sometimes called the Bruhat cells and are indexed by elements
of W .

Explicitely, for every w in W ≃ NK(a)/CK(a) (the quotient of the
normalizer of a in K by its centralizer), let ẇ in NK(a) be a represen-
tative of w, the subset

P oppẇP opp

depends only of w (and not on the choice of ẇ) since P opp contains
the centralizer CK(a) and is called the Bruhat cell indexed by w; the
following equalities hold

P oppẇP opp = UoppẇP opp = P oppẇUopp

and we will (abusively) remove the dots in the further notation.
It is well known that:

(1) G is the disjoint union of the P oppwP opp for w varying in W .
(2) P opp

Θ is the disjoint union of the P oppwP opp for w varying in W∆rΘ.
(3) For all w1 and w2 in W such that ℓ(w1w2) = ℓ(w1)+ ℓ(w2), one has

(P oppw1P
opp)(P oppw2P

opp) = P oppw1P
oppw2P

opp = P oppw1w2P
opp.

(4) For all α in ∆ and for all X in gα, if X 6= 0 then

exp(X) ∈ P oppsαP
opp.

Observe also that ṡ−1
α also belongs to P oppsαP

opp (simply because
ṡ−1
α is a representative of the class of sα).

(5) For every α in ∆,

P oppsαP
oppsαP

opp = P opp
⊔

P oppsαP
opp.

(6) For every w in W , the P opp × P opp
Θ -orbit

P oppwP opp
Θ

depends only on the class [w] of w in W/W∆rΘ and will sometimes
be denoted P opp[w]P opp

Θ .
(7) The group G is the disjoint union

G =
⊔

x∈W/W∆rΘ

P oppxP opp
Θ .

(8) Similar notation will be adopted for the action of P opp
Θ × P opp and

of P opp
Θ × P opp

Θ : a double orbit P opp
Θ wP opp

Θ depends only on the
class [w] of w in W∆rΘ\W/W∆rΘ and

G =
⊔

[w]∈W∆rΘ\W/W∆rΘ

P opp
Θ wP opp

Θ .
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Application of (3) and (5) above gives that, for every w1 and w2

in W and for every g in P oppw1P
oppw2P

opp, there exist a prefix x1

of w1 and a suffix x2 of w2 such that g belongs to P oppx1x2P
opp. In

particular (cf. Lemma 4.14) the Θ-length of x = x1x2 is less or equal
to ℓΘ(w1) + ℓΘ(w2). Using the fact that W∆rΘ consists of elements of
zero Θ-length together with point (2) above we deduce:

Lemma 7.1. Let w1, w2, and x be in W such that P opp
Θ xP opp

Θ ⊂
P opp
Θ w1P

opp
Θ w2P

opp
Θ . Then

ℓΘ(x) ≤ ℓΘ(w1) + ℓΘ(w2).

The following lemma states the equality between some of the orbits
for the two groups P opp and P opp

Θ .

Lemma 7.2. For every w in W (Θ), one has

P opp
Θ wP opp

Θ = P oppwP opp
Θ .

Proof. Since P opp
Θ =

⊔

x∈W∆rΘ
P oppxP opp, one has

P opp
Θ wP opp

Θ =
⋃

x∈W∆rΘ

P oppxP oppwP opp
Θ .

It is thus enough to prove the equality, for every x in W∆rΘ

P oppxP oppwP opp
Θ = P oppwP opp

Θ .

Since x belongs to W∆rΘ, it is a suffix of the longest element w∆rΘ.
Similarly w is a prefix of wΘ

max. We deduce from this that xw is a
subword of w∆rΘw

Θ
max = w∆ and in particular ℓ(xw) = ℓ(x)+ ℓ(w). By

property (3) above, one has

P oppxP oppwP opp
Θ = P oppxwP opp

Θ

= P oppw(w−1xw)P opp
Θ

and, as w−1xw belongs to W∆rΘ (Proposition 4.16)

= P oppwP opp
Θ

which is the sought for equality. �

7.2. Dimensions. We give here a recursive information on the dimen-
sions of the Bruhat cells or, what amounts to the same, the dimensions
of their images in the flag variety Fι(Θ) = FΘ (recall that the involu-
tion ι is always the identity when Θ 6= ∆). A complete calculation of
the dimensions is possible but will not be performed here.

For every w in W we will denote C(w) the P opp
Θ -orbit of pΘ = w ·poppΘ

in FΘ; C(w) is isomorphic to the quotient P opp
Θ wP opp

Θ /P opp
Θ . It is also

the image of the following map

uΘ −→ FΘ

X 7−→ exp(X)w · poppΘ .
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Recall that uoppΘ has the following decomposition

u
opp
Θ =

⊕

α∈Σ+
Θ

g−α.

For w ∈ W we denote

Σ+
w≺ = Σ+ ∩ w · Σ−, Σ+

w≻ = Σ+ ∩ w · Σ+,

so that Σ+ = Σ+
w≺ ⊔ Σ+

w≻,

Σ+
Θ,w≺ = Σ+

w≺ ∩ Σ+
Θ, Σ+

Θ,w≻ = Σ+
w≺ ∩ Σ+

Θ,

so that Σ+
Θ = Σ+

Θ,w≺ ⊔ Σ+
Θ,w≻, and at the level of Lie algebras

u
opp
Θ,w≺ =

⊕

α∈Σ+
Θ,w≺

g−α, u
opp
Θ,w≻ =

⊕

α∈Σ+
Θ,w≻

g−α,

so that uoppΘ = u
opp
Θ,w≺⊕ u

opp
Θ,w≻ and, for all X in uΘ,w≻, exp(X)w belongs

to wP opp
Θ .

It is well known that the length of w is the cardinality of Σ+
w≺ and

the following equalities hold

Σ+
sαw≺ = {α} ⊔ sα · Σ+

w≺ if ℓ(sαw) = 1 + ℓ(w)

Σ+
xw≺ = Σ+

x≺ ⊔ x−1 · Σ+
w≺ if ℓ(xw) = ℓ(x) + ℓ(w)(7.1)

Lemma 7.3. Let w be in W . The map

fw : u
opp
Θ,w≺ −→ C(w)

X 7−→ exp(X)w · P opp
Θ

is a diffeomorphism.

Proof. Clearly this map is C∞. It also results from classical facts about
nilpotent Lie algebras that

u
opp
Θ,w≺ × u

opp
Θ,w≻ −→ UΘ

(X, Y ) 7−→ exp(X) exp(Y )

is a diffeomorphism. Since, for all Y in u
opp
Θ,w≻, exp(Y )wP opp

Θ = wP opp
Θ ,

we have that fw is onto. By the very choice of the space uoppΘ,w≺, this map
is a local diffeomorphism at 0. By equivariance with respect to the ele-
ment exp(

∑

α∈∆ Hα) of the Cartan subspace that acts as a contracting
transformation on u

opp
Θ,w≺ we deduce that fw is a diffeomorphism. �

From this we deduce how the dimensions of the cells C(w) jump:

Proposition 7.4. Let w be in the Coxeter group (W (Θ), R(Θ)) and
let α be in Θ such that σαw is a reduced expression in W (Θ). Then

dimC(σαw)− dimC(w) = dim uα
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which means

dimC(σαw)− dimC(w) = 1 if α 6= αΘ,

dimC(σαΘ
w)− dimC(w) = dim uαΘ

if α = αΘ.

Proof. Denote by δ the difference of dimensions. The hypothesis im-
plies that σαw is also a reduced expression in W . By the previous
lemma, the equation (7.1) (applied with x = σα), and the equalities
dim g−β = dim gβ we deduce that

δ =
∑

β∈Σ+
Θ,σ−1

α β∈Σ−

dim gβ.

But Lemma 7.5 below establishes

{β ∈ Σ+
Θ | σ−1

α β ∈ Σ−} = {β ∈ Σ+ | β − α ∈ Span(∆rΘ)},
hence

δ = dim
⊕

β∈Σ+,
β−α∈Span(∆rΘ)

gβ = dim uα. �

Lemma 7.5. Let α in Θ. If α 6= αΘ, then

{β ∈ Σ+
Θ | σ−1

α β ∈ Σ−} = {α} = {β ∈ Σ+ | β − α ∈ Span(∆rΘ)},
and if α = αΘ

{β ∈ Σ+
Θ | σ−1

αΘ
β ∈ Σ−} = {β ∈ Σ+ | β − αΘ ∈ Span(∆rΘ)}.

Proof. In the first case, σα = sα and it is already known that

{β ∈ Σ+
Θ | σ−1

α β ∈ Σ−} = Σ+
sα≺ = {α}.

Since α belongs to Σ+
Θ, this proves the equality Σ+

Θ,sα≺
= Σ+

sα≺ ∩Σ+
Θ =

{α}. Since α is not connected to ∆ r Θ, the only root in the affine
subspace α + Span(∆ r Θ) is α and this proves the equality {α} =
{β ∈ Σ+ | β − α ∈ Span(∆rΘ)}.

Let us treat the case α = αΘ. The element σαΘ
= w{αΘ}∪∆rΘw∆rΘ

belongs to the subgroup W{αΘ}∪∆rΘ = 〈sβ〉β∈{αΘ}∪∆rΘ of W .
Since every positive root is a sum with nonnegative coefficients of

simple roots, we have that the set

{β ∈ Σ+ | β − αΘ ∈ Span(∆rΘ)}
is contained in Span({αΘ} ∪∆r Θ) and thus in the root system gen-
erated by {αΘ} ∪ ∆ r Θ since every positive root γ is contained in a
chain of roots (γ0, . . . , γk) with γk = γ, γ0 = 0 and γi − γi−1 ∈ ∆ for
every i = 1, . . . , k.

For this reason and from the fact that, for every simple root β in
Θ r {αΘ} and for every α in {αΘ} ∪ ∆ r Θ, sα(β) − β belongs to
Span({αΘ} ∪∆rΘ), we have that the set

{β ∈ Σ+
Θ | σ−1

αΘ
β ∈ Σ−}
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is contained in the root system generated by {αΘ} ∪∆rΘ.
Therefore we can and will assume that ∆ = {αΘ} ∪∆rΘ, i.e. that

we are in the Hermitian tube type case. In this case it is known that
the longest length element w{αΘ}∪∆rΘ is − id so that

{β ∈ Σ+
Θ | σ−1

αΘ
β ∈ Σ−} = {β ∈ Σ+

Θ | w∆rΘβ ∈ Σ+}.
Furthermore, since for every β in Σ+

Θ, w∆rΘβ−β belongs to Span(∆rΘ)
(and again since every root is a sum of simple roots with coefficients
all of the same sign), this set is equal to Σ+

Θ. However in this Cd+1

type, the equality Σ+
Θ = {β ∈ Σ+ | β − αΘ ∈ Span(∆ r Θ)} is sat-

isfied. Indeed a standard description of this root system is {±ei ±
ej}1≤i<j≤d+1∪{±2ei}1≤i≤d+1 (as a subset of Rd+1 with its standard basis
(e1, . . . , ed+1)) with positive roots being {ei±ej}1≤i<j≤d+1∪{2ei}1≤i≤d+1

and simple roots α1 = e1 − e2, . . . , αd = ed − ed+1, and αd+1 = 2ed+1.
One has here Θ = {αΘ} and αΘ = αd+1, the span of ∆ r Θ is
{x ∈ R

d+1 | x1 + · · · + xd+1 = 0}. Thus the positive roots in this
span are {ei ± ej}1≤i<j≤d+1 so that Σ+

Θ is {2ei}1≤i≤d+1; and the roots
equal to αd+1 modulo this span are 2ei for i = 1, . . . , d+1. This proves
the announced equality. �

7.3. The nontrivial cone and the Bruhat decomposition. We
explain here the precise understanding of the Bruhat cells containing
the image of the cone c̊αΘ

by the exponential map.
We assume in this section that Θ 6= ∆ and adopt the notation of the

previous parts: αΘ is the special root, ∆ r Θ = {χ1, . . . , χd} (with χ1

connected to αΘ in the Dynkin diagram), and the elements Z0, . . . , Zd of
the Lie algebra (Section 3.3). The reflection in W associated with αΘ is
denoted by s0 and the reflections associated with χ1, . . . , χd are denoted
by s1, . . . , sd respectively.

We know that the longest element in W{αΘ}∪∆rΘ is

w{αΘ}∪∆rΘ = s0 s
s1
0 · · · ss1···sd0 ,

(with the notation xy = y−1xy so that2 ss1···si0 = si · · · s1s0s1 · · · si) and
that the above is a reduced expression of w{αΘ}∪∆rΘ.

Let us introduce also the following elements of W :

wj = s0 s
s1
0 · · · ss1···sj−1

0 for j = 0, . . . , d+ 1(7.2)

and, for every subset I of {0, . . . , d}

wI =
∏

i∈I

ss1···si0 ,(7.3)

so that w0 = w∅ = e is the neutral element of W , wd+1 = w{0,...,d} =
w{αΘ}∪∆rΘ, and the above are reduced expressions. Therefore, by

2Note that these elements s
s1···si

0 pairwise commute.
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Lemma 4.14, we have that

(7.4) ℓΘ(wj) = j, ℓΘ(wI) = ♯I, ∀j and ∀I.
We start by determining the Bruhat cells for linear combination of

the elements Zi with nonnegative coefficients.

Lemma 7.6. Let Y be a linear combination with nonnegative coeffi-
cients of the Zi: Y =

∑d
i=0 λiZi, i.e. Y belongs to cαΘ

∩⊕

RZi. Let
I ⊂ {0, . . . , d} be the indices of the nonzero entries in (λ0, . . . , λd) (in
formula I = {i ≤ d | λi > 0}). Then

exp(Y ) belongs to P oppwIP
opp.

Proof. Since the elements Zi pairwise commute, we have that

exp(Y ) = exp(λ0Z0) exp(λ1Z1) · · · exp(λdZd).

By property (4) of Section 7.1, if λ0 > 0, then exp(λ0Z0) belongs to
P opps0P

opp. For all i, one has Zi = Ad(ṡi · · · ṡ1)Z0 so that exp(λiZi) =
ṡi · · · ṡ1 exp(λiZ0)ṡ

−1
1 · · · ṡ−1

i . Recursive application of the property (3)
of Section 7.1 and the fact that si · · · s1s0s1 · · · si is a reduced expression
imply that, when λi > 0, exp(λiZi) belongs to

P oppsi · · · s1s0s1 · · · siP opp = P oppss1···si0 P opp.

Recursive application again of property (3) and the fact that Equa-
tion (7.3) is a reduced expression imply that

exp(Y ) belongs to P opp
∏

i:λi>0

ss1···si0 P opp,

hence the result. �

We can now determine the Bruhat cell corresponding to elements in
the open cone.

Proposition 7.7. Let X be in the open cone c̊αΘ
. Then exp(X) belongs

to P oppw{αΘ}∪∆rΘP
opp.

Proof. Recall that the element EαΘ
= Z0+Z1+ · · ·+Zd belongs to c̊αΘ

and that its stabilizer in L◦
Θ (for the adjoint action) contains K ∩ L◦

Θ.
Furthermore the action of L◦

Θ on c̊αΘ
is transitive: there is an element g

in L◦
Θ such that Ad(g)EαΘ

= X.
The Iwasawa decomposition for L◦

Θ states the equality

L◦
Θ = (P opp ∩ L◦

Θ)(K ∩ L◦
Θ).

There are thus elements p in P opp∩L◦
Θ and k in K∩L◦

Θ such that g = pk.
Since Ad(k)EαΘ

= EαΘ
, one has Ad(p)EαΘ

= X. By the compatibility
of the exponential map with the adjoint action and the conjugation
action, we get exp(X) = p exp(EαΘ

)p−1 so that exp(X) and exp(EαΘ
)

belong to the same Bruhat cell. By Lemma 7.6, exp(EαΘ
) belongs to

P oppw{0,...,d}P
opp = P oppw{αΘ}∪∆rΘP

opp. This concludes that exp(X)
belongs to P oppw{αΘ}∪∆rΘP

opp. �
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For the elements in the closure of the cone, it will be enough for our
purpose to determine their class under the left-right action of P opp

Θ .

Proposition 7.8. Let X be an element of cαΘ
, There is then a unique j

in {0, . . . , d} such that

exp(X) ∈ P opp
Θ wjP

opp
Θ .

Proof. Uniqueness follows from the observation: for j, k in {0, . . . , d}
P oppwjP

opp ⊂ P opp
Θ wjP

opp
Θ and

P opp
Θ wkP

opp
Θ =

⋃

x1,x2∈W∆rΘ

P oppx1wkx2P
opp.

(The last union is justified by property (2) of Section 7.1 and may
contain more than once the same Bruhat cell.) Hence an equality
P opp
Θ wjP

opp
Θ = P opp

Θ wkP
opp
Θ implies (and is in fact equivalent to) the

existence of x1, x2 in W∆rΘ such that

wj = x1wkx2.

Hence j = ℓΘ(wj) = ℓΘ(x1wkx2) = ℓΘ(wk) (by Lemma 4.12) = k and
wj = wk.

Consider now an element X in cαΘ
. Since cαΘ

is the closure of c̊αΘ
,

there exists a sequence (Xn)n∈N in c̊αΘ
that converges to X. For every n

in N, let gn be an element in L◦
Θ such that Xn = Ad(gn)EαΘ

.
The Cartan decomposition in L◦

Θ gives

L◦
Θ = K◦

Θ exp(b+)K◦
Θ,

where K◦
Θ = K ∩ L◦

Θ and b+ = {A ∈ a | χi(A) ≤ 0, ∀i = 1, . . . , d}
is a closed Weyl chamber for the reductive Lie group L◦

Θ. There ex-
ist thus, for all n in N, elements kn, k′

n in K◦
Θ, and An in b+ such

that gn = kn exp(An)k
′
n. Up to extracting we will assume that the

sequence (kn)n∈N is converging and its limit will be denoted k∞. One
has therefore, for all n,

Ad(exp(An))EαΘ
= Ad(k−1

n ) Ad(gn)EαΘ
= Ad(k−1

n )Xn,

so the sequence (Ad(exp(An))EαΘ
)n∈N is converging and its limit is

Y = Ad(k−1
∞ )X. As K◦

Θ ⊂ P opp
Θ , it will be enough to determine the

Bruhat cell of exp(Y ).
For all n in N and for all i = 0, . . . , d, let

λi,n = exp
(

(αΘ + 2χ1 + · · ·+ 2χi)(An)
)

so that, for all n, λ0,n ≥ λ1,n ≥ · · · ≥ λd,n > 0 and

d
∑

i=0

λi,nZi =
d

∑

i=0

exp(ad(An))Zi

= exp(ad(An))

d
∑

i=0

Zi = Ad(exp(An))EαΘ
.
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This last equality implies that the sequences (λi,n)n∈N (i = 0, . . . , d)
converge in R≥0 and their limits will be denoted λi (i = 0, . . . , d). We
have hence

Y =
d

∑

i=0

λiZi

and λ0 ≥ λ1 ≥ · · · ≥ λd ≥ 0 and the set of indices of the nonzero
elements in (λ0, . . . , λd) has the form {0, . . . , j − 1} for some j in
{0, . . . , d + 1} (this set is ∅ when j = 0). Lemma 7.6 says that
exp(Y ) ∈ P oppwjP

opp and this implies the wanted result. �

Remark 7.9. Building on the Iwasawa decomposition (instead of the
Cartan decomposition) one can in fact establish that the element exp(Y )
belongs to the Bruhat cell corresponding to wI for some subset I of
{0, . . . , d}.
Corollary 7.10. Let Y be in cαΘ

and let w be the element of W such
that exp(Y ) ∈ P oppwP opp. Then

(1) ℓΘ(w) ≤ d+ 1;
(2) if ℓΘ(w) = d+ 1 then Y belongs to c̊αΘ

and w = w{αΘ}∪∆rΘ.

7.4. The Bruhat cells of non-zero elements. The previous para-
graph determines the Bruhat cell of elements of the form exp(X) when
X belongs to the cone cαΘ

. We now consider the case when X is only
supposed to be a non-zero element of uαΘ

.

Lemma 7.11. Let X be a non-zero element of uαΘ
and let x be the

element of W such that exp(X) = P oppxP opp. Then ℓΘ(x) > 0.

Remark 7.12. Note that the element x belongs to W{αΘ}∪∆rΘ.

Proof. One has (Lemma 4.15)

W∆rΘ = {x ∈ W | ℓΘ(x) = 0}.
Furthermore, the following equality holds:

⋃

x∈W∆rΘ

P oppxP opp = P opp
Θ .

Thus the statement will be established if we can prove that exp(X)
does not belong to P opp

Θ . This last property is a consequence of the
fact that the map:

uΘ × P opp
Θ −→ G

(X, g) 7−→ exp(X)g

is an embedding. �

8. The unipotent positive semigroup

This section addresses the properties of the maps Fγ (see Section 6.2)
enabling among other things the definition of the unipotent positive
semigroup.
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8.1. The main statement. We denote by Ωopp
Θ = P opp

Θ w∆P
opp
Θ the

open Bruhat cell with respect to P opp
Θ and by ΩΘ = PΘw∆PΘ the open

Bruhat cell with respect to PΘ. Recall that W denotes the set of
reduced expressions of the longest element in W (Θ).

Theorem 8.1. (1) For any γ in W, the image of the map F̊γ is con-
tained in Ωopp

Θ ∩ UΘ.

(2) For any γ in W, the map c̊γ → FΘ | v 7→ F̊γ(v) · poppΘ injective.

(3) For any γ in W, the map c̊γ → FΘ | v 7→ F̊γ(v) · poppΘ is open.
(4) We have Fγ(cγ r c̊γ) ⊂ UΘ r Ωopp

Θ .
(5) We have Fγ (̊cγ) = Fγ(cγ) ∩ Ωopp

Θ .
(6) The map Fγ : cγ → UΘ is proper.

(7) The image of F̊γ is a connected component of Ωopp
Θ ∩ UΘ.

(8) The image of F̊γ does not depend on γ.
Analogous properties hold for F opp

γ
.

Property 8 in this theorem justifies Definition 6.5, other consequences
will be drawn in Section 8.8. Theorem 8.1 will be proved in Sections 8.2–
8.4 and 8.6–8.7 below. Section 8.5 gives an explicit description of the
tangent cone of the positive unipotent semigroup.

8.2. Transversality, injectivity, and openness of the maps Fγ.

We prove here points (1) and (2) of Theorem 8.1, that is:

Proposition 8.2. For every γ in W, the image of the map F̊γ is
contained in P oppwΘ

maxP
opp
Θ = P opp

Θ wΘ
maxP

opp
Θ = Ωopp

Θ and the map

c̊γ −→ FΘ | v 7−→ F̊γ(v) · poppΘ

is injective.

Remark 8.3. Note that, since the map UΘ → FΘ | u 7→ u ·poppΘ is an em-
bedding, the injective of the above map is equivalent to the injectivity
of F̊γ .

The result will be proved thanks to an inductive process whose re-
sults have their own interest. For this it will be a little more con-
venient to have a decreasing numbering for the indices of γ: γ =
(γN , γN−1, . . . , γ1) where N is the length of wΘ

max in (W (Θ), R(Θ)).
With this notation the cone cγ is the product cγN × · · · × cγ1 and the
map Fγ is

cγ −→ UΘ

(XN , . . . , X1) 7−→ exp(XN) · · · exp(X1).

(Recall that F̊γ is the restriction of Fγ to c̊γ .)

Proposition 8.4. Let, for j = 1, . . . , N , xj = σγj · · ·σγ1 . Then for
every j in {1, . . . , N}
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(1) The image of the map

F̊j : c̊γj × · · · × c̊γ1 −→ UΘ

(Xj , . . . , X1) 7−→ exp(Xj) · · · exp(X1).

is contained in P oppxjP
opp
Θ = P opp

Θ xjP
opp
Θ (the equality follows from

Lemma 7.2 since xj belongs to W (Θ));
(2) The map

uγj × c̊γj−1
× · · · × c̊γ1 −→ FΘ

(Xj, . . . , X1) 7−→ exp(Xj) · · · exp(X1) · poppΘ

is injective.

Proof. We prove first (1) by induction on j in {1, . . . , N}. For j = 1
in the proof below Fj−1(Xj−1, . . . , X1) and xj−1 should be replaced by
the identity element.

Let (Xj , . . . , X1) be in c̊γj × · · · × c̊γ1 . Suppose first that γj is not
equal to αΘ. Then (Section 7.1) exp(Xj) belongs to P oppσγjP

opp =
P oppsγjP

opp. Since xj = sγjσγj−1
· · ·σγ1 = sγjxj−1 is a subword of a

reduced expression of w∆, we have for the lengths

ℓ(sγjxj−1) = ℓ(sγj ) + ℓ(xj−1)

thus

P oppsγjP
oppxj−1P

opp
Θ = P oppxjP

opp
Θ .

By induction F̊j−1(Xj−1, . . . , X1) belongs to P oppxj−1P
opp
Θ and since

F̊j(Xj, . . . , X1) = exp(Xj)F̊j−1(Xj−1, . . . , X1),

we can conclude that F̊j(Xj, . . . , X1) belongs to P oppxjP
opp
Θ .

We now treat the case when γj = αΘ, thus σγj = σαΘ
. By Proposi-

tion 7.7 exp(Xj) belongs to

P oppσαΘ
w∆rΘP

opp ⊂ P oppσαΘ
P opp
Θ .

We deduce that F̊j(Xj, . . . , X1) belongs to

P oppσαΘ
P opp
Θ xj−1P

opp
Θ = P oppσαΘ

P oppxj−1P
opp
Θ

= P oppσαΘ
xj−1P

opp
Θ

where we applied Lemma 7.2 to xj−1 and the fact that xj = σαΘ
xj−1 is

also a reduced expression.
We now prove point (2) by induction on j again. For j = 1, in-

jectivity follows from the fact that uΘ × P opp
Θ | (X, g) 7→ exp(X)g is

injective.
Suppose now that j ≥ 2 and that the inductive hypothesis has been

established up to j − 1. Let (Xj, . . . , X1) and (Yj, . . . , Y1) be in uγj ×
c̊γj−1

× · · · × c̊γ1 such that

Fj(Xj, . . . , X1)P
opp
Θ = Fj(Yj, . . . , Y1)P

opp
Θ ,
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this means that

(8.1) F̊j−1(Xj−1, . . . , X1)P
opp
Θ = exp(Yj −Xj)F̊j−1(Yj−1, . . . , Y1)P

opp
Θ .

By point (1) we have that F̊j−1(Xj−1, . . . , X1) and F̊j−1(Yj−1, . . . , Y1)
belong to P opp

Θ xj−1P
opp
Θ . Suppose that Xj 6= Yj then (by Lemma 7.11

or by point (4) of Section 7.1) we have that exp(Yj − Xj) belongs to
P oppxP opp with ℓΘ(x) > 0. Using again the multiplicative properties
of Bruhat cells we deduce that the element y such that

exp(Yj −Xj)F̊j−1(Yj−1, . . . , Y1) ∈ P oppyP opp
Θ

satisfies ℓΘ(y) > ℓΘ(xj−1) which is a contradiction with Equality (8.1).
Hence Xj = Yj and the equality (8.1) together with the induction
hypothesis imply that Xi = Yi for all i less than j. �

With the notation of the proposition, we can now deduce point (3) of
Theorem 8.1. Recall that C(xj) ⊂ FΘ is the P opp

Θ -orbit of the element
xj · poppΘ . We have:

Corollary 8.5. For all j the map

c̊γj × · · · × c̊γ1 −→ C(xj) ⊂ FΘ

(Xj , . . . , X1) 7−→ F̊j(Xj, . . . , X1) · poppΘ

is open.

Proof. We know that this map is injective. By Invariance of Domain,
it is enough to show that the dimensions of the source and the range
coincide. This can be proved again by induction on j, using the relation
xj = σγjxj−1 and Proposition 7.4 which says in this context:

dimC(xj)− dimC(xj−1) = dim uγj = dim cγj .

This is the precise relation to show that the induction step holds true.
�

8.3. Nontransversality at the boundary. We now prove point (4)
of Theorem 8.1:

Proposition 8.6. Let v be in cγ. If v does not belong to c̊γ, then
Fγ(v) does not belong to P oppwΘ

maxP
opp
Θ .

Proof. We denote (vN , . . . , v1) the components of v, at least one of
them vj is in cαj

r c̊αj
. For all i between 1 and N denote by ti an

element of W such that exp(vi) belongs to P opp
Θ tiP

opp
Θ . We have, for all i,

ℓΘ(ti) ≤ ℓΘ(σαi
) and, since tj = e when αj 6= αΘ or by Corollary 7.10

when αj = αΘ, we have that ℓΘ(tj) < ℓΘ(σαj
).

Repeated applications of Lemma 7.1 show that the element x of W
such that Fγ(v) belongs to P opp

Θ xP opp
Θ satisfies

ℓΘ(x) ≤
N
∑

i=1

ℓΘ(ti)
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<

N
∑

i=1

ℓΘ(σαi
) = ℓΘ(x

Θ
max).

This implies the result. �

The point (5) of Theorem 8.1 is now an immediate consequence of (1)
and (4) in that theorem.

8.4. Properness. To prove properness of the maps Fγ we will obtain
a formula for the composition of log ◦Fγ : cγ → uΘ with the projection
uΘ → ⊕

α∈Θ uα. For this a few notations will be useful. We will use
again natural numbering for the components of γ: γ = (γ1, . . . , γN).

Let d be the degree of nilpotency of the Lie algebra uΘ (i.e. the
iterated Lie brackets of d + 1 elements of uΘ is always zero). Let eN,d

be the free degree d nilpotent real Lie algebra generated by elements
e1, . . . , eN . Then eN,d is a finite dimensional graded Lie algebra whose

degree 1 component is equal to
⊕N

i=1Rei.

For any v = (v1, . . . , vN) in
∏N

i=1 uγi the unique Lie algebra morphism
eN,d → uΘ sending, for each i = 1, . . . , N , ei to vi will be denoted Ψv.
The Lie algebra uΘ is also graded (with degree 1 component equal to
⊕

α∈Θ uα) and the map Ψv is in fact a graded morphism.
The simply connected Lie group with Lie algebra eN,d will be de-

noted EN,d. It is well known that exp : eN,d → EN,d is a diffeomor-
phism whose inverse will be denoted by log and the map eN,d × eN,d →
eN,d | (X, Y ) 7→ log(exp(X) exp(Y )) is given by the Baker–Campbell–
Hausdorff formula. (In fact, we could have used directly this formula.)

Let us introduce the following element of eN,d

Γ := log
(

exp(e1) · · · exp(eN )
)

.

Then, for every v in
∏N

i=1 uγi, the following holds

log
(

exp(v1) · · · exp(vN )
)

= Ψv(Γ).

The Baker–Campbell–Hausdorff formula implies that the degree 1 com-
ponent of Γ is equal to

(8.2) Γ1 =

N
∑

i=1

ei;

and we will denote Γ≥2 = Γ − Γ1 the sum of components of higher
degree.

From the fact that Ψv preserves the degree, we deduce:

Lemma 8.7. Let ‖ · ‖ be a norm on uΘ. There is a constant C ≥ 0

such that, for every v in
∏N

i=1 uγi,
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(1) the degree 1 component of log
(

exp(v1) · · · exp(vN )
)

is equal to

log
(

exp(v1) · · · exp(vN )
)

1
=

N
∑

i=1

vi,

(2) and, denoting

log
(

exp(v1) · · · exp(vN )
)

≥2
=

log
(

exp(v1) · · · exp(vN)
)

− log
(

exp(v1) · · · exp(vN )
)

1

the sum of components of higher degree, we have
∥

∥log
(

exp(v1) · · · exp(vN)
)

≥2

∥

∥ ≤ Cmax
i

‖vi‖2.

We can now deduce:

Corollary 8.8. The map Fγ : cγ → UΘ is proper. More precisely,
there is a constant C ≥ 0 such that, for any v ∈ cγ, maxi ‖vi‖ ≤
C
∥

∥log(Fγ(v))1
∥

∥.

Proof. It is enough to establish that the map

cγ −→
⊕

α∈Θ

uα

v 7−→ log
(

Fγ(v)
)

1

is proper. But this map is

cγ −→
⊕

α∈Θ

cα

(v1, . . . , vN) 7−→
(

∑

i:γi=α

vi

)

α∈Θ
.

This last application is clearly proper since, for any acute closed convex
cone c (in a finite dimensional normed real vector space) and for any
n ≥ 1, the map cn → c | (x1, . . . , xn) 7→ x1 + · · · + xn is proper.
Furthermore there is constant D (depending on c and n) such that
max ‖xi‖ ≤ D‖x1 + · · · + xn‖ and this implies the precise control on
v 7→ log(Fγ(v))1. �

8.5. Tangent cone of the semigroup. The techniques introduced
in the previous section enable the determination of the tangent cone
at e of the semigroup U≥0

Θ :

Corollary 8.9. Let c :=
⊕

α∈Θ cα ⊂ uΘ. Then c is the tangent cone

at e of the semigroup U≥0
Θ , precisely

(1) There is a constant C such that, for every X in log(U≥0
Θ ) ⊂ uΘ,

let X1 ∈
⊕

uα be its degree 1 component, then X1 belongs to c and
‖X −X1‖ ≤ C‖X‖2.
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(2) For any continuous map γ : [0, 1] → U≥0
Θ , if γ is differentiable at 0

then γ′(0) belongs to c
(3) For all Y in c, there is X in log(U≥0

Θ ) such that X1 = Y .
(4) For all Y in c, the map γ : R≥0 → UΘ | t 7→ exp(tX) is of class

C∞, contained in U≥0
Θ and its derivative at 0 is equal to Y .

Remark 8.10. The proof below will use that the semigroup U≥0
Θ is closed

and that it is the image of Fγ ; this will be established later in Section 8.8
(and without appealing to Corollary 8.9).

Proof. The first item (1) is a direct consequence of the estimates given
in Corollary 8.8 and in point (2) of Lemma 8.7.

The second item (2) is a consequence of the first one.
The third item (3) follows easily from the formula for the map v 7→

log(Fγ(v))1 (cf. proof of Corollary 8.8).
For item (4), it is very classical that this map is C∞ and that its

derivative at 0 is Y . Let γ be in W and let also v be in cγ be such
that log

(

Fγ(v)
)

1
= Y . Let t be in R≥0. For all n ∈ N>0, tv/n belongs

to cγ so that

Fγ(tv/n) and Fγ(tv/n)
n

belong to U≥0
Θ . Since the sequence (Fγ(tv/n)

n)n>0 converges to exp(tY )

and since U≥0
Θ is closed, we deduce that exp(tY ) belongs to U≥0

Θ . �

8.6. Connectedness. We now prove point (7) of Theorem 8.1:

Corollary 8.11. The set Fγ (̊cγ) is a connected component of Ωopp
Θ ∩UΘ.

Proof. Corollary 8.5 and the fact that UΘ → C(wΘ
max) | g 7→ g · poppΘ

is a diffeomorphism imply that the set Fγ (̊cγ) is open in UΘ. Since
the map Fγ |cγ is proper, we have that the closure of Fγ (̊cγ) in UΘ is
equal to Fγ(cγ). Therefore the closure of Fγ (̊cγ) in Ωopp

Θ ∩ UΘ is equal
to Fγ(cγ) ∩ Ωopp

Θ hence to Fγ (̊cγ) by point (5). Thus Fγ (̊cγ) is open
and closed in Ωopp

Θ ∩ UΘ. Since it is connected, it is one connected
component. �

8.7. Independence on γ. A priori the connected component Fγ (̊cγ)
could depend on the choice of γ ∈ W. We show now that this is not
the case. For this we consider the split real Lie algebra gΘ of g of
type W (Θ) determined by a Θ-base (Eα, Fα, Dα)α∈Θ. Note that the
intersection gΘ ∩ pΘ is a standard minimal parabolic subalgebra, and
nΘ = gΘ ∩ uΘ is its unipotent radical. We denote by NΘ < UΘ the
corresponding subgroup.

The Lie algebra nΘ is generated by the elements (Eα)α∈Θ. Recall
that Eα ∈ c̊α for all α ∈ Θ.

Given an element γ ∈ W we can restrict the map Fγ to
∏

i R>0Eγi .
Lusztig showed
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Proposition 8.12 ([Lus94, Prop. 2.7 (b)]). The image of N>0
Θ =

Fγ

(
∏N

i=1R>0Eγi

)

is independent of the choice of γ ∈ W.

As a corollary we obtain the following proposition, which is point (8)
of Theorem 8.1.

Proposition 8.13. The image of Fγ (̊cγ) is independent of the choice
of γ ∈ W.

Proof. Since Eα ∈ c̊α for all α ∈ Θ, and c̊α are convex cones, for any γ ∈
W we have that Fγ

(
∏N

i=1R>0Eγi

)

⊂ Fγ (̊cγ). Let γ,γ′ ∈ W be two dif-
ferent reduced expressions of the longest word in W (Θ), then Fγ (̊cγ)∩
Fγ

′ (̊cγ′) contains N>0
Θ = Fγ(

∏N
i=1R>0Eγi) = Fγ

′(
∏N

i=1R>0Eγ′
i
). There-

fore Fγ (̊cγ) and Fγ
′ (̊cγ′) have non empty intersection. Since both sets

are connected components of Ωopp
Θ ∩ UΘ, they have to be equal. �

Remark 8.14. Note that we can get in fact precise formulas for the
change of coordinates if two elements γ and γ

′ differ by a braid relation.
This is done by considering appropriate notions of universal enveloping
algebras for UΘ and deriving explicit systems of polynomial equations
from relations in the universal enveloping algebra, as has been done
for the split real case by Berenstein and Zelevinsky [BZ97]. These
explicit formulas for the braid relations, as well as a more detailed
investigation of the positive semigroup G>0

Θ will appear in a forthcoming
article [GW22].

8.8. Consequences. In this section we draw some consequences from
the results of the previous sections and the explicit parametrizations
by Fγ , not only for the positive semigroup, but also for the non-negative
semigroup.

As defined in Section 6.5, we set U>0
Θ := F̊γ (̊cγ) ⊂ UΘ. By Propo-

sition 8.13 this set is independent of the choice of γ ∈ W. But we
still have to show that U>0

Θ is indeed a semigroup. For this we prove a
slightly stronger statement.

Proposition 8.15. For all α ∈ Θ and for all vα ∈ cα, the set U>0
Θ is

invariant under left and right multiplication by exp(vα).

Proof. We prove only the invariance by left multiplication, the case of
right multiplication follows by entirely similar arguments.

Let vα ∈ cα for some α ∈ Θ, and let u be an element in U>0
Θ . We

want to prove that then exp(vα) · u ∈ U>0
Θ . Let us choose γ ∈ W

such that γ1 = α, and v ∈ c̊γ such that Fγ(v) = u (the existence
of such reduced expression γ of the longest length element wΘ

max in
(W (Θ), R(Θ)) is a classical fact and is established starting from the
equality wΘ

max = σα(σαw
Θ
max) and from a reduced expression of σαw

Θ
max).

Then we have

exp(vα) · u = exp(vα) exp(v1) · · · exp(vN )



GENERALIZING LUSZTIG’S TOTAL POSITIVITY 47

= exp(vα + v1) · · · exp(vN),
where we used that γ starts with α. Since cα is a convex cone, v1 ∈ c̊α
and vα ∈ cα we have that vα + v1 ∈ c̊α. Therefore exp(vα) · u belongs
to Fγ (̊cγ) = U>0

Θ . �

As a direct consequence of this proposition we obtain

Corollary 8.16. (1) The inclusions U≥0
Θ U>0

Θ ⊂ U>0
Θ , and U>0

Θ U≥0
Θ ⊂

U>0
Θ hold.

(2) The subset U>0
Θ ⊂ UΘ is a semigroup that is invariant by conjuga-

tion by L◦
Θ.

(3) The closure U>0
Θ is a semigroup, invariant by conjugation by L◦

Θ.

(4) The semigroup U>0
Θ is the image Fγ(cγ) for every γ in W.

(5) The semigroup U>0
Θ is equal to the nonnegative semigroup U≥0

Θ , in

particular the non-negative semigroup U≥0
Θ is closed and every ele-

ment in it can be written as a finite product (of length at most N)
of elements of the form exp(vα) with vα ∈ cα.

(6) The semigroup U>0
Θ is equal to the intersection of U≥0

Θ with Ωopp
Θ .

Proof. The first point (1) is a direct consequence of Proposition 8.15
and the fact that the semigroup U≥0

Θ is generated by exp(cα) (for α
in Θ).

Point (2) follows from (1), from the (obvious) inclusion U>0
Θ ⊂ U≥0

Θ ,
and from the equivariance property of the maps Fγ (Lemma 6.4). Since,
for every γ in W, the map Fγ is proper, its image is closed and is
equal to the closure of Fγ (̊cγ) = U>0

Θ . The closure of a semigroup is
a semigroup and again by L◦

Θ-equivariance, this concludes points (3)
and (4).

We now have that U>0
Θ is a semigroup containing the elements exp(v)

for every α in Θ and v in cα. Hence this semigroup contains U≥0
Θ .

Conversely, since U>0
Θ is the image of cγ by Fγ , it is also contained

in U≥0
Θ hence the equality of point (5); the other statements in that

point follow from the already proven ones.
Since the map F̊γ is open (cf. Corollary 8.5), its image U>0

Θ is con-

tained in the interior of U≥0
Θ . Conversely let u be in the interior of

U≥0
Θ . There is thus a neighborhood V of the identity in G such that,

for every v in V , v−1u belongs to U≥0
Θ . It is however clear that the

image of F̊γ contains elements in V . Let v be such an element. Then
v belongs to U>0

Θ and the equality u = v(v−1u) (together with point (1))
shows that u belongs to U>0

Θ . This concludes point (3).
Point (6) follows from the corresponding properties established for

the parametrizations Fγ (points 4 and 5 of Theorem 8.1). �

Remark 8.17. Note that Fγ |cγ is in general not injective, and thus,

point (5) of Corollary 8.16 does not give a parametrization of U≥0
Θ . We
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discuss the structure of U>0
Θ in the case when G = SO(3, q), q ≥ 4 in

more detail, see Section 8.9.2.

8.9. The orthogonal groups. In this subsection we discuss in a bit
more detail the case when G = SO(3, q), q ≥ 4. The description of the
Θ-positive structure for general orthogonal groups SO(p, q), q > p > 2
restricts basically to this case and the description of the positive struc-
ture for SL3(R), see also the discussion in [GW18]. For the case when
G = SO(3, q), q ≥ 4 we in particular also provide a parametrization of
the non-negative semigroup U≥0

Θ .

8.9.1. The positive semigroup. We realize SO(3, q) = SO(bQ), where
bQ is the non-degenerate symmetric bilinear form of signature (3, q)

on R
3+q given by bQ(v, w) = tvQw, with Q =





0 0 K
0 J 0

−K 0 0



, K =

(

0 1
−1 0

)

, and J =





0 0 1
0 − idq−3 0
1 0 0



. We denote by bJ the form

bJ(x, y) = 1
2
txJy and set qJ(x) = bJ (x, x). Note that bJ is a non-

degenerate symmetric bilinear form of signature (1, q − 2) on the cor-
responding subspace of Rq+3.

We choose the Cartan subspace a ⊂ so(3, q) to be the intersection of
the set of diagonal matrices with so(3, q). Denote ei : a → R the linear
form that associates to a diagonal matrix its i-th diagonal coefficient.
The set of (restricted) roots is {±ei±ej}1≤i<j≤3∪{±ei}1≤i≤3; a classical
choice for the set of positive roots is {ei ± ej}1≤i<j≤3 ∪ {ei}1≤i≤3 and
the set of simple roots ∆ = {α1, α2, α3} is given by αi = ei − ei+1, for
i = 1, 2, and α3 = e3.

We have Θ = {α1, α2}. Furthermore uα1
∼= R and uα2

∼= R
1,q−2.

Then the cone c̊1 ∼= R>0, and c̊2 ∼= c̊1,q−2 = {x ∈ R
1,q−2 | qJ(x) >

0, x1 > 0}. Note that the closed cones identify with c1 ∼= R≥0 and
c2 ∼= c1,q−2 = {x ∈ R

1,q−2 | qJ(x) ≥ 0, x1 ≥ 0}.
The Weyl group W is isomorphic to {±1}3⋊S3, the group of signed

permutation matrices. It is presented by the generators s1, s2, s3 as-
sociated with the simple roots, with the relations s2i = (s1s2)

3 =
(s1s3)

2 = (s2s3)
4 = e. The group W (Θ) is generated by σ1 = s1

and σ2 = s2s3s2. It is a Weyl group of type B2 and the longest word is
wΘ

max = σ1σ2σ1σ2 = σ2σ1σ2σ1.
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The exponential maps R → UΘ and R
q−1 → UΘ are denoted x1, x2

and given by

x1(s) = exp













0 s 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 s
0 0 0 0 0













=













1 s 0 0 0
0 1 0 0 0
0 0 idq−1 0 0
0 0 0 1 s
0 0 0 0 1













x2(v) = exp













0 0 0 0 0
0 0 tv 0 0
0 0 0 Jv 0
0 0 0 0 0
0 0 0 0 0













=













1 0 0 0 0
0 1 tv qJ(v) 0
0 0 idq−1 Jv 0
0 0 0 1 0
0 0 0 0 1













Thus, the positive semigroup U>0
Θ in this case is

U>0
Θ = Fσ1σ2σ1σ2 (̊c1 × c̊2 × c̊1 × c̊2),

i.e. all matrices, that can be written as x1(s1)x2(v1)x1(s2)x2(v2), with
s1, s2 ∈ R>0 and v1, v2 ∈ c̊1,q−2.

When we use the other reduced expression of the longest element
wΘ

max = σ2σ1σ2σ1, and consider elements x2(w2)x1(t2)x2(w1)x1(t1) with
t1, t2 ∈ R>0 and w1, w2 ∈ c̊1,q−2, we parametrize as well the positive
semigroup U>0

Θ .
The equation

(8.3) x1(s1)x2(v1)x1(s2)x2(v2) = x2(w2)x1(t2)x2(w1)x1(t1),

determines then the change between these two parametrizations; com-
paring the entries of the corresponding matrices, we get the following
relations

s1 + s2 = t1 + t2(8.4)

v1 + v2 = w1 + w2(8.5)

s1(v1 + v2) + s2v2 = t2w1(8.6)

s1qJ(v1 + v2) + s2qJ(v2) = t2qJ(w1),(8.7)

s2v1 = t2w2 + t1(w1 + w2),(8.8)

s2qJ(v1) = t2qJ(w2) + t1qJ(w1 + w2)(8.9)

s1s2qJ(v1) = t2t1qJ (w1)(8.10)

Remark 8.18. Since the maps x1, x2 have some compatibility with trans-
position (namely, for all v in R

q−1, tx2(v) = x2(Jv) = Dx2(v)D
−1

where D is the bloc diagonal matrix with blocs id2, J, id2, and, for all s
in R, tx1(s) = x1(s) = Dx1(s)D

−1), Equation (8.3) above is equivalent
to

x1(t1)x2(w1)x1(t2)x2(w2) = x2(v2)x1(s2)x2(v1)x1(s1).

Hence the chosen numbering will make the relation between (si, vi) and
(ti, wi) more symmetric.
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We observe that Equations (8.4)–(8.7) determine the others: indeed
multiplying (8.4)×(8.5) and subtracting (8.6) gives (8.8); the scalar
product of (8.5) with the difference of (8.6) and (8.8) is the difference
of (8.7) and (8.9); applying qJ to (8.6) and subtracting the product
of (8.4) and (8.7) gives (8.10).

These equations can be solved as follow: the ratio of (8.10) and (8.7)
gives t1; the ratio of qJ(8.6) and (8.7) gives t2; once t2 is determined,
(8.6) gives w1; once w1 is determined (8.5) gives w2. Explicitely we
have

t1 =
s1s2qJ(v1)

s1qJ (v1 + v2) + s2qJ (v2)

t2 =
qJ
(

s1(v1 + v2) + s2v2
)

s1qJ (v1 + v2) + s2qJ (v2)

w1 =
s1qJ (v1 + v2) + s2qJ (v2)

qJ(s1(v1 + v2) + s2v2)

(

s1(v1 + v2) + s2v2
)

w2 =
s2

qJ(s1(v1 + v2) + s2v2)

(

s2qJ(v2)v1+

s1
(

qJ(v1 + v2)v1 − qJ(v1)(v1 + v2)
)

)

Note that even though the formula for w2 contains a minus sign, the
following lemma implies that w2 belongs to c̊2.

Lemma 8.19. For all v1 and v2 in c̊2, the element

a(v1, v2) = qJ(v1 + v2)v1 − qJ(v1)(v1 + v2)

belongs to c̊2.

Proof. We calculate qJ(a(v1, v2)). This gives

qJ(a(v1, v2)) = qJ(v1 + v2)gJ(v1)qJ(v2).

Thus a(v1, v2) belongs to c̊2 ⊔ −c̊2. Since a(v1, v1) = 2qJ(v1, v1)v1 a
connectedness argument shows that, for all v1 and v2 in c̊2, a(v1, v2)
belongs to c̊2. �

Remark 8.20. As explained the parametrization of the positive unipo-
tent semigroup depend on the choice of a reduced expression of the
longest word in W (Θ). In order to get explicit formulas for changes of
coordinates it is sufficient to derive such formulas for braid relations of
the form (σiσi)

mij = 1 among the generators of W (Θ). For Lusztig’s
total positivity in split real groups formulas for the braid relations in
the simply laced cases where determined by Lusztig [Lus98], and for
the non-simply laced cases by Berenstein and Zelevinsky [BZ97]. The
above gives explicit formulas for the braid relations in the SO(p, q)
cases. The formulas for general braid relations for Θ-positivity will be
derived in [GW22].
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8.9.2. The non-negative semigroup. Note that by point (5) of Corol-
lary 8.16, the non-negative unipotent semigroup is characterized as

U≥0
Θ = Fσ1σ2σ1σ2(c1 × c2 × c1 × c2),

i.e. every element in U≥0
Θ can be written as

x1(s1)x2(v1)x1(s2)x2(v2),

with s1, s2 ∈ R≥0 and v1, v2 ∈ c1,q−2.
However this does not give a parametrization of U≥0

Θ since one can
easily check that Fσ1σ2σ1σ2 is not injective. For example take v1, v2 ∈
c1,q−2 and s1 = s2 = 0. Then

x1(s1)x2(v1)x1(s2)x2(v2) = x2(v1)x2(v2) = x2(v1 + v2),

hence Fσ1σ2σ1σ2(0, v1, 0, v2) = Fσ1σ2σ1σ2(0, v1 + v2, 0, 0).
Giving a parametrization of U≥0

Θ is thus more subtle. Already in the
case of split real groups, the maps Fγ (defined here on (R≥0)

N) are
not injective (for the same reason than in the example above). A solu-
tion to this non-injectivity in this split case has been found by Lusztig
in [Lus98, Corollary 2.8]; he showed that the non-negative unipotent
semigroup U≥0 can written as a disjoint union of subsets U>0(w), where
w varies over the elements of the Weyl group W and U>0(w) is the in-
tersection of U≥0 with P opp

∆ wP opp
∆ . Then a parameterization of U>0(w)

is obtained as follows: a reduced expression γ = si1 · · · sik of w is cho-
sen and the map gi1×· · ·×gik → U∆, (v1, . . . , vk) 7→ exp(v1) · · · exp(vk)
is denoted Fγ ; then U>0(w) = Fγ (̊ci1 × · · · × c̊ik). Lusztig showed first
that this image does not depend of the choice of reduced expression.
He introduced a monoidal structure on W , where given w1 and w2, the
element w1 ∗ w2 is determined by U>0(w1)U

>0(w2) = U>0(w1 ⋆ w2).
In the parametrization of the positive unipotent semigroup U>0

Θ the
role of the Weyl group W in the split case is replaced by the Weyl
group W (Θ), so one might hope to get a decomposition of U≥0

Θ into
a disjoint union of parametrized sets, indexed by elements in W (Θ).
However, we already saw in the case when Θ = {αΘ} that this does
not work (cf. the discussion in Section 7.3). In order to describe a
decomposition of U≥0

Θ we have to consider a different object and replace
W by W∆rΘ\W/W∆rΘ (which for Θ = ∆ is obviously equal to W ).

We describe a decomposition of the nonnegative unipotent semigroup
for SO(3, q) and a parameterization of it, using W∆rΘ\W/W∆rΘ. It will
be of interest to explore this further in the general case, and investigate
the monoidal structure this gives.

In order to give a parametrization of U≥0
Θ , let us first consider the

Bruhat decomposition of G with respect to the action of P opp
Θ × P opp

Θ :
G =

⊔

[w]∈W∆rΘ\W/W∆rΘ
P opp
Θ wP opp

Θ . The next lemma determines the
number of orbits in this decomposition.
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Lemma 8.21. The following provides a list of smallest length represen-
tatives for the 16 classes in W∆rΘ\W/W∆rΘ: (1) e (2) s1 (3) s2 (4) (s2s3s2) (5) s2s1 (6) (s2s3s2

Proof. Here the group W can be realized as the group of signed per-
mutation 3× 3-matrices and the subgroup W∆rΘ is the subgroup (iso-
morphic to Z/2Z) of diagonal matrices whose only possibly nontrivial
diagonal coefficient is in the third position. The element s1 corresponds
to the transposition (12), s2 corresponds to the transposition (23), and
s3 is the nontrivial element in W∆rΘ.

A direct calculation shows then the result. �

In the present situation the flag variety FΘ can be realized as the
space of partial flags in R

3,q consisting of an isotropic line contained in
an isotropic 2-plane. For concreteness the canonical basis of R3,q with
respect to which bQ is given by the matrix Q above will be denoted

(e1, e2, e3, g1, g2, . . . , gq−3, f3, f2, f1).

Then E+ = (Re1,Re1 ⊕Re2) and E− = (Rf1,Rf1 ⊕Rf2) are partial
isotropic flags, and PΘ = Stab(E+) and P opp

Θ = Stab(E−). More gen-
erally, given a pair of vectors (v1, v2) in R

3,q, the flag determined by
(v1, v2) is denoted E(v1,v2) = (Rv1,Rv1 ⊕Rv2); this flag depends only
on the lines Rv1 and Rv2.

Lemma 8.22. For each double P opp
Θ orbit in G, the following gives a

flag in FΘ representing the corresponding P opp
Θ orbit in that quotient:

(1) e: E(f1,f2) (2) s1: E(f2,f1) (3) s2: E(f1,f3)

(4) (s2s3s2): E(f1,e2) (5) s2s1: E(f3,f1) (6) (s2s3s2)s1: E(e2,f1)

(7) s1s2: E(f2,f3) (8) s1(s2s3s2): E(f2,e1) (9) (s2s3)s1s2 : E(f3,e2)

(10) s2s1(s2s3s2): E(f3,e1) (11) (s2s3s2)s1s2: E(e2,f3)

(12) (s2s3s2)s1(s2s3s2): E(e2,e1) (13) s1s2s1: E(f3,f2)

(14) s1(s2s3s2)s1: E(e1,f2) (15) s1(s2s3s2)s1s2: E(e1,f3)

(16) s1(s2s3s2)s1(s2s3s2): E(e1,e2).

Proof. The flag E− = E(f1,f2) corresponds to the class of the trivial ele-
ment. The flag corresponding to a double class P opp

Θ [w]P opp
Θ , associated

with w in W , is then ẇ · F− where ẇ is a lift of W to SO(3, q).
For the explicit calculation, we can choose

• For the lift of s1 the matrix that exchanges e1 and e2, ex-
changes f1 and f2, and fixes the other basis vectors.

• For the lift of s2 the matrix that exchanges e2 and e3, ex-
changes f2 and f3, and fixes the other basis vectors.

• For the lift of s3 the matrix that sends e3 to f3, sends f3 to −e3,
and fixes the other basis vectors. �

For every x in W∆rΘ\W/W∆rΘ, define U>0
Θ (x) to be the intersection

of P opp
Θ xP opp

Θ with U≥0
Θ . Let γ = (σ1, σ2, σ1, σ2) and Fγ be the map

R×R
q−1 ×R×R

q−1 −→ SO(3, q)
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(s1, v1, s2, v2) 7−→ x1(s1)x2(v1)x1(s2)x2(v2).

For each of the reduced expression w listed in Lemma 8.21 we define
Fw to be the restriction of Fγ to the set Dw where
(1) De = {0} × {0} × {0} × {0}, (2) Ds1 = R>0 × {0} × {0} × {0},
(3) Ds2 = {0}×(∂c2r{0})×{0}×{0}, (4) Ds2s3s2 = {0}×c̊2×{0}×{0},
(5) Ds2s1 = {0} × (∂c2 r {0})×R>0 × {0},
(6) D(s2s3s2)s1 = {0} × c̊2 ×R>0 × {0},
(7) Ds1s2 = R>0 × (∂c2 r {0})× {0} × {0},
(8) Ds1(s2s3s2) = R>0 × c̊2 × {0} × {0},
(9) D(s2s3)s1s2 = {(0, v1, s1, v2) | s1 > 0, v1, v2 ∈ ∂c2, bJ(v1, v2) 6= 0},

(10) Ds2s1(s2s3s2) = {0} × (∂c2 r {0})×R>0 × c̊2,
(11) D(s2s3s2)s1s2 = {0} × c̊2 ×R>0 × (∂c2 r {0}),
(12) D(s2s3s2)s1(s2s3s2) = {0} × c̊2 ×R>0 × c̊2,
(13) Ds1s2s1 = R>0 × (∂c2 r {0})×R>0 × {0},
(14) Ds1(s2s3s2)s1 = R>0 × c̊2 ×R>0 × {0},
(15) Ds1(s2s3s2)s1s2 = R>0 × c̊2 ×R>0 × (∂c2 r {0}),
(16) Ds1(s2s3s2)s1(s2s3s2) = R>0 × c̊2 ×R>0 × c̊2.

Proposition 8.23. For every w in the list of Lemma 8.21 the map

Dw −→ FΘ

z 7−→ Fw(z) · F−

is injective; the image of Fw is U≥0
Θ ∩P opp

Θ wP opp
Θ = U>0

Θ (x) with x = [w].

The nonnegative semigroup U≥0
Θ is the disjoint union the U>0

Θ (x).

Proof. The map (s1, v1, s2, v2) 7→ Fγ(s1, v1, s2, v2) · F− is equivalently
given by the last two columns of the matrix Fγ(s1, v1, s2, v2) that is













s1qJ(v1 + v2) + s2qJ(v2) s1s2qJ(v1)
qJ(v1 + v2) s2qJ(v1)
v1 + v2 s2v1

1 s1 + s2
0 1













.

We can now check by case by case consideration that the statement
holds. �

9. Invariant unipotent semigroups

In order to define Θ-positivity we took a very algebraic approach. In
this section we will show that essentially any L◦

Θ invariant semigroup U+

in UΘ arise from a Θ-positive structure. This gives the two following
theorems characterizing Θ-positivity. These results will be useful to
make the connection with a geometric characterization of Θ-positivity
(Section 10).
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Theorem 9.1. Let G be a connected semisimple Lie group, and let
UΘ be a standard unipotent subgroup of G and LΘ be the corresponding
standard Levi subgroup. Suppose that there is U+ ⊂ UΘ such that

(1) U+ is closed and of nonempty interior;
(2) U+ is L◦

Θ-invariant;
(3) U+ is a semigroup;
(4) U+ contains no nontrivial invertible element (if g ∈ U+ and

g−1 ∈ U+ then g = e).

Then G admits a Θ-positive structure and the semigroup U+ contains
the semigroup U≥0

Θ .
If we further assume that

(5) the interior of U+ is contained in Ωopp
Θ ,

then U+ = U≥0
Θ .

In fact, when condition (5) holds the sharpness of the semigroup
(condition (4)) can be relaxed.

Theorem 9.2. Let G be a connected semisimple Lie group, and let UΘ

be a standard unipotent subgroup of G and Ωopp
Θ the open Bruhat cell

with respect to the parabolic group P opp
Θ . Suppose that there is V + ⊂ UΘ

such that

(1) V + is a connected component of UΘ ∩ Ωopp
Θ .

(2) V + is a semigroup;

Then G admits a Θ-positive structure and the semigroup V + is equal
to U>0

Θ .

Sections 9.1–9.2 address the proof of Theorem 9.1 and Section 9.3
addresses the proof of Theorem 9.2. Section 9.4 gives examples of
semigroups that satisfy the hypothesis of Theorem 9.1 and are not
equal to U≥0

Θ .

9.1. The cones associated with U+. With the notation of Theo-
rem 9.1 (and the general notation introduced in Section 2), for all α
in Θ we introduce

kα = pα
(

log(U+)
)

where pα : uΘ → uα is the projection coming from the decomposition
uΘ =

⊕

β uβ.
We will first show that

Proposition 9.3. Let Xα be an element of uα. Then Xα belongs to kα
if and only if exp(Xα) belongs to U+.

Proof. Let us define the following sequence (An)n∈N in a; for all n ∈ N,
An is the element of a defined by the equalities

α(An) = 0, γ(An) = 0 ∀γ ∈ ∆rΘ and γ(An) = −n ∀γ ∈ Θr {α}.
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One has then, for all Xα ∈ uα

ad(An)Xα = 0

and for all β not congruent to α modulo the span of ∆ r Θ and for
all Y in uβ

ad(An)Xβ = −sβnXβ

for some sβ > 0. The sequence (gn = exp(An))n∈N belongs to exp(a) ⊂
L◦
Θ and, for every X in uΘ, the sequence

Ad(gn) ·X = exp(ad(An))X

converges to Xα := pα(X); indeed using the decomposition X =
∑

Xβ

according to the direct sum uΘ =
⊕

β uβ, one has

Ad(gn) ·X = exp(ad(An))Xα +
∑

β 6=α

exp(ad(An))Xβ

= Xα +
∑

β 6=α

e−sβnXβ.

Let now Xα be in kα. There exists then X ∈ uΘ such that exp(X)
belongs to U+ and Xα = pα(X). By the above, the sequence

gn exp(X)g−1
n = exp(Ad(gn)X)

converges to exp(Xα). Since U+ is L◦
Θ-invariant and closed, one has

exp(Xα) belongs to U+.
Conversely if exp(Xα) belongs to U+, then

pα
(

log(exp(Xα))
)

= pα(Xα) = Xα

belongs to kα. �

From this we deduce:

Corollary 9.4. The set kα is a closed L◦
Θ-invariant convex cone.

Proof. By the previous proposition kα = log−1
(

U+ ∩ exp(uα)
)

. Since
U+ ∩ exp(uα) is closed and L◦

Θ-invariant, this implies that kα is closed
and L◦

Θ-invariant.
Let Xα ∈ kα and let t > 0. Let A ∈ a be defined by α(A) = log t

and γ(A) = 0 for all γ ∈ ∆r {α}. Then

tXα = exp(ad(A))Xα = Ad(exp(A))Xα

belongs to kα since exp(A) belongs to L◦
Θ. This means that kα is a

cone.
Let Xα and Yα be in kα. Then exp(Xα) exp(Yα) belongs to U+. Thus,

from the Baker–Campbell–Hausdorff formula,

pα ◦ log
(

exp(Xα) exp(Yα)
)

= Xα + Yα

belongs to kα. This is the property that kα is convex. �
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9.2. The positive structure. The last point to make the relation
with Definition 3.1 is that kα are nontrivial and acute:

Lemma 9.5. For every α in Θ, the cone kα is not reduced to {0} and
contains no line.

Proof. Suppose that kα = {0}. Then U+ would be contained in {g ∈
UΘ | pα(log(g)) = 0} and would be of empty interior, contrary to the
assumptions.

Let now X in uα be such that X and −X belong to kα. Then
g = exp(X) belongs to U+ as well as g−1 = exp(−X). Thus g = e
(since U+ contains no nontrivial invertible element) and X = log(g) = 0.
This means that the convex cone kα contains no line. �

Thus G has a Θ-positive structure and one can introduce the semi-
group U≥0

Θ with the following choice cα = kα of invariant cones. With

this choice one has obviously the inclusion U≥0
Θ ⊂ U+. This concludes

the proof of Theorem 9.1 except for the last point, but this point will
be a direct consequence of Theorem 9.2 that we will prove in the next
section.

9.3. The cones associated with V + and the induced positive

structure. We now turn to the proof of Theorem 9.2. The strategy is
similar to the above and we introduce, for every α in Θ

kα = pα
(

log(V +)
)

.

Observe that V + is a semigroup.
It is easy to show that

Proposition 9.6. Let Xα be an element of uα. Then Xα belongs to kα
if and only if exp(Xα) belongs to V +.

Furthermore the L◦
Θ-invariance is a consequence of the hypothesis

here:

Lemma 9.7. The semigroup V + is L◦
Θ-invariant.

Proof. Indeed UΘ and Ωopp
Θ are invariant by L◦

Θ, hence every connected
component of UΘ ∩ Ωopp

Θ is invariant by L◦
Θ. �

From the results already established we deduce as above

Lemma 9.8. For every α in Θ, kα is a closed convex L◦
Θ-invariant

cone in uα and is not reduced to {0}.
Lemma 9.9. The following inclusions hold

V +V + ⊂ V +, and V +V + ⊂ V +.

Remark 9.10. Equalities hold in fact since the neutral element belongs
to V +.



GENERALIZING LUSZTIG’S TOTAL POSITIVITY 57

Proof. Let x be an element of V +V +. There exist thus u ∈ V + and
v ∈ V + such that x = uv. Let (vn) be a sequence in V + converging
to v. Then the sequence defined by, for all n ∈ N, un = xv−1

n =
uvv−1

n converges to u. There exists hence n0 such that, for all n > n0,
un belongs to V +. For such n, the equality x = unvn shows that
x belongs to the semigroup V +.

The other inclusion follows by similar arguments. �

Corollary 9.11. The open set V + is the interior of its closure V +.

Proof. Since V + is open and contained in V +, one has V + ⊂ V̊ +.
Let (yn) be a sequence in V + converging to the neutral element

(the existence of such sequence is insured, for example, by the L◦
Θ-

invariance).

Let x be an element of V̊ +. Since the sequence (y−1
n x) converges

to x, there exists n0 such that, if n > n0, then y−1
n x belongs to V̊ +. For

such an integer n, the equality x = yn(y
−1
n x) together with Lemma 9.9

imply that x belongs to V +. �

Corollary 9.12. For all α in Θ, kα is an acute convex cone in uα.

Proof. Since kα is a closed convex cone and is L◦
Θ-invariant, the sub-

space of maximal dimension contained in kα is L◦
Θ-invariant. Since the

action of L◦
Θ on uα is irreducible (cf. Theorem 2.1), this subspace is

either {0} or uα. Hence we have to exclude the case when kα = uα.
Suppose, by contradiction, that kα = uα. We then have (Propo-

sition 9.6) exp uα ⊂ V +. Recall that the Lie algebra uΘ admits the
following decomposition

uΘ = uα ⊕ uα̂, where uα̂ =
⊕

β 6=α

uβ

and that the map

uα ⊕ uα̂ −→ UΘ

(X, Y ) 7−→ exp(X) exp(Y )

is a diffeomorphism.
Let now x be an element of V +. There exist thus X ∈ uα and Y ∈ uα̂

such that x = exp(X) exp(Y ). The equality kα = uα implies that
exp(−X) belongs to V + and, by the Lemma 9.9, exp(Y ) = exp(−X)x
belongs to V +. But this element exp(Y ) does not belong to Ωopp

Θ , in
contradiction with the fact that V + is contained in Ωopp

Θ . �

As a consequence the group G has a Θ-positive structure and we can
choose cα = kα in the construction of U>0

Θ . The last point is to notice

Lemma 9.13. One has V + = U>0
Θ .

Proof. These two open sets are connected components of UΘ∩Ωopp
Θ and

must intersect; they are then equal. �
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9.4. Semigroups bigger than U≥0
Θ . We end this section with an ex-

ample of semigroups contained in the unipotent standard subgroup of
SL3(R) that are bigger than the semigroup of totally positive unipotent
matrices.

For each r ∈ R denote by Ur the set of matrices




1 a c
0 1 b
0 0 1





with a, b ≥ 0 and 0 ≤ c ≤ rab.

Remark 9.14. The semigroup of totally nonnegative unipotent matrices
is U1.

Lemma 9.15. For all r ≥ 1, Ur is a closed semigroup without nontriv-
ial invertible element and invariant by conjugation by diagonal matrices
with positive coefficients.

Proof. Closedness and invariance are easily checked. To check the semi-
group property, we calculate the product of two elements of Ur:





1 a c
0 1 b
0 0 1









1 a′ c′

0 1 b′

0 0 1



 =





1 a′′ c′′

0 1 b′′

0 0 1





then a′′ = a+ a′ ≥ 0, b′′ = b+ b′ ≥ 0 and c′′ = c+ c′ + ab′ ≥ 0, thus

ra′′b′′ − c′′ = (rab− c) + (ra′b′ − c′) + ra′b+ (r − 1)ab′ ≥ 0,

and the product belongs to Ur. The above formula shows that if an
element





1 a c
0 1 b
0 0 1





is invertible in Ur then necessarily a = b = 0 and for such an element
the condition of being in Ur says 0 ≤ c ≤ 0, i.e. c = 0. This proves the
wanted properties for Ur. �

10. Positivity in the flag variety FΘ

In this section we use the positive unipotent semigroups to give a
notion of positivity in the flag variety FΘ.

10.1. A first diamond. We assume that G has a Θ-positive structure.
The positive semigroups U>0

Θ and Uopp,>0
Θ will enable us to define

“diamonds” (cf. Section 10.4 below) in the flag variety FΘ.
We will denote by O ⊂ FΘ the set of points transverse to pΘ and

by Oopp the set of points transverse to p
opp
Θ . These sets are open and

diffeomorphic to the unipotent Lie groups UΘ and Uopp
Θ ; indeed the

maps UΘ → O | u 7→ u · poppΘ and Uopp
Θ → Oopp | u 7→ u · pΘ are
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diffeomorphisms. Since w∆ · pΘ = p
opp
Θ and w∆ · poppΘ = pΘ, one has also

O = ΩΘ · pΘ and Oopp = Ωopp
Θ · poppΘ .

Our first result is

Proposition 10.1. One has the equality, in FΘ,

U>0
Θ · poppΘ = Uopp,>0

Θ · pΘ.
More precisely these sets are equal to the same connected component of
O ∩Oopp.

Proof. Point (7) of Theorem 8.1 implies that U>0
Θ · poppΘ is a connected

component of O∩Oopp. Equally, Uopp,>0
Θ ·pΘ is a connected component

of O ∩Oopp. Hence we only need to see that these sets intersect. This
can be obtained exactly along the same lines than Proposition 8.13
using the split Lie subalgebra gΘ and Lusztig’s work. Indeed [Lus94,
Th. 8.7] precisely implies that the two above sets intersect. �

10.2. Axiomatic of diamonds. In this section and the next one, we
do not assume that G has a Θ-positive structure. We will prove however
that the definition below forces the presence of a Θ-positive structure.

We introduce now the expected properties that one wants for positive
triples in FΘ. It will be a little easier to express these properties in
terms of “diamonds” that are, fixing a and b in FΘ, the connected
components of the set {x ∈ FΘ | (a, x, b) is a positive triple} (cf. below
Definition 10.14).

Let Θ ⊂ ∆ be a subset invariant by the involution ι : α 7→ −w∆ · α
(so that Fι(Θ) = FΘ and we can speak of transverse pairs in FΘ). For
a point a in FΘ, let us denote by Oa the (open) subset of FΘ whose
points are those transverse to a.

Definition 10.2. A family of diamonds in FΘ is a family F of triples,
called diamonds, (D, a, b) where D is a subset of FΘ and a, b belong to
FΘ (and will be called the extremities of the diamond) such that

(1) For every (D, a, b) in F , a is transverse to b and D is a connected
component of Oa ∩Ob;

(2) For every (D, a, b) in F , (D, b, a) belongs to F ;
(3) For every (D, a, b) in F , and for every g in Aut(g), (g ·D, g · a, g · b)

belongs to F ;
(4) For every (D, a, b) in F , and for every x in D, there exists a unique

diamond (D′, a, x) in F such that D′ is contained in D.

The symmetry condition (2) together with the last condition imply also

(5) For every (D, a, b) in F , and for every x in D, there exists a unique
diamond (D′, x, b) in F such that D′ is contained in D.

Remark 10.3. It is natural to ask that the notion of diamond (or the
notion of positive triple to come later) is invariant under all the auto-
morphisms of the flag variety FΘ. This is why we require invariance
under the group Aut(g) in the definition and not only under G.
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We can immediately note that:

• For all a and b in FΘ, with a transverse to b, there is a least one
diamond with extremities a and b (simply since the group Aut(g)
acts transitively on the space of pairs of transverse points), and there
are finitely many such diamonds (since Oa ∩ Ob has finitely many
components);

• For every diamond (D, a, b) the set D is invariant under the connected
Lie group L◦

a,b that is the neutral component of the stabilizer (in G)
of the pairs (a, b).

10.3. From diamonds to Θ-positivity. We assume in this subsec-
tion that there is a family of diamonds F in FΘ. We immediately note
that this family is produced from a semigroup in UΘ.

Proposition 10.4. Let a and b be respectively the elements pΘ and
p
opp
Θ of FΘ. Let (D, a, b) be a diamond in F with extremities a and b.

Then the set
V + := {v ∈ UΘ | v · b ∈ D}

is a connected component of UΘ ∩ Ωopp
Θ and is a semigroup.

Proof. The fact that V + is a connected component of UΘ∩Ωopp
Θ follows

directly from the conditions on the family of diamonds F .
Proving that V + is a semigroup amounts to show the inclusion, for

all v in V +, vV + ⊂ V +. This inclusion can be phrased in term of
diamonds: let x = v · b so that x belongs to D and there is a unique
diamond (D′, a, x) with extremities a and x with D′ ⊂ D; with this
notation, one wants to prove the equality D′ = v ·D.

Let ℓs = exp(sX) (s ∈ R) be the 1-parameter subgroup associated
with X, the element of a such that α(X) = −1 for all α in ∆. Define
(xt)t∈[0,1] and (vt)t∈[0,1] by the equalities xt = vt · b, v0 = e, and vt =
ℓlog tvℓ

−1
log t for t > 0. By the choice of X, the path (vt)t∈[0,1] is continuous

and x0 = b, x1 = x.
For all positive t, D′

t = ℓlog t · D′ is the diamond with extermities a
and xt contained in D; i.e. D′

t is the connected component of Oa ∩Oxt

contained in D. From the convergence of xt to b, we deduce that
D′

t converges to D as t tends to 0. Stated differently, setting D′
0 =

D, the family (D′
t)t∈[0,1] is continuous. This implies that the family

(v−1
t ·D′

t)t∈[0,1] of diamonds with extremities a and b is continuous. Since
there are finitely many connected components in Oa ∩ Ob, we deduce
that this family is constant equal to D. In particular D = v−1

1 ·D′
1 =

v−1 ·D′ which is the sought for equality. �

This means that Theorem 9.2 applies and that G admits a Θ-positive
structure. Let us then fix, for every α in Θ, a nonzero acute L◦

Θ-
invariant closed convex cone cα in uα. We already noticed that there
are exactly two such cones, namely cα and −cα. To take into account
all the possible choices of cones, let us introduce, for every ε = (εα)α∈Θ
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in {±1}Θ the nonnegative unipotent semigroup Uε≥0
Θ generated by

exp(εαcα) (for α varying in Θ) and the positive unipotent semigroup
Uε>0
Θ that is the interior (relative to UΘ) of Uε≥0

Θ .
Applying Theorem 9.2 and the fact that the cones cα are determined

up to sign, we get the following corollary

Corollary 10.5. Let a and b be respectively pΘ and p
opp
Θ . Then the

diamonds in F with extremities a and b are exactly the triples (Uε>0
Θ ·

b, a, b) for ε varying in {±1}Θ.

Proof. Indeed Proposition 10.4 and Theorem 9.2 prove that every di-
amond with extremities a and b has this form. The fact that all
signs ε are possible is a consequence of the invariance under Aut(g)
and that there are elements in this group exchanging the cones (Propo-
sition 3.8). �

In fact the transitivity observed in Proposition 3.8 implies that there
is exactly one orbit of diamonds under the action of Aut(g).

Corollary 10.6. Let a and b be pΘ and p
opp
Θ . Then (D, a, b) = (U>0

Θ ·
b, a, b) is a diamond and the diamonds are exactly the (g ·D, g · a, g · b)
for g varying in Aut(g).

10.4. From Θ-postivity to diamonds. We now consider the reverse
direction of Corollary 10.6. Namely, we assume that G has a Θ-positive
structure and consider the family F consisting of the Aut(g)-orbit of
the triple (U>0

Θ · b, a, b) where a and b are respectively pΘ and p
opp
Θ .

Equivalently, the family F can be defined by taking the G-orbits of
the diamonds (Uε>0

Θ · b, a, b) for ε varying in {±1}Θ.

Proposition 10.7. The family F is a family of diamonds in FΘ.

Proof. We need to check the conditions of Definition 10.2. Condition (1)
follows from the corresponding property of U>0

Θ (point (7) of Theo-
rem 8.1) (cf. also Proposition 10.1). Condition (2) is a consequence
of the equality w∆U

>0
Θ w−1

∆ = Uopp,>0
Θ and of Proposition 10.1. Condi-

tion (3) is there by construction of the family F . The existence part in
Condition (4) follows directly from the fact that U>0

Θ is a semigroup.
Let us now address the uniqueness in Condition (4). With the nota-

tion introduced in this condition, we can (by Aut(g)-invariance) assume
that a = pΘ, b = p

opp
Θ , and D = U>0

Θ · b. Let u be the element of U>0
Θ

such that x = u · b and let (D′, a, x) be a diamond in F such that
D′ ⊂ D. Then (u−1D′, a, b) is a diamond with extremities a and b.

There is thus an element ℓ in Aut(g) fixing a and b and such that
u−1 · D′ = ℓ · D. The element ℓ stabilizes all the spaces uα (for α
in Θ) and thus sends, for every α in Θ, the cone cα to εαcα for some εα
in {±1}. Setting ε = {εα}α∈Θ one has thus u−1 ·D′ = Uε>0

Θ · b and the
inclusion D′ ⊂ D can be rewritten as uUε>0

Θ ⊂ U>0
Θ .
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The sought for uniqueness is now equivalently expressed in the equal-
ities εα = 1 for all α in Θ. Suppose by contradiction that there ex-
ists α with εα = −1. Then, using for example the parametrization
of the semigroups, one can construct an element v in Uε>0

Θ such that
πα

(

log(uv)
)

= πα(log u) + πα(log v) = 0 (where again πα : uΘ → uα
is the projection on the factor uα); this is incompatible with the fact
that uv belongs to U>0

Θ since we should have that πα

(

log(uv)
)

belongs
to c̊α. �

10.5. U-pinnings. We make the relation with the diamonds intro-
duced here and the definition that was used in [GLW21, Definition 2.4].

Denote, for every element a in FΘ by Pa its stabilizer in G and by Ua

the unipotent radical of Pa (so that Ua = UΘ when a is pΘ). The
group Ua is completely determined by its Lie algebra and will be also
identified with a subgroup of Aut(g) (namely the unipotent radical
of the stabilizer of a in Aut(g)). We will call a U-pinning of Ua any
homomorphism sa : UΘ → Ua induced by the map x 7→ gxg−1 where
g is an element of Aut(g) such that g · pΘ = a.

Lemma 10.8. Let a and b be two transverse points of FΘ. Then the
diamonds with extremities a and b are exactly the triples

(sa(U
>0
Θ ) · b, a, b)

where sa runs through the U-pinnings of Ua.

Proof. Indeed every triple in the statement of the lemma is a diamond
and the family defined is invariant by the action of Aut(g). Hence the
result by the transitivity observed in Corollary 10.6. �

10.6. Opposite diamond. The notion of U -pinning allows us to in-
troduce the notion of the opposite of a diamond. Let (D, a, b) be a
diamond ant let sa : UΘ → Ua be a U -pinning such that D = sa(U

>0
Θ ) ·b

then the triple (sa(U
>0
Θ )−1 · b, a, b) is a diamond that is called opposite

to (D, a, b).

Lemma 10.9. There is a unique diamond (D′, a, b) opposite to (D, a, b).

Proof. Set V = {u ∈ Ua | u · b ∈ D} and V ′ = {u ∈ Ua | u · b ∈ D′}.
Then from the definition

V ′ = sa((U
>0
Θ )−1) = (sa(U

>0
Θ ))−1 = V −1 = {u−1}u∈V ,

this proves uniqueness. �

The diamond opposite to (D, a, b) will be denoted (D∨, a, b). One
obviously has (D∨)∨ = D. Uniqueness directly implies

Corollary 10.10. If D is a diamond, and if g belongs to Aut(g), then
the opposite of the diamond g ·D is g ·D∨: (g ·D)∨ = g ·D∨.

Lemma 10.11. Let (D, a, b) be a diamond. Then every x in D and
every y in D∨ are transverse.
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Proof. By invariance we can assume that a = pΘ, b = p
opp
Θ and D =

U>0
Θ ·b. There are then u and v in U>0

Θ such that x = u ·b and y = v−1 ·b.
Then the pair (x, y) is in the same orbit that (vu·b, b). Since vu belongs
to U>0

Θ , vu · b belongs to D and is transverse to b, thus x is transverse
to y. �

The opposition of diamonds reverses inclusion:

Lemma 10.12. Let (D, a, b) be a diamond and x belong to D. Let
(D′, a, x) be the diamond contained in D. Then the opposite diamond
D′∨ contains D∨.

Proof. We can assume a = pΘ and b = p
opp
Θ and D = U>0

Θ · b. Let u
be in U>0

Θ such that x = u · b so that D′ = u · D. One thus has
D∨ = (U>0

Θ )−1 · b and D′∨ = u ·D∨ or u−1 ·D′∨ = D∨. The sought for
inclusion is therefore equivalent to u−1(U>0

Θ )−1 ⊂ (U>0
Θ )−1 which is a

consequence of the fact that U>0
Θ is a semigroup. �

The last lemma implies

Corollary 10.13. The set D∨ consists of those x in FΘ transverse to b
and such that there is a diamond (D′, a, x) containing D.

10.7. Positive triples in FΘ. We now use the family of diamonds to
define positive triples of flags.

Definition 10.14. A triple (f1, f2, f3) ∈ (FΘ)
3 is positive if f1 is trans-

verse to f3 and if there exists a diamond with extremities f1 and f3
that contains f2.

The next proposition collects the main properties of positive triples.

Proposition 10.15. (1) [Invariance] for every (f1, f2, f3) and every g
in Aut(g), the triple (f1, f2, f3) is positive if and only if the triple
(g · f1, g · f2, g · f3) is positive.

(2) A triple (fi)i∈Z/3Z is positive if and only if, for all i 6= j in Z/3Z
there exists a diamond Di,j with extremities fi and fj with Dj,i =
D∨

i,j and fk belongs to Di,j for all (i, k, j) cyclically ordered (i.e.
j − k = k − i 6= 0 in Z/3Z).

(3) [Permutation] for every permutation σ ∈ S3 and every (f1, f2, f3),
the triple (f1, f2, f3) is positive if and only (fσ(1), fσ(2), fσ(3)) is pos-
itive.

(4) A triple is positive if and only if it is in the orbit (under Aut(g))
of (pΘ, u · poppΘ , poppΘ ) for some u in U>0

Θ .
(5) A triple is positive if and only if it is in the orbit (under Aut(g))

of (pΘ, u
−1 · poppΘ , poppΘ ) for some u in U>0

Θ .
(6) [Component] the set of positive triples is a union of connected com-

ponents of the space of pairwise transverse triples, in particular it
is open in (FΘ)

3.
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(7) [Properness] The group G acts properly on the space of positive
triples. In particular stabilizers are compact.

Proof. (1) This property follows from the invariance of the family of
diamonds.

(2) If (f1, f2, f3) satisfies these conditions, then f2 belongs to D1,3, a
diamond with extremities f1 and f3 and the triple is positive.

Conversely, if the triple (f1, f2, f3) is positive, there exists a di-
amond D1,3 with extremities f1 and f3 and containing f2. Define
D1,2 to be the unique diamond with extremities f1 and f2 contained
in D1,3 and D2,3 to be the unique diamond with extremities f2
and f3 contained in D1,3. For i > j define Di,j = D∨

j,i. Then the
wanted membership properties of the fk in the Di,j follow from the
choices made and from Corollary 10.13.

(3) The characterization of the previous point is clearly invariant by
permutation, hence the result.

(4) This follows from the definition and from the fact that (U>0
Θ ·b, a, b)

is a diamond (again a = pΘ and b = p
opp
Θ ).

(5) This property follows from the previous one and the invariance by
the transposition (23).

(6) This is a consequence of the connectedness properties of diamonds.
(7) The map F → F

2∗
Θ (where F

2∗
Θ is the space of transverse pairs)

is continuous and equivariant. The sought for properness is then
equivalent to the properness of the action of L◦

Θ onto the semigroup
U>0
Θ ; this properness is in turn a consequence of the fact that the

parameterizations (cf. Section 6.2) are L◦
Θ-equivariant and from the

already know properness of L◦
Θ on the product of cones (Proposi-

tion 3.7). �

Remark 10.16. In resonance with Remark 3.10, we can establish (when
Θ 6= ∆) that the space of positive triples has two connected components
when ♯Θ is odd and one connected component when ♯Θ is even.

Point (6) can be used to prove other characterizations of positive
triples, for example

Corollary 10.17. A triple is positive if and only if it is in the |Aut(g)-
orbit of a triple of the form (vu ·b, v ·b, b) where b = p

opp
Θ and u, v belong

to U>0
Θ .

Proof. Let us prove first that any such triple is positive. By property
of the semigroup U>0

Θ , the flags in (vu ·b, v ·b, b) are pairwise transverse.
Let ℓs = exp(sX) (s ∈ R) be the 1-parameter subgroup, contained in
the Cartan subspace, where X is the element of a such that α(X) = −1
for all α in ∆. Then the family {(vℓsuℓ−1

s · b, v · b, b)}s≥0 consists of
pairwise transverse triples and converges, as s → ∞, to the positive
triple (a, v · b, b) (where a = pΘ). This implies (thanks to point (6) of
the above proposition) that (vu · b, v · b, b) is positive.
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Let now prove the reverse statement. Any positive triple is in the
orbit of (a, w · b, b) for some w in U>0

Θ . The diamond with extremities a

and b and containing w · b is our first diamond D = U>0
Θ · b = Uopp,>0

Θ ·a.
For x ∈ Uopp,>0

Θ , one has x · (a, w · b, b) = (x · a, xw · b, b). The element
x · a belongs to D and hence is of the form r · b for some r in U>0

Θ .

The element xw · b belongs also to D: indeed there is z ∈ Uopp,>0
Θ

such that w · b = z · a; hence xw · b = (xz) · a and xz belongs to Uopp,>0
Θ

thus xw · b belongs to Uopp,>0
Θ · a = D. There is therefore v in U>0

Θ such
that xw · b = v · b.

We finally prove that the element u = v−1r belongs to U>0
Θ . For

this, note first that u belongs to Ωopp
Θ since v−1r · b is transverse to b;

choose (wt)t∈[0,1] a continuous path satisfying w0 = e, w1 = w and
wt ∈ U>0

Θ for all t in ]0, 1] (such a path can be constructed thanks to a
parametrization Fγ). The path (vt)t∈[0,1] in UΘ defined by the equality

vt ·b = xwt ·b is continuous and satisfies v0 = e, v1 = v and v−1
t r belongs

to Ωopp
Θ for all t. Hence u = v−1r = v−1

1 r and r = v−1
0 r belongs to the

same connected component of UΘ ∩ Ωopp
Θ . Since U>0

Θ is a connected
component of that intersection and since r belongs to U>0

Θ , we obtain
that u belongs to U>0

Θ , as announced. �

10.8. Positive quadruples. We investigate here properties of positive
quadruples.

Definition 10.18. A quadruple (a, x, b, y) in FΘ is said positive if there
exists a diamond (D, a, b) such that x belongs to D and y belongs to D∨.

Proposition 10.19. (1) Let (a, x, b, y) be a quadruple in FΘ and let g
be in Aut(g). Then (a, x, b, y) is positive if and only if (g ·a, g ·x, g ·
b, g · y) is positive.

(2) A quadruple is positive if and only if it is in the Aut(g)-orbit of
(a, u · b, b, v−1 · b) where a = pΘ, b = p

opp
Θ and u, v belong to U>0

Θ .
(3) A quadruple is positive if and only if it is in the Aut(g)-orbit of

(a, vu · b, v · b, b) where a = pΘ, b = p
opp
Θ and u, v belong to U>0

Θ .
(4) Let (a, x, b, y) be a quadruple in FΘ. Then (a, x, b, y) is positive if

and only if there is a diamond (D, a, y) such that b belongs to D
and x belongs to D′, the unique diamond with extremities a and b
contained in D.

(5) A quadruple is positive if and only if it is in the Aut(g)-orbit of
(a, x · a, xy · a, b) where a = pΘ, b = p

opp
Θ and x, y belong to Uopp,>0

Θ .
(6) Let (a, x, b, y) be a quadruple in FΘ. Then (a, x, b, y) is positive if

and only if there is a diamond (D, a, y) such that x belongs to D
and b belongs to D′, the unique diamond with extremities x and y
contained in D.

(7) A quadruple (fi)i∈Z/4Z is positive if and only if, for all i 6= j in
Z/4Z there exists a diamond Di,j with extremities fi and fj with
Dj,i = D∨

i,j and fk belongs to Di,j for all (i, k, j) cyclically ordered.
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(8) The space of positive quadruples is invariant under the dihedral
group D4 ⊂ S4 (i.e. the group generated by the 4-cycle (1, 2, 3, 4)
and the double transposition (1, 4)(2, 3)). Precisely for σ ∈ D4 and
a quadruple (f1, f2, f3, f4) then (f1, f2, f3, f4) is positive if and only
if (fσ(1), fσ(2), fσ(3), fσ(4)) is positive.

Proof. (1) This follows from the invariance of the family of diamonds
and the equivariance of opposition (Corollary 10.10).

(2) This follows from the definition and from the fact that, up to the
action of Aut(g), we can assume a = pΘ, b = p

opp
Θ and that D =

U>0
Θ · b.

(3) Applying the element v ∈ U>0
Θ to the quadruple (a, u · b, b, v−1b)

gives the wanted result.
(4) This is the previous characterization stated in term of diamonds.
(5) This follows as (3) above using this time the equality Uopp,>0

Θ · a =
U>0
Θ · b.

(6) This is the previous characterization stated in term of diamonds.
(7) If a quadruple satisfies the stated condition, then the condition of

the definition is obviously satisfied and the quadruple is positive.
Conversely, suppose that (f1, f2, f3, f4) is positive. By definition,

there is a diamond D1,3 with extremities f1 and f3, containing f2
and such that f4 belongs to D3,1 := D∨

1,3. We define D1,2 to be
the diamond contained in D1,3 and with extremities f1 and f2 and
similarly D2,3 is the diamond contained in D1,3 with extremities f2
and f3. The characterization of point 4 gives also a diamond D1,4

with extremities f1 and f4 and containing f2 and f3. This di-
amond can be used to define the diamond D2,4 and D3,4. The
other diamonds are defined thanks to the requirement Dj,i = D∨

i,j .
All the wanted memberships are satisfied by construction and by
Corollary 10.13 except possibly that f3 belongs to D2,4. However
this membership follows from the characterization established in
point (6).

(8) The permutation invariance follows from the previous point.
�

Based on point (3) above one has

Lemma 10.20. Let a and b be the elements pΘ and p
opp
Θ of FΘ and

let v be in U>0
Θ and x = v · b. For y ∈ FΘ, the quadruple (a, y, x, b) is

positive if and only if there is u in U>0
Θ such that y = vu · b.

Diamonds associated with positive quadruples are properly contained
one in another:

Lemma 10.21. Let (a, x, b, y) be a positive quadruple and let (D, a, y)
be the diamond containing x and b and let (D′, x, b) be the diamond
contained in D. Then the closure D′ is contained in D.
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Proof. It will be enough to prove that this closure is contained in the
intersection Oa∩Oy. By symmetry, we need only to prove the inclusion
into Oy. We can assume that a = pΘ, y = p

opp
Θ and b = v · y, x = vu · y

with u, v in U>0
Θ . Any point in D′ is of the form vw · y with w ∈ U≥0

Θ

(and w−1u must also belong to U≥0
Θ ). In particular vw belongs to U>0

Θ

(Corollary 8.16.(1)) and vw · y is transverse to y as wanted. �

Similarly to what as been established for triples we note

Lemma 10.22. The space of positive quadruples is a union of con-
nected components of the space F

4∗
Θ of pairwise transverse quadruples.

10.9. Positive tuples. Let n be an integer ≥ 3. We introduce here
the positive n-tuples in generalizing point (2) of Proposition 10.15 or
point (7) of Proposition 10.19.

Definition 10.23. A n-tuple (fi)i∈Z/nZ of elements of FΘ is positive if,
for all i 6= j in Z/nZ, there exists a diamond Di,j with extremities fi
and fj with Dj,i = D∨

i,j and fk belongs to Di,j for all (i, k, j) cyclically
ordered.

Note that the diamonds are uniquely determined by the properties
that fi+1 belongs to Di,j (when j /∈ {i, i+ 1}) and Di,i+1 = D∨

i+1,i.
From the definition, it is obvious that

Lemma 10.24. (1) The set of positive n-tuples is invariant by the di-
hedral group Dn (i.e. by cyclic permutations and by the permutation
i ↔ n + 1− i).

(2) Any subconfiguration of a positive tuple is a positive tuple.

Here is one (among many) characterization of positive tuples.

Lemma 10.25. A n-tuple is positive if and only if it is in the Aut(g)-
orbit of

(a, u1 · · ·un−3un−2 · b, u1 · · ·un−3 · b, . . . , u1 · b, b),
where a = pΘ, b = p

opp
Θ , and, for all i = 1, . . . , n− 2, ui belongs to U>0

Θ .

Proof. Let (f1, . . . , fn) be a positive tuple. Up to the Aut(g) action, we
can assume that f1 = a, fn = b and fn−1 = u1 ·b. Repeated applications
of 10.20 give the sequence (u2, . . . , un−2).

Conversely let u1, . . . , un−2 be in U>0
Θ and let (f1, . . . , fn) be

(a, . . . , u1 · · ·ui · b, . . . , b).
For all i < j in {1, . . . , n}, let Di,j be the unique diamond with ex-
tremities fi and fj contained in D = U>0

Θ · b and Dj,i = D∨
i,j. The

facts that fk belongs to Di,j (for i < k < j in {1, . . . , n}) come from
Corollary 10.17, the other cases come from Corollary 10.13. �

Restated in term of diamonds, the lemma says it is enough to check
that some sub-4-tuples are positive:
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Proposition 10.26. Let (f1, . . . , fn) be in (FΘ)
n. Then (f1, . . . , fn)

is positive if and only if, for every i = 2, . . . , n − 2, the quadruple
(f1, fi, fi+1, fn) is positive.

We also note that

Lemma 10.27. The set of positive n-tuples is a union of connected
components of the space of pairwise transverse n-tuples.

10.10. Compatibility of positive structures. It sometimes happens
that a Lie group admits positive structures with respect to two differ-
ent flag varieties. This can happen only when the Lie group is split
over R and if its Dynkin diagram has a double arrow. This concerns
the following groups up to isogeny:

• the symplectic Lie group Sp(2n,R);
• the orthogonal groups SO(n, n+ 1);
• the real split Lie group of type F4.

Let G be a split real group that also admits a positive structure
for Θ 6= ∆. We denote by B = P∆ the Borel subgroup and by PΘ

the parabolic subgroup associated with Θ; their Lie algebra will be
denoted b = p∆ and pΘ respectively; similar notation will be adopted
for the standard opposite parabolic subgroups and algebras. We have
B < PΘ. Note that in this case, as explained in Section 3.3, a pinning
in the sense of Chevalley determines a Θ-base. Let U>0, Uopp,>0, and
U>0
Θ , Uopp,>0

Θ be the corresponding semigroups. The natural projection
π : F∆ → FΘ is Aut(g)-equivariant and π(b) = pΘ and π(bopp) = p

opp
Θ .

This projection behaves well with respect to the notion of positivity
introduced:

Proposition 10.28. Let (a, x, b) be a positive triple in F∆. Then
(π(a), π(x), π(b)) is a positive triple in FΘ.

Proof. The positive semigroup U>0 is determined here by elements Xα

generating gα for α in ∆. These elements can be used to fix the semi-
group U>0

Θ , i.e. to fix the cones cα ⊂ uα (α ∈ Θ): for α 6= αΘ, uα = gα
and we let cα = R≥0Xα, for α = αΘ we fix cα ⊂ uα by the property
that Xα ∈ cα.

First observe that, by the transitivity of the action of G on the space
of transverse pairs and since (π(b), π(bopp)) = (pΘ, p

opp
Θ ), the image

by π of every transverse pairs in F∆ is a transverse pair in FΘ.
Let us prove the proposition. By the transitivity of the action

of Aut(g), we can assume that a = b, b = bopp and x = u · b for
u ∈ U>0. Hence π(x) = u · π(b) and we need to show that u · π(b) ∈
U>0
Θ · π(b). Since π(x) is transverse to π(b) it is enough to prove that

u · π(b) ∈ U≥0
Θ · π(b).

Let us prove thus that U≥0 ·(U≥0
Θ ·π(b)) ⊂ U≥0

Θ ·π(b). Since U≥0 is the
semigroup generated by the exp(X) where X = tXα ∈ gα for all t ≥ 0
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and α ∈ ∆, it is enough to show the inclusion exp(X) · (U≥0
Θ · π(b)) ⊂

U≥0
Θ · π(b) for such an X. When α belongs to Θ, then exp(X) belongs

to U≥0
Θ and the inclusion comes from the fact that U≥0

Θ is a semigroup.
When α belongs to ∆rΘ, then exp(X) belongs to L◦

Θ and the inclusion
comes from the fact that L◦

Θ normalizes U≥0
Θ and fixes π(b). �

10.11. Positive maps. We extend the notion of positive tuples to the
notion of positive maps. For this let us denote by Λ a set equipped
with a cyclic ordering (typically Λ is a subset of the circle). This means
that there is a subset Λ3+ of Λ3 consisting of cyclically oriented triples.
There is therefore a notion of cyclically oriented n-tuples in Λ.

Definition 10.29. A map f : Λ → FΘ is said positive if the image by f
of every cyclically oriented n-tuple is a positive n-tuple.

Proposition 10.26 implies immediately

Lemma 10.30. A map f is positive if and only if it sends every cycli-
cally oriented quadruple to a positive quadruple.

11. Positive SL2

In this section we will show the Lie algebra of a simple Lie group G
admitting a Θ-positive structure admits a special 3-dimensional subal-
gebra. We will draw several consequences from this, in particular the
existence of a positive circle in FΘ, that is used in [GLW21, Proposi-
tion 2.9].

11.1. The Θ-principal subalgebra. The split Lie subalgebra gΘ ad-
mits a special subalgebra (rather a conjugacy class of subalgebras),
called the principal sl2. In the correspondence with nilpotent elements
given by the Jacobson–Morozov theorem, it is the sl2-subalgebra cor-
responding to a regular nilpotent element (again it is rather the conju-
gacy class that makes intrinsic sense). A regular nilpotent element is
for example

∑

α∈Θ Eα (where Eα are given in Section 3.3).

Definition 11.1. The Θ-principal subalgebra is (the conjugacy class
of) the subalgebra of g, isomorphic to sl2(R) and represented by the
principal subalgebra of gΘ.

The induced morphism πΘ : sl2(R) → g will be called Θ-principal
embedding.

Example 11.2. When G = Sp(2n,R) let us explain the subgroup cor-
responding to the Θ-principal subalgebra. For the case Θ = ∆, the
subgroup is the image of the irreducible representation of SL2(R) of
dimension 2n. For the case when Θ = {αn}, the subgroup is the set of
bloc matrices, with blocs of size n all scalar multiples of the identity
matrix.
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11.2. The Θ-principal sl2-triple. Recall from Section 3.3, that the
choice, for all α ∈ Θ, of elements Xα in gα such that {Xα, X−α =
τ(Xα), Hα = [Xα, X−α]} form an sl2-triple, determine a family called
a Θ-base {Eα, Fα, Dα}α∈Θ and generating gΘ.

Let Φ denote the simple roots of gΘ (where the Cartan subalgebra
is chosen to be the span of the Dα). By the choice of the Θ-base, Θ is
naturally identified with the simple roots in Φ and the associated set
of positive roots will be denoted Φ+. For every α in Φ, we will also
denote by (Eα, Fα, Dα) an sl2-triple in gΘ corresponding to the root α.

Let us introduce

D =
∑

α∈Φ+

Dα,

there are positive integers qα (α ∈ Θ) such that

D =
∑

α∈Θ

qαDα.

and we can introduce also

E =
∑

α∈Θ

q1/2α Eα, F =
∑

α∈Θ

q1/2α Fα.

Lemma 11.3 ([Kos59, Lemma 5.2]). The triple (E, F,D) is an sl2-
triple and it generates the principal 3-dimensional subalgebra of gΘ.

Definition 11.4. The triple (E, F,D) (and its conjugates) will be
called a Θ-principal sl2-triple.

For Lusztig’s total positivity in split real Lie groups, it is well-known
[Lus98, Proposition 5.9.(a)] that for X =

∑

α∈∆ kαXα with kα > 0 for
all α ∈ ∆ one has that exp(X) is contained in the positive unipotent
semigroup. This directly implies

Lemma 11.5. The element exp(E) belongs to N>0
Θ , where N>0

Θ is the
totally positive unipotent semigroup in NΘ = GΘ ∩ UΘ.

From this lemma, we deduce the following corollary, which is of in-
dependent interest. It generalizes [Lus98, Proposition 5.9.(a)].

Corollary 11.6. Let Z =
∑

α∈Θ Zα, with Zα ∈ c̊α for all α ∈ Θ. Then
exp(Z) belongs to U>0

Θ .

Proof. Since L◦
Θ acts transitively on Πα∈Θc̊α (Proposition 3.7), there

exists ℓ ∈ L◦
Θ such that Z = Ad(ℓ)E. Since exp : uΘ → UΘ is equivari-

ant with respect to L◦
Θ, and U>0

Θ is L◦
Θ-invariant, Lemma 11.5 (together

with the formula defining E) implies the claim. �

The Θ-principal embedding πΘ : sl2 → g induces an homomorphism
πΘ : SL2(R) → G and hence an action of SL2(R) on the flag variety FΘ.
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Lemma 11.7. The stabilizer of pΘ ∈ FΘ in SL2(R) is the standard
Borel subgroup B (whose Lie algebra is b = RE ⊕RD).

Proof. Since πΘ(E) and πΘ(D) belongs to pΘ, it is clear that the Lie
algebra of this stabilizer contains b. Since the SL2(R)-orbit of pθ is not
trivial, the Lie algebra of the stabilizer must be equal to b. Hence the
stabilizer is either B or its neutral component B◦. We thus need to
prove that − id = exp(π(E − F )) belongs to the stabilizer.

It is well known that the element x = exp(π
2
(E − F )) of SL2(R) is

sent by πΘ to (a representative of) the longest length element of GΘ.
One has hence (cf. Proposition 4.8) that πΘ(x)·pΘ = w∆ ·pΘ = p

opp
Θ and

πΘ(x) · poppΘ = pΘ which implies the sought for equality: πΘ(x
2) · pΘ =

pΘ. �

From this, identifying P(R2) with SL2(R)/B, we obtain an equivari-
ant embedding P(R2) → FΘ. As a direct consequence of Lemma 11.5
(and since the cyclically ordered tuples of P(R2) are well understood)
we obtain the following

Proposition 11.8. The embedding P(R2) into FΘ induced from the
Lie algebra homomorphism πΘ : sl2(R) → g is a positive circle.

Remark 11.9. When Θ 6= ∆, there are sometimes more than one em-
bedding of sl2 that give rise to a positive circle in FΘ. For example
when G is a split real group, the principal 3-dimensional subalgebra
of g determines a positive circle in FΘ for any Θ such that G admits a
Θ-positive structure (cf. Section 10.10).

Remark 11.10. Motivated by the introduction of Θ-positivity, Bradlow,
Collier, García-Prada, Gothen and Oliveira introduce in [BCGP+21]
the notion of magical nilpotent elements and of magical sl2-triples.
They further observe that given a complex Lie group and a magical
nilpotent element e there is a canonical real form g associated with e,
and this real form admits a Θ-positive structure. It is clear from the
above construction, that the split real form gΘ is the split real subal-
gebra denoted g(e) in [BCGP+21], and the image of the embedding
πΘ : sl2 → g is the (real) magical sl2-triple in g.

Appendix A. Longest length element in Bp+1

In this section we determine a reduced expression of the longest ele-
ment in they Weyl group associated to a root system of type Bp+1.

This is the type of the system of restricted roots of the groups SO(p+
1, p + k) (p > 0, k > 1). A choice of quadratic form which makes the
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calculations a little easier is given by the matrix Q =





0 0 K
0 J 0
tK 0 0



,

where K =











(−1)p

. .
.

1
−1











, and J =





0 0 1
0 − idk−1 0
1 0 0



.

With this choice, a Cartan subspace a of so(p + 1, p + k) is its in-
tersection with the space of diagonal matrices. A natural basis of a∗

(with respect to this particular matrix realisation of the group) are the
ei (i = 1, . . . , p + 1) mapping a diagonal matrix to its i-th diagonal
entry. We will use this to identify a with R

p+1 and describe the Weyl
group and its elements in GLp+1(R).

The roots are

{±ei}i∈{1,...,p+1} ∪ {±ej ± ek}j,k∈{1,...,p+1},j<k.

For the lexicographic order the positive roots are

{ei}i∈{1,...,p+1} ∪ {ej ± ek}j,k∈{1,...,p+1},j<k

and the simple roots are α1 = e1− e2, α2 = e2− e3, . . . , αp = ep− ep+1,
αp+1 = ep+1.

The Weyl group W naturally identifies with (Z/2Z)p+1
⋊Sp+1 acting

on R
p+1 by permuting the coordinates and changing their signs. Its

generators s1, . . . , sp+1 associated with α1, . . . , αp+1 are the transforma-
tions:

s1 : (x1, x2, . . . , xp+1) 7→ (x2, x1, . . . , xp+1),

s2 : (x1, x2, x3, . . . , xp+1) 7→ (x1, x3, x2, . . . , xp+1),

. . . ,

sp : (x1, . . . , xp, xp+1) 7→ (x1, . . . , xp+1, xp)

and sp+1 : (x1, x2, . . . , xp+1) 7→ (x1, x2, . . . ,−xp+1).

Furthermore the longest length element of W is − idp+1 as it must
exchange the Weyl chamber with its opposite.

Let Θ = {1, . . . , p}. With the notation of Section 4 αΘ = αp, the
longest length element in W∆rΘ = 〈sp+1〉 is sp+1 itself and the subgroup
of W generated by sp and sp+1 is isomorphic to (Z/2Z)2⋊S2 (the Weyl
group of SO(2, 2 + k)). Its longest length element is spsp+1spsp+1 =
sp+1spsp+1sp so that the element σp = σΘ is spsp+1sp. Seen as an
element of GLp+1(R), σp is the transformation (x1, . . . , xp, xp+1) 7→
(x1, . . . ,−xp, xp+1)

Recall that the group W (Θ) is the subgroup of W generated by
s1, . . . , sp−1 and σp. As all these generators fix the last coordinate, we
can identify W (Θ) as a subgroup of GLp(R). With this identification
in mind and the above description, it is apparent that this subgroup
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is the Weyl group of type Bp and its longest length element is, in this
geometric realization, − idp.

Turning back to subgroups of GLp+1(R), the longest length element
of W (Θ) is the transformation

(x1, . . . , xp, xp+1) 7→ (−x1, . . . ,−xp, xp+1).

Since the longest length element of W is − idp+1 and the longest length
element of W∆rΘ is sp+1 one gets as well that wΘ

max is

(x1, . . . , xp, xp+1) 7→ (−x1, . . . ,−xp, xp+1)

establishing, for the type Bp+1, the equality of Proposition 4.8.
Written as products of generators, these elements are: (we use the

notation xy = y−1xy so that (xy)z = xyz and σp = sssp+1)

w∆ = s
sp···s1
p+1 s

sp···s2
p+1 · · · sspp+1 · · · sp+1

wΘ
max = s

sp···s1
p+1 s

sp···s2
p+1 · · · sspp+1

= σsp−1···s1
p σsp−1···s2

p · · ·σsp−1
p · · ·σp,

which gives an other proof of the fact that wΘ
max is the longest length

element in W (Θ). The above equalities are easy to establish noting
that s

sp···sk
p+1 is (x1, . . . , xk, . . . , xp+1) 7→ (x1, . . . ,−xk, . . . , xp+1).

One can also verify that the above decompositions are reduced: for
example, the length of w∆ is the dimension of the complete flag variety
for the split group SO(p + 1, p + 2) and is thus equal to (p + 1)2; this
number matches the length of the above product.

Appendix B. Longest length element in F4

In this section we determine a reduced expression of the longest ele-
ment in they Weyl group associated to a root system of type F4.

The root system F4 is intimately related with the lattice Λ of R
4

generated by Z
4 and the element 1

2
(1, 1, 1, 1). An alternative descrip-

tion of Λ is the set of elements in R
4 all of whose coordinates have the

same remainder, 0 or 1/2, modulo 1.
The elements of F4 are the elements of Λ whose Euclidean norms

are 1 or
√
2. They can be explicitely listed: let (ei)i=1,...,4 the canonical

basis of R4, then

F4 =
{

±ei
}

i∈{1,...,4}

{

±ek ± eℓ
}

k,ℓ∈{1,...,4},k<ℓ

{1

2
(±e1 ± e2 ± e3 ± e4)

}

.

The positive roots are (using colexicographic order)

{

ei
}

i∈{1,...,4}

{

±ek + eℓ
}

k,ℓ∈{1,...,4},k<ℓ

{1

2
(±e1 ± e2 ± e3 + e4)

}

,

and the simple roots are

α1 = −e2 + e3, α2 = −e1 + e2, α3 = e1, α4 =
1

2
(−e1 − e2 − e3 + e4).
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The Weyl group is the subgroup of GL4(R) generated by the sym-
metries s1, . . . , s4 associated with α1, . . . , α4. The transformation si is

x 7→ x− 2 〈αi,x〉
〈αi,αi〉

αi. In matrix coordinates

s4 =
1

2









1 −1 −1 1
−1 1 −1 1
−1 −1 1 1
1 1 1 1









.

The element s3 is (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4). Finally s2 and s1
are respectively (x1, x2, x3, x4) 7→ (x2, x1, x3, x4) and (x1, x2, x3, x4) 7→
(x1, x3, x2, x4).

The relevant subset of the simple roots in this situtation is Θ =
{α1, α2} and the root αΘ is α2. The subgroup W∆rΘ is generated
by s3 and s4 and is isomorphic to S3, its longest length element is
ss43 = s4s3s4 = s3s4s3 = ss34 .

The subgroup generated by the symmetries indexed by ∆ r Θ and
αΘ is the group generated by {s2, s3, s4} and is isomorphic to the Weyl
group B3 (with the reindexation 1 7→ 4, 2 7→ 3, 3 7→ 2 with respect
to the previous appendix). Its longest length element is s2s

s3
2 ss3s42 =

s2s3s2s3s4s3s2s3s4. Hence the element σ2 = σΘ is:

σ2 = s2s
s3
2 ss3s42 s4s3s4

s2s3s2s3s4s3s2(s3s4s4s3)s4

= s2s3s2s3s4s3(s2s4)

= s2s3s2(s3s4s3s4)s2

= s2s3s2s4s3s2

= s2s3s4s2s3s2.

And the last two expressions are reduced (this can be deduced from
the fact below that s2s3s4s2s3s2 is a subword of a reduced expression
of the longest length element).

One can calculate σ2 in GL4(R):

σ2 =
1

2









−1 −1 −1 1
−1 −1 1 −1
−1 1 1 1
1 −1 1 1









,

as well as (recall that σ1 = s1)

σ1σ2 =
1

2









−1 −1 −1 1
−1 1 1 1
−1 −1 1 −1
1 −1 1 1









.
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Its square is

(σ1σ2)
2 =









1 0 0 0
0 0 1 0
0 0 0 −1
0 −1 0 0









,

showing that σ1σ2 is of order 6 and that W (Θ) is of type G2.
Finally, the following holds

s3s4s3 =
1

2









1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1









and

(σ1σ2)
3 =

1

2









−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
1 −1 −1 −1









= −t(s3s4s3) .

We thus have

(σ1σ2)
3s3s4s3 = (σ2σ1)

3s3s4s3 = − id4

= s2s3s2s4s3s2s1 · s2s3s2s4s3s2s1 · s2s3s2s4s3s2s1 · s3s4s3
which is the longest length element of F4 (since it sends the Weyl
chamber to its opposite) and a reduced decomposition of it (since the
length of this decomposition is equal to 24, the number of positive
roots). This shows the identities in Proposition 4.8 in this case too.
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