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Abstract   7 

Inspired by agroecology, ecological aquaculture proposes an alternative model that uses ecology as a paradigm to 8 

develop innovative, more eco-friendly aquaculture with environmental, economic and social benefits. Integrated 9 

multi-trophic aquaculture (IMTA) is one application of this principle. Inspired by the natural trophic chain, it 10 

associates primary producers with primary or secondary consumers, providing a new source of biomass without 11 

requiring supplementary feed by recycling inorganic and organic wastes. Of these systems, land-based IMTAs 12 

demonstrate several advantages, especially easier control of nutrient flows, contaminants and/or predators. This 13 

study focused on a land-based marine IMTA, combining a recirculating aquaculture system for fish consecutively 14 

with a natural marine polyculture of microalgae and oyster cultivation. The objective was to assess the ability of 15 

the microalgal polyculture both to bioremediate fish nutrients and to sustain oyster growth. For the first time in a 16 

Mediterranean climate, we confirmed the feasibility of developing a microalgae community of interest for oysters 17 

maintained by fish effluent. Despite strong variability in microalgae production, this IMTA system resulted in 18 

significant oyster growth over the experimental period of one month, with growth results of the same order of 19 

magnitude as natural juvenile growth. In the conditions tested, this IMTA with reduced human intervention 20 

allowed a gain in recoverable biomass of 3.7 g of oyster produced per kg of fish feed distributed. By transforming 21 

waste into additional biomass, IMTAs offer a more promising, ecological avenue for aquaculture, based on a 22 

circular economy, which may in turn increase the social acceptability of fish farming. (250 words) 23 

Key words Integrated Multi-trophic Aquaculture, nutrient recycling, oysters, fish, microalgae. 24 

Abbreviations: 25 

ARA: arachidonic acid  26 

EPA: eicosapentaenoic acid 27 

HRAP: high-rate algal pond  28 

IMTA: Integrated multi-trophic aquaculture 29 

PUFA: polyunsaturated fatty acids 30 
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RAS: recirculating aquaculture systems 31 

RE: removal efficiency 32 

SGR: specific growth rate  33 

 34 

1. Introduction 35 

1.1 Food system paradigms 36 

Today, the global food system and food security face multiple challenges, with a convergence of population growth 37 

and increasing hunger and malnutrition (FAO 2016). Additional pressure, e.g. anthropic activity and 38 

environmental pollution, threatens natural resources, while the consequences of climate change are leading to the 39 

loss of biodiversity and unbalanced production systems (IPBES 2019). A transition is required towards more 40 

sustainable production and consumption.  41 

In recent decades, the general paradigm in animal or vegetal feedstock production, especially in Europe, has been 42 

to grow one selected species under conditions of intensive cultivation. This method of production is highly 43 

dependent on the species’ ability for high and stable growth and resilience to sudden environmental changes. In a 44 

context of global change, with extreme climatic events occurring more frequently, in aquaculture systems, high 45 

water temperatures potentially increase the risk of some diseases (Karvonen et al. 2010). Monospecific systems 46 

are based on species selected for their ability to dedicate their energy to growth and have little adaptability to 47 

exogenous pressures; thus, xenobiotics (e.g. antimicrobials) are often needed to maintain productivity in intensive 48 

systems (Smith et al. 1999). Of animal production systems, aquaculture is growing 7.8% per year, exceeding all 49 

others (Troell et al. 2014). Monospecific aquaculture (especially to raise finfish) is today common worldwide and 50 

is often associated with the use of antibiotics (Miranda 2011; Lulijwa et al. 2019), potential chemical contaminants 51 

such as heavy metals or dioxins, or hormones (FAO 2003). Another disadvantage is the discharge of large amounts 52 

of nutrients (i.e. from organism excretions and unconsumed food), which can cause the eutrophication and 53 

deoxygenation of coastal waters when environmental carrying capacity is exceeded (Gowen and Bradbury 1987; 54 

Pillay 2004). This can foster the development of pathogens and parasites, which may in turn negatively impact 55 

biodiversity, human health, as well as the farmed species (Neori et al. 2004; Jegatheesan et al. 2011), leading to 56 

sometimes dramatic environmental concerns due to the presence of potential harmful residues impacting the health 57 

of end consumers (Okocha et al. 2018).  58 

1.2 From monospecific to multispecies production systems 59 
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A major paradigm shift is essential to improve not only aquaculture food safety, but also its social acceptability. 60 

In the agricultural sector, research into alternative agriculture applying the principles of ecology emerged in the 61 

1980s (Altieri 1983). The ‘agroecology’ paradigm is based on several principles: e.g. input reduction, recycling, 62 

animal health, biodiversity and synergy (Wezel et al. 2020). It aims to take into account interactions between the 63 

plants, animals, humans and the environment within agricultural systems and to imitate the natural processes 64 

involved in ecosystem productivity, stability and resilience (Malézieux 2012) in order to develop new production 65 

methods (Snapp 2017).  66 

Inspired by this approach, ‘ecological aquaculture’ has been put forward as an alternative model that uses ecology 67 

as a paradigm to develop aquaculture with environmental, economic and social benefits. It maintains that 68 

aquaculture should mimic the structure and functions of natural ecosystems and practice nutrient recycling through 69 

waste reuse (Costa-Pierce 2015; Aubin et al. 2017). Based on the natural trophic chain, integrated multi-trophic 70 

aquaculture (IMTA) is in this sense one of the logical next steps in alternative aquaculture development 71 

(Barrington et al. 2009), representing a way to improve existing systems.  72 

1.3 Higher diversity in farmed species could help social acceptability 73 

Studies looking into the possibility of IMTA began in the early 1970s (Ryther 1975; Goldman et al. 1974), with 74 

research efforts increasing over the last two decades, both in marine ecosystems (Chopin et al. 2001; Hussenot 75 

2003; Barrington et al. 2009 in FAO 2009; Milhazes-Cunha and Otero, 2017; Buck et al. 2018) and freshwater 76 

ecosystems (Wongkiew et al. 2017). As mentioned by Chopin (2013), the concept of IMTA can in fact be traced 77 

back to the origins of aquaculture (in 2200–2100 BCE, You Hou Bin detailed the integration of fish with aquatic 78 

plants). Chopin defines IMTA as “The farming, in proximity, of species from different trophic levels and with 79 

complementary ecosystem functions in a way that allows one species’ uneaten feed and wastes, nutrients and by-80 

products to be recaptured and converted into fertilizer, feed and energy for the other crops, and to take advantage 81 

of synergistic interactions among species while biomitigation takes place.”  82 

By integrating species with complementary diets, IMTAs reproduce a simplified trophic chain (Fig. 1), in which 83 

both primary producers and consumers play a key role. Microalgae or macroalgae nourished by inorganic liquid 84 

effluents use photosynthesis to grow, reintroducing energy into the system and acting both to fix CO2 and to 85 

provide O2 and food for other organisms (Shpigel and Neori 1996; Demetropoulos and Langdon 2004; Barrington 86 

et al. 2009). They can serve as a food source for high value-added species, e.g. grazers or filter-feeders such as 87 

abalone, urchins, oysters or clams (Tenore 1976; Hugues-Games 1977; Gordin et al. 1981; Borges et al. 2005). 88 
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Organic compounds released by farmed species or from unused external feed can also be consumed by primary or 89 

secondary consumers such as crustaceans, or echinoderms such as holothurians and urchins (Chopin 2013). The 90 

resulting reduced environmental impact of IMTA could increase the social acceptability of aquaculture (Alexander 91 

et al. 2016; Knowler et al. 2020), representing a perceived improvement over current monoculture practices for 92 

the public (Barrington et al. 2010).  93 

In comparison to other systems, IMTA is not only more environmentally friendly, but can also potentially provide 94 

more economic stability through product diversification (Granada et al. 2016), although the overall capital gain 95 

(via greater degree of productivity) has not yet been demonstrated at an industrial level, apart from in one Asian 96 

study (Fang et al. 2019). 97 

1.4 Current and future challenges of IMTA 98 

IMTAs can be developed both in open sea or inland areas (Shpigel and Neori 1996; Neori et al. 1998). Among 99 

current IMTAs challenges, there are (i) biological challenges with the choice of candidate species adapted to the 100 

environmental and societal contexts, (ii) economical challenges to demonstrate their performance and rentability 101 

in comparison with conventional systems (Yu et al. 2017) and (iii) zoo-technological challenges to determinate 102 

key variables to cultivate candidate species (Buck et al. 2018) and to ensure nutrient fluxes management (Granada 103 

et al. 2016), especially for offshore systems (Buck et al. 2018) where the connectivity between compartments need 104 

to be documented. Moreover, new planification of aquaculture area have to be considered, with extensive areas 105 

required for species coping with low natural densities, such as holothurian (Tolon et al. 2017; Chary et al. 2019). 106 

Land-based IMTAs present several advantages: easier control of flows, less pressure from predators or pathogens, 107 

and negligible exposure to extreme climatic events (Manzi and Castagna 1989; Neori et al. 2004; Blancheton et 108 

al. 2009). Of the systems widely used for land-based fish production, recirculating aquaculture systems (RAS) 109 

offer many advantages, such as reduced water consumption based on a bacteria treatment loop (Piedrahita 2003; 110 

Martins et al. 2010). Wastewater flow in an RAS is consequently reduced compared to traditional flow-through 111 

systems, but carries inorganic compounds such as PO4
3-, NO3

- and CO2. To reduce these compounds, one of the 112 

existing treatments proposed by IMTA is to integrate a compartment of primary producers. Macroalgae have 113 

frequently been included in these systems as biofilters, e.g. Ulva spp. and Gracilaria spp. (Neori et al. 2004; Lopez 114 

Figueroa et al. 2012; Neori et al. 2017), but microalgae are less frequently used (Milhazes-Cunha and Otero 2017). 115 

Like macroalgae, microalgae add value in terms of feeding macro-invertebrates (i.e. filter-feeders), but they could 116 

be even more promising because of their higher photosynthesis rate and greater surface-area-to-volume ratio (i.e. 117 

higher nutrient uptake) (Milhazes-Cunha and Otero 2017). 118 
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One challenge for land-based IMTA systems is ensuring microalgae culture stability to allow both optimal nutrient 119 

remediation for the primary culture (e.g. fish) and optimal feeding for the associated culture (e.g. filter species). A 120 

monospecific algal culture may be selected in order to meet the needs of the other IMTA species. However, several 121 

studies have reported that an algal polyculture consisting of an assemblage of several species presents higher 122 

resilience to disturbances and ensures greater efficiency in resource use (Newby et al. 2016). In particular, 123 

multispecies algal cultures could better cope with climatic and fish-effluent variability. Some authors have 124 

demonstrated that natural plurispecific algal cultures can both grow on finfish effluent and ensure nutrient 125 

remediation (Lefebvre et al. 1996, 2004; Neori et al. 2017, Galès et al. 2020). Of course, within the IMTA, 126 

microalgae must also fulfil the feeding requirements of filter species. In one study, the addition of silicate in an 127 

algal culture initially filled with natural seawater and continuously supplemented with nitrate-enriched RAS 128 

wastewater led to a diatom-based algal culture with a remediation capacity equivalent to that of macroalgae (Li et 129 

al. 2019). In the microalgae biochemical composition, lipid content as well as essential amino acids and 130 

polyunsaturated fatty acids play a major role in the diet energy content, directly controlling oyster assimilation and 131 

biomass productivity (Brown et al. 1997 and references therein; Ben Kheder et al. 2010; Anjos et al. 2017). This 132 

nutritional value is mainly related to microalgal diversity, with diatoms being the most suitable diet for oyster 133 

growth (Brown et al. 1997 and references therein).  134 

The use of a continuous nutrient-enriched multispecies algal culture as an inoculum reservoir, if the culture is well 135 

controlled, stabilized and monitored, may help: (i) to reduce the risk of producing undesirable (i.e. toxic) algal 136 

species (when using natural coastal seawater inoculum), (ii) to accelerate the time required to reach the maximal 137 

microalgal biomass, ensuring optimal inorganic matter remediation and oyster feeding.  138 

This study focused on combining a RAS (for sea bass) with algal polycultures and oyster cultures. We used an 139 

inoculum from a year-round algal culture (a high-rate algal pond or HRAP, located close to the IMTA) initially 140 

inoculated with natural local seawater. The aim was to assess the algal polyculture’s ability to sustain oyster growth 141 

from an associated compartment when continuously supplemented with wastewater from a fish-based RAS in an 142 

IMTA context. 143 

2. From IMTA theory to a new way of production 144 

2.1. Materials and methods 145 

2.1.1. Land-based marine IMTA system 146 
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The experiment ran over 31 days, from 17 April 2018 (day 1) to 17 May 2018 (day 32), at the French Institute for 147 

Ocean Science (Ifremer) station in Palavas-les-Flots (southern France), which has a Mediterranean climate. The 148 

experimental IMTA system (Fig. 2) was adapted following Li et al. (2019), with improved hydrodynamics by 149 

including additional recirculation pumps in the outdoor microalgal raceways and oyster tanks.  150 

Three separate units were created to conduct the experiment. An indoor RAS (in triplicate) was dedicated to sea 151 

bass (Dicentrarchus labrax) (n=1380 fish, split into 460 per tank, initial weight of 425±134 g ind−1), which were 152 

reared at a density increasing from 51 kg m−3 (d1) to 56 kg m−3 (d32); this unit was considered a nutrient provider. 153 

Each was connected to an outdoor microalgal raceway (6 m3, n=3), which continuously received RAS wastewater 154 

with a fixed flow rate (1 L.min-1), ensuring a hydraulic retention time of 4.2 d.   155 

The IMTA microalgal raceways were inoculated with RAS effluent seawater (4:5 of the mix) and a local 156 

microalgal reservoir (1:5) containing a consortium dominated by Chlorellales (mainly Schizochlamydella sp 157 

and Picochlorum sp). Silicate (Na2SiO3,5H2O) was added to reach a N:Si:P molar ratio of nearly 10:5:1 in order 158 

to favour diatom dominance (Lefebvre et al., 1996). Nanostream electronic pumps (Turbelle®) were added in 159 

order to limit biodeposition and ensure light access.  160 

The microalgae cultures (chlorophyll a concentration of 6.3 mg.l-1) were then mixed in a tank with airstones and 161 

distributed to 3 outdoor tanks containing juvenile Pacific oysters (Crassostrea gigas). The microalgae flow rate of 162 

2.7 L.h-1 was diluted with 100 L.h-1 of fresh filtered seawater (dilution factor = 37), in order to approach a daily 163 

feeding ration of 6–8% dry weight (DW). This food ration is frequently used to meet the energy requirements of 164 

C. gigas broodstock in hatcheries (Utting and Millican 1997; Fabioux et al. 2005; Delaporte et al. 2006); and 165 

represents a ration 3 times higher than in a previous study (Li et al. 2019). Food distribution was optimized by the 166 

inclusion of a homogenization pump (Turbelle®) and an airlift and by replacing baskets clogged by biofouling 167 

with new ones every two weeks.  168 

2.1.2. Nutrient remediation and algal biomass production  169 

Throughout the 31-day experiment, the water was sampled 3 times a week to monitor nutrient parameters (inlet 170 

and outlet) in the photosynthetic extractive compartment (the 3 outdoor microalgal raceways). Water samples (n 171 

total = 49) were filtered (GF/F, WhatmanTM) after each sampling and stored (at -25°C) for NO3-N, NO2-N, NH4-172 

N, PO4-P analysis (Alliance® auto-analyser). Nutrient removal efficiency (RE, %) was calculated (see Li et al. 173 

2019).  174 
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The microalgal biomass was monitored 3 times a week in the 3 outdoor microalgal raceways; chlorophyll a (Chla) 175 

was determined after water sample filtration using GF/F filters (Association 1995), and the pigments were 176 

extracted with methanol (Ritchie 2006). Chla concentration was measured using a spectrophotometer and 177 

calculated using the Ritchie (2006) equation. The main microalgal species were identified by microscopy with an 178 

Olympus IMT2 inverted light microscope, following the protocol of the French Observation and Monitoring 179 

Programme for Phytoplankton and Hydrology (REPHY) in coastal waters (Neaud-Masson 2020). 180 

Some environmental parameters (i.e. temperature, salinity, pH) were monitored daily in all tanks (i.e. fish, algae 181 

and oyster) using a YSI® probe. 182 

2.1.3. Oyster growth  183 

On d1, 756 8-month juvenile oysters (ntotal=756) were split into 3 outdoor tanks (n tank= 252±3). The initial fresh 184 

weight and length of the juvenile oysters were measured, with values of 1.55±0.33 g.ind-1 and 22±3 mm.ind-1 185 

respectively. The final fresh weight and length were measured after 32 days. The specific growth rate (SGR) was 186 

calculated with the equation:  187 

𝑆𝐺𝑅 (𝑖𝑛 %) =
𝑙𝑛(𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡) ∗ 100

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 188 

The non-parametric Wilcoxon-Mann-Whitney statistical test was used to assess median differences between 189 

experimental conditions. 190 

 191 

2.2. Results & discussion  192 

An IMTA-microalgae community of interest, but highly variable Chla production 193 

The results confirmed the feasibility of cultivating a microalgae community on fish effluent in a Mediterranean 194 

climate.  195 

In all raceways, the Chla pigment concentrations, indicator of algal biomass, showed a similar three-phased pattern 196 

(Fig. 3): (1) from d1 to d9, a low initial concentration of around 0.06 mg Chla.L-1, with cyanobacteria dominance 197 

observed in microscopy, (2) from d9 to d16, an increase in production (reaching a maximum of 0.58 mg Chla.L-1 198 

at d15), with the dominance of Cylindrotheca closterium (Ehrenberg) Reimann and Lewin 1964, and finally, (3) 199 

after d16, a decline in algal growth, still with Cylindrotheca closterium (at d23) as the main algal species, and 200 

Pseudo-nitzschia and cyanobacteria at the end of the culture (d28).  201 

Using an inoculum from a local intensive algal culture to start the microalgal culture, we observed that the maximal 202 

Chla production was reached after 16 days, twice as fast as in a previous experiment performed during the same 203 
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seasonal period but using a natural seawater inoculum (Li et al., 2019). The microalgal crash around d24 was 204 

probably due to rapid algal CO2 consumption leading to elevated pH (maximum pH of 10) and CO2 depletion.  205 

The results also confirmed the feasibility of bioremediating fish nutrients using an inoculum from a local HRAP. 206 

The remediation of phosphates was high, 85 ± 25% (with a maximal value of 97.6%), but was lower for 207 

nitrogenous elements, with 49 ± 21% for NH4-N (maximal value of 93.5%), and 24.9 ± 11.1% for NO3-N (maximal 208 

value of 51.3%). 209 

The algal yields – and as a consequence bioremediation efficiency – could be improved, for example, by reusing 210 

CO2 released by the fish in the RAS loop in the algae culture in order to maintain pH at seawater value (ca 8) and 211 

to avoid CO2 depletion. Another research avenue would be to integrate detritivorous organisms (e.g. mullet fish, 212 

holothurians, nematodes) with algae cultures, as the former would be able to feed on deposits.  213 

Juvenile oysters more than doubled in weight and length 214 

During the 1-month period, both weight and length gain in the oysters was significant (p <0.001), more than 215 

doubling, with a final weight of 3.7±0.9 g ind−1 (n=754). No mortality was observed (0.2%). Despite strong 216 

variability in algal production within the IMTA-microalgae raceways, the produced biomass allowed significant 217 

oyster growth over the experimental period: a very encouraging result. The oyster growth rate of 1.04% was in the 218 

same order of magnitude as that of juveniles reared in a nearby natural lagoon (0.97% in Li et al., 2019).  219 

As mentioned by Troell et al. (2009), the integration of bivalves in an IMTA is not straightforward. With the 220 

addition of silicates, the phytoplankton that grows with the input of fish nutrients is suitable food for filter-feeders 221 

and can have a positive (Lefebvre et al. 2000, 2004) or insignificant (Li et al. 2019) effect on bivalve growth. 222 

Those growth results are mainly explained by determining environmental factors, such as ambient concentrations 223 

of nutrient availability, particulate organic matter or seston content (Troell and Norberg 1998), but also indirectly 224 

by fish-feeding variability (i.e. its duration and quantity).  225 

In our case study, the IMTA microalgal inoculum was mostly composed of Chlorellales – these are not the common 226 

microalgae used for juvenile oyster feed, which is usually composed of diatoms or Prymnesiophyceae 227 

(McCausland et al. 1999; Ponis et al. 2003). Indeed, juvenile oysters are usually not able to retain small particles, 228 

e.g. < 4 μm for C. gigas when sestonic load is low, <12 μm when sestonic load is higher (Barillé et al. 1993), and 229 

even 20 μm for Ostrea chilensis (Dunphy et al. 2006). Chlorellales such as Schizochlamydella sp and Picochlorum 230 

sp are rather small (2–10 microns and 1.5–3 microns, respectively) and consequently not assimilable by juvenile 231 

oysters (Korshikov 1953; Tsarenko 2011; Henley et al. 2004). The addition of silicates permitted a shift in the 232 
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initial algal community towards diatoms of the Bacillariophyceae family, whether these were present (but not 233 

detectable) in the 1:5 inoculum at the beginning of the period, or in the 4:5 water from the RAS effluent. This shift 234 

in the microalgal composition allowed the growth of the juvenile oysters, indicating that the feed composition was 235 

both assimilable and resulted in growth gain. C. closterium, which grew in the microalgal raceways, are long cells 236 

(> to 25 μm; Reimann and Lewin 1964) with a particular shape that could favour its retention on oyster gills and 237 

be suitable microalgae for juvenile oyster growth. Its high nutritional value for secondary consumers has 238 

previously been described: it has high lipid content and is particularly rich in essential PUFAs such as EPA and 239 

ARA (Keerthi et al. 2012). Other constituents may also have played a role in the oyster food chain, as ciliates and 240 

flagellates from 4 to 72 μm are known to be retained by the oyster (Dupuy et al. 1999). Future experiments on the 241 

entire microbial food web are necessary to delve further into the microorganism communities assimilable by 242 

oysters in an IMTA oyster-growing context. To reach optimal conditions for bivalve production, these experiments 243 

can give rise to improvements in the system – for example, daily uniform fish feeding and therefore, nutrient 244 

excretion – to smooth out variations in the microalgae cultures and decrease the risk of crop crashing. 245 

IMTA supplementary biomass production 246 

At a daily feeding rate of 1% of the fish biomass, 5.89 kg of feed.d-1 were distributed, giving a growth ratio of 2.39 247 

kg of fish.d-1. The nutrients excreted by fish and taken in by microalgae fed an oyster biomass of 0.022 kg.d-1.  248 

In the experimental conditions tested, the results showed that an IMTA with reduced human intervention allowed 249 

a gain in recoverable biomass: i.e. 3.7 g of oyster produced per kg of fish feed distributed. For a production unit 250 

of 100 tonnes of fish fed at 1% of the biomass twice a day, an additional production of 2.7 tonnes of oyster could 251 

be provided per year. This yield could be even higher if 100% RAS water was used to supplement the microalgal 252 

compartment (5% of RAS water was used in this study), as in this case 20 microalgal raceways could be run. 253 

Moreover, only 2% of the microalgae biomass was used to feed the 3 oyster compartments: if 100% was used to 254 

feed the oysters, 37 times more oyster biomass would be produced. Further work is needed to investigate the 255 

economic viability of such a system in more detail, in order to establish whether there is an overall economic 256 

benefit to implementing such a system. 257 

 258 

Conclusion 259 

This study demonstrated the feasibility of using an inoculum of a microalgal polyculture (favouring diatoms of 260 

interest) from a local intensive basin together with an appropriate oyster–food ratio to feed oyster juveniles in an 261 

IMTA community. The experiment resulted in equivalent Chla production in a shorter time frame than a previous 262 
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published study (15 days less to reach the same production). This IMTA design could still be improved, in 263 

particular regarding technical and environmental factors, in order to better control algal culture variability.  264 

By transforming waste into reusable material and additional biomass, IMTAs can reduce environmental impact, 265 

giving a more positive, ecological image to aquaculture. It could potentially be promoted with a specific ‘circular 266 

aquaculture’ certification. However, despite its promise, in Europe the development of IMTA still faces various 267 

issues. Some of the obstacles could be overcome by pursuing research on both biological, economic and social 268 

aspects of IMTA and of end consumer perceptions of its products. Innovative zero-waste designs should be studied, 269 

with specific attention paid to analysing their effects on the biology and welfare of candidate species and the 270 

quality of the end products. Increasing the economic and ecological sustainability of aquaculture should help build 271 

the case for its social acceptance. 272 
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 6 

Abstract   7 

Inspired by agroecology, ecological aquaculture proposes an alternative model that uses ecology as a paradigm to 8 

develop innovative, more eco-friendly aquaculture with environmental, economic and social benefits. Integrated 9 

multi-trophic aquaculture (IMTA) is one application of this principle. Inspired by the natural trophic chain, it 10 

associates primary producers with primary or secondary consumers, providing a new source of biomass without 11 

requiring supplementary feed by recycling inorganic and organic wastes. Of these systems, land-based IMTAs 12 

demonstrate several advantages, especially easier control of nutrient flows, contaminants and/or predators. This 13 

study focused on a land-based marine IMTA, combining a recirculating aquaculture system for fish consecutively 14 

with a natural marine polyculture of microalgae and oyster cultivation. The objective was to assess the ability of 15 

the microalgal polyculture both to bioremediate fish nutrients and to sustain oyster growth. For the first time in a 16 

Mediterranean climate, we confirmed the feasibility of developing a microalgae community of interest for oysters 17 

maintained by fish effluent. Despite strong variability in microalgae production, this IMTA system resulted in 18 

significant oyster growth over the experimental period of one month, with growth results of the same order of 19 

magnitude as natural juvenile growth. In the conditions tested, this IMTA with reduced human intervention 20 

allowed a gain in recoverable biomass of 3.7 g of oyster produced per kg of fish feed distributed. By transforming 21 

waste into additional biomass, IMTAs offer a more promising, ecological avenue for aquaculture, based on a 22 

circular economy, which may in turn increase the social acceptability of fish farming. (250 words) 23 

Key words Integrated Multi-trophic Aquaculture, nutrient recycling, oysters, fish, microalgae. 24 

Abbreviations: 25 

ARA: arachidonic acid  26 

EPA: eicosapentaenoic acid 27 

HRAP: high-rate algal pond  28 

IMTA: Integrated multi-trophic aquaculture 29 

PUFA: polyunsaturated fatty acids 30 

Click here to access/download;Revised Manuscript - with
tracked changes;Manuscript-revised.docx
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RAS: recirculating aquaculture systems 31 

RE: removal efficiency 32 

SGR: specific growth rate  33 

 34 

1. Introduction 35 

1.1 Food system paradigms 36 

Today, the global food system and food security face multiple challenges, with a convergence of population growth 37 

and increasing hunger and malnutrition (FAO 2016). Additional pressure, e.g. anthropic activity and 38 

environmental pollution, threatens natural resources, while the consequences of climate change are leading to the 39 

loss of biodiversity and unbalanced production systems (IPBES 2019). A transition is required towards more 40 

sustainable production and consumption.  41 

In recent decades, the general paradigm in animal or vegetal feedstock production, especially in Europe, has been 42 

to grow one selected species under conditions of intensive cultivation. This method of production is highly 43 

dependent on the species’ ability for high and stable growth and resilience to sudden environmental changes. In a 44 

context of global change, with extreme climatic events occurring more frequently, in aquaculture systems, high 45 

water temperatures potentially increase the risk of some diseases (Karvonen et al. 2010). Monospecific systems 46 

are based on species selected for their ability to dedicate their energy to growth and have little adaptability to 47 

exogenous pressures; thus, xenobiotics (e.g. antimicrobials) are often needed to maintain productivity in intensive 48 

systems (Smith et al. 1999). Of animal production systems, aquaculture is growing 7.8% per year, exceeding all 49 

others (Troell et al. 2014). Monospecific aquaculture (especially to raise finfish) is today common worldwide and 50 

is often associated with the use of antibiotics (Miranda 2011; Lulijwa et al. 2019), potential chemical contaminants 51 

such as heavy metals or dioxins, or hormones (FAO 2003). Another disadvantage is the discharge of large amounts 52 

of nutrients (i.e. from organism excretions and unconsumed food), which can cause the eutrophication and 53 

deoxygenation of coastal waters when environmental carrying capacity is exceeded (Gowen and Bradbury 1987; 54 

Pillay 2004). This can foster the development of pathogens and parasites, which may in turn negatively impact 55 

biodiversity, human health, as well as the farmed species (Neori et al. 2004; Jegatheesan et al. 2011), leading to 56 

sometimes dramatic environmental concerns due to the presence of potential harmful residues impacting the health 57 

of end consumers (Okocha et al. 2018).  58 

1.2 From monospecific to multispecies production systems 59 
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A major paradigm shift is essential to improve not only aquaculture food safety, but also its social acceptability. 60 

In the agricultural sector, research into alternative agriculture applying the principles of ecology emerged in the 61 

1980s (Altieri 1983). The ‘agroecology’ paradigm is based on several principles: e.g. input reduction, recycling, 62 

animal health, biodiversity and synergy (Wezel et al. 2020). It aims to take into account interactions between the 63 

plants, animals, humans and the environment within agricultural systems and to imitate the natural processes 64 

involved in ecosystem productivity, stability and resilience (Malézieux 2012) in order to develop new production 65 

methods (Snapp 2017).  66 

Inspired by this approach, ‘ecological aquaculture’ has been put forward as an alternative model that uses ecology 67 

as a paradigm to develop aquaculture with environmental, economic and social benefits. It maintains that 68 

aquaculture should mimic the structure and functions of natural ecosystems and practice nutrient recycling through 69 

waste reuse (Costa-Pierce 2015; Aubin et al. 2017). Based on the natural trophic chain, integrated multi-trophic 70 

aquaculture (IMTA) is in this sense one of the logical next steps in alternative aquaculture development 71 

(Barrington et al. 2009), representing a way to improve existing systems.  72 

1.3 Higher diversity in farmed species could help social acceptability 73 

Studies looking into the possibility of IMTA began in the early 1970s (Ryther 1975; Goldman et al. 1974), with 74 

research efforts increasing over the last two decades, both in marine ecosystems (Chopin et al. 2001; Hussenot 75 

2003; Barrington et al. 2009 in FAO 2009; Milhazes-Cunha and Otero, 2017; Buck et al. 2018) and freshwater 76 

ecosystems (Wongkiew et al. 2017). As mentioned by Chopin (2013), the concept of IMTA can in fact be traced 77 

back to the origins of aquaculture (in 2200–2100 BCE, You Hou Bin detailed the integration of fish with aquatic 78 

plants). Chopin defines IMTA as “The farming, in proximity, of species from different trophic levels and with 79 

complementary ecosystem functions in a way that allows one species’ uneaten feed and wastes, nutrients and by-80 

products to be recaptured and converted into fertilizer, feed and energy for the other crops, and to take advantage 81 

of synergistic interactions among species while biomitigation takes place.”  82 

By integrating species with complementary diets, IMTAs reproduce a simplified trophic chain (Fig. 1), in which 83 

both primary producers and consumers play a key role. Microalgae or macroalgae nourished by inorganic liquid 84 

effluents use photosynthesis to grow, reintroducing energy into the system and acting both to fix CO2 and to 85 

provide O2 and food for other organisms (Shpigel and Neori 1996; Demetropoulos and Langdon 2004; Barrington 86 

et al. 2009). They can serve as a food source for high value-added species, e.g. grazers or filter-feeders such as 87 

abalone, urchins, oysters or clams (Tenore 1976; Hugues-Games 1977; Gordin et al. 1981; Borges et al. 2005). 88 
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Organic compounds released by farmed species or from unused external feed can also be consumed by primary or 89 

secondary consumers such as crustaceans, or echinoderms such as holothurians and urchins (Chopin 2013). The 90 

resulting reduced environmental impact of IMTA could increase the social acceptability of aquaculture (Alexander 91 

et al. 2016; Knowler et al. 2020), representing a perceived improvement over current monoculture practices for 92 

the public (Barrington et al. 2010).  93 

In comparison to other systems, IMTA is not only more environmentally friendly, but can also potentially provide 94 

more economic stability through product diversification (Granada et al. 2016), although the overall capital gain 95 

(via greater degree of productivity) has not yet been demonstrated at an industrial level, apart from in one Asian 96 

study (Fang et al. 2019). 97 

1.4 Current and future challenges of IMTA 98 

IMTAs can be developed both in open sea or inland areas (Shpigel and Neori 1996; Neori et al. 1998). Among 99 

current IMTAs challenges, there are (i) biological challenges with the choice of candidate species adapted to the 100 

environmental and societal contexts, (ii) economical challenges to demonstrate their performance and rentability 101 

in comparison with conventional systems (Yu et al. 2017) and (iii) zoo-technological challenges to determinate 102 

key variables to cultivate candidate species (Buck et al. 2018) and to ensure nutrient fluxes management (Granada 103 

et al. 2016), especially for offshore systems (Buck et al. 2018) where the connectivity between compartments need 104 

to be documented. Moreover, new planification of aquaculture area have to be considered, with extensive areas 105 

required for species coping with low natural densities, such as holothurian (Tolon et al. 2017; Chary et al. 2019). 106 

Land-based IMTAs present several advantages: easier control of flows, less pressure from predators or pathogens, 107 

and negligible exposure to extreme climatic events (Manzi and Castagna 1989; Neori et al. 2004; Blancheton et 108 

al. 2009). Of the systems widely used for land-based fish production, recirculating aquaculture systems (RAS) 109 

offer many advantages, such as reduced water consumption based on a bacteria treatment loop (Piedrahita 2003; 110 

Martins et al. 2010). Wastewater flow in an RAS is consequently reduced compared to traditional flow-through 111 

systems, but carries inorganic compounds such as PO4
3-, NO3

- and CO2. To reduce these compounds, one of the 112 

existing treatments proposed by IMTA is to integrate a compartment of primary producers. Macroalgae have 113 

frequently been included in these systems as biofilters, e.g. Ulva spp. and Gracilaria spp. (Neori et al. 2004; Lopez 114 

Figueroa et al. 2012; Neori et al. 2017), but microalgae are less frequently used (Milhazes-Cunha and Otero 2017). 115 

Like macroalgae, microalgae add value in terms of feeding macro-invertebrates (i.e. filter-feeders), but they could 116 

be even more promising because of their higher photosynthesis rate and greater surface-area-to-volume ratio (i.e. 117 

higher nutrient uptake) (Milhazes-Cunha and Otero 2017). 118 
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One challenge for land-based IMTA systems is ensuring microalgae culture stability to allow both optimal nutrient 119 

remediation for the primary culture (e.g. fish) and optimal feeding for the associated culture (e.g. filter species). A 120 

monospecific algal culture may be selected in order to meet the needs of the other IMTA species. However, several 121 

studies have reported that an algal polyculture consisting of an assemblage of several species presents higher 122 

resilience to disturbances and ensures greater efficiency in resource use (Newby et al. 2016). In particular, 123 

multispecies algal cultures could better cope with climatic and fish-effluent variability. Some authors have 124 

demonstrated that natural plurispecific algal cultures can both grow on finfish effluent and ensure nutrient 125 

remediation (Lefebvre et al. 1996, 2004; Neori et al. 2017, Galès et al. 2020). Of course, within the IMTA, 126 

microalgae must also fulfil the feeding requirements of filter species. In one study, the addition of silicate in an 127 

algal culture initially filled with natural seawater and continuously supplemented with nitrate-enriched RAS 128 

wastewater led to a diatom-based algal culture with a remediation capacity equivalent to that of macroalgae (Li et 129 

al. 2019). In the microalgae biochemical composition, lipid content as well as essential amino acids and 130 

polyunsaturated fatty acids play a major role in the diet energy content, directly controlling oyster assimilation and 131 

biomass productivity (Brown et al. 1997 and references therein; Ben Kheder et al. 2010; Anjos et al. 2017). This 132 

nutritional value is mainly related to microalgal diversity, with diatoms being the most suitable diet for oyster 133 

growth (Brown et al. 1997 and references therein).  134 

The use of a continuous nutrient-enriched multispecies algal culture as an inoculum reservoir, if the culture is well 135 

controlled, stabilized and monitored, may help: (i) to reduce the risk of producing undesirable (i.e. toxic) algal 136 

species (when using natural coastal seawater inoculum), (ii) to accelerate the time required to reach the maximal 137 

microalgal biomass, ensuring optimal inorganic matter remediation and oyster feeding.  138 

This study focused on combining a RAS (for sea bass) with algal polycultures and oyster cultures. We used an 139 

inoculum from a year-round algal culture (a high-rate algal pond or HRAP, located close to the IMTA) initially 140 

inoculated with natural local seawater. The aim was to assess the algal polyculture’s ability to sustain oyster growth 141 

from an associated compartment when continuously supplemented with wastewater from a fish-based RAS in an 142 

IMTA context. 143 

2. From IMTA theory to a new way of production 144 

2.1. Materials and methods 145 

2.1.1. Land-based marine IMTA system 146 
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The experiment ran over 31 days, from 17 April 2018 (day 1) to 17 May 2018 (day 32), at the French Institute for 147 

Ocean Science (Ifremer) station in Palavas-les-Flots (southern France), which has a Mediterranean climate. The 148 

experimental IMTA system (Fig. 2) was adapted following Li et al. (2019), with improved hydrodynamics by 149 

including additional recirculation pumps in the outdoor microalgal raceways and oyster tanks.  150 

Three separate units were created to conduct the experiment. An indoor RAS (in triplicate) was dedicated to sea 151 

bass (Dicentrarchus labrax) (n=1380 fish, split into 460 per tank, initial weight of 425±134 g ind−1), which were 152 

reared at a density increasing from 51 kg m−3 (d1) to 56 kg m−3 (d32); this unit was considered a nutrient provider. 153 

Each was connected to an outdoor microalgal raceway (6 m3, n=3), which continuously received RAS wastewater 154 

with a fixed flow rate (1 L.min-1), ensuring a hydraulic retention time of 4.2 d.   155 

The IMTA microalgal raceways were inoculated with RAS effluent seawater (4:5 of the mix) and a local 156 

microalgal reservoir (1:5) containing a consortium dominated by Chlorellales (mainly Schizochlamydella sp 157 

and Picochlorum sp). Silicate (Na2SiO3,5H2O) was added to reach a N:Si:P molar ratio of nearly 10:5:1 in order 158 

to favour diatom dominance (Lefebvre et al., 1996). Nanostream electronic pumps (Turbelle®) were added in 159 

order to limit biodeposition and ensure light access.  160 

The microalgae cultures (chlorophyll a concentration of 6.3 mg.l-1) were then mixed in a tank with airstones and 161 

distributed to 3 outdoor tanks containing juvenile Pacific oysters (Crassostrea gigas). The microalgae flow rate of 162 

2.7 L.h-1 was diluted with 100 L.h-1 of fresh filtered seawater (dilution factor = 37), in order to approach a daily 163 

feeding ration of 6–8% dry weight (DW). This food ration is frequently used to meet the energy requirements of 164 

C. gigas broodstock in hatcheries (Utting and Millican 1997; Fabioux et al. 2005; Delaporte et al. 2006); and 165 

represents a ration 3 times higher than in a previous study (Li et al. 2019). Food distribution was optimized by the 166 

inclusion of a homogenization pump (Turbelle®) and an airlift and by replacing baskets clogged by biofouling 167 

with new ones every two weeks.  168 

2.1.2. Nutrient remediation and algal biomass production  169 

Throughout the 31-day experiment, the water was sampled 3 times a week to monitor nutrient parameters (inlet 170 

and outlet) in the photosynthetic extractive compartment (the 3 outdoor microalgal raceways). Water samples (n 171 

total = 49) were filtered (GF/F, WhatmanTM) after each sampling and stored (at -25°C) for NO3-N, NO2-N, NH4-172 

N, PO4-P analysis (Alliance® auto-analyser). Nutrient removal efficiency (RE, %) was calculated (see Li et al. 173 

2019).  174 
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The microalgal biomass was monitored 3 times a week in the 3 outdoor microalgal raceways; chlorophyll a (Chla) 175 

was determined after water sample filtration using GF/F filters (Association 1995), and the pigments were 176 

extracted with methanol (Ritchie 2006). Chla concentration was measured using a spectrophotometer and 177 

calculated using the Ritchie (2006) equation. The main microalgal species were identified by microscopy with an 178 

Olympus IMT2 inverted light microscope, following the protocol of the French Observation and Monitoring 179 

Programme for Phytoplankton and Hydrology (REPHY) in coastal waters (Neaud-Masson 2020). 180 

Some environmental parameters (i.e. temperature, salinity, pH) were monitored daily in all tanks (i.e. fish, algae 181 

and oyster) using a YSI® probe. 182 

2.1.3. Oyster growth  183 

On d1, 756 8-month juvenile oysters (ntotal=756) were split into 3 outdoor tanks (n tank= 252±3). The initial fresh 184 

weight and length of the juvenile oysters were measured, with values of 1.55±0.33 g.ind-1 and 22±3 mm.ind-1 185 

respectively. The final fresh weight and length were measured after 32 days. The specific growth rate (SGR) was 186 

calculated with the equation:  187 

𝑆𝐺𝑅 (𝑖𝑛 %) =
𝑙𝑛(𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡) ∗ 100

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 188 

The non-parametric Wilcoxon-Mann-Whitney statistical test was used to assess median differences between 189 

experimental conditions. 190 

 191 

2.2. Results & discussion  192 

An IMTA-microalgae community of interest, but highly variable Chla production 193 

The results confirmed the feasibility of cultivating a microalgae community on fish effluent in a Mediterranean 194 

climate.  195 

In all raceways, the Chla pigment concentrations, indicator of algal biomass, showed a similar three-phased pattern 196 

(Fig. 3): (1) from d1 to d9, a low initial concentration of around 0.06 mg Chla.L-1, with cyanobacteria dominance 197 

observed in microscopy, (2) from d9 to d16, an increase in production (reaching a maximum of 0.58 mg Chla.L-1 198 

at d15), with the dominance of Cylindrotheca closterium (Ehrenberg) Reimann and Lewin 1964, and finally, (3) 199 

after d16, a decline in algal growth, still with Cylindrotheca closterium (at d23) as the main algal species, and 200 

Pseudo-nitzschia and cyanobacteria at the end of the culture (d28).  201 

Using an inoculum from a local intensive algal culture to start the microalgal culture, we observed that the maximal 202 

Chla production was reached after 16 days, twice as fast as in a previous experiment performed during the same 203 
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seasonal period but using a natural seawater inoculum (Li et al., 2019). The microalgal crash around d24 was 204 

probably due to rapid algal CO2 consumption leading to elevated pH (maximum pH of 10) and CO2 depletion.  205 

The results also confirmed the feasibility of bioremediating fish nutrients using an inoculum from a local HRAP. 206 

The remediation of phosphates was high, 85 ± 25% (with a maximal value of 97.6%), but was lower for 207 

nitrogenous elements, with 49 ± 21% for NH4-N (maximal value of 93.5%), and 24.9 ± 11.1% for NO3-N (maximal 208 

value of 51.3%). 209 

The algal yields – and as a consequence bioremediation efficiency – could be improved, for example, by reusing 210 

CO2 released by the fish in the RAS loop in the algae culture in order to maintain pH at seawater value (ca 8) and 211 

to avoid CO2 depletion. Another research avenue would be to integrate detritivorous organisms (e.g. mullet fish, 212 

holothurians, nematodes) with algae cultures, as the former would be able to feed on deposits.  213 

Juvenile oysters more than doubled in weight and length 214 

During the 1-month period, both weight and length gain in the oysters was significant (p <0.001), more than 215 

doubling, with a final weight of 3.7±0.9 g ind−1 (n=754). No mortality was observed (0.2%). Despite strong 216 

variability in algal production within the IMTA-microalgae raceways, the produced biomass allowed significant 217 

oyster growth over the experimental period: a very encouraging result. The oyster growth rate of 1.04% was in the 218 

same order of magnitude as that of juveniles reared in a nearby natural lagoon (0.97% in Li et al., 2019).  219 

As mentioned by Troell et al. (2009), the integration of bivalves in an IMTA is not straightforward. With the 220 

addition of silicates, the phytoplankton that grows with the input of fish nutrients is suitable food for filter-feeders 221 

and can have a positive (Lefebvre et al. 2000, 2004) or insignificant (Li et al. 2019) effect on bivalve growth. 222 

Those growth results are mainly explained by determining environmental factors, such as ambient concentrations 223 

of nutrient availability, particulate organic matter or seston content (Troell and Norberg 1998), but also indirectly 224 

by fish-feeding variability (i.e. its duration and quantity).  225 

In our case study, the IMTA microalgal inoculum was mostly composed of Chlorellales – these are not the common 226 

microalgae used for juvenile oyster feed, which is usually composed of diatoms or Prymnesiophyceae 227 

(McCausland et al. 1999; Ponis et al. 2003). Indeed, juvenile oysters are usually not able to retain small particles, 228 

e.g. < 4 μm for C. gigas when sestonic load is low, <12 μm when sestonic load is higher (Barillé et al. 1993), and 229 

even 20 μm for Ostrea chilensis (Dunphy et al. 2006). Chlorellales such as Schizochlamydella sp and Picochlorum 230 

sp are rather small (2–10 microns and 1.5–3 microns, respectively) and consequently not assimilable by juvenile 231 

oysters (Korshikov 1953; Tsarenko 2011; Henley et al. 2004). The addition of silicates permitted a shift in the 232 
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initial algal community towards diatoms of the Bacillariophyceae family, whether these were present (but not 233 

detectable) in the 1:5 inoculum at the beginning of the period, or in the 4:5 water from the RAS effluent. This shift 234 

in the microalgal composition allowed the growth of the juvenile oysters, indicating that the feed composition was 235 

both assimilable and resulted in growth gain. C. closterium, which grew in the microalgal raceways, are long cells 236 

(> to 25 μm; Reimann and Lewin 1964) with a particular shape that could favour its retention on oyster gills and 237 

be suitable microalgae for juvenile oyster growth. Its high nutritional value for secondary consumers has 238 

previously been described: it has high lipid content and is particularly rich in essential PUFAs such as EPA and 239 

ARA (Keerthi et al. 2012). Other constituents may also have played a role in the oyster food chain, as ciliates and 240 

flagellates from 4 to 72 μm are known to be retained by the oyster (Dupuy et al. 1999). Future experiments on the 241 

entire microbial food web are necessary to delve further into the microorganism communities assimilable by 242 

oysters in an IMTA oyster-growing context. To reach optimal conditions for bivalve production, these experiments 243 

can give rise to improvements in the system – for example, daily uniform fish feeding and therefore, nutrient 244 

excretion – to smooth out variations in the microalgae cultures and decrease the risk of crop crashing. 245 

IMTA supplementary biomass production 246 

At a daily feeding rate of 1% of the fish biomass, 5.89 kg of feed.d-1 were distributed, giving a growth ratio of 2.39 247 

kg of fish.d-1. The nutrients excreted by fish and taken in by microalgae fed an oyster biomass of 0.022 kg.d-1.  248 

In the experimental conditions tested, the results showed that an IMTA with reduced human intervention allowed 249 

a gain in recoverable biomass: i.e. 3.7 g of oyster produced per kg of fish feed distributed. For a production unit 250 

of 100 tonnes of fish fed at 1% of the biomass twice a day, an additional production of 2.7 tonnes of oyster could 251 

be provided per year. This yield could be even higher if 100% RAS water was used to supplement the microalgal 252 

compartment (5% of RAS water was used in this study), as in this case 20 microalgal raceways could be run. 253 

Moreover, only 2% of the microalgae biomass was used to feed the 3 oyster compartments: if 100% was used to 254 

feed the oysters, 37 times more oyster biomass would be produced. Further work is needed to investigate the 255 

economic viability of such a system in more detail, in order to establish whether there is an overall economic 256 

benefit to implementing such a system. 257 

 258 

Conclusion 259 

This study demonstrated the feasibility of using an inoculum of a microalgal polyculture (favouring diatoms of 260 

interest) from a local intensive basin together with an appropriate oyster–food ratio to feed oyster juveniles in an 261 

IMTA community. The experiment resulted in equivalent Chla production in a shorter time frame than a previous 262 
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published study (15 days less to reach the same production). This IMTA design could still be improved, in 263 

particular regarding technical and environmental factors, in order to better control algal culture variability.  264 

By transforming waste into reusable material and additional biomass, IMTAs can reduce environmental impact, 265 

giving a more positive, ecological image to aquaculture. It could potentially be promoted with a specific ‘circular 266 

aquaculture’ certification. However, despite its promise, in Europe the development of IMTA still faces various 267 

issues. Some of the obstacles could be overcome by pursuing research on both biological, economic and social 268 

aspects of IMTA and of end consumer perceptions of its products. Innovative zero-waste designs should be studied, 269 

with specific attention paid to analysing their effects on the biology and welfare of candidate species and the 270 

quality of the end products. Increasing the economic and ecological sustainability of aquaculture should help build 271 

the case for its social acceptance. 272 
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Fig. 1. Theoretical representation of an IMTA assemblage, with triangles representing the different 

trophic compartments and arrows representing the different flows (blue for inorganic, black for feed, 

brown for organic) - illustrations from:  lapecheenligne.com, ©N.Neaud-Masson, shutterstock.com and 

Manuel d'actinologie ou de zoophytologie Paris ;F.G. Levrault,1834 – 1836 
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Fig. 2. Experimental land-based IMTA (Ifremer, Palavas) with three compartments: (A) fish tanks 

operating with water recirculation; (B) outdoor microalgal raceways receiving fish effluent from A; (C) 

oyster ponds receiving microalgae from lagoons in B. Total surface area = 150 m2. 
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Fig. 3. Temporal Chla concentrations (in mg.L-1) during the experiment in the three IMTA-microalgae 

replicates: L1, L2 and L3.  
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Fig. 4. Pseudonitzschia (A and B) and Cylindrotheca closterium (C) identified in the three IMTA-

microalgae replicates (photos © Elise Caillard).  
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