
HAL Id: hal-03753845
https://hal.science/hal-03753845

Submitted on 18 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toroflux: A counterpart of the Chandrasekhar-Kendall
state in noncentrosymmetric superconductors

Julien Garaud, Anatolii Korneev, Albert Samoilenka, Alexander Molochkov,
Egor Babaev, Maxim Chernodub

To cite this version:
Julien Garaud, Anatolii Korneev, Albert Samoilenka, Alexander Molochkov, Egor Babaev, et al..
Toroflux: A counterpart of the Chandrasekhar-Kendall state in noncentrosymmetric superconductors.
Physical Review B, 2023, 108 (1), pp.014504. �10.1103/PhysRevB.108.014504�. �hal-03753845�

https://hal.science/hal-03753845
https://hal.archives-ouvertes.fr


Toroflux: A counterpart of the Chandrasekhar-Kendall state in noncentrosymmetric
superconductors

Julien Garaud,1, ∗ Anatolii Korneev,2 Albert Samoilenka,3

Alexander Molochkov,2 Egor Babaev,3 and Maxim Chernodub1, †

1Institut Denis Poisson CNRS/UMR 7013, Université de Tours, 37200 France
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We demonstrate that superconductors with broken inversion symmetry support a family of stable,
spatially localized configurations of the self-knotted magnetic field. These solutions, that we term
“toroflux”, are the superconducting counterparts of the Chandrasekhar-Kendall states (spheromaks)
that appear in highly conducting, force-free astrophysical and nuclear-fusion plasmas. The super-
conducting torofluxes are solutions of superconducting models, in the presence of a parity breaking
Lifshitz invariant associated with the O point group symmetry. We demonstrate that a magnetic
dipole or a ferromagnetic inclusion in the bulk of a noncentrosymmetric superconductor source
finite-energy toroflux solutions.

I. INTRODUCTION

Ordinary type-2 superconductors expel weak magnetic
fields due to the Meissner effect, while at elevated fields
the magnetic flux penetrates in the form of a lattice or
a liquid of Abrikosov vortices, see e.g. [1]. Moreover,
quantum or thermal fluctuations can induce closed loops
of such quantum vortices. Because of the vortex string
tension, these loops are unstable, and eventually decay.
Thus, apart from certain cases demonstrated in multi-
component systems that allow different topology [2] bulk
superconductors do no feature stable, localized configu-
rations of the magnetic field (in three dimensions). In
this paper, we demonstrate that bulk noncentrosymmet-
ric superconductors feature a new a new class of localized,
impurity-induced, configurations of a knotted magnetic
field. We coin these solutions “toroflux”, since the ge-
ometry of their current and flux lines resemble a popular
toroflux toy [3].

Noncentrosymmetric superconductors, that is super-
conductors whose crystal lattices lack inversion symme-
try, have attracted significant attention from both theo-
retical [4–9] and experimental [10–14] communities. A
key property of a noncentrosymmetric crystal is that
it cannot be superimposed on its spatially inverted im-
age with the help of spatial translations. The crystal
thus breaks explicitly the parity inversion group. Since
the superconducting order parameter captures the parity
breaking properties of the underlying ionic lattice, the
noncentrosymmetric superconductors constitute a class
of exotic systems that spontaneously breaks a continu-
ous symmetry, in a parity violating medium (see, e.g. ,
Refs. [15–17] for detailed reviews). Ginzburg-Landau free
energies of noncentrosymmetric superconductors include
contributions that are linear in the magnetic field and
in the gradients of the superconducting order parameter:
∝ kijBiIm(ψ∗Djψ). Here D is the gauge derivative of
the order parameter ψ), and kij are coefficients which
depends on the crystal symmetry. In this work, we con-

sider a particular class of noncentrosymmetric supercon-
ductors with chiral octahedral O symmetry.

Parity-breaking superconducting systems feature sev-
eral distinctive properties: they generate unusual mag-
netoelectric transport phenomena, exhibit a correlation
between supercurrents and electron spin polarizations,
lead to the emergence of helical states, and host, in
the background of the magnetic field, the vortex lattices
with exotic spatial structure [15–18]. Notably, vortices
in these superconducting materials can exhibit an in-
version of the magnetic field at a certain distance from
the vortex core [19, 20]. This property leads to non-
monotonic inter-vortex forces and thus to the forma-
tion of vortex-vortex bound states, vortex clusters, and
nontrivial bound states at the boundary of the sam-
ple [19, 20]. The parity breaking in noncentrosymmet-
ric superconductors can also modify the Josephson ef-
fect with an unconventional, phase-shifted relation for
the Josephson current [21, 22]. Linked by a uniaxial
ferromagnet, the unconventional Josephson junction was
suggested to serve as an element of a qubit with a simple
and presumably robust architecture [23].

The toroflux solutions that we find in this pa-
per, are the counterparts of the Chandrasekhar-Kendall
states [24], in the context of noncentrosymmetric super-
conductors. The Chandrasekhar-Kendall states are the
divergence-free eigenvectors of the curl operator that de-
termine the minimum-energy equilibrium configurations
in magnetohydrodynamics of highly conducting plasmas.
These states appear in various physical contexts, ranging
from astrophysical plasmas [24] to the nuclear fusion the-
ory [25]. In the latter case, the Chandrasekhar-Kendall
eigenvectors are also known as Taylor states [25], which
represent the relaxed minimum energy states of a plasma
in a spheromak device (i.e. , inside a spherical shell that
confines the plasma) [26, 27]. The principal difference be-
tween the toroflux state in parity-broken superconductors
and a the Chandrasekhar-Kendall state in a conducting
plasma, is that the toroflux are strongly localized config-
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urations. The spatial localization of both the magnetic
field and the supercurrent of the toroflux originates from
the Meissner effect.

Our torofluxes are eigenstates of the London equa-
tions for a noncentrosymmetric superconducting mate-
rial. Labelled by their orbital (0 < l < ∞) and mag-
netic (−l ⩽ m ⩽ +l) quantum numbers, there are in-
finitely many (l,m) toroflux modes, for a given value of
the parity breaking parameter. All of the toroflux modes
have an intrinsic divergence at the origin, and therefore
they require a regularization at the core of the solutions.
We demonstrate that each divergent mode is regular-
ized by (pointlike) magnetic multipole sources. The case
of a pointlike magnetic dipole is of particular physical
relevance, as it corresponds to magnetic impurities in-
side a noncentrosymmetric superconductor. We argue
that such magnetic impurities systematically induce an
(l,m) = (1, 0) toroflux mode.

The superconducting toroflux solutions found in this
paper share some similarities with knotted field configu-
rations that appear in many areas of physics, including
particle physics [28], condensed matter [2, 29–31], and
the classical field theory [32, 33]. Knotted electromag-
netic field configurations were also suggested to play a
role in the chirally imbalanced quark-gluon plasmas [34–
38].

The paper is organized as follows. In Section II, we
introduce the Ginzburg-Landau theory for parity break-
ing superconductor and derive the corresponding classical
equations in the London limit. In Section III, we express
the London equation in terms of a force-free field and dis-
cuss localized solutions for the magnetic field and electric
currents, using the basis of vector spherical harmonics.
There, we also determine the energy and helicity densi-
ties for the infinite tower of toroflux states. We further
demonstrate that in the London limit, the total energy
of the solution diverges in its core. Next, in Section IV,
we show that a ferromagnetic inclusion regularizes the
singular behavior of the solution, serving, at the same
time, as a source for a finite-energy superconducting to-
roflux. Finally, in Section V investigate the case where
the inclusion is a ferromagnetic dipole. There, we explic-
itly the construct the toroflux solutions sourced by such
an impurity. We discuss their properties and, in particu-
lar, the influence of the parity breaking parameter on the
structure, energy, and helicity of the toroflux solutions.
Our conclusions are presented in the last section.

II. THEORETICAL FRAMEWORK

A. Parity-broken formulation

We consider a class of isotropic noncentrosymmetric
superconductors that are invariant under spatial rota-
tions while possessing, at the same time, an explicitly
broken discrete group of spatial inversions. The macro-
scopic physics of these materials may be described within

the Ginzburg-Landau theory supplemented with the Lif-
shitz term of the simplest form j ·B which directly cou-
ples the magnetic field B to a current j expressed via
the superconducting order parameter ψ (for a review, see
Refs. [15, 39]). This particular structure of the Lifshitz
term describes a class of the noncentrosymmetric super-
conductors with a O point group symmetry such as, for
example, Li2Pt3B [12, 40], Mo3Al2C [41, 42], and PtSbS
[43].
In the vicinity of the superconducting critical temper-

ature, the density F of the Ginzburg-Landau free energy
F =

∫
d3xF can we written as follows:

F =
B2

8π
+
k

2

∑
a=±

∣∣Daψ
∣∣2 + β

2
(|ψ|2 − ψ2

0)
2 , (1a)

where D± := ∇− ieA+ ieκ±B . (1b)

The single-component order parameter ψ = |ψ|eiφ stands
for the density of Cooper pairs. The gauge derivative
D couples the scalar field ψ to the vector potential A
and the magnetic field B = ∇ ×A. The coefficients of
the Ginzburg-Landau model (1), including the parity-
breaking couplings κ± = χ ± ν, can be expressed in
terms of the parameters of the microscopic model [20].
Throughout the paper, we use the units ℏ = c = 1.
The physical length scales of the theory, namely the

coherence length ξ and the London penetration depth
λL, are determined by the coefficents of the Ginzburg-
Landau model as

λL = λ0

√
1 +

κ2
+ + κ2

−
2λ20

, where λ20 =
1

8πke2ψ2
0

, (2a)

ξ2 =
k

2βψ2
0

, (2b)

respectively. The Ginzburg-Landau parameter is the ra-
tio κ = λL/ξ. Note that in noncentrosymmetric super-
conductors, an externally applied magnetic field does not
decay in a simple monotonic way; for a detailed dis-
cussion how a counterpart of the London’s penetration
length is defined in such a case see, e.g. Refs. [19, 20].
The variation of the free energy (1) with respect to

the field ψ∗ yields the Ginzburg-Landau equation for the
superconducting condensate

k
∑
a=±

DaDaψ = 2β(|ψ2| − ψ2
0)ψ , (3)

while the variation with respect to the vector potential
A determines the Ampère-Maxwell equation

∇×
(B

4π
+ ke

∑
a=±

κaJa

)
= ke

∑
a=±

Ja , (4)

where Ja = Im(ψ∗Daψ) .

The structure of the magnetic field lines can be conve-
niently characterized by the magnetic helicity:

H =

∫
A ·B , (5)
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It can indeed serve as a measure the entanglement of the
magnetic field lines in knotted configurations of the mag-
netic field [44]. The magnetic helicity is widely used in or-
dinary electrically conducting plasmas described by ideal
magnetohydrodynamics, where it is a conserved quantity
modulo reconnections of the magnetic field lines [27].

B. London-limit

The kinetic term of the free energy (1), can be ex-
panded into a sum of gauge-invariant terms:

1

2

∑
a=±

∣∣Daψ
∣∣2 = |Dψ|2 + χj ·B + e2(χ2 + ν2)|ψ|2B2 ,

where D := ∇− ieA , and j = 2e|ψ|2(∇φ− eA) . (6)

In the London limit (i.e. κ → ∞), the superconducting
density is a spatially uniform quantity, |ψ| = ψ0, and the
free energy reads as follows [45]:

FL = kλ2Le
2ψ2

0

{
B2 + ȷ̂2 + 2Γȷ̂ ·B

}
, (7)

where ȷ̂ =
j

2λLe2ψ2
0

, and Γ =
χ

λL
, and 0 ⩽ Γ ⩽ 1 .

Importantly, the dimensionless parameter Γ quantifies
the importance of the parity breaking. At Γ = 0, the
material is thus centrosymmetric. The second London
equation that relates the magnetic field B and the cur-
rent (6) j = 2eψ2

0(∇φ− eA) takes the following form:

B = Φ0v − ∇̃×ȷ̂ . (8)

Here v = 1
2π∇ × ∇φ is the density of vortex field that

accounts for the phase singularities, and Φ0 = 2π/e is
the superconducting flux quantum. In the dimensionless
units used here x̃ = x/λL and ∇̃ = λL∇, the Ampère-
Maxwell equation (4) reads as:

∇̃×H = ∇̃×(B − 4πM) = Ĵ , (9)

where H = B + Γȷ̂ , Ĵ = ȷ̂+ ΓB , and M = −Γȷ̂

4π
,

are, respectively, the (dimensionless) magnetic field, the
total current, and the magnetization.

Introducing the complex quantity η = Γ + i
√
1− Γ2,

the free energy density (7) in the London limit can further
be rewritten as

F̃L :=
FL

kλ2Le
2ψ2

0

= (B + ηȷ̂)(B + η∗ȷ̂) . (10)

The constant density approximation, together with the
expression for the magnetic field (8), thus yields the di-
mensionless free energy:

F̃L = (L∗ȷ̂− Φ0v)·(Lȷ̂− Φ0v) . (11)

Here, for a shorthand notation, we introduce the operator
Lȷ̂ = ∇̃×ȷ̂− ηȷ̂. The London equation for the current ȷ̂,

obtained as the Euler-Lagrange equation by varying the
free energy (11) with respect to ȷ̂, reads as

LL∗ȷ̂ = Φ0Re [L∗v] . (12)

Note that, the source field v is not a regular function but
a distribution which is zero almost everywhere, except
for a set of phase singularities identified with positions of
vortices. Since we are interested in vortex free configu-
rations, the source term associated with the vortex fields
is, from now on, set to zero v = 0.
As we demonstrate below, the London equation (12)

can be seen as a complex, force-free equation whose so-
lution corresponds to the eigenfunctions of the curl oper-
ator with complex eigenvalues. The general axisymmet-
ric eigenfunctions of the curl operator can, for example,
be found by using the Chandrasekhar-Kendall toroidal-
poloidal decomposition [24, 46]. Below, we will express
the solutions differently, using the basis of vector spheri-
cal harmonics.

III. LOCALIZED FORCE-FREE SOLUTIONS

We are interested in finding the spatially localized so-
lutions of the London equation (12). This equation can
be simplified by introducing a complex, force-free vector
field Q that satisfies the force-free equation:

LQ = 0 . (13)

Hence, in the absence of a source term, the London equa-
tion implies that

L∗ȷ̂ = iIm(η)Q , (14)

where Q obeys the force-free equation (13). The defi-
nition (14) relates the physical magnetic fields and the
electric current to the force-free field Q as:

ȷ̂ = ReQ , J =
√

1− Γ2Im(ηQ) , (15a)

B = −Re(ηQ) , H =
√

1− Γ2Im(Q) . (15b)

It is convenient to represent the solutions Q of the force-
free equation (13) in the basis of the vector spherical
harmonics Zlm = (Y lm,Ψlm,Φlm):

Q(x) =

∞∑
l=0

+l∑
m=−l

 ∑
Z=Y ,Ψ,Φ

QZ
lm(r)Zlm(r̂)

 , (16)

where the harmonics Zlm and the corresponding radial
functions QZ

lm(r) are labeled by the integer-valued quan-
tum number of the angular momentum l = 0, 1, 2, . . .
and its projection on the z-axis, m ≡ mz ∈ Z with
−l ⩽ m ⩽ l. The angular coordinates are encoded in
the unit vector r̂ ≡ r/r. The vector spherical harmonics
are defined, in the parametrization of Ref. [47], via their
scalar counterpart Ylm(r̂) as:

Y lm(r̂) = Ylm(r̂)r̂ , (17a)
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Ψlm(r̂) = r∇Ylm(r̂) , (17b)

Φlm(r̂) = r ×∇Ylm(r̂) . (17c)

Given the decomposition (16), the force-free equation
(13) yields a set of differential equations whose solutions,
that are bounded at infinity are (see details in the Ap-
pendix A):

QΦ
lm = clmh

(1)
l (ηr) , QY

lm = −clm
l(l + 1)

ηr
h
(1)
l (ηr) ,

QΨ
lm = −clm

(
l + 1

ηr
h
(1)
l (ηr)− h

(1)
l+1(ηr)

)
. (18)

Here clm is an arbitrary complex constant, and h
(1)
l (z)

is the spherical Hankel function of the first kind. Using
the relations between the physical fields and the force-
free field (15), the total London free energy (11) can be
written in the basis of the vector spherical harmonics as:

F̃ = (1− Γ2)

∞∑
l=0

l∑
m=−l

∫ ∞

0

r2dr
∑

Z=Y ,Ψ,Φ

wZ
lm

∣∣∣QZ
lm

∣∣∣2 , (19)

where wY
lm = 1 and wΦ

lm = wΨ
lm = l(l+1). Here, the angu-

lar degrees of freedom have been integrated out using the
orthogonality properties of the spherical harmonics (see
Appendix D). Note that the dimensionless energy (19) is

related to the total free-energy as F = kλ5Le
2ψ2

0F̃ .
According to the definitions of the free energy (7), in

the absence of phase gradients, the gauge field A is re-
lated to the dimensionless current ȷ̂ as A = −λLȷ̂. Thus,
the dimensionless helicity (5) reads as: H̃ ≡ H/λL =
−
∫
ȷ̂ · B. Here again, given the relations (15) between

the physical fields and the force-free field Q, the dimen-
sionless helicity takes the following form:

H =

∫
Re(Q) · Re(ηQ) =

∑
l,m

∫
r2drHlm , (20)

where Hlm =
∑

Z=Y ,Ψ,Φ

wZ
lm

{
Re(ηQZ

lm)Re(QZ
lm) if m even ,

Im(ηQZ
lm)Im(QZ

lm) if m odd .

At small radius r, all the components of the force-free
field (18) are divergent:

QΦ
lm ∼ r−(l+2) , QY

lm ∼ r−(l+2) , QΨ
lm ∼ r−(l+1) . (21)

Therefore, all the toroflux modes, in the London limit,
have an intrinsic divergence at the origin. For example,
the divergence of the l = 1 solution behaves as a point-
like magnetic dipole which, in realistic circumstances, can
be regularized by the size of a ferromagnetic (spherical)
inclusion that represents a physical dipole. The same
statement can also be applied to the other, quadrupole
(l = 2) and higher modes. Below we consider a general
case of a magnetized inclusion which naturally regularizes
the divergence of the toroflux modes (21).

IV. MAGNETIZED INCLUSION

In order to account for the divergences of the force-free
field, it is instructive to consider the case of a magnetized
(spherical) inclusion in the bulk of the noncentrosymmet-
ric material. The Maxwell equations that determine the
magnetic field inside the inclusion are:

∇̃×H = 0 , ∇̃·B = 0 , where B = H +4πM . (22)

The magnetic field B and the magnetization M are de-
composed onto the vector spherical harmonics, similarly
to the force-free field Q (16). The fields of the mag-
netized spherical inclusion are constructed following the
standard textbook calculations, see e.g. [48] (for a de-
tailed derivation, see the Appendix B). The general solu-
tions are constrained by the requirement that the mag-
netic field should be a real-valued quantity, while the
magnetic fields B̌ and Ȟ inside the magnetized spheri-
cal inclusion of radius r0 satisfy the following relations:

ȞY
lm = ȞΨ

lm = −4πlM̌Y
lm

2l + 1

(
r

r0

)l−1

, ȞΦ
lm = 0, (23a)

B̌Z
lm = ȞZ

lm + 4πM̌Z
lm , with Z = Y ,Ψ,Φ . (23b)

The continuity conditions for the current and the mag-
netic fields at the interface between a magnetized inclu-
sion inside a superconducting medium read as:

0 = J · n12

∣∣
r=r0

, (24a)

0 = n12 · (B2 −B1)
∣∣
r=r0

, (24b)

JS = n12 × (H2 −H1)
∣∣
r=r0

. (24c)

Here, n12 is the normal vector from medium 1 (the mag-
netized inclusion) to the medium 2 (the parity-breaking
superconductor) and JS is the surface current density
which is localized at the interface. The first equation in
(24) represents the requirement of the absence of a flow of
J through the interface between the superconductor and
the magnetized inclusion [39]. Using the representation
(16) of the solution in the basis of vector spherical har-
monics, and given that Y lm is the only vector harmonic
that has a radial component, we represent the first two
equations in Eq. (24) as:

J · n12

∣∣
r=r0

=
√
1− Γ2

∑
l,m

Im
(
ηQY

lmYlm
)
= 0 ,

(25a)(
B − B̌

) ∣∣
r=r0

= −
∑
l,m

Re
(
(ηQY

lm + B̌Y
lm)Ylm

)
= 0 .

(25b)

Note that the intrinsic degrees of freedom of the solutions
of these equations always allows to reconstruct the real-
valued magnetic field (23) inside the inclusion. In other
words, it is always possible to find the field B̌ such that
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ImB̌ = 0. Hence, the interface conditions (25), for a
given (l,m) mode, boil down to

ηQY
lm + B̌Y

lm

∣∣
r=r0

= 0 . (26)

Finally, the use of the explicit form of the solutions for
the radial functions (18) and the expressions for the fields
inside the spherical inclusion (23), provides us with the
matching conditions that fixes the coefficients clm as:

clm =
4πr0M̌

Y
lm(r0)

l(2l + 1)h
(1)
l (ηr0)

for l > 0 . (27)

V. TOROFLUX INDUCED BY A DIPOLE

Consider now the particular case of a spherical impu-
rity of the radius r0, with the magnetic dipole moment
M̌ directed along the axis ẑ. In spherical coordinates,
the magnetic moment of the impurity reads as follows:

M̌ =M0ẑ =M0

(
r̂ cos θ − θ̂ sin θ

)
=

√
4π

3
M0 (Y 10 +Ψ10) . (28)

The continuity conditions (27) fix the only nonzero coef-
ficient c10 of the force-free field Q (16):

c10 =
r0M0

h
(1)
1 (ηr0)

(
4π

3

)3/2

. (29)

The behaviour of the Hankel functions for small argu-
ments imply that :

c10 = i

√
4π

3

(
4πr30
3

)
M0η

2 , when r0 → 0 . (30)

Thus, for a point-like dipole with the magnetic moment
Md

0 = 4π
3 r

3
0M0, the coefficient is uniquely determined as

c10 =

√
4π

3
η2Md

0 . (31)

The related force-free field Q corresponds to the (l,m) =
(1, 0) harmonics:

Q10 = −Md
0

eiηr

ηr3

[
(1− iηr)

(
2 cos θr̂ + ηr sin θϕ̂

)
+
(
1− iηr(1− iηr)

)
sin θθ̂

]
, (32)

where we used the explicit form of spherical Hankel func-
tions of the first kind (18) in order to express the solu-
tion in the closed form. An alternative derivation via
the Chandrasekhar-Kendall method is briefly outlined in
Appendix C.

The physical fields can be reconstructed from the force-
free field (32) by using the relations (15) (see the Ap-
pendix B 3 for the explicit expressions for H and J).
The complex parameter η depends on the parity break-
ing parameter 0 ⩽ Γ ⩽ 1 as η = Γ + i

√
1− Γ2. Thus all

the fields are exponentially localised as e−r
√
1−Γ2

. Hence,
the size of the torofluxes,

Ltor =
λL√
1− Γ2

, (33)

is determined by the London penetration length λL and
the dimensionless parity breaking coupling Γ defined in
Eq. (7). In the limit of the maximal parity violation,
Γ → 1, the size of the toroflux diverges.

A. Knotted nature of the toroflux

The physical fields H and J associated with the force-
free field Q10 induced by a magnetic dipole (32) are dis-
played in the Fig. 1, for the value of the parity-breaking
parameter Γ = 0.5. This figure illustrates that a mag-
netic dipole impurity induces, in a noncentrosymmet-
ric superconductor, the knotted lines of both the mag-
netic field and the electric current. These toroidal, axi-
ally symmetric, nested structures, resemble in many as-
pects the standard Chandrasekhar-Kendall states [24].
The alternative derivation of our solutions, presented
in the Appendix C, highlights the proximity of the to-
roflux and the Chandrasekhar-Kendall states. The to-
rofluxes are basically the spatially localized analogues of
the Chandrasekhar-Kendall states. Note that since the
magnetic lines of the toroflux are closed, the total flux
through any cross-section of the solution vanishes identi-
cally.
The London penetration depth determines the overall

length scale the toroflux without affecting the geometry
of its internal structure. On the contrary, the strength
of the noncentrosymmetricity strongly affects the over-
all structure of the toroflux. The latter feature is il-
lustrated in the Fig. 2, which shows the streamlines of
the magnetic field H and the electric current J as well
as their Poincaré sections of the torofluxes for moderate
(Γ = 0.15), intermediate (Γ = 0.5), and high (Γ = 0.95)
values of the parity-breaking parameter Γ.
At small parity breaking (Γ = 0.15), the magnetic

field lines resembles that of a magnetic dipole. They
are attached to the magnetized inclusion and slightly
twisted around the axis of the dipole (and the chiral-
ity of twist depends on the sign of Γ). Accordingly, the
current flows around the dipole and covers various tori.
When the noncentrosymmetricity becomes more impor-
tant (Γ = 0.5), the toroflux features nested tori of the
magnetic lines, in addition to the twisted structure near
the dipole. This property can be seen, in particular, in
the H|x=0 Poincaré section in Fig. 2. Interestingly, the
chirality of the extra nested tori is reversed compared to
set of field lines that are attached to the dipole. Upon
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Figure 1. A toroflux solution induced by a magnetic dipole for the parity breaking parameter Γ = 0.5. The left panel displays
the streamlines of the magnetic field H, while the right panel shows the streamlines of the total electric current J . These
quantities are related to the other to the Ampère-Maxwell equation (9). The sphere in the center shows the position of the
magnetized inclusion (the magnetic dipole).

increase of the parity breaking, additional sets of nested
tori appear, as can be seen field the H|x=0 Poincaré sec-
tion in Fig. 2 for Γ = 0.95. The fact that the number of
tori with opposite chirality increases as the parity break-
ing becomes stronger is qualitatively similar to the effect
of the magnetic-field inversion observed near vortices at
large Γ reported in Refs. [19, 20].

B. Energy and helicity of the toroflux

The dimensionless energy (19) of the toroflux solution
(32) induced by a magnetic dipole depends on the parity
breaking parameter Γ as:

F̃ (Γ, r0) =
2(Md

0 )
2

r30
e−2r0

√
1−Γ2

[
(1 + 2r20)(1− Γ2)

+
(
2(1− Γ2) + r20

)
r0
√

1− Γ2
]
. (34)

The exponential prefactor contains the ratio of the inclu-
sion radius r0 with the size (33) of the toroflux, which is
the consequence of the Meissner effect.

The Figure 3 shows the toroflux energy (34) as a func-
tion of the parity-breaking parameter Γ. The toroflux
energy monotonically decreases as the parity breaking
parameter Γ, and it is maximal in the centrosymmetric
limit, Γ → 0. This property is a consequence of the Lif-
shitz term j ·B, which provides a negative contribution
when the electric current and the magnetic field are (par-
tially) aligned. When Γ reaches the upper bound, Γ = 1,
the toroflux energy vanishes while its size (33) diverges.
Note that unlike vortices, which carry a quantized mag-
netic flux, the toroflux has a zero net flux through any

plane that intersects the magnetic dipole impurity. The
amplitude of the magnetic field is determined only by
the magnetization of the dipole, hence the energy of our
toroflux solution is not quantized.
The Figure 3 also displays the helicity (20) of the to-

roflux (for a spherical inclusion with a small radius r0)
which, unlike the energy, monotonically grows with the
increase of the parity breaking parameter Γ. As the non-
linear corrections are small for small inclusions, the helic-
ity is almost a linear function of Γ. The leading contribu-
tion to the helicity at the small radius r0 reads explicitly
as follows:

H(Γ, r0)

2(Md2
0 )2

=
2Γ(1 + r20(Γ

2 + 1))

r30
− 2

(
Γ5 + 4Γ3 − 3Γ

)
+

8Γ5 + 12Γ3 − 17Γ

3
√
1− Γ2

+O(r20) . (35)

As previously stated, the magnetic helicity, which is as-
sociated with the topological properties of the magnetic
field lines, serves as the measure of the entanglement of
knotted lines of the magnetic field B.

VI. CONCLUSION

We demonstrated that noncentrosymmetric supercon-
ductors with broken inversion symmetry host a new fam-
ily of stable configurations with self-knotted magnetic
field lines. These states, which we call toroflux, are super-
conducting counterparts of the Chandrasekhar-Kendall
states that play an important role in highly conducting,
force-free plasmas relevant to astrophysical research and
applications in nuclear fusion [24, 25]. The Meissner ef-
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Figure 2. The structure of the streamlines of the magnetic field H and the electric current J , of the toroflux solution induced
by a magnetic dipole, for the values of the parity-breaking parameter Γ = 0.15, 0.5, and 0.95. The line on the top row shows
the streamlines of H, and the two next rows are the Poincaré sections of the streamlines of H on the x = 0 and z = 0 planes,
respectively. Similarly, the block of the three bottom rows indicates the structure of the current J . The central sphere depicts
the spherical magnetic dipole inclusion. The relative sizes of the torofluxes can be seen from the vector basis.
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Figure 3. Normalized free energy F̃ and normalized helicity
H̃ of the toroflux as functions of the parity breaking coupling
Γ for the spherical magnetic-dipole impurity of the radius
r0 = 10−2 (in units of λL).

fect forces the spatial localization of the toroflux solu-
tions, thus making them different from the conventional
Chandrasekhar-Kendall states.

The size of the toroflux is determined by the Lon-
don penetration length λL and the dimensionless parity
breaking parameter 0 ⩽ Γ ⩽ 1, as Ltor = λL/

√
1− Γ2.

In the limit of the maximal parity violation, Γ → 1, the
size of the toroflux diverges.

The knotted nature of the toroflux states is rooted in
the parity breaking magnetoelectric effect that generates
the supercurrent along the magnetic field lines. The su-
percurrent also produces the magnetic field, thus linking
the magnetic field lines of the toroflux. In the absence
of the parity breaking, the magnetic helicity of the solu-
tion vanishes, indicating that the knottedness disappears.
The broken parity in a noncentrosymmetric superconduc-
tor plays a crucial role in the existence of the toroflux
since no such configurations are possible in an ordinary
superconductors with unbroken parity.

The torofluxes constitute an infinitely high tower of
solutions labeled by orbital 0 ⩽ l < ∞ and magnetic

−l ⩽ m ⩽ l quantum numbers. Although the energy
of any (l,m)-toroflux diverges at its core in the London
limit, one could argue that toroflux energy should be fi-
nite beyond this limit (similarly to the energy density of
the Abrikosov vortices, which is divergent in the London
limit if a core cutoff is neglected and finite otherwise).
Detailed investigation of this question, however, goes be-
yond the scope of the current work.
We show that a finite-sized ferromagnetic inclusion

with an (l,m)-multipole moment regularize the diver-
gences and thus induces an (l,m)-toroflux with finite
energy. The most physically relevant case we discussed
here in detail is the case of a magnetic dipole inclusion
(l,m) = (1, 0). Note that in all generality, our solutions
are regularized by any finite size magnetized inclusion
with a nonvanishing (l,m)-multipole moment.
These findings open up a possibility to extract new

information about noncentrosymmetric superconductors
from muon spin rotation probes. A muon spin rotation
probe allows to obtain the statistics of the magnetic field
distribution in a superconductor. Our study suggests
that doping a noncentrosymmetric superconductor with
magnetic impurities will result into toroflux: helical lo-
calized configurations of the magnetic field. The distri-
bution of magnetic field polarization’s that we obtain for
toroflux solutions is principally different from a dipole
field configuration of a magnetic impurity in a conven-
tional superconductor. It potentially allows to extract
the parameters κ± from the statistics of the polarization
of magnetic field sensed by muons.
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Appendix A: Detailed derivation of a general
solution via vector spherical harmonics

We derive a general solution of the force-free equation
LQ = 0 using the basis of the spherical vector harmon-
ics [47], which provides a convenient separation of the
radial and angular variables. The force-free field Q, as
well as the other fields, are thus decomposed as follows:

Q(x) =

∞∑
l=0

+l∑
m=−l

 ∑
Z=Y ,Ψ,Φ

QZ
lm(r)Zlm(r̂)

 . (A1)

Here Zlm = (Y lm,Ψlm,Φlm) are the three orthogonal
vector spherical harmonics, defined as [47]

Y lm(r̂) = Ylm(r̂)r̂ , (A2a)

Ψlm(r̂) = r∇Ylm(r̂) , (A2b)

Φlm(r̂) = r ×∇Ylm(r̂) , (A2c)

where Ylm(r̂) are the scalar spherical harmonics which
depend on on the angular coordinates encoded in the
unit vector r̂ ≡ r/r. See the Appendix D, for details
on the definitions and properties of the vector spherical
harmonics.

Given the decomposition (A1), the force-free vector
equation LQ = 0 determines a system of three differen-
tial equations:

− l(l + 1)

ηr
QΦ

lm − ηQY
lm = 0 , (A3a)

−1

r

d

dr

(
rQΦ

lm

)
− ηQΨ

lm = 0 , (A3b)

1

r

d

dr

(
rQΨ

lm

)
− 1

r
QY

lm − ηQΦ
lm = 0 , (A3c)

which, combined together, yields:

QY
lm = − l(l + 1)

ηr
QΦ

lm , QΨ
lm = − 1

ηr

d

dr

(
rQΦ

lm

)
, (A4a)[

1

r2
d

dr

(
r2
d

dr

)
− l(l + 1)

r2
+ η2

]
QΦ

lm = 0 . (A4b)

The equation (A4b) on QΦ
lm is the spherical Bessel equa-

tion whose general solution is the superposition of two
spherical Hankel functions

QΦ
lm = clmh

(1)
l (ηr) + dlmh

(2)
l (ηr). (A5)

Here, h
(1)
l and h

(2)
l are respectively the Hankel functions

of the first and second kind.

1. Hankel functions

The spherical Hankel functions are expressed via the
spherical Bessel functions as [49]

h
(1)
l (z) = jl(z) + iyl(z) , h

(2)
l (z) = jl(z)− iyl(z) , (A6)

where, in turn, the spherical Bessel functions are related
to the Bessel functions of half-integer order:

jl(z) =

√
2π

z
Jl+1/2(z) , yl(z) =

√
2π

z
Yl+1/2(z) , (A7)

with Jl and Yl being respectively the Bessel functions of
the first and second kind. Note that for a non-negative
rank l, the spherical Hankel function of the first kind can
be expressed in a closed form,

h
(1)
l (z) = (−i)l+1 e

iz

z

l∑
p=0

(−i2z)−p (l + p)!

p!(l − p)!
, (A8)

and the Hankel function of the second kind can be ob-
tained in a similar way using the definition in Eq. (A6).

2. Asymptotics

For large |z|, when −π < arg z < π, the spherical Han-
kel functions have the following asymptotic behaviour at
the large argument [49]:

h
(1)
l (z) ∼ 2π

z
exp

[
i

(
z − (l + 1)π

2

)]
, (A9a)

h
(2)
l (z) ∼ 2π

z
exp

[
−i

(
z − (l + 1)π

2

)]
, (A9b)

By definition, η = Γ + i
√
1− Γ2 with Γ ∈ [0, 1], so that

0 < arg(ηr) < π and thus

h
(1)
l (ηr) ∼ 2π(−i)l+1

ηr
e+iΓre−

√
1−Γ2r , (A10a)

h
(2)
l (ηr) ∼ 2π(i)l+1

ηr
e−iΓre+

√
1−Γ2r . (A10b)

Hence, the second spherical Hankel functions diverges
at large r. It follows that for the solutions (A5) to be
bounded at infinity, we must have dlm = 0, and thus

QΦ
lm = clmh

(1)
l (ηr) . (A11)

https://doi.org/10.1073/pnas.42.1.1
https://doi.org/10.1073/pnas.42.1.1
https://doi.org/10.1073/pnas.42.1.1
https://doi.org/10.1088/0143-0807/6/4/014
http://www.wiley.com/en-us/Classical Electrodynamics, 3rd Edition-p-9780471309321
https://dlmf.nist.gov/
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Finally, given the defining relations (A4a), the asymptot-
ically finite components of the force-free field, associated
with the different vector spherical harmonics are

QΦ
lm = clmh

(1)
l (ηr) , QY

lm = −clm
l(l + 1)

ηr
h
(1)
l (ηr) ,

QΨ
lm = −clm

(
l + 1

ηr
h
(1)
l (ηr)− h

(1)
l+1(ηr)

)
, (A12)

where clm is an arbitrary complex constant.

3. Behaviour at small r

At small z, the spherical Hankel function behave
as [49]

h
(1)
l (z) =

−i2lΓ(l + 1/2)√
πzl+1

. (A13)

It follows that the leading contributions of the different
components of the force-free field at small r are

QY
lm = clm

i2ll(l + 1)Γ(l + 1/2)√
πηl+2rl+2

, (A14a)

QΨ
lm = clm

i2llΓ(l + 1/2)√
πηl+2rl+2

, (A14b)

QΦ
lm = −clm

i2lΓ(l + 1/2)√
πηl+1rl+1

. (A14c)

Thus, at small radius r, all the components of the force-
free field diverge as

QΦ
lm ∼ r−(l+2) , QY

lm ∼ r−(l+2) , QΨ
lm ∼ r−(l+1) .

(A15)
It follows that all of the toroflux modes have an intrinsic
divergence at the origin, and, therefore, they require a
regularization, or a cut-off, at the core of the solutions.
We demonstrate in the next section that such a regular-
ization can consistently be done.

Appendix B: Magnetized spherical inclusion

Here, we consider the case of a magnetized inclusion in
the bulk of the noncentrosymmetric medium. For sim-
plicity, we study a spherical inclusion of radius r0, as it is
schematically illustrated in Fig. 4. Inside a magnetized
medium, the consistuent magnetostatics equations are

∇̃×H = 0 , ∇̃·B = 0 where B = H + 4πM . (B1)

The fields of the magnetized spherical inclusion are con-
structed following the standard textbook calculations,
see e.g. [48]. To this end, we introduce the magnetic
scalar potential ωM which describe the magnetic field

Figure 4. Schematic representation of a spherical magne-
tized medium (#1) of radius r0 and the noncentrosymmetric
superconducting medium (#2). The unit vector n12 is the
normal vector at the interface between these media.

H = −∇̃ωM , and decompose the magnetic potential
over the (scalar) spherical harmonics. It follows that

H = −
∞∑
l=0

+l∑
m=−l

dωlm

dr
Y lm +

ωlm

r
Ψlm , (B2a)

where

[
d2

dr2
+ 2r

d

dr
− l(l + 1)

]
ωlm = 0 , (B2b)

where the second equation follows from the relation ∇̃·
H = 0 which reflects the closeness of the lines of the field
H. This determines the magnetic potential associated
with the magnetized inclusion:

ωlm =

{
člmr

l if r < r0

ďlmr
−(l+1) if r > r0 .

(B3)

Hereafter, the symbol ˇmarks the quantities inside the
spherical inclusion.
The continuity of the magnetic potential at the bound-

ary r = r0 implies that ďlm = člmr
2l+1
0 . The nor-

mal derivative of the magnetic potential is discontinuous
across the interface. Therefore, the relation ∇ · (H +
4πM) = 0 implies that, at r = r0,

dωin
lm

dr
−dω

out
lm

dr
= 4πM̌Y

lm ⇒ člm =
4πM̌Y

lm

(2l + 1)rl−1
0

. (B4)

Here, M̌Y
lm is the Y -component of the magnetization M̌ ,

decomposed over the vector spherical harmonics analo-
gously to (16). Hence, the magnetic fields inside the
magnetized spherical inclusion are

ȞY
lm = ȞΨ

lm = −4πlM̌Y
lm

2l + 1

(
r

r0

)l−1

, ȞΦ
lm = 0 (B5a)

B̌Z
lm = ȞZ

lm + 4πM̌Z
lm , with Z = Y ,Ψ,Φ . (B5b)
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As detailed below, the interface boundary conditions be-
tween the magnetized inclusion and the superconductor
allow to relate the values of the parameters clm between
both media.

1. Matching conditions at the interface

The continuity conditions for the current and the mag-
netic fields at the interface between a magnetized inclu-
sion inside a superconducting medium read as:

0 = J · n12

∣∣
r=r0

, (B6a)

0 = n12 · (B2 −B1)
∣∣
r=r0

, (B6b)

JS = n12 × (H2 −H1)
∣∣
r=r0

. (B6c)

Here, n12 is the normal vector from medium 1 (the mag-
netized inclusion) to the medium 2 (the parity-odd super-
conductor) and JS is the surface current density which
is localized at the interface, Fig. 4.

The first equation in (B6) states that the su-
perconducting current J does not enter the non-
superconducting magnetized inclusion [39]. Conse-
quently, the normal component of J vanishes at the in-
terface between these media. Given the decomposition
(A1) over the vector spherical harmonics, and since Y lm

is the only vector harmonic that has a radial component,
the first two relations in Eq. (B6) reduce to:

J · n12

∣∣
r=r0

=
√
1− Γ2

∑
l,m

Im
(
ηQY

lmYlm
)
= 0 ,

(B7a)(
B − B̌

) ∣∣
r=r0

= −
∑
l,m

Re
(
(ηQY

lm + B̌Y
lm)Ylm

)
= 0 .

(B7b)

Note that there is always the freedom to construct the
magnetic field B̌ inside the spherical inclusion, so that it
is real. It is thus always possible to construct B̌ such that
ImB̌ = 0. Hence, the conditions (B7) at the interface,
for a given mode (l,m), boil down to

ηQY
lm + B̌Y

lm

∣∣
r=r0

= 0 . (B8)

Finally, we use the explicit form of the radial
modes (A12) to fix all the coefficients clm of the solu-
tion:

clm =
r0B̌

Y
lm(r0)

l(l + 1)h
(1)
l (ηr0)

, for l > 0 . (B9)

Now, given the (l,m) magnetization modes of the mag-
netized spherical inclusion (B5), the arbitrary coefficient
clm reads as

clm =
4πr0M̌

Y
lm(r0)

l(2l + 1)h
(1)
l (ηr0)

, for l > 0 . (B10)

Thus, we obtain the most general solution for a spherical
inclusion with arbitrary magnetization.
2. Ferromagnetic inclusion and magnetic dipole

Consider now the particular case of a spherical inclu-
sion of radius r0, which possesses a magnetic dipole mo-

ment M̌ directed along the axis ẑ, and with all higher-
order modes vanishing. In spherical coordinates, the
magnetic moment reads as

M̌ =M0ẑ =M0

(
r̂ cos θ − θ̂ sin θ

)
=

√
4π

3
M0 (Y 10 +Ψ10) . (B11a)

Thus, the magnetic fields (B5) inside the inclusion are

ȞY
10 = ȞΨ

10 = −
(
4π

3

)3/2

M0 , Ȟ
Φ
10 = 0 , (B12a)

B̌Y
10 = B̌Ψ

10 = 2

(
4π

3

)3/2

M0 , B̌
Φ
10 = 0 . (B12b)

Finally, given the continuity conditions, the free coeffi-
cient c10 (B10) in this case becomes

c10 =
r0M0

h
(1)
1 (ηr0)

(
4π

3

)3/2

. (B13)

The behaviour of the Hankel functions for small argu-
ments (A13), implies that

c10 = i

√
4π

3

(
4πr30
3

)
M0η

2 , when r0 → 0 . (B14)

Thus, for a point-like dipole with the magnetic moment
Md

0 = 4π
3 r

3
0M0, the coefficient is uniquely determined as

c10 =

√
4π

3
η2Md

0 . (B15)

3. Explicit forms of the toroflux

Now, given the coefficient (B15), the magnetic field H
and the current J induced by a magnetic pointlike dipole
can be reconstructed from the force-free field Q accord-
ing to (15). The components of the force-free field Q
corresponding to a given sector of the vector spherical
harmonics are defined in therms of the spherical Hankel
functions of the first kind (18). These functions can fur-
ther be expressed in a closed form using the relation (A8).
Finally, the vector harmonics of a dipolar source possess
the single mode (l,m) = (1, 0) which have the simple
form (D12). Thus, in terms of elementary functions, the
force-free field Q10 induced by a magnetic dipole reads
as

Q10 = −Md
0

eiηr

ηr3

[
(1− iηr)

(
2 cos θr̂ + ηr sin θϕ̂

)
+

(
1− iηr(1− iηr)

)
sin θθ̂

]
. (B16)

As a result, given the definition of the physical fields (15)
the magnetic field H and the current J , are respectively:
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H =Md
0 e

−r
√
1−Γ2

{
2 cos θ

r3

[(√
1− Γ2 + r

)
cos Γr − Γ sin Γr

]
r̂

+
sin θ

r3

[(
(1 + r2)

√
1− Γ2 + r

)
cos Γr + Γ(r2 − 1) sin Γr

]
θ̂

+
sin θ

r2

[
Γr cos Γr −

(
1 + r

√
1− Γ2

)
sin Γr

]
ϕ̂

}
, (B17a)

J =Md
0 e

−r
√
1−Γ2

{
2 cos θ

r3

[
Γr cos Γr −

(
1 + r

√
1− Γ2

)
sin Γr

]
r̂

+
sin θ

r3

[
Γr

(
1 + 2r

√
1− Γ2

)
cos Γr −

(
1 + r

√
1− Γ2 + r2(1− 2Γ2)

)
sin Γr

]
θ̂

− sin θ

r2

[
Γ
(
1 + 2r

√
1− Γ2

)
sin Γr +

(
r(1− 2Γ2) +

√
1− Γ2

)
cos Γr

]
ϕ̂

}
. (B17b)

Appendix C: Outline of the Chandrasekhar-Kendall
approach for a dipole source

The above section provides the explicit forms of the to-
roflux solutions induced by a dipole. These can alterna-
tively be derived via the Chandrasekhar-Kendall method
[24]. Consider a case when we want to find the magnetic
field B that satisfies the following equation:

LL∗B = c∇×
(
∇×Md

)
+ d∇×Md , (C1)

where c and d are some real parameters and Md is a
field that corresponds to an external field induced by a
magnetic moment. Then, the magnetic field B can be
solved in terms of the following functions:

B = −Re (ηQ) , (C2a)

Q = ∇× u+∇× (∇× u) /η , (C2b)

∆u+ η2u = bMd , b = −i(d+ cη)/Imη . (C2c)

where u is found from solving inhomogeneous vector
Helmholtz equation (C2c). The set of equations (C2)
can be verified by showing that

LQ = −b∇×Md/η , (C3)

which subsequently implies Eq. (C1).

In the simplest case of pointlike dipole source Md =
Md

0 ẑδ(r), the explicit solution of the Helmholtz equa-
tion (C2c) is:

u = −Md
0 ẑb

eiηr

4πr
. (C4)

Note, that values of c and b depend on boundary con-
ditions that are used between magnetised and super-
conducting medium. The boundary conditions (B8) are
given by: (

ηQ+ B̌
)
· r̂

∣∣
r=r0

= 0 . (C5)

For B̌(r0) = 2Md
0 ẑ/r

3
0 this results in the constants being

c = 4π and d = −4πReη (and thus b = 4π).
Now, given the values of c and d that satisfy the ap-

propriate boundary condition, inserting the solution (C4)
of the Helmholtz equation into the constituting equation
(C2b) yields the very same expression for the force-free
field Q as the explicit form of equation (B16).

Appendix D: Spherical harmonics

The scalar spherical harmonics are defined as [49]

Ylm(r̂) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ , (D1)

where Pm
l are the associated Legendre polynomials. The

spherical harmonics depend on the polar θ and azimuthal
ϕ angles expressed collectively via the unit vector r̂ ≡
r/r. The spherical harmonics satisfy the orthonormality
condition: ∫

dΩYlm(r̂)Y ∗
l′m′(r̂) = δll′δmm′ , (D2)

where Y ∗
lm ≡ (−1)mYl,−m and dΩ = sin θdθdϕ is the

solid-angle element.
Adopting the parametrization of Ref. [47], the vector

spherical harmonics are defined via their scalar counter-
part in Eq. (A2). In a given (l,m) sector, the vector
spherical harmonics are locally orthogonal to each other
at every point of the unit sphere:

Y lm(r̂) ·Ψlm(r̂) = 0, (D3a)

Y lm(r̂) ·Φlm(r̂) = 0, (D3b)

Ψlm(r̂) ·Φlm(r̂) = 0. (D3c)

They also satisfy also the normalization and orthogonal-
ity relations:∫

dΩY lm(r̂) · Y ∗
l′m′(r̂) = δll′δmm′ , (D4a)
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dΩΦlm(r̂) ·Φ∗

l′m′(r̂) = l(l + 1)δll′δmm′ , (D4b)∫
dΩΨlm(r̂) ·Ψ∗

l′m′(r̂) = l(l + 1)δll′δmm′ , (D4c)∫
dΩY lm(r̂) ·Ψ∗

l′m′(r̂) = 0 , (D4d)∫
dΩY lm(r̂) ·Φ∗

l′m′(r̂) = 0 , (D4e)∫
dΩΦlm(r̂) ·Ψ∗

l′m′(r̂) = 0 , (D4f)

where

Z∗
lm ≡ (−1)mZl,−m , (D5)

for Zlm = (Y lm,Ψlm,Φlm).

1. Differential operators on vector spherical
harmonics

The divergence of the vector spherical harmonics is:

∇ ·
(
f(r)Y lm

)
=

(
df

dr
+

2

r
f

)
Ylm, (D6a)

∇ ·
(
f(r)Ψlm

)
= − l(l + 1)

r
fYlm, (D6b)

∇ ·
(
f(r)Φlm

)
= 0 . (D6c)

Similarly, the curl of the vector spherical harmonics gives

∇×
(
f(r)Y lm

)
= −1

r
fΦlm, (D7a)

∇×
(
f(r)Ψlm

)
=

(
df

dr
+

1

r
f

)
Φlm (D7b)

∇×
(
f(r)Φlm

)
= − l(l + 1)

r
fY lm

−
(
df

dr
+

1

r
f

)
Ψlm . (D7c)

These relations allow to express the divergence,

∇ ·G =

∞∑
l=0

l∑
m=−l

(
1

r2
d

dr

(
r2GY

lm

)
− l(l + 1)

r
GΨ

lm

)
Ylm,

(D8)

and the curl,

∇×G =

∞∑
l=0

l∑
m=−l

[
− l(l + 1)

r
GΦ

lmY lm

−
(
dGΦ

lm

dr
+

1

r
GΦ

lm

)
Ψlm

+

(
−1

r
GY

lm +
dGΨ

lm

dr
+

1

r
GΨ

lm

)
Φlm

]
, (D9)

of a generic vector:

G(r) =

∞∑
l=0

l∑
m=−l

 ∑
Z=Y ,Ψ,Φ

GZ
l (r)Zlm(r̂)

 . (D10)

2. First vector spherical harmonics

It is useful to consider a first few spherical harmonics
explicitly. Note that the harmonics with negative indices
m can be obtained from the equations below, using the
conjugacy relation (D5).

The lowest l = 0 harmonics is a trivial hedgehog as it
possesses a radial component only:

Y 00 =
1√
4π

r̂ , Ψ00 = 0 , Φ00 = 0 . (D11)

The first nontrivial vector spherical harmonics starts
from the orbital momentum l = 1:

Y 10=

√
3

4π
cos θ r̂, Y 11=−

√
3

8π
eiϕ sin θ r̂, (D12)

Ψ10=−
√

3

4π
sin θ θ̂, Ψ11=−

√
3

8π
eiϕ

(
cos θ θ̂ + iϕ̂

)
,

Φ10=−
√

3

4π
sin θ ϕ̂, Φ11=

√
3

8π
eiϕ

(
iθ̂ − cos θ ϕ̂

)
.

The basis for l = 2 vector spherical functions is as follows:

Y 20 =
1

4

√
5

π

(
3 cos2 θ − 1

)
r̂, Y 21 = −

√
15

8π
eiϕ sin θ cos θ r̂, Y 22 =

1

4

√
15

2π
e2iϕ sin2 θ r̂, (D13)

Ψ20 = −3

2

√
5

π
sin θ cos θ θ̂, Ψ21 = −

√
15

8π
eiϕ

(
cos 2θ θ̂ + i cos θϕ̂

)
, Ψ22 =

√
15

8π
e2iϕ sin θ

(
cos θ θ̂ + iϕ̂

)
,

Φ20 = −3

2

√
5

π
sin θ cos θ ϕ̂, Φ21 =

√
15

8π
eiϕ

(
i cos θθ̂ − cos 2θ ϕ̂

)
, Φ22 =

√
15

8π
e2iϕ sin θ

(
−iθ̂ + cos θ ϕ̂

)
,
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