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Abstract

Hospital organization, the medical concerns of the patient, surgery resources
and the horizon to be considered are all elements that contribute to the va-
riety of problems encountered in surgery planning. In this paper, we address
the admission planning problem for which surgical interventions of hundreds of
elective patients need to be scheduled months before the date of surgery. The
health care surgery organization we consider here is based on a shared manage-
ment of operating rooms and surgeons. The main issue for hospital planners
is to schedule all the interventions under resource availability constraints while
considering the patients’ health priorities. We propose a two-phase 2PSC-EM
randomized heuristic that obtains better results on literature benchmark in-
stances. However, for some instances certain interventions are left unscheduled
since straightforward heuristic failed to schedule all interventions. We inves-
tigated an effective Adaptive Large Neighborhood Search (ALNS) approach.
Better results are obtained for each instance, all the patients’ interventions are
scheduled which had not been done before. The average improvement is about
11.2% and the processing times are shorter than the timeout fixed in the lit-
erature, except for one instance for which we succeeded to schedule all of the
patients.

Keywords: Surgery planning, project scheduling, adaptive heuristic,
operating room management, metaheuristic

1. Introduction

Health care systems are facing increasing demands in an environment of
difficult budgetary constraints. Access to quality health services has become
a major issue (Xie and Lawley, 2015). The surgery department represents an
essential activity for the majority of hospitals, generating about two thirds of the5

hospital’s income (Denton et al., 2007). About 52% of all hospital admissions are
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surgical interventions (Gupta, 2009). Given the budgetary constraints involved,
increasing the number of surgeons and operating rooms, in addition to all of
the other related resources, is not the solution to investigated first, but, instead
the improved use of existing resources when feasible (Fischer et al., 2020). One10

way to do this is to build better surgery schedules with the aim of scheduling a
maximum number of surgery interventions while taking limited resources with
availability constraints into account.

Planning of surgical interventions has been widely studied, and the litera-
ture reviews (Rahimi and Gandomi, 2020; Samudra et al., 2016; Erdogan and15

Denton, 2011; May et al., 2011; Cardoen et al., 2010; Magerlein and Martin,
1978) provide an overview of the wide variety of problems encountered. For
example, the hospital organization’s stakeholders, the care processes, the hos-
pital structure and the work regulations are all elements that contribute to the
wide variety of problems. Surgeons may be fee-for-service or hospital employees,20

or both. In some cases, the hospital may allocate time windows for operating
rooms to a department (e.g., a group of orthopedic surgeons) and leave it to the
surgeons themselves to divide the time windows. In some other cases, surgeons
schedule their own patients in operating rooms that they book a few weeks in
advance. In yet other cases, provided that several surgeons have the surgery25

skills to perform an intervention that can be done in certain operating rooms,
rooms and surgeons are viewed as shared renewable resources to be efficiently
managed for the hospital organization. These cases can also be hybridized, and,
consequently, public-private organizations are widely encountered.

Problems can be classified along several axes, such as patient characteristics30

or the length of the planning horizon (months, weeks, days). Patients are usually
considered to be in one of two main categories: elective patients or non-elective
patients. For the first, interventions can be planned months in advance by
considering the main medical resource needs over the long term. For the second,
interventions are either more urgent or unforeseen since a recent diagnosis for a35

patient may involve an intervention to be scheduled in the short term (several
weeks) or immediately following an accident. In certain hospital organizations,
emergency departments have their own operating rooms; if not, the sharing of
operating rooms between the two categories of patients has to be considered. A
typical way of managing these two types of patients at the same time is to reserve40

or to dedicate operating rooms either for elective or for non-elective patients, but
it may depend on the horizon being considered. Patient admission planning may
take only the main medical resource needs for an intervention into account, with
the aim being to allocate a date for the surgical intervention for each patient,
typically taking the long-term horizon (months) into consideration. Next, a45

plan for the following one or two weeks is drawn up on the basis of, first, the
existing patient admission schedule and, second, the more urgent interventions
of new patients that are only known a few weeks ahead of time. Finally, a
schedule is drawn up every day for the next day. The weekly-based and daily-
based schedules are usually subject to dynamic re-scheduling that should take50

cancellation or postponement policies for elective patients into account in order
to disrupt patient admission planning as little as possible.
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The health care surgery organization we consider here is based on a shared
management of operating rooms and surgeons that are viewed as renewable
resources available within certain time intervals, and, where each resource has55

a limited, constant, capacity. An intervention can be performed using one of
several modes since several couples of operating rooms and surgeons can be used.
A mode has a fixed duration that may depend on, for instance, the surgical act
specific to the surgeon and to the operating room.

Riise et al. (2016) presented the GOSSP model (generalized operational60

surgery scheduling problem) as an extension of multi-project MRCPSP/Max, a
generalization of the classical-resource constrained project scheduling problem
(RCPSP), known to be NP-hard in the strong sense. The model proposed by the
authors makes it possible to consider parameters that relate to patients (priority
level, availability date, due date, hard due date) and resource availabilities, as65

well as to preferences that aim at scheduling certain interventions early in the
morning. A surgeon may prefer to perform complex and long surgeries early in
the morning. For some type of patients much more at risk or for children (it is
hard for them to stay on an empty stomach) the surgery should be scheduled
in the morning. Three planning situations have been modeled: the admission70

planning, the weekly problem and the daily problem. As the day of surgery ap-
proaches, more resources need to be managed and the model is able to integrate
the information related to the planning situation. The authors proposed pub-
licly available datasets. These datasets can be used to compare search methods.
For the sake of generality, the authors have proposed an Adaptive Construct75

and Improve algorithm (ACI) to address all these planning situations without
any off-line parameter tuning. To the best of our knowledge no other results
have been published on these datasets. For more detailed insights we invite the
reader to refer to Riise et al. (2016).

In this paper, we propose an effective approach dedicated to the admission80

planning problem for which the surgical interventions of hundreds of elective in-
patients and outpatients need to be scheduled months before the date of surgery,
considering that: (i) the main medical resource needs are the surgeons and the
operating rooms; (ii) several surgeons have the surgery skills to perform the
intervention that can be done in certain operating rooms; both rooms and sur-85

geons are viewed as renewable resources; and several couples of operating rooms
and surgeons can be used to schedule an intervention; (iii) each patient has a
priority level, an availability date, a due date and a hard due date, and the
surgery may have to be scheduled early in the morning.

The contributions of this work are summarized as follows:90

• We propose a two-phase 2PSC-EM randomized heuristic based on the
ideas of RCPSP constructive heuristics. We obtain better results for all
the benchmark instances for which all the interventions can be scheduled
by ACI. However, for some instances not all the patients’ interventions are
scheduled, the same for which the ACI algorithm also obtained unsched-95

uled interventions. A more effective approach is needed.

• We investigate an ALNS based solution approach with the aim of schedul-
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ing all the patients’ interventions. The 2PSC-EM randomized heuristic
is used to obtain initial solutions. The ALNS that we propose makes
use of adaptive mechanisms for destruction and construction of solutions100

that have been investigated to deal with the resource limitations and the
patients’ medical constraints. An adaptive diversification mechanism as-
sociated with certain destruction operators permits us to broaden the
search around a solution in order to obtain better solutions. We care-
fully designed the acceptance of a lower-quality solution to obtain a good105

trade-off with the adaptive diversification mechanism.

• Preliminary experiments were done to tune the parameters of the compo-
nents of the ALNS to obtain a good trade-off between solution quality and
processing time. We conducted computational experiments to investigate
the contribution of each component of the ALNS approach to show when110

each of them are beneficial.

• Better results are obtained for each instance, all the patients’ interven-
tions are scheduled which had not been done by the ACI algorithm. The
average improvement is about 11.2% and the processing times are shorter
than the timeout fixed for the ACI algorithm experiments except for one115

instance for which the ALNS succeeded to schedule all of the patients. The
ALNS is an approach that automatically adapts to the difficulty of the in-
stance. The ALNS takes little time for the majority of the instances, and
it schedules all the patients’ interventions within a reasonable processing
time for more difficult instances. The ALNS approach outperforms the120

results of a more general approach like ACI.

The remainder of this paper is organized as follows. Section 2 is a review
of the literature from the short-term horizon of a day, up to the middle-term
horizon of several weeks, which we put into the perspective of the admission
planning problem over several months. Section 3 presents the admission prob-125

lem we address here. Constraints, parameters and objective function related to
patients are detailed. Section 4 presents the two-stage 2PSC-EM heuristic that
we propose. Our ALNS approach is described in Section 5 and several com-
ponents are explained in detail. The computational experiments are reported
and commented on in Section 6. The conclusion and perspectives for further130

development are to be found in Section 7.

2. Literature review

The planning and scheduling of patients for surgical interventions have been
widely investigated in the literature. In this study we consider the deterministic
case, for non deterministic approaches we invite the reader to refer to recent135

works as presented in Zhou et al. (2021).
Metaheuristic based solution approaches have been extensively reported in

literature to address a large variety of optimization problems, for a comprehen-
sive survey we invite the reader to refer to Hussain et al. (2019). Recently, Lan
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et al. (2021) presented a survey on the applications of Variable neighborhood140

search (VNS) in the health care area. In addition to VNS, the ALNS approach
makes use of adaptive mechanisms.

For a more general and recent review on the ALNS metaheuristic framework
and its applications, we invite the reader to refer to Mara et al. (2022).

We review here studies regarding the scheduling of surgical interventions145

from a scheduling horizon perspective, ranging from the short-term horizon of
a day, up to the middle-term horizon of several week. Short-term and middle-
term problems have many specific features that depend on the practical cases
addressed by the study, as well as aspects that can be viewed in a longer-term
perspective.150

Daily intervention scheduling problems
Park et al. (2021) proposed a mixed integer program and a heuristic based

on the grouping of interventions of the same surgeon for the surgical planning of
the daily interventions of a Korean university hospital. Each patient is already
assigned to a surgeon. Some operating rooms are reserved for urgent surgeries,155

beyond the scope of the daily schedule. The surgeons’ preferences for operating
rooms as well as cooperative surgery constraints, where several surgeons simul-
taneously or sequentially perform an operation are considered. The aim is to
minimize the total number of overtime hours, the number of operating rooms
used, the number of surgeries not allocated to preferred rooms and the number160

of surgeries allocated to unfavorable operating rooms.
Wang et al. (2015) proposed two approaches to address the daily surgical

intervention scheduling problem of a Belgian university hospital. The interven-
tions to be scheduled per day are known. The authors considered the constraints
of operating room and surgeon availability, as well as the limited number of re-165

covery beds. Some interventions should start earlier than others, depending
on the priorities related to patient status (e.g., children, diabetics). The first
approach uses a mixed integer programming model, whereas the second uses
constraint programming. The main aim is to minimize the makespan of the
scheduled interventions.170

Xiang et al. (2015) proposed a solution approach based on Ant Colony Op-
timization (ACO) to address the daily surgical intervention scheduling problem
of the MD Anderson Medical Center in Houston, Texas (USA). The surgeries to
be scheduled on a daily basis are known. The aim is to minimize makespan con-
sidering the limited amount of resources (e.g., surgeon, anesthesiologist, nurse,175

beds) that are needed to perform a surgery, as well as the pre-surgery and post-
anesthesia stages. Xiang (2017) proposed an extension of the ACO approach
considering two additional aims to minimize the variation in the working time
of resources and to minimize the total overtime of all resources.

Sier et al. (1997) proposed a solution for a daily surgical intervention problem180

based on a simulated annealing algorithm. A mixed integer nonlinear formula-
tion for the studied problem was proposed. The objective function is a weighted
sum of all problem constraints. The feasibility of the solution is not guaranteed,
the approach aims at minimizing the constraints violations.
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The daily surgical intervention scheduling problems have common features185

that can be observed, regardless of the specific organization. The list of elective
patients’ interventions to be scheduled is known and all the interventions are
scheduled. The makespan or the overtime hours are often considered as an ex-
plicit part of the objective function since it is important not to exceed normal
working hours. Since all interventions must be scheduled, the uses of the criti-190

cal resources to make a daily schedule feasible are to be considered since each
resource has a limited, and constant, capacity.

Weekly intervention scheduling problems
Roshanaei and Naderi (2021) proposed a sequence-based mixed-integer pro-

gramming model and a constraint programming model to address a problem195

initially proposed in Hashemi Doulabi et al. (2016) to plan surgical interven-
tions over a week horizon. Patients are managed using two sets (mandatory
and optional patients). The patient-to-day allocation, the (patient, day)-to-
operating room assignment, the (patient, day, operating room)-to-surgeon, and,
finally, the scheduling of the start times of these surgeries are considered in200

turn. The aim is to maximize the total scheduled surgical time. Given that
this problem can be hierarchically structured, the authors investigated Benders
decomposition that makes it possible to achieve better results.

Akbarzadeh et al. (2020) considered a surgery planning problem over several
days with nurse re-rostering. Experiments were conducted on generated data205

based on real data from the Sina Hospital (Tehran, Iran). The heuristic solution
approach proposed first builds an optimal LP solution obtained via a column
generation algorithm, after which a diving heuristic is applied to drive fractional
solutions to integrality. The aim is to maximize the use of the operating rooms
by considering the nurses’ needs as well.210

Oliveira et al. (2020) investigated patient scheduling over two weeks consid-
ering their prioritization and available sessions (operating rooms and surgeons)
for a Urology Department at a university hospital in Quebec City. A MIP model
is used on randomly generated instances based on real data to study the impact
of several policies for managing wait-listed patients (four categories of patients215

are considered by urgency level).
Ballestín et al. (2019) considered the scheduling and rescheduling of elective

patients over two weeks. A tentative schedule is first built, followed by a final
schedule that is calculated some days before the start of the planning horizon in
order to take new information (change in the waiting list or in the status of the220

patients) into account. The aims are to minimize the number of tardy patients
and to maximize the utilization rate of the operating rooms. A linear model
formulation is used to perform simulations on randomly generated instances
based on real data from a Spanish hospital. The authors studied the trade-off
between the degree of the changes allowed in the tentative schedule and the225

benefits in relation to the objective function.
Zhang et al. (2019) considered a weekly scheduling single-specialty elective

surgery problem. The operating rooms and surgical intensive care unit have a
limited capacity. However, the surgeons are not considered in this study. A
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two-level approach was proposed. By applying a Markov decision process, the230

first level selects interventions from a waiting list of patients. The second level
is based on an approximate dynamic programming approach to assign selected
interventions to rooms.

Castro and Marques (2015) addressed the problem of planning over a week
of elective surgeries of different specialties to be selected from among a large235

list of elective surgeries on the basis of three priority levels. There is a maxi-
mum weekly operating time limit for every surgeon. A two-step decomposition
approach that makes use of Generalized Disjunctive Programming (GDP) is
proposed. The first step generates a planning model that does not consider the
surgeon availability constraints. The second step generates a scheduling model,240

that aims at determining the start time of the selected interventions by assign-
ing the surgeons to the operating rooms, and taking the types of interventions
and the availability of the surgeons into account. Some surgery/surgeon/room
assignments cannot be translated into a feasible schedule due to conflicts not
considered in the planning model, and some interventions of the subset may con-245

sequently be left unscheduled. Room and day assignments do not change but
some lower-priority planned surgeries can be moved back to a waiting list. The
proposed approach is tested on real data from central and university hospital in
Lisbon (Portugal). The aim is to maximize the total surgical time.

The weekly surgical interventions scheduling problems have common fea-250

tures that can be observed, regardless of the specific organization. The main
resources to be managed are the surgeons and the operating rooms. Considering
a hospital organization and given the relative importance of the stakeholders,
the constraints on the allocations of the surgeons and of the operating rooms
need to be adequately managed. Not all interventions can be planned because255

the waiting list exceeds the limit of the considered horizon of a few days, a week
or a few weeks.

Mathematical programming approaches are popularly used to address surgi-
cal intervention scheduling problems over a day or a week. One reason for their
success is that mathematical programming offers a framework that is powerful260

to express the wide variety of the encountered context dependent constraints.
However, as the problems grow in size or in complexity/number of the different
constraints, solvers may face difficulties in attaining solutions within reasonable
processing times. Heuristic approaches based on mathematical formulations, on
dedicated heuristics or on meta-heuristics are used to obtain good solutions.265

Regardless of the specific features of the organization of surgery rooms, the
common features are the list of patients, each having a priority, and, the main
resources that are the surgeons and the operating rooms with their availabilities.

The more the horizon increases, the more the importance of scheduling all
patients increases while considering their priority in terms of access to surgery.270

Given a large list of patients for whom interventions need to be scheduled, each
with his or her own health characteristics, it is an issue for a hospital to know
whether it is feasible to have an admission plan where all interventions can be
scheduled. Not only can it be useful to determine a day for surgery, but an

7



hour as well, allowing constraints such as scheduling certain interventions in the275

morning to be taken into account as early as possible. The surgeons and the
operating rooms can be considered on a long-term horizon provided that the
availability constraints are known.

No. Literature Problem characteristics Optimization method
ORs Surg Obj Data

1 Park et al. (2021) X X SO BRD EA: MIP, H
2 Roshanaei and Naderi (2021) X X SO TD EA: MIP, EA: CP
3 Akbarzadeh et al. (2020) X SO BRD H
4 Oliveira et al. (2020) X X SO BRD EA: MIP
5 Ballestín et al. (2019) X X SO BRD EA: MIP, H: S
6 Zhang et al. (2019) X SO TD H: ADP
7 Xiang (2017) X X MO TD MH: ACO
8 Hashemi Doulabi et al. (2016) X X SO TD EA: CG
9 Riise et al. (2016) X X SO BRD H

10 Wang et al. (2015) X X SO BRD EA: MIP, EA: CP
11 Xiang et al. (2015) X X SO TD MH: ACO
12 Castro and Marques (2015) X X SO RD H: GDP
13 Sier et al. (1997) X SO BRD H
14 this study X X SO BRD MH: ALNS, H

Note :

- ORs(Operating Rooms), Surg(Surgeons), Obj(Objective).

- Obj: SO(Single-Objective), MO(Multi-Objective).

- Data: RD(Real Data), BRD(Based on Real Data), TD(Theoretic Data).

- Optimization method: H(Heuristics), MH(Metaheuristics), EA(Exact Algortithm).

- CP(Constraint Programming), MIP(Mixed Integer Program).

- ACO(Ant Colony Optimization), GDP(Generalized Disjunctive Programming).

- S(Simulation), ADP(Approximate Dynamic Programming).

Table 1: Related studies on surgical intervention scheduling problems.

In Table 1 we provide a synthetic overview of the literature that relates to
our study by chronological order.280

For a more detailed overview of the literature about surgery planning prob-
lems, we invite the reader to refer to Rahimi and Gandomi (2020), Samudra
et al. (2016), Erdogan and Denton (2011), May et al. (2011), Cardoen et al.
(2010), Magerlein and Martin (1978) who provide reviews on variants of these
problems and on solution approaches.285

3. Problem description and MIP model

Hospitals need to create the admission plans for surgical interventions of pa-
tients months before the date of surgery in consideration of their most critical
resources: the surgeons and the operating rooms. In this paper, we consider
elective inpatients and outpatients for whom a surgical intervention is to be290
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scheduled regardless of the events that may arise in shorter time horizon sched-
ules.

We focus on the following admission planning problem: given a set of hun-
dreds of patients for whom surgical interventions need to be scheduled over
several months, the main issue is to schedule all the interventions in order to295

obtain a start date (a day and a time) for each intervention. There may be
interventions that cannot be feasibly scheduled, but this should be avoided as
much as possible.

We first present the data and parameters that relate to patients (priority
level, availability date, due date, hard due date), the resource availabilities,300

as well as preferences that aim at scheduling certain interventions early in the
morning. Next, we report the mathematical formulation of the problem from
Riise and Mannino (2012) and Riise et al. (2016). In the following, we use most
of the notations introduced in Riise and Mannino (2012) and Riise et al. (2016).

Data and parameters305

Patients, and some related medical and practical issues, are considered using
the following data and parameters:

H, planning horizon, or planning period length;

z, the number of time units in a day;

P , set of elective patients for whom a surgical intervention has to be planned,310

indices p, we denote |P | as its size;

Xp, earliest start date for the intervention of patient p;

Dp, due date; patient p should preferably be scheduled before;

Hp, hard due date; patient p must be scheduled before; otherwise, the inter-
vention is unscheduled;315

βp, for a patient, the relative importance to schedule the patient’s surgical in-
tervention;

P em ⊂ P , subset of patients for whom the intervention should be planned early
in the morning, we denote |P em| as its size;

τ , for all patients p ∈ P em, the time in the morning from which the intervention320

can be scheduled;

γp, for a patient p ∈ P em, the relative importance to schedule the patient early
in the morning;

Rs, set of surgeons, indices s;

Rr, set of operating rooms, indices r;325

R, set of all resources, R = Rs ∪Rr;
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Rp, set of resources assigned to the surgical interventions of patient p, through
the choice of mode;

Ki, set of successive disjoint availability intervals associated with resource i
(surgeon or room);330

Kp
i ⊆ Ki, set of intervals for which resource i is available to the surgical inter-

ventions of patient p;

M , set of modes m = (rs, rr) ∈ Rs×Rr, rs indice of a surgeon and rr indice of
a room; these are all the combinations of surgeons and operating rooms;

Mp, set of feasible modes m for the surgical intervention of patient p;335

ϕk, fixed starting time of resource interval k;

σk, latest end time of resource interval k;

umi , if mode m uses resource i then umi = 1;

ϑmp , length of the surgical intervention for patient p when using mode m.

Each patient p has an earliest start date Xp for the intervention and a340

due date Dp defined to reflect a medical priority. Each patient p has a hard
due date Hp ≥ Dp. The starting date of the intervention should be strictly
below this hard due date; otherwise, the surgical intervention is left unscheduled.
ParametersXp, Dp, andHp are integer numbers of days relative to the beginning
of the planning horizon. For a patient p, the value βp is linked to the patient’s345

degree of priority for the surgical intervention.
For some particular patients p ∈ P em, the surgical intervention should be

preferably scheduled early in the morning; the parameter τ is the time in the
morning from which the surgical intervention can be scheduled. The parame-
ter γp is the relative importance to schedule the patient’s surgical intervention350

earlier in the morning.
In order to be scheduled, a surgical intervention requires a surgeon and a

room. The sets Rs, Rr, R and Rp, are used to manage the resources. The
sets Ki are useful to take the daily working hours of the teams or the surgeons
into consideration, as well as the operating room hours and the maintenance355

operations of these surgical technical platforms.
For a patient p, the set of feasible modes is Mp, depending on the surgical

operation to be performed. The medical evaluations during the preoperative
consultations make it possible to select surgeons not only in accordance with
the needed specialty, but also with the professional experience that is related360

to the difficulty of the medical case. Usually in such organization, the surgeons
themselves, organized by specialty, decide who can perform the surgical opera-
tion. Consequently, the length ϑmp of the surgery depends on the surgeon and
on the operating room where it can be done.

One mode m should be chosen to plan the surgical intervention of patient365

p from among Mp. The preemption of surgical interventions is not authorized.
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Given that we are scheduling many patients, when using mode m = (rs, rr) for
a patient p, an interval I from among the set of intervals Krs ∩ Krr is to be
chosen to make it possible to plan the surgical intervention of length ϑmp , taking
all other surgical interventions that are already scheduled into account.370

For a patient p, a surgical intervention is to be scheduled; an intervention
corresponds to one patient p. For the sake of simplicity, we use the same indices
p for indexing interventions in the sequel.

Mathematical formulation
We introduce the mathematical formulation of the problem from Riise and375

Mannino (2012) and Riise et al. (2016). The variables are as follows:

xmp = 1, if the surgical intervention of patient p uses mode m ∈ Mp, and 0
otherwise;

qkp = 1, if the surgical intervention of patient p uses resource interval k ∈ Ki,
for resource i, and 0 otherwise;380

tp, the non-negative starting time of the surgical interventions of patient p;

zpp′ = 1, if the surgical intervention of patient p precedes the surgical interven-
tions of patient p′, and 0 otherwise;

cp, completion time of the surgical interventions of patient p;

gip = 1, if the surgical intervention of patient p uses resource i in the chosen385

mode, and 0 otherwise;

hp = 1, if the surgical intervention of patient p is unscheduled, and 0 otherwise.

The MIP formulation is as follows:
Min

Wun
1∑

p∈P βp

∑
p∈P

βph
p

︸ ︷︷ ︸
Oun

(1a)

+Wwt
1

1 + λ|P |
∑
p∈P

owt(p)(1− hp)︸ ︷︷ ︸
Owt

(1b)

+Wem
1

z|P em|
∑

p∈P em

γpΓ(p)(1− hp)︸ ︷︷ ︸
Oem

(1c)

Subject to:

xmp ∈ {0, 1} ∀p ∈ P, ∀m ∈Mp (2)
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zpp′ ∈ {0, 1} ∀p, p′ ∈ P (3)

tp ∈ R+ ∀p ∈ P (4)

qkp ∈ {0, 1} ∀i ∈ R, ∀k ∈ Kp
i (5)

cp ∈ R+ ∀p ∈ P (6)

gip ∈ {0, 1} ∀i ∈ R, ∀p ∈ P (7)

cp = tp +
∑
m∈Mp

ϑmp x
m
p ∀p ∈ P (8)

gip =
∑
m∈Mp

umi x
m
p ∀i ∈ R, ∀p ∈ P (9)

∑
m∈Mp

xmp = 1− hp ∀p ∈ P (10)

∑
k∈Kp

i

qkp = gip ∀p ∈ P, ∀i ∈ R (11)

zpp′ + zp′p ≤ 1 ∀p, p′ ∈ P (12)

tp′ − cp ≥ (zpp′ − 1)M ∀p, p′ ∈ P (13)

zpp′ + zp′p ≥ gip + gip′ − 1 ∀p, p′ ∈ P, ∀i ∈ R (14)

tp ≥ Xp ∀p ∈ P (15)

cp ≤ Hp ∀p ∈ P (16)

tp − ϕkqkp ≥ 0 ∀p ∈ P, ∀i ∈ R, ∀k ∈ Kp
i (17)

cp − σkqkp − (1− qkp)M≤ 0 ∀p ∈ P, ∀i ∈ R, ∀k ∈ Kp
i (18)

Constraints (2)-(7) define the variables. Constraint (8) sets the completion390

times cp. Constraint (9) ensures resource i is used in the chosen mode m for
patient p. Constraint (10) ensures that at most one modem is chosen and set hp
accordingly. Constraint (11) ensures that one interval k is used for each resource
i of mode m for a patient p. Constraints (12), (13) and (14) ensure precedence
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constraints when two patients p, p′ use a same resource i. Constraints (15)395

and (16) ensure surgical intervention to be in the required interval [Xp, Hp] for
patient p. Constraints (17) and (18) ensure surgical intervention interval [tp, cp]
to be inside interval [ϕk, σk] of resource i. In constraints (13) and (18), the
big-M value isM = H (see Riise and Mannino (2012)).

A feasible solution S is composed of P̃ ⊆ P , a set of elective patients for400

whom a surgical intervention is scheduled (hp = 0) and a set P \ P̃ of patients
for whom a surgical intervention is not scheduled (hp = 1). In the same way,
we consider P̃ em and P em \ P̃ em.

The objective function to be minimized is a weighted sum of three normal-
ized terms, see (1a)-(1c). Given a feasible solution, the first term Oun of the405

objective function aims at minimizing the number of elective patients for whom
the surgical interventions are left unscheduled. The term is a normalized sum of
the βp values, the relative importance to schedule the patient’s surgical interven-
tion, for all the elective patients for whom their surgical intervention (p ∈ P \P̃ )
cannot be scheduled.410

The second term of the objective function Owt is a normalized sum of the
waiting times for the patients for whom the surgical intervention is scheduled.
For a patient p, the waiting time owt(p) is assessed using the following function:

owt(p) =

{
cp−Xp

Dp−Xp
if cp ≤ Dp

1 + λ
cp−Dp

Hp−Dp
otherwise.

(19)

Overall, for a patient p, this piecewise linear function increases as cp increases
relative to the earliest start date Xp and relative to the due date Dp. Given
that we should schedule the surgery before the due date Dp, the slope value
becomes a steeper value λ when cp > Dp. The purpose is to over-penalize the
surgical intervention of a patient p that is scheduled after the due date Dp.415

The third term Oem is a normalized sum that evaluates the surgical inter-
ventions of patients p ∈ P em whose interventions should be planned early in
the morning. Given that τ is known for all patients p ∈ P em, the function Γ(p)
computes the difference of time between τ and cp for the chosen planning day;
this value is weighted by the relative importance γp.420

The normalized terms are weighted byWun,Wwt andWem. We haveWun >
Wwt > Wem, which clearly reflects the hierarchy for medical considerations: the
priority is to, first, plan as many patients’ interventions as possible; second, as
close as possible to the due date; and, finally, to schedule in the morning the
patients for whom this constraint should be respected.425

We denote Obj(S) as the evaluation of a solution S that we compute as
presented in equations (1a)-(1c).

4. The 2PSC-EM heuristic

Given that surgical interventions of the set P of patients can be viewed as
projects that require renewable and shared resources, the admission planning430
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problem is presented in Riise et al. (2016) as a multi-project/multi-mode RCPSP
with minimum and maximum time lags.

We propose a Two Priorities Scheduling Construction phase (2PSC) based on
the ideas of RCPSP constructive heuristics (see Kolisch and Hartmann (1999);
Tormos and Lova (2003); Almeida et al. (2016)), followed by an improvement435

phase that focuses on patients that need to be scheduled early in the morning.
We denote this heuristic as 2PSC-EM.

The 2PSC construction phase uses two priority lists, one for managing the
patients to be scheduled (P ), and the second for managing the execution modes
of each patient (Mp). The general idea is to increase the time at each iteration440

in order to choose the next surgical intervention to be planned by taking all
the surgical interventions in progress that are already planned into account
(these are assumed to still be in progress) since they cannot be interrupted (no
preemption allowed).

Algorithm 1: The construction phase 2PSC
Input : P set of interventions (and patients), Rs, Rr sets of resources (surgeon,

room)
Output : S solution, computed planning, Lu list of interventions left unscheduled
Variables : ti time where a surgical intervention can be scheduled; i number of

iterations, relative to time ti; Ci set of interventions, completed at time ti;
Ai set of interventions, in progress at time ti; Ri set of resources used by
interventions in Ai; Li list of interventions that can be scheduled at time
ti; p number of interventions; Mp,i list of modes that can be used at time
ti for intervention p; m a mode (rs, rr); Ep end time of the intervention p

1 i, ti ← 0
2 S,A0, C0 ← ∅
3 R0 ← Rs ∪ Rr

4 while |Ai ∪ Ci| < |P | ∧ (interventions can be scheduled without exceeding the horizon)
do

// time of the intervention that is in progress with the soonest end
5 ti ← minp∈Ai

{Ep}
6 Compute using timestep i number: Ci, Ai, Ri,Li

7 Sort Li in increasing order of Dp // earliest due date
8 Shuffle Li by block of equal Dp values
9 while Li 6= nil do

10 p← Li.pop_front() // first intervention that can be scheduled at time ti
// One intervention having one of the smallest Dp value is selected

11 Compute Mp,i // usable modes m a time ti for intervention p
12 Sort Mp,i in increasing order of ϑm

p // small length first
13 m←Mp,i.pop_front() // mode with smallest length ϑm

p

14 Schedule intervention p at ti with mode m in solution S
15 Ep ← ti + ϑm

p

16 Update Ri, Ai,Li // other intervention may be scheduled at ti
17 Shuffle Li by block of equal Dp values

18 Compute Lu // List of interventions left unscheduled
19 return S, Lu

The algorithm of the 2PSC construction phase is shown in Algorithm 1.445

The iteration i corresponds to the time ti where a surgical intervention can
be scheduled; they are initialized at i = 0 and t0 = 0. The beginning of the
planning horizon is 0 and the end is tend.

We denote Ep as the End time of intervention p when surgical intervention is
scheduled for a patient p with length ϑmp using a mode m. We denote Ci as the450

14



set of the surgical interventions of patients that have been Completed at time
ti, formally Ci = {p ∈ P,Ep ≤ ti}. We denote Ai as the set of Active surgical
interventions of patients at time ti, formally Ai = {p ∈ P,Ep − ϑmp ≤ ti < Ep};
these surgical interventions are in progress. The surgical interventions that have
been planned up to ti belong either to Ci or to Ai. We denote Ri as the set455

of resources of Rs or Rr used by the active interventions in the set Ai. We
denote Li as the list of interventions that can be scheduled at time ti. The
interventions in Li are {p ∈ P ∧ p /∈ Ai ∧ p /∈ Ci, Xp ≤ ti}. These lists manage
the interventions of patients to be scheduled throughout the algorithm.

An intervention for a patient p from among Li can possibly be performed460

using mode m from among Mp. However, not all these modes are possible at
time ti, since resources may already be used by some interventions in Ai that
are not finished. We denote Mp,i as the list of modes that can be used at time
ti. The modes in Mp,i are: {m = (rs, rr) ∈ Mp, (rs, rr /∈ Ri) ∧ (ti + ϑmp ≤
Hp) ∧ ([ti, ti + ϑmp ] ∈ Krs ∩Krr )}.465

In the first loop of Algorithm 1, the overall idea is to manage the interven-
tions to be planned by applying the earliest due date rule. We first update ti
by selecting the time of the intervention that is in progress with the soonest
end in Ai, computed at the previous iteration. Next, the new Ci, Ai, Ri and
Li that correspond to the new timestep i are computed. The list Li, the in-470

terventions that can be scheduled at time ti, is then sorted in increasing order
of Dp; the priority given to the earliest due date aims at minimizing the Owt
term. The loop ends when all the interventions are scheduled or when no more
interventions can be scheduled without exceeding tend.

In the second loop of Algorithm 1, the idea is to schedule as many interven-475

tions as possible at time ti by applying the shortest processing time rule. The
first intervention p that can be scheduled at time ti is selected. Its usable modes
Mp,i at time ti are computed and then sorted by increasing length ϑmp . Next,
the mode m with the smallest length is chosen, the intervention p is scheduled,
and its end time Ep is updated. The sets and the list S, Ri, Ai and Li are480

updated. For a scheduled intervention p, we set cp = ti for the intervention
start time. The loop ends when no more interventions can be scheduled at time
ti. The rule aims at freeing the resources as soon as possible.

We observed that patients may have the same values of due date Dp. We
can take advantage of this observation by introducing a partial randomization485

to obtain different solutions when performing several runs. We shuffle the con-
secutive blocks of Li that correspond to the same value of Dp (see lines 9 and
19), and by doing so, the interventions with equal Dp are chosen at random.

The 2PSC algorithm computes a solution S, so P̃ is known. The interven-
tions that have been left unscheduled are computed and we return Lu. This490

heuristic approach aims at minimizing the Owt term, but can be improved by
considering the Oem term.

We propose an improvement phase EM with the aim of improving the num-
ber of interventions of patients in P̃ em who are scheduled early in the morning.
We try to move interventions p ∈ P̃ em a step backwards to schedule them early495
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in the morning. For each patient p ∈ P̃ em, we obtain the day d where the sur-
gical intervention is scheduled and then we obtain the list of all the scheduled
interventions of this day. This list Ld is sorted in increasing order of the time
element of cp. Given that p is in position i, we try to swap intervention p with
each intervention scheduled before. Function Swap(s, i, j) returns True when500

it is possible to exchange the interventions. Provided that the two modes and
the two lengths are the same, the exchange is performed by this function and S
is updated. This straightforward condition has a major advantage, i.e., we can
obtain an improved solution at small expense by avoiding the computing time
necessary to re-schedule part of the solution.505

Given a solution S obtained by applying EM, the set P̃ is the same, and
for every day d, the set of scheduled interventions is still the same. We recall
that parameters Xp, Dp, Hp and the number of days in cp are integer numbers
of days relative to the beginning of the planning horizon. Consequently, the
first two terms of the objective function do not change. The swap of the modes510

of execution of the interventions leads to an equivalent solution relative to the
constraints of the problem (resource consumption and release). The start time
of some interventions of P̃ em may change, which may decrease the third term
of the objective function.

The 2PSC-EM that we propose is a fast dedicated heuristic that computes515

a schedule that complies with the resource usage constraints, while addressing
medical considerations that are related to patients. By introducing the shuffling
of list Li, it can be run many time to obtain different solutions.

5. ALNS metaheuristic for the admission planning problem

The 2PSC-EM heuristic may compute a solution of good quality but, some520

interventions may be left unscheduled. It is of importance for the hospital
management to know whether the interventions for all the elective patients can
be scheduled.

The ALNS approach was presented for the first time by Ropke and Pisinger
(2006). We provide a contextualized overview that consider the planning ad-525

mission problem addressed here. We then present the general structure of our
Adaptive Large Neighborhood Search (ALNS) in Section 5.1 .

For a large-scale neighborhood search, similar solutions are obtained through
modifications to the original solution by applying several local search operators.
Given that some interventions may be left unscheduled, we explore the neigh-530

borhood of a current solution by first applying a destruction operator to free
resources. Next, all the interventions that remain to be planned are scheduled
by applying a repair operator with the aim of scheduling all the interventions
whenever possible. We present the four destruction operators and the three
repair operators that we investigate in Sections 5.2 and 5.3. The degree of535

destruction needs to be tuned since it affects diversification. An adaptive di-
versification mechanism is used to manage the degree of destruction for some
destroy operators. A couple of destruction and repair operators plays the role
of a neighborhood for the local search.
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The success of operators may vary depending on the problem instance. An540

adaptive choice generally leads to better results rather than fixing the choice
of operators for the entire course of the algorithm. The adaptive mechanism
presented in Section 5.4 is based on a roulette wheel principle that we use to
manage the success of destruction operators and the success of repair operators.
Each operator has a weight that represents its share in a wheel. The weights are545

updated according to the performance; efficient operators are used more often
than less efficient operators.

The ALNS makes use of these destroy/repair operators to explore the neigh-
borhood of a solution. However, that may not be sufficient to allow the search
process to avoid or escape local optima. The acceptance method of ALNS has550

the purpose of deciding to either continue exploring the neighborhood of a cur-
rent solution or to select a newly created one. A lower-quality solution can be
accepted with the aim of escaping from local optima. We present an adaptive ac-
ceptance strategy in Section 5.5 based on the record-to-record travel algorithm,
originally proposed by Dueck (1993).555

The ALNS that we propose makes use of adaptive mechanisms for destruc-
tion, construction and acceptance procedures. Several parameters need to be
tuned to obtain a good efficiency of these adaptive mechanisms.

5.1. General structure of ALNS
Algorithm 2 gives the general structure of the ALNS that we outline here560

before providing more detailed insights.
Given an initial solution S and the list Lu of interventions left unscheduled,

both computed by the 2PSC-EM heuristic (see Section 4), the algorithm alter-
nates destruction and repair phases on a current solution Scur to compute an
incumbent solution Si (lines 5-10). The incumbent solution is denoted as Si.565

However, we do not create a new container for every incumbent solution for each
iteration i, where index i is used for explanation purposes. When the incum-
bent solution Si fulfills the acceptance criteria, it is retained as the new current
solution Scur, and, the number of iterations i is reset to zero; otherwise it is
incremented (lines 11-15). The best solution found so far within iterations Sbest570

is kept (lines 16-18). Provided that a maximum number of iterations Itermax
without any improvement is met, the ALNS algorithm stops and then returns
Sbest and Lu.

The destruction operator Odes is selected from among a set of destruc-
tion operators (line 5) that are either day-oriented or intervention/patient-575

oriented (see Section 5.2). For intervention/patient oriented destruction opera-
tors (DayDestroy(Odes)=false), a random number of k interventions, bounded
by Dmax, are to be removed (line 7). An adaptive diversification mecha-
nism manages Dmax (line 20), which makes it possible to broaden the search
around the best solution found so far, with the intention of finding a bet-580

ter solution (see Section 5.2). The destruction operator is performed using
Destruction(Scur, k, Odes) (line 8). This frees resources but an additional list
Ldes of interventions are unscheduled.
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Algorithm 2: Adaptive Large Neighborhood Search (ALNS) algo-
rithm

Input : S0 initial solution, Lu list of interventions left unscheduled
Output : Sbest the best solution found, Lu list of interventions left unscheduled
Parameters: Dlimit limit for diversification degree

Itermax maximum number of iterations without any improvement
Variables : Scur current solution, i number of iterations

Dmax maximum number of interventions to remove on several days
Odes selected destruction operator, Orep selected repair operator
k number of interventions to remove on several days
Si incumbent solution

1 Sbest, Scur ← S0 // Initialize best and current solution
2 i← 0
3 Dmax ← 3
4 while i < Itermax do
5 Odes ← SelectDestructionOperator() // select a destruction operator
6 k ← 1
7 if ¬DayDestroy(Odes) then k ← rand(1, Dmax)

// remove k interventions on several days, or all interventions of a day
8 (Si,Ldes)← Destruction(Scur, k, Odes)
9 Orep ← SelectRepairOperator() // select a repair operator

10 Si ← Construction(Si,Ldes,Lu, Orep) // insert as many interventions as
possible
// Acceptance procedure on Si, incumbent solution

11 if Accept(Sbest, Si) then
12 Scur ← Si // Si is accepted as the new current solution
13 i← 0

14 else
15 i← i+ 1

16 if Obj(Si) < Obj(Sbest) then
17 Sbest ← Si // A new best solution is found
18 Dmax ← 3

19 else
// Update maximum adaptive diversification degree

20 if ¬DayDestroy(Odes) then Dmax ← min(Dmax + 1, Dlimit)

// Update weights of the two roulette wheels (Destruction/Repair)
21 AdaptiveWeightsAdjustment(Sbest, Scur, Si)

22 return Sbest, Lu

The repair operator Orep is selected (line 9) from among a set of repair
operators (see Section 5.3). Next, it is used in Construction(Si,Ldes,Lu, Orep)585

(line 10) to schedule all the unscheduled interventions (Ldes and Lu), when
possible. Given an incumbent solution Si, the order in which the Ldes and Lu
interventions are processed has an impact on the number of interventions that
can be scheduled. This depends on free resources within intervals. The repair
operators that we propose are based on how the interventions of Ldes and Lu590

are sorted.
In order to escape from local optima, we allow the acceptance of a non-

improving solution (line 11). The main issue to be faced is to avoid selecting a
too low-quality solution, leading to a waste of processing time when exploring
its neighborhood in the hope of obtaining a better quality solution. We chose595

to implement an adaptive acceptance strategy, which we detail in Section 5.5,
based on the record-to-record travel algorithm proposed in Dueck (1993).

It is important to make the selection of good destruction/constructions op-
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erators over the iterations possible in order to be able to schedule all the in-
terventions. The adaptive mechanism that we implement is detailed in Section600

5.4. The weights of the two roulette wheels are updated using
AdaptiveWeightsAdjustment(Sbest, Scur, Si).
The number of iterations without any improvement Itermax can be fixed

regardless of the instance or computed during the course of the ALNS algorithm
according to some characteristics of the processed instance in order to adapt it605

to the difficulty of the instance during execution.

We chose to formulate Itermax as γ
|P\P̃ |
|R| +1. |P̃ ||R| where γ ∈ [1, 10]. We recall

that the set of scheduled interventions during the course of the algorithm is
P̃ , the set of patients left unscheduled is P \ P̃ , and the set of resources is R.
Therefore, Itermax mainly increases as |P̃ ||R| increases, the average number of610

scheduled interventions per resource. This allows us to spend more processing
time when all interventions are scheduled to better improve the terms Owt and
Oem of the objective function. However, we also need to have a larger number
of iterations when interventions are left unscheduled in order to schedule all
interventions. The term γ

|P\P̃ |
|R| +1 is equal to the value of parameter γ when all615

interventions are scheduled since |P \ P̃ | is zero because the set of interventions
left unscheduled is empty, but it is larger when many interventions are left
unscheduled.

The γ parameter needs to be tuned to obtain a good trade-off between good
quality solutions and processing times.620

5.2. Destruction operators
We investigated four destruction operators, two that are intervention/patient-

oriented and two others are day-oriented. All these operators use the cur-
rent solution Scur as input, and the intervention/patient operators remove a
certain number of interventions while the day operators remove all the inter-625

ventions scheduled in one day. Given a destroy operator Odes, the function
Destruction(Scur, k, Odes) (see Algorithm 2) returns Si, the incumbent solu-
tion with the removed interventions, and Ldes the list of removed interventions.
The destruction operators we investigated are:

RR Random Removal (intervention/patient-oriented);630

WR Worst Removal (intervention/patient-oriented);

RDR Random Day Removal (day-oriented);

WDR Worst Day Removal (day-oriented).

Random Removal removes k surgical interventions at random from the solu-
tion and inserts them one after the other in Ldes. This can be done in constant635

time. Worst Removal first assesses then sorts the interventions in decreasing
order of cost; see equations (1a)-(1c). This can be done in O(|P | · ln(|P |)).

Next, the k surgical interventions with the highest planning cost are removed.
The planning cost of a patient p is assessed by the cost difference, assuming the
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withdrawal of the patient’s intervention in the solution. This aims at decreasing640

the cost. Random Day Removal selects one day in the planning horizon at
random. Next, all the interventions scheduled for this day are removed from
the solution. At most this can be done in O(|P |). Worst Day Removal first
assesses all the scheduled interventions for each day, and then sorts the days
in decreasing order of cost. Next, all the interventions for the day having the645

highest planning cost are removed from the solution. This can be done in
O(|P | · ln(|P |)).

All these destroy operators aim at freeing resources, which allows the repair
operators to schedule as many interventions as they can. RR and RDR are
pure random destruction operators. They help diversify the search mechanism650

(Hemmati and Hvattum (2017)).
By focusing on days, RDR and WDR make it possible to reallocate re-

sources within one day, while aiming at decreasing the cost, especially with
regard to the third term Oem of the objective function (1c) related to patients
for whom the intervention should be planned early in the morning.655

For the Worst Removal, we assess the individual contribution for each sched-
uled intervention p ∈ Scur. This allows us to remove the k interventions with the
highest cost. The WDR destroy operator also assesses the individual contribu-
tions. WR and WDR both work at the expense of more processing time but
this make it possible to reduce the overall cost Obj(Si) using repair operators.660

At each iteration, function SelectDestructionOperator() (see Algorithm 2)
selects one destruction operator Odes that is chosen from among the four de-
scribed above using an adaptive mechanism based on a roulette wheel selection
algorithm (see Section 5.4).

The Destruction(Scur, k, Odes) function requires a degree of destruction k,665

the number of interventions to be removed, that is used by RR and WR. Note
that parameter k = 1 when a day-oriented operator is chosen since one day
has to be selected. The degree of destruction k affects diversification, and,
consequently, the quality of solutions. It can be fixed, chosen at random from a
range depending on the size of some characteristics of the instance, or gradually670

varied at run-time according to a strategy. We chose to implement an adaptive
strategy for managing k for RR and WR that uses the number of modes and
the number of scheduled interventions that we obtain during the course of the
ALNS algorithm.

In Algorithm 2, the value k is chosen at random as k ← rand(1, Dmax). Pro-675

vided that an intervention/patient-oriented destroy operator has been chosen,
k is bounded by Dmax. We define Dmax as the degree of diversification. This
value is initialized to 3 and then incremented after each non-improving iteration
as Dmax ← min(Dmax + 1, Dlimit), when the Dlimit value is not attained. As
soon as an improvement is found, we reset Dmax to 3 in order to entirely explore680

the neighborhood of the new best solution Sbest.
The choice of the Dlimit value is important because it makes it possible to

broaden the search around a solution to find a better solution. However, a
too large value will possibly generate an unnecessary expenditure of processing
time because a better solution could be found in another part of the search685
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space starting from a solution of lower quality that could be selected thanks to
the acceptance mechanism (see Section 5.5).

We chose to formulateDlimit as α.
|P̃ |
|M | where P̃ is the set of interventions (i.e.,

patients) already scheduled and M is the possible modes that can be used. It is
mainly proportional to the average number of scheduled interventions per mode690

that are used by the instance. Since |P̃ | ≤ |P | when a number of interventions
are left unscheduled in solutions, this favors the adaptive acceptance strategy
of low-quality solutions in order to find solutions where all interventions are
scheduled. Since it increases as the number of scheduled interventions increases,
it then makes it possible to better explore the neighborhood of solutions.695

The size of P̃ is larger than the size of M , and processing time increases as
the number of removed interventions increases. We chose to select α ∈ [0, 1].
The α parameter needs to be tuned to obtain good-quality solutions.

Over the iterations of the ALNS, the adaptive mechanism makes it possible
to choose from among the four destruction operators to explore the neighbor-700

hood of a solution. The destruction operators shake up the current solution
that makes it possible to explore the neighborhood of this solution.

5.3. Repair operators
In the literature, the Best Insertion Algorithm is often used for solution

repair. Overall, the idea is to insert items in an incumbent solution at a place705

chosen as the best one according to specific criteria (Amarouche et al., 2020;
Ben-Said et al., 2019).

Based on the general principle, we proposed the dedicated algorithm as
shown in Algorithm 3. Given an incumbent solution Si, we compute the set
that contains triplets of surgeon, room and time interval that can be used to710

schedule an intervention. We obtain all the free (s, r, I) relative to Si (modes
and intervals). We denote this set as Ssr(ti), indexed by sr(ti) for surgeon, room
and time interval. Initially computing Ssr(ti) takes O(H · |P |) iterations, next
Ssr(ti) is updated in constant time during the course of the ALNS algorithm.

The objective is to schedule as many interventions as possible while min-715

imizing the cost. The algorithm uses the incumbent solution Si and an or-
dered/prioritized list of interventions to be scheduled, denoted as Litbs. The
list Litbs contains the interventions left unscheduled of Lu and the interven-
tions of Ldes that have been removed by applying one of the four destruction
operators. Given an initial Litbs list, the BIA takes O(H · |P |).720

The way that interventions are ordered in Litbs has an impact on how many
interventions can be scheduled using the set Ssr(ti) of available resources within
intervals. We propose and look into three different ways of building the order
of interventions in Litbs. They are presented below.

Algorithm 3 first resets Lu to obtain the list of interventions left unscheduled725

for the forthcoming iteration of ALNS. Given a prioritized list Litbs, we attempt
to insert the interventions one by one in the incumbent solution Si. For an
intervention p, we first determine the modes m = (s, r) ∈Mp and the associated
intervals I from among the set of triplet Ssr(ti) that can be used to schedule
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Algorithm 3: Best Insertion Patient
Input : Si incumbent solution at iteration i

Litbs ordered/prioritized list of interventions to be scheduled,
Ssr(ti) set of triplet (surgeon, room, time interval) that can be used to

schedule
Output : Si repaired incumbent solution at iteration i

Lu list of interventions left unscheduled
Variables : Sp,sr(ti)c for intervention p,

set of quadruplets (surgeon, room, time interval, cost)
1 Lu ← ∅
2 while (Litbs 6= nil) do

// next intervention of ordered list of interventions to be scheduled
3 p← Litbs.pop_front()
4 Sp,sr(ti)c ← ∅

// select modes and time intervals for intervention p
// assess cost

5 forall (s, r, I) ∈ Ssr(ti) do
6 if (m = (s, r) ∈Mp) ∧ (ϑm

p ≤ size(I)) then
7 costp ← DiffCostAdd(Si, p, s, r, I)
8 Sp,sr(ti)c ← Sp,sr(ti)c ∪ {(s, r, I, costp)}

9 if Sp,sr(ti)c 6= ∅ then
10 (p, sbest)← SelectBest(Sp,sr(ti)c)
11 Schedule intervention p in solution Si using mode m and interval I
12 Update the set Ssr(ti)
13 else
14 Lu.push_back(p)

15 return Si,Lu

this intervention. We then assess the related cost, denoted as costp, of inserting730

the intervention p in Si. We therefore obtain the set of quadruplet Sp,sr(ti)c
(surgeon, room, interval and cost).

Provided that Sp,sr(ti)c is not empty, we select the best insertion quadruplet
with minimum cost and we schedule intervention p using the associated mode
m and interval I. The set Ssr(ti) is then updated for the next iteration since the735

resource has been used. If the set Sp,sr(ti)c is empty, the intervention p cannot
be scheduled and is added to the list Lu.

The adapted insertion algorithm and the ordered/prioritized list Litbs to-
gether play the role of a repair operator. We can have different solutions using
different priority lists. Given the two lists Lu and Ldes, we first append list Ldes740

behind list Lu to obtain the initial list Litbs. We then propose three ways of
ordering/prioritizing interventions in Litbs:

UIF Unscheduled Interventions First;

NRM sorted in ascending order of the Number of Requested Modes;

AC sorted in ascending order of an Aggregation of Criteria.745

Computing the list Litbs takes at most O(|P | · ln(|P |)).
The first repair operator UIF aims at giving priority to the unscheduled

interventions remaining in Lu. The idea is to free resources by applying a
destruction operator to first schedule the interventions of Lu, we then schedule
the interventions of Ldes.750
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Overall, the idea behind the NRM repair operator is to first schedule the
interventions with the least number of modes, assuming that we will have more
possibilities to schedule the others as things progress when we schedule the
interventions.

More generally, it may be interesting to consider all the elements related to755

the scheduling of a patient’s intervention. We must not lose sight of the fact
that the medical constraints of hard due date Hp and of due date Dp should
also be taken into consideration. The modes for scheduling the intervention of
a patient as well as the resources may have an impact.

We propose to investigate a strategy for the third repair operator based on760

the aggregation of the criteria related to the patient’s level of urgency (Hp and
Dp) and those related to modes and resources. Let nmode be the number of
different modes that can be used for a patient and let nres be the number of
different resources that we count over the different modes. We first compute
Hp . Dp . nres . nmode, and then sort Litbs in ascending order of these values. A765

low value indicates that the patient is urgent, that a resource is critical, and
that there are few modes for the patient’s intervention.

The idea behind the AC repair operator is to first schedule the patients’
interventions with low values, assuming that we will have more possibilities to
schedule the others as things progress when we schedule the interventions.770

Over the iterations of the ALNS, the adaptive mechanism makes it possible
to choose from among the three repair operators to explore the neighborhood
of a solution.

5.4. Adaptive mechanism for destruction/repair
The idea is to promote future choices of successful operators by modify-775

ing the weights used in a roulette wheel algorithm that selects operators. The
weights for the roulette wheel used for destruction operators and the weights
for the other roulette wheel used for repair operators are updated using the
AdaptiveWeightsAdjustment procedure according to the obtained performance.

The proposed ALNS algorithm uses four destruction and three repair op-780

erators. Operator success may vary depending on the problem instance. The
adjustment of the roulette wheel weights is necessary to increase the proba-
bility that efficient operators are used more often than less efficient operators.
Dynamic adjustment is the only way to ensure a permanent re-evaluation of
operators’ weights.785

Two approaches can be used for updating the weights: at each iteration or
periodically after a certain number of iterations. The advantage of the first
one is that weights are up-to-date at all times but at the expense of processing
time since the weights and the operator probabilities for the next iteration have
to be calculated at each iteration. On the contrary, by periodically updating790

the weights after a certain number of pu iterations, we save processing time.
However, this implies determining a good value for pu. A large value saves
processing time but does not allow the adaptive mechanism to fully play its
role, which can result in poor-quality solutions. To save processing time, we
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chose the second approach. Hence, the tuning of pu is needed to obtain a good795

trade-off between saved computing time and good-quality solutions.
The adaptive mechanism is the same for destruction or repair operator se-

lection. We denote O as either a destruction or a repair operator. The number
of times the operator O has been used during pu iterations is denoted as u(O).
The success of operator O is denoted as s(O), set to zero at the beginning of the800

period of pu iterations. Given the incumbent solution Si, the current solution
Scur, and the best solution found so far Sbest, the value of s(O) is increased at
each iteration as:

s(O) + σi where σi is either


σ1 if Obj(Si) ≤ Obj(Sbest)
σ2 if Obj(Si) ≤ Obj(Scur)
σ3 otherwise

In the first case, the operator O improves or equals the best solution found
so far, while in the second case it improves or equals the current solution. In805

the last case, we reward the operator when a new solution is worse but accepted
according to the acceptance strategy (see Section 5.5). We have σ1 > σ2 > σ3.
This promotes the operator as the relative or absolute solution quality increases.
These parameters need to be tuned because they have an impact on the solution
quality. We chose to formulate σ2 as σ2 = θ.σ1 and σ3 as σ3 = φ.σ2 where810

θ, φ ∈ [0, 1]. Provided that an initial value is set for σ1, the parameter tuning
of σ1, σ2, σ3 can be performed by varying the couple of parameters (θ, φ).

The weights for the forthcoming iterations are calculated as:

w(O) =

{
(1− l)w(O) + l s(O)

u(O) , if u(O) > 0

(1− l)w(O), if u(O) = 0

The reaction factor l ∈ [0, 1] is a parameter that controls the influence of the
recent success of an operator on its weight.

The four destruction and the three repair operators together make large815

changes possible from one solution to its neighbors, which may prevent the
search process from being stuck in local optima. However, since operator success
may vary depending on the problem instance, the adaptive mechanism plays an
important role by rewarding efficient operators throughout iterations. To make
the adaptive mechanism efficient, the parameters presented above need to be820

tuned.

5.5. Adaptive acceptance strategy
We chose to implement an adaptive acceptance strategy based on the record-

to-record travel algorithm. Originally proposed by Dueck (1993), it is a deter-
ministic variant of simulated annealing. A low-quality solution is accepted based825

on the difference between the incumbent solution cost Obj(Si) and the best so-
lution cost Obj(Sbest) relative to a value denoted as record-deviation, which is
a threshold-based strategy. This straightforward but efficient mechanism has
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the advantage that it depends only on one parameter, which is the value of the
record-deviation, denoted here as Dev (see Dueck (1993)).830

The record-deviation parameter Dev plays a central role in controlling the
acceptance of low-quality solutions. In the general scheme of the algorithm pre-
sented in Dueck (1993), the record-deviation parameter is fixed and originally
used as Dev ≤ Obj(Si) − Obj(Sbest). We chose to implement it relative to a
percentage as Obj(Si) ≤ (1+Dev).Obj(Sbest) because the unscheduled interven-835

tions (postponed from a surgical standpoint) strongly contribute to the overall
cost of the objective function (1a)-(1c). It is preferable to use this percent-
age rather than an absolute difference value for comparison purposes between
instances for which all interventions are scheduled and those for which all inter-
ventions are not scheduled.840

However, the larger this parameter is, the more we unnecessarily explore low-
quality solutions because the record-to-record-based mechanism is activated too
early.

To have the opportunity to first explore the neighborhood of a current so-
lution using the destroy/repair operators we propose an adaptive acceptance845

strategy that we manage in procedure Accept(Sbest, Si) (see Algorithm 2). Thus,
the value of Dev is not fixed, it can increase or decrease throughout the search
space exploration process.

However, the increase of Dev may be at the expense of the adaptive diversi-
fication mechanism that also increases Dmax, the maximum number of interven-850

tions that can be removed from Si, when a lower quality solution is met. In Algo-
rithm 2, we update Dmax ← min(Dmax+1, Dlimit) when Obj(Si) ≥ Obj(Sbest)
for some destroy operators. A good trade-off between these two mechanisms
must be found to prioritize local searches.

In procedure Accept(Sbest, Si), we implement an adaptive mechanism that855

increases the value of Dev by a constant value ∆Dev when no improvement
is met throughout a defined number of iterations IterD. The record-deviation
parameter is equal to zero at the beginning (Dev = 0). When the defined
number of iterations IterD without improvement has been performed, Dev is
increased by the record-deviation increment ∆Dev to permit the diversification860

mechanism to play its role. Low-quality solutions are more often accepted, which
allows the search to jump out from local optima. The Dev value increases by
∆Dev as long as destroy/repair operators fail to find a better solution. We reset
the record-deviation parameter Dev to zero if a local or global improvement
occurs.865

Therefore, the two parameters to be tuned to make this adaptive accep-
tance strategy efficient are ∆Dev, the record-deviation increment, and, IterD
the number of iterations without improvement that induces the incrementation
of Dev.

6. Computational experiments870

In our experiments, our objectives were: (i) to show the effectiveness of the
2PSC-EM heuristic compared to the literature results; (ii) to provide a summary
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and insights into how to conduct the tuning of the ALNS so that it can be used in
other situations where planning of elective patients has to be done over a period
of several months; (iii) to evaluate the effectiveness of the destruction/repair875

operators and the adaptive mechanism for destruction/repair and to discuss the
results to show whether a component contributes to obtaining good solutions
by also considering the processing time; and (iv) to assess the quality of the
solutions computed by the ALNS on benchmark instances compared to the
literature results. Tests were done using C++ and Standard Template Library880

(STL), compiled with GCC under Linux, on a machine with an Intel(R) Xeon(R)
Gold 6138 CPU @ 2.00 GHz.

6.1. Benchmark overview and experimental protocol
We tested the 2PSC-EM heuristic and the ALNS meta-heuristic on the ad-

mission set of the benchmark proposed by Riise et al. (2016). The authors885

designed an instance generator based on the real resources of a surgery depart-
ment (Bærum Sykehus, Norway). For confidentiality reasons, the patients are
generated. The test data are available on-line in XML format (SINTEF, 2013).

In this paper we focus on building the scheduling of surgical interventions,
i.e. admission planning, for which it is of interest for the hospital organization890

to know whether it is possible to schedule the interventions of elective patients
regardless of whether they are outpatients or inpatients. Each of the ten in-
stances of the benchmark test consists of 728 patients to be scheduled over a
planning horizon of between 65 and 71 days (about 3 months). In all instances,
there are seven surgeons and four operating rooms.895

In Riise et al. (2016), the authors decided to run the ACI algorithm ten times
for each instance and a time limit of 600 s has been chosen for each run. They
reported the minimum, maximum and average solution values at the chosen
time limit of 600 s. In Riise et al. (2016), the best solution value, denoted
as UB, is also reported for each instance. This UB value corresponds to the900

best value obtained on all the runs performed by the authors. The processing
times for obtaining the UB values are not reported in the paper. The authors
indicated that they are obtained using considerably longer running times than
the 600 s time limit.

6.2. Comparison of 2PSC-EM heuristic with the literature905

In Table 2, for each instance under the ACI heading, the UB column shows
the best known value, or upper bound, the Min column shows the minimum
value obtained by ACI (see Riise et al. (2016)), the Mi2UB column shows the
percentage (UB −Min)/UB, and the t(s) column shows the processing time.
Given that the weight Wun is set to 1,000 (see term (1a)), values larger than910

a thousand indicate that some interventions are left unscheduled. The results
that are better than UB are shown in bold print.

Since our algorithm is also a randomized one like ACI, we chose to initially
perform 100 runs to show whether the heuristic can obtain better results. A
run of the 2PSC-EM heuristic takes about ten seconds. Under the 2PSC-EM915
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(100) heading, we show the minimum value we obtain and the percentage (UB−
Min)/UB in the Min and Mi2UB columns, respectively.

In eight out of ten instances the 2PSC-EM heuristic obtains better results.
For the eight instances for which all the interventions are scheduled using the
ACI approach and the proposed 2PSC-EM heuristic, we improve UB up to 16%920

and 9% on average.

ACI 2PSC-EM (100) 2PSC-EM (3)
UB Min Mi2UB% t(s) Min Mi2UB% t(s) Min Mi2UB% t(s)

a_01 21.58 21.85 -1.27 600 21.15 1.97 1319 22.00 -1.94 42.0
a_02 22.83 23.25 -1.83 600 19.72 13.63 1335 20.32 11.01 40.0
a_03 24.52 24.58 -0.26 600 22.55 8.02 918 22.66 7.81 31.2
a_04 21.97 22.28 -1.40 600 20.43 7.02 958 20.62 6.16 29.7
a_05 5113.88 6341.84 -24.01 600 11025.10 -115.59 934 13025.30 -154.71 28.2
a_06 23.55 23.55 0.03 600 22.15 5.97 991 22.68 3.72 31.6
a_07 22.73 23.25 -2.28 600 21.98 3.31 1026 22.44 1.28 30.0
a_08 2086.32 3148.49 -50.91 600 5024.88 -140.85 797 10024.70 -380.50 23.9
a_09 24.83 24.99 -0.64 600 20.75 16.43 926 21.23 14.50 29.2
a_10 24.48 24.74 -1.08 600 20.61 15.83 935 20.92 14.53 25.9

Table 2: 2PSC-EM heuristic, 100 runs and three runs, compared to ACI.

Except for the a_05 and the a_08 instances for which neither the ACI nor
the 2PSC-EM heuristic succeeded in scheduling all the interventions, the 2PSC-
EM heuristic that we propose provides better results. These preliminary results
using the 2PSC-EM heuristic show that better results are achieved. However,925

in some cases, some interventions are still left unscheduled. A more effective
approach is to be investigated with the aim of scheduling all the interventions,
when possible.

The 2PSC-EM heuristic can potentially provide good initial solutions to the
ALNS approach that we propose to study here. However, we cannot spend too930

much processing time to obtain these solutions. We therefore perform another
series of experiments where we limit the number of runs to show whether good
initial solutions can be obtained using the heuristic using a limited amount
of time, while not significantly worsening the quality of the solutions. Since
the heuristic is a randomized method, we performed several experiments of k935

runs. We experimentally observed that k = 3 runs seems to be a good trade-off
between solution quality and processing time.

In Table 2 under the heading 2PSC-EM (3), we show the best results ob-
tained using the 2PSC-EM heuristic when performing three runs of the heuristic
ten times. In seven out of ten instances, the 2PSC-EM heuristic still obtains940

better results. A small degradation is observed for the instance a_01 compared
to UB. For the eight instances for which all the interventions can be scheduled,
the proposed 2PSC-EM heuristic still improves UB up to 14% and 7.1% on
average. As can be shown, slightly better results can be achieved using 100
runs of the 2PSC-EM heuristic compared to three runs, but it takes a while945

to obtain them. We experimentally observed that three runs are sufficient to
obtain adequate solutions within a short processing time.
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We propose the ALNS approach with the aim of scheduling all the interven-
tions and improving the results of the 2PSC-EM heuristic. As initial solutions
of the ALNS approach, we use the best solution computed using three runs of950

the 2PSC-EM heuristic below.

6.3. Parameter tuning
We present the experiments we carried out to find the parameter values that

were used to test our ALNS approach. As described in Section 5.1, the ALNS
that we propose has four sets of parameters:955

• Dlimit, the maximum number of patients removed by the destroy opera-
tors;

• ∆Dev and IterD, the record-deviation increment and the number of iter-
ations without improvement before increasing the deviation;

• σ1, σ2, σ3, pu, and l, the first three are the added scores after using a960

destroy or repair operator, pu is the number of iterations before adjusting
the weights of operators, and l is the reaction factor;

• Itermax, the maximum number of iterations without improvements.

Some of these parameters are computed during the course of the ALNS
algorithm according to some characteristics of the instance being processed or965

are relative to other parameters. For these parameters, the first column in
Table 3 shows the parameters as presented in Section 5.1. The second column
describes how they are computed and the related parameters that need to be
tuned.

Computed as, and parameters to be tuned

Dlimit α.
|P̃ |
|M| , parameter α to be tuned

σ1, σ2, σ3
σ1 fixed, next σ2 = θ.σ1 and σ3 = φ.σ2

parameters (θ, φ) to be tuned

IterD δ.Itermax, parameter δ to be tuned

Itermax γ
|P\P̃ |
|R| +1

.
|P̃ |
|R| , parameter γ to be tuned

Table 3: Parameters α, θ, φ, δ and γ to be tuned.

To calibrate all the parameters, we carried out preliminary experiments on970

a subset of five instances that are randomly selected from the eight benchmark
instances for which all the interventions can be scheduled. Since ALNS is a
randomized search method, the experiments were repeated five times with a
different random seed. To tune the parameters, we evaluate the results using
the Relative Percentage Error (RPE). We define the RPE as follows: RPE =975

100 × Zbest−Zmax

Zbest
where Zbest denotes the best result we achieved over all the

runs we performed for an instance, and Zmax denotes the best result we obtained
among the five performed runs. Next, the RPE values are averaged for the five
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instances chosen at random, and this average is shown as a percentage in the
figures we present and that we comment on below.980

We start by tuning the first Dlimit, and we then tune each parameter, one
after the other, considering the four sets of parameters presented. The initial
values we use to first tune Dlimit are ∆Dev = 0.2, δ = 0.2, σ1 = 50, θ = 0.3,
φ = 0.1, pu = 60, l = 0.5 and γ = 10. Then, to tune a parameter, we retain the
best setting of the other parameters found before proceeding to tune it.985

The maximum number of patients to be removed Dlimit

We performed the tuning experiments by varying α from 0.1 to 1.0 with a
step of 0.05. In Figure 1, we show that when α is lower than 0.2, the number
of interventions removed from the solution is too small, so the neighborhood
exploration is insufficient. When α is larger than 0.35, the number of interven-990

tions removed from a current solution increases. The diversification increases
so the quality of the solutions is worsened, as can be seen by the average RPE
values.

Figure 1: Tuning of Dlimit, effect of α on
RPE.

Figure 2: Tuning of ∆Dev , effect of on RPE.

As could be expected, the processing time increases with the α value, so we
do not show a curve of CPU time vs α. The larger the values of α are, the995

larger the processing times are, which is ineffective. We chose α = 0.3, which is
a good trade-off between solution quality and processing time.

Record-to-record-based adaptive acceptance strategy; tuning of ∆Dev

and IterD
To calibrate the value of ∆Dev we varied it between 0.0% and 2.5% with1000

increments of 0.02%. In Figure 2, we show that when ∆Dev varies between
zero and 0.1%, the RPE decreases. We then reach a plateau of the curve for
three values that give the smallest value of RPE. Next, the average RPE values
increase as ∆Dev increases. We observe this same phenomenon for values of
∆Dev larger than 0.4%; consequently, values larger than 0.4% have not been1005
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Figure 3: Tuning of IterD, effect of δ on
RPE.

Figure 4: Tuning of σ2 and σ3 relative to σ1,
effect of θ and φ on RPE.

shown in Figure 2. We fix the value of ∆Dev = 0.1% for the record-deviation
increment. It is the smallest value for which the average RPE value is minimum.

We then proceed to the tuning of δ for IterD, the number of iterations
without improvement before the deviation increase. In Figure 3, three good
values of δ can be chosen; the first is 0.12. If IterD is small, the allowed1010

deviation rapidly increases and the algorithm accepts poor quality solutions.
On the other hand, if IterD is large, the deviation does not increase as much
and the algorithm will be trapped in a local optimum. We chose δ = 0.12.

Figure 5: Effect of pu on RPE. Figure 6: Effect of l on RPE.

Adaptive weight adjustment parameters; tuning of σ1, σ2, σ3, pu and l
We first tune the weight adjustment parameters σ1, σ2, σ3, the scores added1015

after the use of a destruction or repair operator. Given that σ1 > σ2 > σ3 ac-
cording to the usual reward of operators relative to the quality of the incumbent
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solution Si, the current solution Scur, and the best solution found so far, Sbest,
we chose to first set σ1 to 50 and we compute σ2 = θ.σ1 and σ3 = φ.σ2 such
that θ, φ ∈ [0, 1].1020

Figure 4 shows the beginning of the curve that we obtain to better focus on
the interesting values. We chose θ = 0.3 and φ = 0.2, the first value giving the
best performance relative to the average RPE.

To tune pu, the number of iterations before adjusting the weights of opera-
tors, we vary it between 0 and 200 iterations with a step of 5. Figure 5 shows1025

that the RPE is better when pu is between 70 and 85, and we chose to set pu
to 70.

To find the best value of l, the reaction factor that controls the influence
of the recent success of an operator on its weight, we vary it between 0 and 1
with an increment of 0.1. The average RPE values shown in Figure 6 reveal1030

that good solutions are achieved when l is between 0.6 and 0.8. The previous
iteration seems to have a little influence on the weight calculation. We chose to
fix l at 0.7.

Maximum number of iterations without improvement; tuning of Itermax
Finally, we proceed to the tuning of Itermax, the maximum number of itera-1035

tions without improvement. The processing time needed to find a good quality
solution varies according to the instances and this parameter has an important

impact. We chose to formulate Itermax as γ
|P/P̃ |
|R| +1 · |P̃ ||R| where α ∈ [1, 10], |P̃ |

is the number of scheduled interventions, |P/P̃ | is the number of unscheduled
ones and |R| is the number of resources.1040

As would be expected, the average RPE decreases as γ increases, and, the
processing time increases with the γ value. Therefore, for the sake of compact-
ness, we do not show curves for the γ tuning. For RPE, the shape of the curve
has an asymptotic behavior like a 1/x one. The larger the values of γ are, the
greater the processing times are, which is ineffective. We chose γ = 11, which is1045

a good trade-off between solution quality and processing time and that generally
remains lower than 250 s.

The final calibration results are α = 0.3, ∆Dev = 0.1%, δ = 0.1, σ1 = 50,
θ = 0.5, φ = 0.2, pu = 70, l = 0.7 and γ = 11. The values of the parameters are
used in the sequel for our experiments on all the benchmark instances. They1050

were chosen to obtain a good trade-off between solution quality and processing
time.

6.4. Evaluation of the ALNS components
We evaluate here the effectiveness of the destruction/repair operators and

of the adaptive mechanism for destruction/repair by disabling each of them one1055

at a time. This allows us to discuss the results to show whether a component
contributes to obtaining good solutions by also considering the processing time.

In Table 4, we show the results for the four destruction operators (see Section
5.2). Under each heading, we show the minimum values (Min column) and the
average processing times in seconds (t(s) column) that we obtain within 10 runs.1060
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For comparison purposes, we tabulate under the ALNS heading the values that
we obtain running the ALNS with all of components activated (also in Table 5).

ALNS No RR No WR No RDR No WDR
Min t(s) Min t(s) Min t(s) Min t(s) Min t(s)

a_01 20.64 116.25 20.89 85.09 20.69 193.74 20.65 168.87 20.69 183.92
a_02 19.41 119.86 19.59 109.17 19.50 132.04 19.44 120.89 19.50 159.37
a_03 22.13 117.25 22.58 120.99 22.21 196.98 22.22 190.22 22.18 226.77
a_04 20.37 129.81 20.49 94.58 20.46 139.49 20.37 135.38 20.43 264.55
a_05 23.77 1109.92 6027.92 301.24 24.00 4045.17 24.05 4624.39 24.58 3268.68
a_06 22.30 72.59 22.44 53.26 22.34 81.75 22.39 161.33 22.39 100.86
a_07 21.44 93.54 21.56 107.37 21.50 113.31 21.44 123.28 21.45 182.66
a_08 22.59 548.21 3025.79 147.91 22.61 1980.98 22.85 1655.09 22.74 1560.71
a_09 20.52 77.80 20.57 69.03 20.55 95.83 20.57 118.73 20.52 137.31
a_10 20.33 78.33 20.36 122.60 20.35 117.41 21.82 109.47 20.34 131.32

Table 4: Impact of destruction operators RR, WR, RDR and WDR.

The ALNS without Random Removal (No RR column) obtains results that
are below those of ALNS using all of the components. The RR destruction
operator is necessary, and the patients’ interventions chosen at random make it1065

possible to avoid being stuck in a local optimum. This is especially the case for
the instances a_05 and a_08 for which we cannot schedule all the interventions
if RR is disabled. The processing times are shorter but we experimentally
observe that the ALNS with no RR stops because we perform Itermax iterations
without any improvement.1070

The ALNS without Worst Removal (No WR column) obtains results that
are below those of ALNS using all of the components. For all instances, all the
interventions can be scheduled but at the expense of larger processing times. The
WR destruction operator is necessary. It is a performance-oriented destruction
operator that aims at minimizing the objective function, which is necessary to1075

obtain better overall performances.
The Random Day Removal (RDR) and Worst Day Removal (WDR) are

day oriented destruction operators that make it possible to reallocate resources
within one day. The ALNS without Random Day Removal (No RDR column)
obtains results that are below those of ALNS using all of the components except1080

for instances a_04 and a_07 for which we attain the same best results. The
RDR destruction operator is necessary, although for all instances for which all
the interventions can be scheduled we, observe that it is at the expense of larger
processing times.

The ALNS without Worst Day Removal (No WDR column) obtains results1085

that are below those of ALNS using all components except for instance a_09
for which we attain the same best result. For all instances, all the interventions
can be scheduled but at the expense of larger processing times, so WDR is
necessary too.

To summarize, the four destruction operators are necessary. They are ben-1090

eficial for exploring the neighborhood of a solution either by obtaining better
results or by shortening the processing time.
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ALNS No UIF No NRM No AC No Adaptive
Min t(s) Min t(s) Min t(s) Min t(s) Min t(s)

a_01 20.64 116.25 20.70 226.27 20.76 141.14 20.75 149.44 20.85 238.43
a_02 19.41 119.86 19.42 259.44 19.49 117.86 19.45 120.27 19.59 240.48
a_03 22.13 117.25 22.43 363.59 22.18 256.03 22.21 284.99 22.27 216.09
a_04 20.37 129.81 20.41 187.91 20.38 144.80 20.43 161.11 20.37 532.06
a_05 23.77 1109.92 24.35 3777.95 24.28 3680.23 24.55 4328.10 28.37 5999.34
a_06 22.30 72.59 22.39 188.19 22.39 71.11 22.39 119.32 22.42 92.27
a_07 21.44 93.54 21.52 188.27 21.52 133.41 21.52 182.70 21.57 163.06
a_08 22.59 548.21 22.73 1681.28 23.34 1733.85 22.83 1739.60 25.61 2310.89
a_09 20.52 77.80 20.56 171.90 20.60 79.87 20.53 125.69 20.55 230.76
a_10 20.33 78.33 20.34 188.63 20.35 115.90 20.37 104.35 20.35 236.90

Table 5: Impact of repair operators UIF, NRM and AC, and, impact of adaptive mechanism.

In Table 5, we show the results for the three repair operators (see Section
5.3) and for the adaptive mechanism (see Section 5.4) that manages the choice
of destruction and repair operators.1095

Overall, for the three repair operators, Unscheduled Interventions First
(UIF), Number of Requested Modes (NRM) and Aggregation of Criteria (AC),
we first observe that none succeeded in attaining the results of the ALNS ap-
proach using all of the components, and, second, that processing times are
generally larger. This is especially the case for the instances a_05 and a_08.1100

To summarize, the three repair operators are necessary, and are beneficial
for exploring the neighborhood of a solution either by obtaining better results
or by shortening the processing time.

The last experiment was conducted to highlight how efficient the adaptive
mechanism is. We disabled this mechanism by fixing the same probability for1105

every destruction operator (1/4) and the same probability for every repair op-
erator (1/3).

As can be seen in No Adaptive column, we obtain results that are below
those of ALNS that uses this component, and the processing times are greater.
This is particularly evident for instances a_05 and a_08 for which without1110

this adaptive mechanism we obtain the worst processing times of these series of
experiments. The adaptive mechanism that manages the choice of destruction
and repair operators during the course of the ALNS is necessary to achieve good
results within good processing time for the elective patient admission planning
problem that we address here.1115

6.5. Comparison of ALNS with the literature
In Table 6, for each instance under the ACI heading, we show the results

obtained by ACI (see Riise et al. (2016)). Column UB shows the best known
value, or upper bound, and columns Min, Max, Avg show the minimum value,
the maximum value and the average value. Under the ALNS heading, we also1120

show the Min, Max and Avg values that we obtained. Column t(s) shows the
average processing times in seconds. We show the results that are better than
UB in bold print.
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ACI ALNS
UB Min Max Avg Mi2Av% Mi2UB% t(s) Min Max Avg Mi2Av% Mi2UB% Mi2Mi% t(s)

a_01 * 21.58 21.85 22.23 22.06 0.95 -1.25 600 20.64 20.94 20.77 0.63 4.36 5.54 116.25
a_02 * 22.83 23.25 23.56 23.4 0.64 -1.84 600 19.41 19.60 19.53 0.61 14.98 16.52 119.86
a_03 * 24.52 24.58 24.88 24.74 0.65 -0.24 600 22.13 22.49 22.28 0.67 9.75 9.97 117.25
a_04 * 21.97 22.28 22.66 22.48 0.89 -1.41 600 20.37 20.48 20.45 0.39 7.28 8.57 129.81
a_05 5113.88 6341.85 9397.78 7987.31 20.60 -24.01 600 23.77 4024.46 1425.0 98.33 99.54 99.63 1109.92
a_06 * 23.56 23.56 24.03 23.82 1.09 0.00 600 22.30 22.44 22.41 0.49 5.35 5.35 72.59
a_07 * 22.73 23.26 23.57 23.39 0.56 -2.33 600 21.44 21.62 21.54 0.46 5.68 7.82 93.54
a_08 2086.32 3148.49 4244.57 3407.31 7.60 -50.91 600 22.59 4023.4 423.21 94.66 98.92 99.28 548.21
a_09 * 24.83 24.99 25.98 25.37 1.50 -0.64 600 20.52 20.64 20.60 0.39 17.36 17.89 77.80
a_10 * 24.47 24.75 25.1 24.9 0.60 -1.14 600 20.33 20.42 20.36 0.15 16.92 17.86 78.33
for ’*’ 0.86 -1.11 0.47 10.21 11.19 100.67

Table 6: ALNS compared to ACI

For comparison purposes, we use (Min−Avg)/Avg denoted in column head-
ings as Mi2Av and (UB −Min)/UB denoted in column headings as Mi2UB.1125

The Mi2Mi column shows the (Min(ACI)−Min(ALNS))/Min(ACI) values.
The first allows us to show how close to the minimum the average results of
ACI or of ALNS (for ten runs) are for each instance, whereas the second shows
how far the results are from the best known UB value. The first is only really
significant for instances for which all interventions can be scheduled. As a mat-1130

ter of fact, the objective function (see Equation (1a)-(1c)) is a weighted sum
of normalized terms. The weight Wun used for the term that assesses the in-
terventions left unscheduled is the largest compared to the others. This clearly
shows that unscheduled interventions are a key issue of great concern. It is not
fair to compare the results of instances for which all interventions are scheduled1135

to those for which some are left unscheduled because the highest term is null in
the first case. We added an asterisk to the instance names for which both ACI
and ALNS succeeded in scheduling all the interventions. For these instances,
the last row then shows the average values of Mi2Av, Mi2UB and Mi2Mi, and
the average value of processing time of ALNS.1140

For the eight instances in which both ACI and ALNS succeeded in scheduling
all the interventions, the ALNS outperforms the ACI approach. The averaged
Mi2Av is about halved, the Mi2UB is improved by about 10.2%, and the Mi2Mi
is improved by about 11.2%. The processing times are shorter than the timeout
fixed in Riise et al. (2016). For the two instances for which the ACI approach1145

failed to schedule all the interventions the ALNS succeeded. For the a_08
instance, it takes about five minutes and, for the a_05 instance, it takes about
20 minutes. Better results are obtained for each instance, all the patients’
interventions are scheduled which had not been done using the ACI algorithm.

7. Conclusions and future work1150

In this paper, we address the patient admission problem for which surgical
interventions of hundreds of patients have to be scheduled within a horizon
based on several months. The issue faced by hospital planners is to schedule all
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the interventions while considering operating room and surgeon availability, in
addition to the constraints related to each patient’s surgical intervention. We1155

introduce a two-phase 2PSC-EM heuristic and an Adaptive Large Neighborhood
Search (ALNS) approach, both dedicated to the patient admission problem. The
ALNS makes use of the adaptive mechanisms for destruction, construction and
acceptance procedures that we investigate for the patient admission problem. A
good trade-off between an adaptive diversification mechanism and an adaptive1160

acceptance mechanism is needed so as not to waste processing time by exploring
unnecessary low quality solutions.

Computational experiments are conducted on benchmark instances from the
literature. Computational results show that the 2PSC-EM heuristic achieved
better results than a general purpose approach not dedicated to the admission1165

problem, whereas both heuristics fail in scheduling all interventions for some
instances. The experiments concerning the parameter tuning of the ALNS ap-
proach can be easily conducted to obtain a good trade-off between solution
quality and processing time. Computational experiments are to evaluate the
effectiveness of each component of the ALNS approach, and all the components1170

are necessary to obtain good solutions within good processing times.
The ALNS approach obtains better results for each instance, i.e, all the

interventions are scheduled and the patients’ health constraints for interventions
are better respected.

One instance required about 20 minutes, all other instances are processed in1175

a hundred seconds. It would be interesting to investigate new solution methods
to reduce processing time. One possible research trail is to experiment other
approaches based on other metaheuristics or by integrating learning methods as
overviewed in Karimi-Mamaghan et al. (2022), Bengio et al. (2021) and Queiroz
dos Santos et al. (2014).1180

A future research direction would be to consider additional objectives and
constraints on minimum and/or maximum workloads for surgeons or on operat-
ing rooms use to obtain balanced schedules with regard to the use of resources.
Fairness between surgeons is a sensitive issue for a hospital organization and
load balancing of the rooms may also be useful.1185
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