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Abstract

Let C be an algebraic curve and ¢ be an analytically irreducible singular point of C. The set % (C)€ of arcs with
origin c is an irreducible closed subset of the space of arcs on C. We obtain a presentation of the formal neighborhood
of the generic point of this set which can be interpreted in terms of deformations of the generic arc defined by
this point. This allows us to deduce a strong connection between the aforementioned formal neighborhood and the
formal neighborhood in the arc space of any primitive parametrization of the singularity c. This may be interpreted
as the fact that analytically along Z(C)¢ the arc space is a product of a finite dimensional singularity and an
infinite dimensional affine space.
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1. Introduction
1.1.

Arc spaces are nowadays a prominent object of study in singularity theory. One of the main general
guidelines is to understand the connection between the nature of the singularities of a variety and the
geometric properties of its associated arc space, the first motivating question in this direction being the
well-known Nash problem ([Nas95]). In particular, specific attention has been drawn by the local study
of two important classes of arcs which we describe now.
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The first one is the class of so-called stable arcs, which were introduced and studied by Reguera
([Reg06, Reg09]; subsequent works by Reguera and other authors include [Regl8, MR18, dFD20]).
These are finite-codimensional points in the arc space (which is infinite-dimensional), whose formal
neighborhood was shown by Reguera to be Noetherian, allowing her to establish a version of the curve
selection lemma for arc spaces which was a crucial ingredient in subsequent works on the Nash problem
([FdBP12, dFD16, LIR12]).

The second one is the class of nondegenerate rational arcs. Here, nondegenerate means not entirely
contained in the singular locus of the variety, and rational means that the arc is defined by formal power
series with coeflicients in the base field of the variety. Note that stable arcs are in some sense very far
from being rational. Grinberg and Kazhdan ([GKO0O]) and Drinfeld ([Dri02]) showed that the formal
neighborhood of a nondegenerate rational arc, though not Noetherian, may be written as the product of an
infinite smooth factor and the formal neighborhood of a rational point of a scheme of finite type (a “finite
formal model” of the arc under consideration). Their work was motivated by geometric representation
theory and Langlands program; subsequent works in this direction include [BNS 16, Bou20, Ng617]. On
the other hand, the first named author of the present paper and Julien Sebag suggested that there should
be strong connections between the geometric properties of the finite formal models of a rational arc
and the nature of the singularity at the origin of the arc, and gave some first evidences for that ([BS17a,
BS17¢, BS17b, BS19], see also [BS20] and [Bou21]).

1.2.

Prompted, in particular, by the results of [BS19], Bourqui and Sebag pointed out that the study of the two
classes of arcs, which until then had been led independently, should be intimately related, and suggested
to compare the formal neighborhood of the generic (schematic) point of the maximal divisorial set
associated with a divisorial valuation (which is a prototypical example of stable arc) and the formal
neighborhood of a sufficiently generic k-rational arc of the same maximal divisorial set. Let us recall,
here, the statement of [BS20, Questions 7.12 & 7.13].

Question 1.3. Let & be a field of characteristic zero and V be a k-variety. For any arc y on V, that is, any
schematic point of Z(V), denote by Oc_ (v , the completion of the local ring at y.

Let v be a divisorial valuation on V, Ny (v) be the associated maximal divisorial set in the arc space
of V, and 7y, be the generic point of Ay (v), with residue field denoted by «(v).

1. Does there exist a nonempty open subset U of Ny (v), such that the isomorphism class of @?wzv\),y
is invariant when y runs over U (k)?

2. Assume that the latter property holds. Let y € U(k). Choose a section of the quotient mor-
phism Oy, (v),;,., — k(v). Are the topological local «(v)-algebras O, (v, ., [[(#:)ien]] and

@my§ xk(v) isomorphic?

Remark 1.4. Informally speaking, we are asking whether the formal neighborhood of the generic point
of My (v) is a finite formal model of a sufficiently generic k-rational arc on V. More precisely, the
following property clearly implies a positive answer to the second question: there exists a complete local
Noetherian k-algebra A, such that @my%A[ [(#;)ien]] (i.e., A is a finite formal model of y) and the
complete local x(v)-algebras @:‘fm‘,‘v and A®; «(v) are isomorphic. In fact, the latter property and
the property considered in the second part of the above question turn out to be equivalent by Gabber’s
cancellation theorem (see [BS17a, Theorem 7.2]).

Remark 1.5. Question 1.3 is challenging only when the center of the valuation v (which is nothing
but the center 77y ,,(0) of the arc iy ) is singular. In case it is smooth, the answer to Question 1.3 is
positive, with A a k-algebra of formal power series over a finite number of variables. This easily follows
from the compatibility of the formation of arc schemes with étale morphisms.
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1.6.

Question 1.3 has first been answered positively for normal toric varieties in case the valuation is toric.
In this setting, the first part is easily answered by exploiting the torus action (see [BS19]). The second
one, which is more involved, is addressed in [BMCS].

In the present article, we provide an affirmative answer to Question 1.3 for curve singularities and
any divisorial valuation.

Again, the answer to the first part is easy, exploiting this time the reparametrization of the Puiseux
series (one needs a slight generalization of [BS20, Corollary 7.4]). The answer to the second part is the
main result of the paper:

Theorem 1.7. Let k be a field of characteristic zero. Let C be a curve and ¢ € C(k), such that
C is analytically irreducible at c. Let v = ord; op be the valuation on C induced by any primitive
parametrization p: Oc . — k[[t]] of C at ¢, Nc(v) the associated maximal divisorial set, nc,, its
generic point, and k(v) its residue field. Then there exists a nonempty open subset U of the maximal
divisorial set N¢(v), a complete local Noetherian k-algebra A which is a finite formal model of any
y € U(k), and a section Oz, (c),n., — k(v) of the quotient morphism, such that the complete local
k(v)-algebras mev and A®yk(v) are isomorphic. Moreover, the previous statement also holds
when v is replaced by a positive multiple N - v.

In fact, we prove a slightly more precise statement (see Theorem 7.2).
1.8.

Let us say a few words about the proof of the above theorem. The key point consists in obtaining a
presentation of the formal neighborhood of Z,(C) at5j¢, n ., which may be naturally interpreted in terms
of infinitesimal deformations of n¢ n.,. Such an interpretation, which comes naturally at play when
dealing with formal neighborhoods of k-rational arcs, is by no means evident in the case of O, (¢), ;¢ x>
which is not endowed with a canonical structure of k(N - v)-algebra. Note that if Theorem 1.7 holds for
one particular section of O_(c), ey k(N - v), it will hold for any of them, that is, any choice of
a coeficient field. But it turns out that in order to obtain our “deformation-theoretic” interpretation of
O%.,(C),ne.n.,» ONE has first to show the existence of a coefficient field with specific properties. A similar
strategy was used in [BMCS] for toric singularities, although in a rather implicit and indirect way;
moreover, in the toric case, the existence of an adequate coefficient field was more directly obtained.

Let us point out that though the works of Reguera and Reguera-Mourtada ([Reg09, MR 18, Reg18])
provide fairly general methods to obtain a presentation of the formal neighborhood of a stable arc, they
do not provide the deformation-theoretic interpretation we need for our aim (one may compare [MR 18,
Example 2.2], dealing explicitly with the case of plane curves, with our approach).

Once the ad hoc interpretation of O, (c), ;¢ v., 0 terms of deformations is established, one can use
the similar interpretation for the formal neighborhood of a sufficiently generic y € Ng (N -v)(k) (which,
again, is natural in this context) to obtain the comparison theorem.

1.9.

We now explain some consequences of our main result.

Corollary 1.10. Keep the notation of Theorem 1.7. Then the Noetherian complete local k(N - v)-algebra
0%..(C).nc.n., IS algebraizable, that is, isomorphic to the quotient of a power series ring in finitely many
variables over k(N - v) by an ideal generated by polynomials.

Recall that it is well-known that there exist Noetherian complete algebras over a field which are not
algebraizable (see, e.g., [CdFD22, Example 5.4]). A result similar to Corollary 1.10 also holds in case v
is a toric valuation on a normal toric variety, as a consequence of the comparison theorem in [BMCS].
But more generally, to the best of our knowledge, the following question is open (and would be answered
affirmatively in case the answer to Question 1.3 is positive):

https://doi.org/10.1017/fms.2023.24 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.24

4 D. Bourqui and M. Mordn Carfion

Question 1.11. Let V be a k-variety, v a divisorial valuation on V, and 5y , the generic point of
Ny (v), with residue field x(v). Choose a section of the quotient morphism Og,_ (). ,,,, , — k(v).Is the
Noetherian complete local x(v)-algebra © g:(_mvyv algebraizable?

1.12.

We also have the following consequence on the structure of the formal neighborhood of the stable arc
nc, N -v (see Proposition 7.6).

Corollary 1.13. Keep the notation of Theorem 1.7. Then the Noetherian complete local k(N - v)-
algebra Oz, (c),ne ., IS cancellable. That is, there exists a complete local k(N - v)-algebra A, such that

O%..(C).nc.n., 18 isomorphic to A[[u]], where u is an indeterminate.

Previously, the result was only known for (@gm N,y) . ([Reg09, Corollary 5.7]). Again, this
Te!

cancellation phenomenon can also be observed in the case of toric singularities by the result of [BMCS].

1.14.

In [BS17a, BS17b], the quantitative aspects of the nilpotency in the formal neighborhood of a k-rational
arc on a curve is studied. To the best of our knowledge, so far, such a question has not been addressed in
the literature for stable arcs. As a consequence of our main result and [BS17b, Theorem 1.6], one obtains
the following. Recall that the nilpotency index of a ring is the supremum of the nilpotency indices of its
nilpotent elements.

Corollary 1.15. Keep the notation of Theorem 1.7, and assume that (C, c) is a curve singularity of
multiplicity two and degree 6(C, c). Then the nilpotency index of Oz, (c). .., equals 6(C,c) + 1.

Remark 1.16. The equality is expected to hold for plane monomial curves, and can be efficiently checked
numerically for a certain number of them, using the algorithm described in [BS17b] and Theorem 1.7.
For example, it was checked using the aforementioned algorithm for the curve singularity x* = y" for
every pair of coprime integers (n, m) withn =3andm < 100orn =4andm < 43 orn =5andm < 21.

1.17.

We now discuss some perspectives. In addition to shedding new light on the geometric properties of
the maximal divisorial sets, the extension of the comparison results beyond the cases of curve and toric
singularities would allow us to strengthen simultaneously our understanding of both classes of formal
neighborhoods. For example (keeping the notation of Question 1.3), in case V is analytically irreducible
at the center ny ,,(0) of ny and O, (v) 5, , is a regular local ring, if the answer to Question 1.3 is
positive, one may deduce from [BS17c, Theorem 1.6] that the center of 77y ,, is smooth, thus answering
positively [Reg18, Question 2.10] with a detour by k-rational arcs.

Going the other way, one may hope that the formal neighborhoods of stable points may be helpful
to understand some sufficiently simple finite formal models of a k-rational nondegenerate arc. The
algorithmic description of the finite formal model of such an arc in [Dri02] allows Drinfeld to give
a very clever and elegant proof of the Drinfeld-Grinberg-Kazhdan theorem alluded to before for any
singularity but does not seem suited to apprehend the geometry of the finite formal models; moreover,
its implementation is very poorly efficient, even for curves (see [BS17b]). In [BS17b] and [BS19], some
useful alternative descriptions were described for monomial curves and toric varieties. One may hope
that, in general, such useful alternative descriptions could come from an ad hoc description of the formal
neighborhood of stable points. In the last section of the paper, we give some elements illustrating this
line of thought in case v is a valuation on a hypersurface V, such that the associated initial ideal is prime.
We obtain a deformation-theoretic interpretation of the formal neighborhood of 7y ,,, which, as in the
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case of curves, is based on the construction of a coefficient field with specific properties. This allows us
to give a conjectural simple description of a finite model of a sufficiently generic element of Ny (v) (k).
This conjectural description is equivalent to a weaker yet still meaningful form of Question 1.3, where
the answer to its first part is not necessarily assumed to be positive (see Question 8.13). Although there
are classes of varieties for which the first part of Question 1.3 is very likely to have a positive answer
(e.g., beyond toric varieties, varieties equipped with a big action of a reductive group), we do not know
whether it is sensible to hope for a positive answer in general (see Remark 8.14 for an example with a
torus action whose generic orbits have codimension one).

1.18.

The article is organized as follows: after introducing some notation and recalling some general facts
about arc schemes and curves in Section 2, in Section 3, we focus on the properties of subsets of the arc
schemes naturally defined by valuations and contact order conditions, paying particular attention to the
case of curves. We obtain explicit equations (up to radical) of the generic point of the maximal divisorial
set in the arc scheme of a curve associated with a valuation, and we recall the proof of the invariance of
the formal neighborhoods at sufficiently generic rational arcs in that maximal divisorial set. We insist
that Section 2 in its totality and most of Section 3 are nothing but a detailed account of definitions and
results that have already appeared in the literature, for the comfort of the reader and for the sake of fixing
notation. The results effectively proven in Section 3 are certainly well-known by the specialists, but we
are not aware of convenient references for them. Sections 4, 5, and 6 are devoted to the computation
of a presentation of the formal neighborhood of the generic point of a maximal divisorial set on a
curve, which one may interpret in terms of deformations. In Section 4, we compute a coefficient field
of the formal neighborhood with specific properties. Section 5 contains two useful technical results, in
particular, a general existence theorem of “quasi-deformations” of a nondegenerate arc. In Section 6,
combining, in particular, the results of the two previous sections, we obtain the sought-for presentation.

Section 7 contains the statement and the proof of Theorem 7.2 (a more precise version of the
comparison Theorem 1.7). Finally, Section & contains the discussion of the case of hypersurfaces (as
alluded to in the above introduction).

2. Notation and reminders

In this section, we recall several facts about the topology of local rings, arc spaces, and curve singularities,
introducing along the way some notation to be used in the sequel.

In the whole paper, k designates an algebraically closed field of characteristic zero.

An algebraic variety over k, or k-variety, is an integral k-scheme of finite type over k. A curve over k
is an algebraic variety over k of dimension 1.

Topology of local rings

A complete local ring is a local ring which is complete with respect to the adic topology defined by its
maximal ideal, that is, a basis of neighborhoods of zero is given by the powers of the maximal ideal.

Note, in particular, that a formal power series ring over an infinite number of indeterminates, though
it may be obtained by an adic completion of a local ring, is not a complete local ring in the previous
sense (see Remark 2.2 below). Thus, we shall consider the category TopLoc (respectively, TopLoc,, k a
field), whose objects are the topological local rings (respectively, topological local k-algebras) which are
isomorphic to the adic completion of a local ring (respectively of a local k-algebra with residue field k-
isomorphic to k) and whose morphisms are continuous morphisms of rings (respectively of k-algebras).
The complete local rings (respectively, the complete local k-algebras with residue field k-isomorphic
to k) form a full subcategory CplLoc (respectively, CplLoc; ) of TopLoc (respectively, TopLoc, ). The
following lemma will be useful (for the proof, see, e.g.,[BS17a, Section 2.1]).
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Lemma 2.1. The functor O +— (A +— HomtgpLoc, (O, A)) from the category TopLoc, to the category
of precosheaves on the category CplLoc,, is fully faithful.

Remark 2.2. Let & be a field and {X;};c; be a family of indeterminates indexed by a set I (finite or
infinite). The topological k-algebra k[[(X;);cr]] may be defined as the completion of the localization
of k[(X;)ier] at the maximal ideal (X;);;. In case I is finite, it is a complete local ring. However, as
soon as [ is infinite, the local ring k[[(X;);er]] is by definition complete for the topology of the inverse
limit, yet it is not a complete local ring in the above sense (see, e.g., [Hai20] or [Sta21, 05JA]).

In any case, from the point of view of the previous lemma, k[[(X;);<;]] may be seen as the object of
TopLoc, representing the functor

CplLoc;, — Sets
(A, My) — M

We shall also consider the full subcategories NthCplLoc; and NtthlLocilg of CplLoc, consisting
of those objects of CplLoc; which are Noetherian (respectively, Noetherian and “algebraizable,” that
is, isomorphic to the completion of a local algebra essentially of finite type over k).

Reminder on arc spaces
2.3. Arc spaces and the universal arc

Let V be an algebraic variety over k and Z, (V) be the associated arc space. For more details on arc
spaces, see, for example, [CLNS18]. For the sake of simplicity, and since we are primarily interested
in local properties of the arc space, we assume that V is affine. Recall, in particular, that £, (V) is an
affine k-scheme, such that, for any k-algebra A, one has a functorial bijection between the set of A-points
of (V) and the set of A[[t]]-points of V.

We denote the k-algebra of regular functions on V (respectively, on £ (V)) by I'(V) (respectively,
I'(V)w). The universal arc on 'V is the unique morphism of k-algebras Ay : T'(V) — I'(V)[[?]], f —
2jsoAv i (f) - t/ with the following property: for any k-algebra A and any A-point of Z.,(V), that
is, any morphism of k-algebras 0: I'(V),, — A, the corresponding A[[t]]-point of V is obtained by
composing Ay with the morphism I'(V)w[[7]] — A[[t]], ;50 fj -/ = X;500(f;) - t/. We will
often write A = Ay if the involved variety is clear from the context.

In case V = A} = Spec(k[Xi,...,Xy]), we set X; ; := AAQ,J-(Xi). The X; ;’s are algebraically
independent over k and one has I'(V),, = k[(Xi,j)ls_iI%In]- Moreover, for any F € k[Xy,..., X,], one

JE

has

D Ann (Pt =F|[ Y Xi -t
720 j=z0 l<i<n
In case I'(V) is presented as the quotient of k[ X1, ..., X,,] by an ideal i, then I'(V), is presented as
the quotient of k[(X; j)1<i<n] by the ideal i., generated by {Aa»_;(F)}Freg, where G is any generating
JjeN ’ JjeN
family of i. Moreover, the following natural diagram is commutative:

k[Xlwu’Xn] F(V)
Ay Ay

k(X ] —— T(V)w[[2]]
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2.4. Nondegenerate and constant arcs

Let y € L (V), with residue field k(). The image of the generic point (respectively of the closed
point) of Spec(x(y)[[z]]) by the induced morphism Spec(x(y)[[#]]) — V is called the generic point
v(1) (respectively, the special point or the origin y(0)) of y. Let V5" be the singular locus of V. The
arc 7y is said to be nondegenerate if it does not belong to ZLu, (V*"8) ¢ Zn (V). In other words, y is
nondegenerate if and only if its generic point does not belong to V5", The arc 1 is said to be pseudo-
constant if y(0) = y(n), and constant if the induced morphism I'(V) — «(y)[[¢]] has its image in k(y).
Any constant arc is pseudoconstant; the arc k[X;] — k(X1 ;)jen[[?]] defined by X; = 3 ;o8 X1, - )
is an example of a pseudoconstant yet not constant arc on A}{. Note, however, that if y is such that y(0)
is a closed point of V, then vy is constant if and only if y is pseudoconstant, since then the image of
I'(V) — «(y)[[t]] is algebraic over k, hence contained in k(7). In particular, in case V is a curve, any
nonconstant arc on V is necessarily nondegenerate.

Definition 2.5. Let y € Z,,(V)(k) be a nondegenerate arc. A finite formal model of 7y is an object A
of NtthlLocfg, such that there is an isomorphism (in the category TopLoc, ) between O_(v) , and

A[[(ui)]]ien-

The Drinfeld-Grinberg-Kazhdan theorem ([GKOO, Dri02]) states that in case dim(V) > 1, any
nondegenerate k-rational arc y on V admits a finite formal model.

Moreover, any object A" of NthCplLoc,, such that Og_ (v, is isomorphic to A’[[(v;)]];cn in
the category TopLoc,, is in fact an object of NtthlLocilg: indeed, if A is a finite formal model of
v, by Gabber’s cancellation theorem (see [BS17a, Theorem 7.2]), there exist nonnegative integers n
and m, such that A’[[vy,...,v,]] and A[[uy,...,u,]] are isomorphic. On the other hand, if A’ €
NthCplLoc, is such that A’[[u]] € NtthlLocilg, then A’ € NtthlLochg; this is a consequence of
Zariski’s simplification lemma (see [BS18, Section 5.6]).

Some facts about curve singularities
2.6.

Let us now consider a pointed k-curve (C,c), that is, C is a k-curve and ¢ € C(k). Since we are
only interested in local properties, without restricting the generality of the arguments, we may in any
circumstances replace C with a Zariski open set of C containing c. In particular, we may assume that C
is affine and that c is the only singular point of C.

2.7. Primitive parametrizations and multiplicity of a germ of curve

We, hereafter, assume that the singularity at ¢ is analytically irreducible, in other words, that the
normalization of the local ring O¢ . is a domain.

In particular, any choice of an isomorphism 6 between the normalization of @/C\c and k[[t]] in
turn induces an injective morphism pg: @?\ﬁ — k[[#]]. Such a morphism will be called a primitive
parametrization of the germ (C, c). The integer min ({ ord;(pg(f)) : f € 5;7} \ {0}) does not depend
on @ and is called the multiplicity u(C, ¢) of the germ. A morphism p: @/C\c — k[[t]] is a primitive
parametrization if and only if

min({ord, (p()) : f € G|\ {0}) = u(C.0).

More precisely, for any two primitive parametrizations p;, p, of the germ (C,c), there exists an
automorphism ¢ of k[[]], such that ¢ o p| = p5.
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2.8. Multiplicity of an arc centered at a singular point of a curve

Let p: 55\0 — k[[t]] be a primitive parametrization of the germ (C, ¢) and ch be the maximal ideal
of O¢ .. For any k-extension K and any morphism y* : @’C\c — K[[#]], such that y*(m/?—c:) # {0}, there
exists a unique positive integer N and a unique automorphism ¢ of K[[¢]], such that y* coincides with the
composition of i o p with the endomorphism of K[[¢]] induced by ¢ + ¢V . The integer N is called the
multiplicity of y* and denoted by u(y*). Note that the datum of a local morphism y*: O¢ . — K|[[¢]],
such that y*(‘)@) # {0} is equivalent with the datum of a K-arc on C, centered at ¢, and not entirely
contained in ¢. This allows us to define the multiplicity u(y) of an arc y € Lo (C)° := Lo (C)° \ {c}
(here, £ (C)¢ denotes the set of arcs centered at ¢, and we still denote the constant arc at ¢ by ¢) by
considering the multiplicity of the «(y)-arc induced by y.
For any positive integer N, we set

On = {y € Zo(CO)"° @ u(y) =N}

Note that any two elements y;,y, € Oy (K) are connected by an automorphism of K|[[z]]. Then,
the arguments in the proof of [BS17b, Lemma 3.2] can be directly adapted to prove the following more
general result.

Lemma 2.9. Keep the previous notation. Let N be a positive integer. Letyy, v, € Oy (k). Then @ml
and @mz are isomorphic (in the category TopLocy, see Section 2).

2.10.

Let us choose a presentation of the curve C = Spec(k[Yy,Y1,...,Y,]/1), that is, the ideal i of
k[Yo, Yy ...,Yp] defines C as a closed subscheme of the affine space Ai“. We may and shall assume
that the singular point c is the origin o of Ai”, and that any element of the set {Yp, Y1, ..., Yy} induces
a nonzero regular function on C.

The closed embedding of C into the affine space Ai” induces a surjective morphism 5;{::) =

k[[Yo,Y1,....Ye]] — 50: with kernel generated by i. Composing this morphism with a primitive
parametrization p: O¢ . — k[[t]] gives an £ + 1-tuple of power series (Yp, 0(1),Yp 1(f), ..., Yp (1)) €

k[[11°*", such that ming<;<¢{ord, (¥, ;(#))} = u(C, c) and
VFEei, F(Y,,:(t))o<i<e=0.

Conversely, any ¢ + 1-tuple (Yo(¢),Y:(2),...,Ye (1)) € k[[£]]°*", such that ming<;<¢{ord, (Y;(1))} =
u(C,c) and

VF ei, F(Yi()o<i<e =0
is induced by a primitive parametrization. More generally, one has the following result.

Proposition 2.11. Let k be a field, (C, c) a germ of curve, and N a positive integer. Let p be a primitive
parametrization of (C,c). Let K be an extension of k and (Yo(1),Y,(1),...,Ye(1)) € K[[1]]°*", such
that ming<; <¢{ord, (Y;(¢))} = N - u(C, ¢) and

VF ei, FYi(t))<i<e =0.

Then there exists an automorphism y of K[[t]], such that for 0 < i < €, one has Y;(t) = ¢ (Y,,i(tV)).

From now on, we denote by n := u(C, ¢) the multiplicity of the germ. We set X := ¥ and, up to a
permutation of the coordinates, we may assume that n = ord, (X (¢)). We also denote m; = ord, (¥;(¢))
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for 1 <i < ¢. Letus note that, by a suitable choice of a primitive parametrization p, we may assume that
the associated ¢ + 1-tuple of power series (X, (¢), Y, 1(1),...,Yp ¢(2)) € k[[]]°+" satisfies Xp(t) =1

With this notation, we observe that, for N € N, if the £ + 1-tuple (X(¢),Y1(2),...,Ye(2)) is as in
Proposition 2.11, then ord, (X(¢)) = N - n and ord; (Y;(¢)) = N - m;, for 1 <i <.

3. Arc schemes and valuations

In this section, we first recall some general definitions and facts about the subsets of the arc space
of a variety associated with valuations or contact order conditions. Then we take a closer look at the
particular case of curves. In particular, we will study the maximal divisorial sets of the arc scheme of a
curve, and we will present two important facts for the sequel of this article: a presentation (up to radical)
of the prime ideal defining a maximal divisorial set (Corollary 3.16) and the invariance of the formal
neighborhood for rational arcs in a dense open subset of a maximal divisorial set (Corollary 3.19).

3.1. The semivaluation associated with an arc
Let V be an affine k-variety. In this paper, we adopt the following terminology regarding (semi)valuations.
Definition 3.2. A (k-)semivaluation on V is amap v: I'(V) — N U {+co}, such that

1. v(k) = {0}

2.Vf,ge(V), v(fg)=v(f)+v(g)
3.V g e T(V), v(f+g) = nf(v(f), »(2))
4. v(0) = +oo.

It is a valuation if, moreover, v~! ({+c0}) = {0}.

The center of a semivaluation v is the prime ideal {f € I'(V) : v(f) > 0} (or the associated
schematic point of V).

A valuation v on V is divisorial if there exist a normal k-variety W birational to V, a prime divisor
E on W, and a positive integer N, such that v is the restriction on I'(V) of the valuation N - ordg on
k(W) =k(V).

Let vy € Z»(V) be an arc, with residue field «(y). Then y induces a morphism of k-algebras
v*: I'(V) — k(y)[[#]]. Composing with ord;, one defines, following [Ish05], a k-semivaluation ord,
on V. Note that ord, is a valuation if and only if y* is injective, that is, if and only if the generic point
of y is the generic point of V. Such arcs are called fat arcs in the literature. Note that any nonfat arc on
a curve is necessarily a constant arc.

An elementary yet crucial fact is that the semivaluation associated with an arc “increases by special-
ization,” as expressed by the following proposition (see [Ish05, Proposition 2.7]).

Proposition 3.3. We keep the preceding notation. Let y1, 7y, be elements of ZL(V), such that vy, is a
specialization of y1, that is, it lies in the closure of y1. Then

VfeIl(V), ordy (f) <ordy,(f).

3.4. Contact loci in arc spaces

Let F C V be a closed subscheme of V, defined by the ideal f  I'(V). Then the contact order ordg (7y)
of y with F is the integer N, such that ™ generates the ideal (y*(f)) in x(y)[[t]], or +co in case
v*(f) = {0}, that is, in case v is entirely contained in F. Note that ordr (y) = ordgwa(y) only depends
on the underlying closed set supporting F' and not on the schematic structure of F. One sets

Cont™ (V,F) := {y € Zu(V) : ordp(y) = N};
Cont>N (V, F) := {y € Zu(V) : ordp(y) > N}.
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Note that Cont=" (V, F) is the closed subset of Z.,(V) defined by the ideal

(Ai(f))o<i<n-1-
fef

Also, Cont™ (V, F) is the intersection of Cont=" (V, F) with the open set

Jtan(n =0}
S ef

and is thus locally closed.
The following fact, firstly observed in [ELMO04], follows from a computation in local (étale) coordi-
nates.

Lemma 3.5. Let V be a smooth k-variety, E be a prime divisor in 'V, and N be a positive integer. Then
the set Cont=N (V, E) is irreducible. In particular, Cont™ (V, E) is also irreducible and it is a dense
open subset of Cont=N (V, E).

Remark 3.6. Let C be a k-curve and ¢ € C(k) be an analytically irreducible point. Let C be the
normalization of C and ¢ be the preimage of ¢ in C. Let N be a positive integer and y € Z(C)€ \ {c}
be an element of @y . Let ¥ € % (C) be the unique lifting of y to Z.(C). It then follows from the
definition of the multiplicity of a nonconstant arc centered at ¢ that ¥ € Cont™ (C, {¢}). Note also that
the constant arc {¢} lies in Cont=" (C, {¢}) for any N.

3.7. Maximal divisorial sets in arc spaces

Let V be an affine k-variety. Being given v a semivaluation on V trivial on &, one defines the closed set
Ny (v) of Z» (V) as the Zariski closure of the set {y € Zo(V) : ordy, = v} (which is nonempty by
[IshO5, Proposition 2.11] in case v is a divisorial valuation, and by [Mor(09, Proposition 3.12] in general).

In case v is a divisorial valuation, and following [Ish08], Ay (v) is called the maximal divisorial
set associated with v. By op.cit., it may be described as follows: take a resolution 7: W — V of the
singularities of V, such that the center of v on W is a divisor E, and let N be the positive integer, such that
v = N - ordg. Then Ny (v) coincides with the closure of the image by Z. (7) of the set Cont™ (W, E),
and hence, also of the set Cont>" (W, E). In particular, Ny (v) is irreducible by Lemma 3.5. We denote
by nv,, or 7, its generic point. It follows from the definitions and Proposition 3.3 that ord,,, = v.

3.8.
Let v be a semivaluation on V. Let us consider the subset Dy (v) of £ (V) given by
Dy (v) :={y € Zu(V) : Yf € T(V), ord, (f) > v(f)}.
The following lemma collects some basic properties connecting the different subsets of the arc
scheme associated to valuations that we have defined.
Lemma 3.9. Let us keep the preceding notation. Then the following assertions hold true:

(i) Let v be a semivaluation on V. The set Dy (v) is the support of the closed subscheme of Lo (V)
defined by the ideal

fv(v) = (Ao(f), ..., Av(f)—l(f)>f er(v):

(ii) Let v be a divisorial valuation on V. Then the set Ny (v) is an irreducible component of Dy (v).
In particular, if p,, is the prime ideal of I'(V)e corresponding to the generic point of Ny (v), then
rad(jy (v)) C py.

(iii) Let v be a divisorial valuation on V. Let f € T'(V), such that f # 0. Then A, ¢y (f) does not
belong to the ideal p, of T' (V).
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Proof. Part (i) directly follows from the definition of ord,.

As for part (ii), by its very definition, Dy (v) contains {7 € Zo(V) : ordy = v}, thus also its closure
Ny (v). Since v is a divisorial valuation, Ny (v) is irreducible. Let i be the generic point of an irreducible
component of Dy (v) containing Ny (v). Let y be an arc with ord,, = v. Then  is a specialization of 7.
Thus, by Proposition 3.3

VfeT(V), ord,(f) < v(f).

Since n € Dy (v), and by the very definition of Dy (v), one infers that ord,, = v. Hence, n € Ny (v),
thus, 7 is the generic point of Ay (v), which shows part (ii).

Let us prove part (iii). We argue by contradiction and assume that there exists f € I'(V) with f # 0,
suchthat A, () (f) € p,.Inparticular, forany y € Ny (v), the ") _coefficient of y* ( f) vanishes. Since
¥ € Dy (v), one infers that ord, (f) > v(f). Taking y = 7, gives a contradiction since ord,,, =v. O

Remark 3.10. As a straightforward consequence of part (ii), we see that for any divisorial valuation v
on V, the following properties are equivalent:

1. Ny (v) is a proper subset of Dy (v).
2. Dy (v) is not irreducible.
3. There exists a semivaluation v’ on V, such that

VfeT V), v(f)<v'(f)
yet Ny (v') is not contained in Ny (v).

See [Ish08, Theorem 4.3] for an example of such a divisorial valuation v when V is the affine plane A2,
In case V is a curve, we shall see that for any divisorial valuation, one has Ny (v) = Dy (v).

The case of curve singularities
3.11.

Let us keep the assumptions and notation from Section 2.6; in particular, C is an affine k-curve and
¢ € C(k) is the only singular point of C, and is analytically irreducible. For any divisorial valuation v
on C centered at ¢, our aim in this article is to compare the formal neighborhood of the generic point
of the maximal divisorial set MV¢(v) with the formal neighborhood of a generic element of the set of
k-rational points of N¢(v).

Let p be a primitive parametrization of (f,?) Then it induces a valuation

v: feTI(C) — ord;(p(f))

on C, centered at ¢, which is a divisorial valuation. The following result is well-known.

Lemma 3.12. Let us keep the preceding notation. Let p. be the maximal ideal of T'(C) corresponding to
the singular point ¢ of C. Then any k-semivaluation v’ on C centered at c is either the semivaluation v,
which factorizes throughT'(C) [p. = k or a divisorial valuation of the form N -v with N a positive integer.

Note that the constant arc {c} is the only element y € Z(C), such that ord, = v..
Lemma 3.13. Let us keep the preceding notation. Let N be a positive integer.

(i) The set Oy coincides with the set {y € Z»(C) : ordy =N - v}.
(ii) One has:

Dc(N -v) ={c} Un'>n Onr.
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(iii) For any arbitrary nonempty family {f:}ier of nonzero elements f; € I'(C), such that v(f;) > 0,
one has

De(N-v) = {y € Zu(O) : Vi€ Lordy(f}) = N-v(f)}.
Oy ={y € Zu(C)¢ : VieLord,(f)) =N v(f)}.

(iv) One has the equality Ne(N - v) = De(N - v).

Remark 3.14. In particular, one sees that Nz (v) coincides with the set of arcs %, (C)¢ centered at c,
that is, centered at the singular locus of C. In particular, the latter set is irreducible. This is the well
know-fact that through an analytically irreducible curve singularity there is a unique maximal irreducible
family of arcs (Such families are called Nash components in Ish08.).

Proof. As for part (i), let y € @y . Since ord, is invariant by any automorphism of K[[¢]], by Section
2.8 and the definition of v, we have ord, = N - v. Conversely, if ord, = N - v, since ord, is a valuation,
v is nonconstant, and since ord,, is centered at ¢, y also is; by the previous argument, one has u(y) = N.

Part (ii) is a direct consequence of part (i) and Lemma 3.12.

Let us now prove part (iii). By part (ii), it is enough to prove the property for ®p . One inclusion
follows directly from part (i). Let us show the other inclusion. Let f € I'(C) be a nonzero element, such
that v(f) > 0 and y € Z(C)¢ be an arc centered at ¢, such that ord, (f) = N - v(f). We have to show
that y € ®y. Since v is centered at c, ord, is also centered at c. Since ord,, (f) < +oo, by Proposition
3.12, we deduce that ord, = N’ - v for some positive integer N'. From ord, (f) = N-v(f) and v(f) > 0
we deduce that N' = N.

Now for part (iv). By Lemma 3.9 part (ii), it suffices to prove that the set D¢ (N - v) is contained in
Nc(N -v).Lety € De(N - v); thus, for every f € I'(C), we have N - v(f) < ord, (f). By Proposition
3.12, either ord, is the semivaluation which factorizes through I'(C) /p. = k or there exists a positive
integer N’, such that ord, = N’ - v; in the latter case, we deduce that N < N’. By part (i), Remark 3.6,
and Section 3.7, one deduces that y € Ng(N - v). O

3.15.

The following corollary provides a presentation (up to radical) of the prime ideal pp ., of I'(C)s defining
the generic point 17 ., of the maximal divisorial set N¢ (N - v).

Corollary 3.16. For any nonempty family { f; }ic; of nonzero elements f; € T'(C), such that v(f;) > 0,
the prime ideal py ., of T'(C)w corresponding to the generic point of No (N -v) is the radical of the ideal

<A0(fi)’ ce. ’AN'V(f;)fl(‘fi)>i€]'

Moreover, if f € T'(C) is a nonzero element, such that v(f) > 0, then Ay .,.5)(f) € PN -

Proof. The first assertion follows from Lemmas 3.9 part (i) and 3.13 parts (iii) and (iv), the second one
from Lemma 3.9 part (iii). O

Example 3.17. Let f be the polynomial f := X3+ X*+3X3Y-Y3 of k[ X, Y] and C = Spec(k[X,Y]/{f))
be the associated affine k-curve. It admits the primitive parametrization (X, (1) = £3,Y, (1) = t* +1°).
In particular, the multiplicity of the germ is n = ord, (X, (¢)) = 3. The valuation v of C induced by the
primitive parametrizationis givenby f € I'(C) + ord, (f (X, (¢),Y,(?))). Then the prime ideal of I'(C)o
defining the generic point of the maximal divisorial set N¢ (v) is p,, = rad({Xo, X1, X2, Yy, Y1, Y2, Y3)) =
rad({Xo, X1, X2)). Moreover, X3 does not belong to p,,.

3.18.

As a direct consequence of Lemmas 2.9 and 3.13, we can affirmatively answer the first part of
Question 1.3.
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Corollary 3.19. Let us keep the preceding notation. Let N be a positive integer. Then Oy is a dense
open subset of the maximal divisorial set Nc (N - v). Moreover, for any y1,v, € On (k), k-algebras
O, )y, and Oz, (c) y, are isomorphic (in the category TopLoc,, see Section 2).

Proof. In view of Lemma 2.9, the only thing remaining to show is that ®y is an open subset of the
maximal divisorial set Nz (N -v). But by Lemma 3.13 part (ii), one has @y = D¢ (N-v)\ D ((N+1)-v),
thus, ® is open in D¢ (N - v) which allows us to conclude. O

4. A suitable coefficient field of the formal neighborhood of the generic primitive arc on a curve
singularity

Let (C,c) be an algebraic pointed k-curve. In this section, we provide an explicit presentation of a
coefficient field of the formal neighborhood of the generic primitive arc in £, (C), with extra properties
(see Proposition 4.8 for more details). This will allow us in Section 6 to obtain a description of this formal
neighborhood which may be naturally interpreted in terms of (some of) the infinitesimal deformations
of the arc, which is a key point in the proof of our comparison theorem.

4.1.

We first introduce some generic notation and a definition. Let R be a k-algebra, J be an ideal of R, and
B be a prime ideal of R containing J. Let (A, M) be the localization of R/J with respect to P, and

let (A M 7) be its completion, with residue field k4 = «3. Let t: R — A be the composition of the
natural morphism R — A with the completion morphism A — A. Recall that a coefficient field in A
is a subfield K of A, such that the quotient morphism p7: A — «; induces an isomorphism K —yy -

A
Since R is a k-algebra, such a coeflicient field exists by Cohen’s theorem (see, e.g., [Sta21, Tag 032A]).

Definition 4.2. With the above notation, an algebraic presentation of a coefficient field of Aisa k-algebra
morphism p: R — A, such that pz0p = pzocand B C Ker(p).

Remark 4.3. If p: R — Ais an algebraic presentation of a coefficient field of A, _then Ker(p) = B,
p(R) is a domain, p(R) N MW 7 = {0}, and Frac(p(R)) C A is a coefficient field of A. In fact, it is easy

to see that the datum of an algebraic presentation of a coeflicient field of Ais equivalent to the datum
of a coefficient field of A. We adopt this definition because it is convenient for the characterization of a
coeflicient field suited to our aim.

Let 7: R — Frac(R/%P) be the composition of the quotient morphism R — R /P with the canonical
injection R/P — Frac(R/$P). Then r factors through R — A — k4, giving a natural isomorphism from
ka = k7 with Frac(R/%B). The composition of the quotient morphism p 7 with the latter isomorphism
is denoted by 7.

Remark 4.4. By construction, one has 7 o« = &. Thus, a k-algebra morphism p: R — A, such that
P c Ker(p) is an algebraic presentation of a coeflicient field if and only if 7 0 p = 7.

In order to unpack the above definitions a little bit, note that, identifying p with the induced morphism
R/ — A, one has the following commutative diagram:

Px
R« ‘ A K3

|

R/PB ———— Frac(R/B)
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where the leftmost vertical arrow is the quotient morphism and the lower horizontal arrow is the natural
inclusion. In our situation, we will have a rather explicit description of Frac(R /%) and the morphism 7
is to be understood as a technical device to consider the reduction of an element of A in an explicit field
rather than in the a priori abstract residue field « ;. Let us now give a basic example: take R = k[(X;)ieN],
I = {0} and P = (Xp,...,Xn-1). With the notation of the previous section, it corresponds to the
generic point of N¢ (N - v), where (C,¢) = (A!, origin). Then for the most natural choice pg of p, the
above diagram reads as follows (all the injective arrows are the natural inclusions):

k[(X)ieN] > k((X)isn) [[Xo» - - Xn_1]]

V//J&///
.

k[(Xisn] © k((Xi)i=n)

Xo=--=Xn_1=0 Xo=-=Xny_1=0

Of course, there are other possible “less natural” choices for p, for example, choose any family (¥;);>n
of elements of the maximal ideal of k((X;);>n)[[Xo,...,Xn-1]] and set p(X;) = X; +Y; fori > N.
Roughly speaking, in the case of a general curve singularity, our aim will be to construct an algebraic
presentation of a coefficient field of the formal neighborhood of the generic primitive arc that is “as
natural” as pg in the above situation.

4.5.

We now come back to our algebraic pointed k-curve (C, ¢). We work with the notation and under the

hypotheses of Sections 2.6 and 2.10. We denote by p a primitive parametrization of (C,/?) Let v be

the divisorial valuation induced by p as defined in Section 3.11. In particular, p, is the prime ideal

of the ring I'(Zw(C)) = k[(X))jen, (Yi’j)lgﬁf]/iw corresponding to the generic point 7¢,, of the
€

J
maximal divisorial set V¢ (v). In a slight abuse of notation, we also denote by p,, its unique preimage

in k[(X;)jen, (Yi jh<i<e] containing ic.
JjeN

Remark 4.6. For the sake of simplicity, all the results and proofs in the present section and Sections 6
and 7 are written for the valuation v defined above. However, everything remains valid for a positive
multiple N -v of v. Up to a few minor exceptions which will be duly indicated, it suffices to replace in the
statements and the proofs each occurrence of v by N - v, each occurrence of n by N -n, each occurrence of
m; by N -m; (1 <i <{),and each occurrence of Y, ; (1 <i <) by Yz(vf\i])’ where Y;{\l.”(t) = Y,,,,-(tN).

Recall that n = ord, (X (¢)) is the multiplicity of the germ (see at the end of Section 2.10). We consider
the k-algebras

1
R = k[(X});eN, (Yi,j)lféﬁé’s X_n]

1
and R := k[(X))jsn. Yijh<i<e, o]
Jjzm; Xn

For any F € k[X,Y1,...,Y,], let (F;)jen (respectively, (Fj?y)jeN, respectively, (FJ.Z"’O)jeN) be the
family of elements of R (respectively, R>Y, respectively, R=") defined by the relation

DUF = F| Y Xt | Y Yy : @.1)

j=0 70 70 L<i<t
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respectively
ZFJ.ZV~lj:=F ZXj'tjs(ZYi,j'tj) ,
j>0 jzn jzm; 1<i<t
respectively
ZFJ.Z"’O -t/ = F| X, - ", ( Z Y ~tj) ) 4.2)
j=z0 1<i<e

In particular, (the extension of) i, (in R) is the ideal of R generated by the elements { Fi;Fet, je N}.
We call iZ” the ideal of R>Y generated by the elements {FJ.ZV; Feti,je N}, and i2"° the ideal of R=”

generated by the elements {F].Z"’O; Feije N}.

4.7.
Let g, be the ideal of R given by ((X;)o<j<n, (Yi,j) 1<i<¢ ). By Corollary 3.16, p, is a prime ideal of
0<j<m;
R/is and
P, =rad(q, + 1) = rad(q, +i2"). 4.3)

In order to study the formal neighborhood of 7¢,, in £ (C), we shall work on R/iw.
From now on, and until the end of the section, we use the notation of Section 4.1, with J := i, and
P :=p,.. The following proposition is the main result in this section.

Proposition 4.8. With the preceding notation, there exists an algebraic presentation p: R — A of a
coefficient field of A, such that for every j > n, one has «(X;) = p(X;).

Remark 4.9. The morphism p will be explicitly constructed. However, for the application of the
proposition in Section 6, only the properties of the statement (and their consequences, see, for example,
Remark 4.10) are needed.

Remark 4.10. Assume that p is a morphism as in the statement of Proposition 4.8. Then Ker(p) = p,,
(Remark 4.3). In particular, Ker(p) contains ¢, and /13", and for every F € i, one has by (4.1):

F Zp(Xj)~tf, ( Z p(Yi;) -tj) =0. (4.4)
jzn jzm; 1<i<t
4.11.

In the rest of this section, we will state and prove some technical results leading to the proof of Proposition
4.8. First, observe that the k-algebras R/p, and R /+/iZ” are isomorphic. The next two results will
provide a better understanding of the latter quotient ring.

Lemma 4.12. We keep the preceding notation. There exists an automorphism of the k-algebra R>Y
mapping 12" to %" and fixing X; for j > n.
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Proof. There exist elements {H;};>1 in k[(X});>n] [Xin], such that

n

Z&¢EJWW1+Z%?¢N=WWJ+ZMW1

j=n j=1 j=1

Let uf(u) be the image of ¢ by the inverse of the isomorphism k[(X.,-)jZn][XL][[u]] —

KLX))=nl (511 mapping uto 1+ (14 2y H; - 1),
Let {?i,j}l_gig be the family of elements of R>Y defined, fori € {1,..., £}, by the equality

Jjzm;
D Vigul = 3 Y b))
Jjzm; Jjzm;
The sought-for automorphism maps X; to X; for j > nand Y; ; to Zj forl <i<{andj>m;. O

For the next proposition, recall that the Y, ;(¢)’s are the explicit formal series induced by our choice
of a primitive parametrization p and of an embedding of our germ (see Section 2.10 for our assumptions
in that regard).

Proposition 4.13. We keep the previous notation. Let ¢ : k[ Xy, (Y; jh<i<c, X_l,,] — k[u,u""] be the

Jzm;
morphism of k-algebras mapping X, to u™ and such that 3. ; s, (Y j) -t/ =Yp i(ut) for 1 <i < L.
Then ¢ induces an isomorphism between k[X,, (Y; jh<i<e, XL]/\/ifoV’O and a subring of k[u,u™"]
jzm; "
whose fraction field equals k(u).

In the proof of the proposition, we will use the following well-known result, the proof of which, we
include for the convenience of the reader.

Lemmad4.14. Let 9: C — D be a morphism of k-algebras. Assume that C is reduced and that, for every
algebraically closed k-extension K of k, the induced map 9x : Homy_a1s(D, K) — Homy_aj5(C, K) is
onto. Then 9 is injective.

Proof. Since C is reduced, it suffices to show that any prime ideal of C contains Ker(#). Let ¢ be a
prime ideal of C and K be an algebraically closed extension of Frac(C/c¢). Then the quotient morphism
C — C/c induces an element 7 € Hom(C, K) with kernel ¢. By assumption, 5 factors through ¢, thus
Ker(9) c ¢. O

Proof of proposition 4.13. Since (t",Y,,1(t),...,Yp ¢(t)) is a Puiseux parametrization of (C, c), one
has, for every F € i,

Fle(X,) -r”,(z so(Y,-,,)-rf) = PO Yot (ut),. Yy @) =0 (45)
Jzmi l<i<t
>v,0 >v,0

Thus, by the definition of the family (Fj— )jeN, one has 3’ 720 o(F B ) -t/ =0, and we deduce that

the kernel of ¢ contains i>"°, thus also ViZ"*® since k [u, u~"] is a domain. Therefore, ¢ factors through

1 1 2>2V,0 —
Y kX, (Y size, 31/ 127 — klu,u™'].
n

Jjzm;

We now show that i is injective by applying Lemma 4.14.
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Let K be an algebraically closed k-extension. A morphism

1 . >v.0
k[ Xn, (Yi jhzice, —1/{i&"° > K
jzmi Xn

is entirely and uniquely determined by a collection of elements 8, € K*, (8:,j)o<i<¢ € K, such that one
Jjzm;
has

Il
e

VFei, F Bn~t",(z ,Bi,]--rf)
I<i<t

Jjzm;

Let us fix such a collection. We have to prove that there exists w € K*, such that 8, = " and
Ypi(w ) =X jom, Bij-t/ forl <i <l
Since K is algebraically closed, one may find u € K*, such that 8,, = u™. Thus, one has

Jjzm;

VF ei, F|(u)", ( > Bigu - (m)f) =0. (4.6)
1<i<t

By Proposition 2.11, the £ + 1-tuple (t", (Z jom Bi ! 'tf) can be obtained from

lsisf)
(t", (Yp,,-(t))1 i< f) by composition with an automorphism of K[[¢]]. Since such an automorphism
has to fix 7", it is of the form ¢ — {t, with  a n-th root of unity. Hence, for any 1 < i < ¢, we have

D Bij T =Y, (L. @.7)

Jjzmi

Now we take w = { - u.
It remains to show that the fraction field of Im(y) is k(u). For 1 <i < £, writeY), ; (1) = X ;5 pijt,
where p; ; € k and p; ,,, # 0.

Since (t", (Z jem; Pisj t/ ) | <_<€) is a primitive Puiseux k-parametrization of (C, c), one has
Y S

ged(n, {j2m; : 1 <i<¢tp;;#0})=1

Thus, one may find, for 1 <i < ¢, integers ji,, ..., ji, 2 m; with p; j #0forl < g <randag € Z,
aij ... ,air,bil - 7bir € N, such that
r r
ap-n+ Zaiq “Jig =1 +Zbiq *Jig- 4.8)
q=1 g=1

Thus, since ¢(Y; ;) = u’ p; j, one has

with § € k*, and we conclude that u € Frac(Im(¢)), hence, also u € Frac(Im(y)). O

Remark 4.15. When considering the valuation N - v instead of v (see Remark 4.6), in addition to making
the modifications described in the remark, each occurrence of k() in the statement and the proof has
to be replaced by k(u'V).
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In the proof of the last statement, do not replace n by N - n, and m; by N - m;, and multiply (4.8) by
N in order to conclude that u”¥ € Frac(Im(g)).

Lemma 4.16. Let us keep the preceding notation (recall that we use, in particular, the notation of
Section 4.1). Let o be the inverse of the automorphism in Lemma 4.12 and n’: R=” — Frac(R/p,) be

the composition n’ = 1 o (RZ¥<>R) o 0. Then ker(n’) = \iZ"° and Im(n’) = R/p,.

Proof. Observe that the ideals p, and \/iZ” +q, of R coincide. Thus, 7 factors through the quotient
morphism R — R/q, and the kernel of the factorization is v/iZ” + ¢, /q,.. On the other hand, the compo-
sition of R>Y < R with the quotient morphism R/, is an isomorphism mapping /iZ" to ViZ” + g, /q,.
Thus, the image of 70 (R=”<>R) is R/p,,, the kernel of 7’ = 710 (RZ¥ — R)ociso! (\/iET) = \/ifo_"’o,
and the image of 7’ is R/p,. |

Proposition 4.17. We keep the preceding notation. Then there exists a morphism of k-algebras
o' R®Y — A, such that

oT Op/ =7
o forevery j > n, p’'(X;) = u(X});
o Ker(p’) contains \iZ"°.

Proof. The situation is described by the following diagram.

Frac(R/p.)

By Proposition 4.13, the morphism of k-algebras ¢: R — k[(X})j>n, U, u~'] sending X; to X;
for j > n, X, to u” and such that 3’ ;,,, ¢(Y; ;) -/ =Y, ;(ut) for 1 < i < ¢ induces an isomorphism
between R=” /+/iZ”° and a subring of k [(X;)j>n»u, u~'], with fraction field k((Xj)j>n,u). By Lemma
4.16, the previous isomorphism induces an isomorphism 6 of Frac(R/p,) with k((X;);>n,u) which
maps i’ (X;) to X; for j > n, n’(X,) tou™ and such that 3 ;-,,, 6(x’(Y; ;)) ) =Y, (ut)for1 <i <.
Let v € Frac(R/p,) be the preimage of u by 6. Since v"* = n'(X,) = 7(«(0(Xy))) and o (Xp) = Xy
(Lemma 4.12), by Hensel’s lemma, there exists a unique element i/ € A, such that 4" = «(X,) and
7(U) = v. Now we define the morphism of k-algebras p”: R>—A by setting

p'(X;) = o (X)) = u«(X;) forj>n,
and ijm,. p'Xij) -t/ =Yp(U-1) forl <i<¢.

Since 7(U) = v, one has 7 o p” = 7’ (by the the above description of the isomorphism 6), as well as
p’(X;) =u(X;) forevery j > n.

Let us finally prove that vi>"° c ker(p’). It suffices to show that p’(R=") is a domain and ker(p’)
contains i2"°.

Let us show that p’(R>") is a domain. By construction, it is clear that p’(R>") is a subring
of k[(¢«(Xj))j>n,U]. If the elements (¢(X;));j>n,U were algebraically dependent over k, then their
images (7 o «(X;) = n'(X;))j>n, v by 7 in Frac(R/p,) would also be. By the above description of the
isomorphism 6: Frac(R/p,) = k((Xj)j>n,u), this is not the case. Therefore, p’(R*>") is a domain.

Let us show that ker(p’) contains i2""°.
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For every F € i, one has

p'|F Xnt”(z Yi; 't"') =F|p'(X,) - 1", ( Z P,(Yi,j)‘tj)
1<i<¢ 1<i<t

Jj=m; Jjzmi

= P, (a0 i)
0.

Thus, by the definition of (FJ.ZV’O)jeN (see (4.2)), we have ¥ ;5 p'(Fj.ZV’O) -t/ =0, and we deduce that
iZ"° c ker(p’). o

Remark 4.18. When considering the valuation N - v instead of v (see Remark 4.6), in addition to making
the modifications described in the remark, replace k ((X;);>n, t) by k((X;)j>n -, u') in the proof.

Proof of Proposition 4.8. For the ease of the reader, the diagram below shows the morphisms involved
in the proof:

— T Frac(R/p,)

Let7:=mo(R*—R)andp :=p’ oo '.Sincetop’=n"and 7 =n" oo, onehas rop = 7.
Moreover, since i>"° ¢ Ker(p’) and o-~! maps iZ”° to iZ”, one has iZ” ¢ Ker(p).

Letp: R — A be the morphism inducing p on R=" and such that p(X;) = 0for j < n, p(¥; ;) =0
forl <i<{andj <m; Sincetop=m,7(X;) =0for0<j<n 7(;;)=0forl <i<¢ and
0 < j < m; and the same holds for 7, one has 7 o p = . Moreover, by its very construction, Ker(p)
contains q, +12” and p(R) = p(R=") = p’(R>") is a domain, thus, Ker(p) contains v/q, + 13" = p,,.

The remaining assertion of Proposition 4.8 is a straightforward consequence of Proposition 4.17,
recalling that, for any j > n, one has o (X;) = X. O

5. Quasi-deformations of nondegenerate arcs and presentations of complete local rings

In this section, we will present two technical results which will be useful in order to obtain an explicit
“deformation-theoretic” presentation of the formal neighborhood at the generic primitive arc of a curve.
We will first state and prove them here, under a general form, and then in Section 6, we will show that
they may be applied in our setting. In this section, we temporarily deviate from the preceding notation.

5.1.

The first result may be interpreted as a statement about the existence and the uniqueness of some specific
“infinitesimal quasi-deformations” of a nondegenerate arc. It is an application of a version of Hensel’s
lemma for an arbitrary set of variables stated in [BMCS, Proposition 4.2], which we first recall.
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Proposition 5.2. Let (A, M 4) be a complete local ring with residue field k. Let I be a set and Y = {Y;};¢1
be a collection of indeterminates. Let J be a set and {F;; j € J} be a collection of elements in A[Y].
Fory € A!, we denote by Jy, the A-linear map A" — A’ induced by the Jacobian matrix [dy, F;]|y=y,
and by Fly-, € A7, the J-tuple (Fily=y; j € J).

We assume that there exists y© e Al such that:

1. One has F|Y:y(o> = O(mod E):R_A).
2. The k-linear map k' — «’ deduced from Jy© by reduction modulo M 4 is invertible.

Then there exists a unique element (Y;) € Al, such that:

1. One has Fly-(y,) = 0.
2. Foreveryi € I, one has ); = ygo) (mod M 4).

Proposition 5.3. Let K be a field, m and € be positive integers, Fi,...,Fr be { elements of
K[Xi,....Xm. Y1,..., Y], and J be the Jacobian matrix (dy,F,)i<r<¢. Let x(t) = (x;())1<i<m and
1<i<t

y(t) = (yi(1))1<i<¢ be elements of K[[t]], such that:

Vi<r<t F(x@),y(t)=0 and det(J)(x(t),y(1)) #0.

Then there exist { nonnegative integers Ni,...,N¢ and € elements E, R E of the ring
K[[1[X1,..., X, Y1, ..., Ye], such that the following holds:

1. For any K-algebra A and any elements (X(1),Y(t)) € (A[[t]])™*(, one has
V1 <r <t F(X(1), Y1) =0=V1 < r <€ F.(X(1),Y(r)) = 0.

2. Let (C,Mc) be a complete local K-algebra with residue field K, and let X(t) = (X;(t)i1<i<m
(respectively, Y(t) = (Y;(t))1<i<¢) be an m-tuple (respectively, an (-tuple) of elements of C[[t]]
whose image in (C [Mc) [[t]] = K[[t]] is x(¢) (respectively, y(t)). Then there exists a unique family

(Zi,j) 1<i<e of elements of Mc, such that, setting Z(t) = > Zij-t , we have

Jj=>ord; yi (1) j=>ord; y; (1) l<i<t

Vi<r<é¢ deg F (X(1),Y(t) + Z(r)) < N,.

Remark 5.4. The integers N, and the elements F, will be explicitly constructed in the proof. In
case £ = 1, by a slight modification of the proof, one sees that one can take }71 = F; and Ny =
ord, (3, F1 (x(1), y(1))).

We also note that assertion (1) expresses the fact that the arc scheme associated to the K-scheme
defined by the F;’s on the one hand, and the arc scheme (or Greenberg scheme) associated to the K[[#]]-
scheme defined by the E’s on the other hand (see [CLNS 18, Chapter 4, Proposition 3.17 & (2.1.4)]),
are isomorphic.

An infinitesimal deformation of the arc (x(¢), y(¢)) in the aforementioned arc scheme with value in
an object (C, M) of CplLocy is the datum of two families (W j)1<i<m and (Z; j)1<i<¢ of elements
of Mc, such that

Vi<r<t Frx()+W(Q),y() +Z(1) =0. (5.1)

Thus, assertion (2) may be interpreted as follows: starting from the datum of two families of ele-
ments of ¢ as above (not necessarily satisfying (5.1)) there is at most one way of perturbing the

(Zi,j) 1<i<e inorder to obtain a deformation of the arc (x (), y(#)); and, in general, it is only possi-
Jjzord; y; (1)
ble to obtain after this perturbation a “quasi-deformation”, that is, a deformation up to a finite number of

terms, as expressed by the condition on the degrees in assertion (2). Note that this allows us to recover
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a weak form of the Drinfeld-Grinberg-Kazhdan theorem [GKO00, Dri02], more precisely, the fact that
the formal neighborhood of a rational nondegenerate arc is the quotient of a power series in countably
many variables by a finitely generated ideal. This is due to the fact that the condition on the degrees of
the F; provide finitely many equations, that are a priori power series in the involved variables, and not
necessarily polynomials (which would recover the full Drinfeld-Grinberg-Kazhdan theorem).

Proof. Consider the matrix

M(t) = (t““" vilt) -ﬁyiFr(x(t),y(f)))l

<r<t’
1<i<

i<t
Since det(J)(x(t),y(¢)) # 0, one also has det(M(t)) # 0. Thus, there exist £ X £ matrices A(¢) and
B(t) with entries in K [[¢]] and determinant in K [[¢]]*, and nonnegative integers N1, . . ., Ng, such that
A(t) - M(t) - B(t)™' = Diag(tM, ..., tNo).

Let [ﬁ]lsr <¢ be the (-tuple of elements of K[ [f]][X1, ..., Xm,Y1,...,Y¢] defined by the relation
[Frli<r<e = A(t) - [Frli<r<e. It easily follows that assertion (1) holds.

Let us consider the set of variables (Z; ;) 1<i<¢ and
Jzord; (yi (1))

Z(t) = Z Zij-t/ = (Zi()1<i<e-
Jzord; (yi (1)) 1<i<t

Forl <r <fandj >0, let I:”T] € C[(Z;,;)] be defined by the relation

D UFg ) = FL(X(0), Y(0) + Z(1)).
j=0

We also consider the following ¢-tuple of elements of C[(Z; ;)][[]]:

I<r<t

Thus, we aim to prove the existence of a unique solution with values in ¢ of the system of
polynomial equations F.. = 0 with unknowns Z; j (i.e., the equations obtained by requiring that all
the t-coefficients of any component of the {-tuple F.. be zero). We seek to apply Proposition 5.2.
By hypotheses and (1), for 1 < r < ¢, one has f;(x(t),y(t)) =0.Thus, Z;; =0for1 <7 < ¢ and
J = ord;(y;) is a solution of the reduction modulo M of the system. Now we have to study the Jacobian
matrix of the system at this solution. Let Frzef = [Fr(x(t),y(t) + Z(t))]1<r<¢ = 0 be the reduction of

the system fz. = 0 modulo Mic. By the Taylor formula, we have

Fd = J(x (1), y (1)) - Z(x) + H(1), (5.2)

where J := (6?77/ 6Yi) and the z-coefficients of the components of H(¢) contain only terms of

1<r<t
1<i<¢t

degree at least 2 in the Z; ;’s. By the definition of the F;’s, one has
T(x(1).y(1)) = A1) - T (x (1), y (1))
Now, setting Z°(¢) := (ijo Z; j—ord; i (1) * tj)lSig, one has

J(x(1),y(0) - Z(1) = M(1) - Z°(1);
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therefore
J(x(1),y(1)) - Z(1) = Diag(t™', ..., tN0) - B(1) - Z°(1).

Since det(B(1)) € K[[t]]*, we deduce from the former relation that the K-linear map

14

¢
1_[ K2z i) n K%=Ni o (2i,5) o 0ij(2)

i=1 i=1
defined by
[ Z 0i;(2) ' icice = T(x(2),y(0) - [ Z zij i<ize

J=Nj Jj=>ord; y; (1)

is invertible. Thus, Proposition 5.2 guarantees the existence and the uniqueness of a family

(Zi,j) 1<i<c of elements of M which is a solution of the system FZ. = 0. This concludes the
Jjzord: (yi (1))
proof of (2). |

5.5.

We recall, here, the following known result about completions of local rings (see, e.g., [{FD20, Lemma
10.12] and [Hai21, Theorem A and Corollary 3.9]).

Lemma 5.6. Let (A, 4) be a local ring. We denote by A the completion of A and M3 its maximal
ideal. Assume that M 4 /imi is a finite dimensional vector space. Then A is Noetherian and a complete

local ring, and the natural map Ma — M3 induces an isomorphism M4 / ﬁﬁi;ﬁm a3/ EIR%.

The next technical proposition, whose output is a presentation of the involved completion A, will be
applied in the next section to obtain a presentation of the formal neighborhood of the generic primitive
arc of a curve singularity that is suited to our needs.

Proposition 5.7. Let B be a ring, X = {X,, } e be a finite set of indeterminates, and i be an ideal of
B[X]. We assume that:

(A) The radical p of the ideal (X) +1{ is prime.

Let A be the localization of B[X]/j with respect to the image of p and A be the completion of A. Let
Pz A — k3 be the quotient morphism and t: B[X] — A be the morphism obtained by composing
the quotient morphism B[X] — B[X]/], the localization morphism B[X]/i — A, and the completion
morphism A +— A. We also assume that:

(B) The set {t«(Xy)}wea generates the cotangent space img/ﬂﬁ% ofX.

(C) There exists a morphism p: B — A, such that p(B) N Mz = {0}, the induced morphism
Frac( p(B))p—;m 7 is an isomorphism and p 3 o p coincides with the morphism obtained by compos-
ing the natural morphism B — B[X] with B[X]—%Xﬁk;.

(D) There exists a morphism €: B — Frac(p(B))[[X]], such that

Vb e B, ¢&(b)-p(b)eX).

(E) If0: Frac(p(B))[[X]] — A is the morphism of complete local Frac(p(B))-algebras mapping X,
to 1(X,,), then £(j) c Ker(0).

Then Ker(0) coincides with the ideal {¢(j)) of Frac(p(B))[[X]] generated by (i), and 0 is surjective.
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Remark 5.8.In the statement, we still denote by & the unique extension of & to B[X] —
Frac(p(B))[[X]] mapping X,, to X,, and whose restriction to B equals . Note that by (D), for any
P € B[X], one has (P) — p(P(0)) € (X).

Also note that the extension of the morphism p of the statement to B[X] given by P — p(P(0))
contains p in its kernel (see the proof below) and is thus an algebraic presentation of a coefficient field
of A.

Proof. By assumption (E), 6 induces a morphism 6 : Frac(p(B))[[X]]/{e(d)) — A which is injective
if and only if (g(j)) = Ker(0). In order to conclude it suffices to construct a morphism ¢: A —
Frac(p(B))[[X]]/{£(j)), such that 8 o ¢ is an isomorphism and ¢ is onto, since this would prove that
@ is an isomorphism, hence, g also is.

First, note that for any P € B[X], one has p(P(0)) = 0 if and only if P € p. Indeed, by assumption
(C), and since Ker(p 3 o ¢) = p, one has p(P(0)) = 0 if and only if P(0) € p. But since (X) C p, this is
equivalent to P € p.

Second, we remark that £(j) is contained in (X). Indeed, since | C p, this is a consequence of Remark
5.8 and the previous fact.

We consider the morphism &: B[X] — Frac(p(B))[[X]]/{e(j)) obtained by composing & with the
canonical quotient morphism. Clearly, £ factors through B[X]/j. Let us show that it also factors through
the localization (B[X]/),. If P € B[X] is such that £(P) € (X), then &(P) € (X) + ((})) = (X), thus
p(P(O)) € (X), hence, p(P(0)) = 0. By the above remark, one has P € p. Therefore, & factors through

(B[X]/])p Since Frac(p(B))[[X]]/{e(j)) is a complete local ring, £ also factors through A. Let
@: A Frac(p(B))[[X]]/{e(j)) be the factorization. In order to prove that 6o ¢ is an isomorphism,
we only have to show that it is surjective, since any surjective endomorphism of a Noetherian ring is
an automorphism. Thus, all in all, it suffices to show that 6 and ¢ are surjective. ] Denote by (C,Wic)
the complete local ring Frac(po(B)) [[X]]/(&(j)), and note that Mc = (X). Since A and C are complete
local rings, one only needs to prove that the morphisms 9t X/sm% — Mc /EIRZC and A/M7; — C/Mc

induced by ¢ are surjective, and similarly for 6. First, let us show that the local morphism ¢ induces a
surjective morphism at the level of residue fields. For any b € B, by (D) and the very definition of £, one
has £(b) € p(b) + Mc. On the other hand, by the very definition of ¢, one has £(b) = ¢(¢(b)), thus,
@((D))) € p(b) +Mc. In case p(b) & Mc, one has «(b) ¢ M 3 since ¢ is local (by construction), and
o(t(b)™") € p(b)™! + M. We conclude that the morphism ;\\/‘JJZX — C/Mc = Frac(p(B)) induced
by ¢ is onto. On the other hand, since fisa morphism of Frac(p(B))-algebras and by (C), we see that
the morphism C/Mc — A/M 3 induced by 6 is surjective.

Finally, by the very definitions of ¢ and 9, for any w € Q, one has (,O(L(Xw)) = X, and 0(X,,) =
t(Xy)- By assumption (B), and the fact that the X, clearly generate EUEC/SIR one concludes that the
morphisms 9 /EIRZ — Mc/ME and M /ME — M /EJJL induced by 6 and ¢ are surjective. That
concludes the proof O

6. A deformation-theoretic interpretation of the formal neighborhood of the generic primitive
arc of a curve singularity

6.1.

In this section, we recover the setting and notation from Section 4. As already explained, our aim is to
provide a presentation of the formal neighborhood of Z(C) at its generic primitive arc 7¢_,, which can
be naturally interpreted in terms of infinitesimal deformations of the corresponding (7¢., )-arc. This
will be a consequence of the existence of a coefficient field with specific properties (Proposition 4.8)
and of the technical results in Section 5, whose assumptions hold in our setting, as we will check. As
in Section 4, all the results and arguments hold, with the corresponding modifications, if we consider a
valuation N - v of C, for N > 1 (see Remark 4.6).
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Let p be a morphism as in the statement of Proposition 4.8. We set K := Frac(p(R)) A which is a
coefficient field of A (Remark 4.3). For simplicity, we set

xp(1) = Y p(X)) -, ypi(0) = Y p(Yi) -t and y, (1) = (pi(Dhi<ize.

j=n Jjzm;

Recall that, by Remark 4.10, one has
VF €1, F(xp(t),yp(t)) =0. 6.1)

In other words, (x,(2),y,(t)) defines a K-arc on C, which is nondegenerate (see Section 2.4), since the
image of this arc by p 7 is the nonconstant «,,. ,-arc on C induced by 7c¢, .

For the sake of convenience, set Yy := X. By a standard application of “Elkik’s trick” (see, e.g.,
[BS17a, Section 4.2]), there exist elements Fi,...,Fy € i, an {-minor A of the Jacobian matrix
[0y, F; ]0<,<§, and an element H of the quotient 1deal (F1,..., Fg) @ i, such that H(x,(1),y,(1)) # 0

and A(xp(t) Y,(#)) # 0. In fact, by Lemma 6.7, one has
det([dy; Fi(xp(1),y,(t)]1<i.j<e # 0. (6.2)

Remark 6.2. Let (A, M 4) be any object of CplLocg . Then for any (x4(7),y4(¢)) € MA[[1]]5*", the
conditions

VE et, F(xa(t)+x,(2),y4(2) +yp(t)) =0

and VI <r<{ Fo(xa(t)+xp(2),y4(2) +y,() =0

are equivalent. Indeed, H(xa(?) +x,(1),y 4(1) +y,(2)) € A[[¢]] is not a zero divisor, since it reduces
modulo M 4 to H(x,(1),y, (1)) # 0.

6.3.

We will first prove that the complete ring A is Noetherian and obtain a suitable system of generators of
its cotangent space (which is, in fact, a basis, though we do not need this fact for our present purposes;
see Remark 6.15 below). The result is a particular case of Reguera and Reguera-Mourtada’s general
study of stable points and their cotangent space (see, in particular, [MR 18, Theorem 3.4] combined
with [Reg09, Theorem 3.13]; see also [Reg18, Moul7]); as pointed out by the referee, this may also
be seen as a consequence of [CdFD22, Theorem 8.1] by considering the projection associated to
k[X] — k[X,Y1,...,Y]. We provide a direct proof in our setting for the convenience of the reader,
and since our viewpoint is more deformation-theoretic than in the above references and in some sense
in the same vein as the arguments that are to be used later in the section.

Proposition 6.4. Recall that we retain the notation of Section 4. The ka-vector space M4 /EIRE‘ is
generated by the images of the set {X;}o<j<n.

In particular, A is Noetherian and the set {e(X;)}Yo<j<n generates the cotangent space of A.
Proof. Recall that A is defined to be the localization of R/i. with respect to p,. By (4.3), My is
generated by the image of p, = rad(ic + ((Xj)o<j<n, (¥i, j) 1<i<t )) C Rin A.

<j<mi

Let b be the ideal of A generated by the set

{ (X )}0<]<n U{ (Yl ])} 1<i<t U{ (Yl ]) p(Yl J)}1<l<€ (63)

<j<m; Jzm;
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We first show that the ideal generated by ¢(p, ) is contained in ). Let P € p,, seen as a polynomial in

the indeterminates (X;)o<j<n, (¥;,;) 1<i<¢ With coefficients in R=”. Let us set Q := P(0) € R*”, then
0<j<m;

it suffices to show that ((Q) lies in b. Since P € p,,, and by the definition of the latter ideal, we deduce

that Q € 4/iZ”, in particular, p(Q) = 0 by Remark 4.10. Let us write Q = Q(Yi,j), where Q is seen as a

polynomial in the indeterminates {Y; ;}1<;<¢ with coefficients in T := k[(X;);>n] [XL]. By Proposition
i~ 7). .

4.8, p and ¢ coincide on T. Thus, the relation p(Q) = 0 may be rewritten as L(é) (p(Y;,;)) =0,
which shows that ¢(Q) (¥;,;) lies in the ideal of «(T)[(Y;,;)] generated by ¥; ; — p(¥; ;). Thus, 1(Q) =
L(é)(L(Yi’j)) lies in the ideal generated by the ¢(Y; ;) — p(Y; ;), in particular, ¢(Q) lies in b.

Since the image by the projection A> A / ?JRE‘ of the ideal generated by ¢(p,) is M4/ EIR%, we deduce
that M4/ EIRIZA is generated by the image of the set (6.3). In the remainder of the proof, we still denote by
p and ¢ the composition of p and ¢ with the projection morphism A A /EIRZ. Forevery 1 <i < ¢, we
set Z; j =u(Y; ;) —p(Yij) € EIRA/EIRE\ for j > m;and Z; ; == u(Y; ;) € EIRA/EIRE\ for0 < j < m;.

Forevery 1 < r < ¢, we have

0=uF,)=F, Z UXj) -t +x,(0), Zzi,j-t/+yp,i(t)

0<j<n Jj=0 l<i<t

Applying the Taylor expansion formula, we obtain, for 1 < r < £, the relation

0= Fr (3 (1), 3, (1)) + Ox Fr (5o (1), 3, (1) - > u(X;) -t/

0<j<n

+ Y O F (0,3, (0) - D Ziy -t

1<i<t 7>0

For 0 < r < ¢ (and setting ¥y := X for the sake of convenience), set J, (¢) := [0y, F(y,(1))] 1<j<¢ - By
0<i#r<¢
(6.1), one obtains l

[OxF(xp (0,3,(D] - Y t(X)) 1] ==Jo(t) - | D Zij -1

0<j<n Jj=0 l<i<t

Multiplying this equality by the adjugate matrix of Jy(¢) and using Lemma 6.8 below, we obtain

Z u(X;) -t/ |[det(J; (1)1 <i<e = —det(Jo(1)) - Z Zi -t/ . (6.4)

0<j<n j=0 l<i<t

By Lemma 6.7 below (recall that for any 1 < i < ¢, one has ord,(yo(f)) < ord,(y;(f)) < +oo, see
Section 2.10), we know that

ord, (det(Jo(?)) < ord, det(J;(z)), 1 <i < ¢. (6.5)

Thus, we deduce from (6.4) that in M 4/ wii the elements Z; ; lie in the x o-vector space generated by
the {L(Xj)}0§j<n.
The last assertion of Proposition 6.4 is a consequence of Lemma 5.6. O

Remark 6.5. Equation (6.4) and the fact that det(Jo(¢)) # O (i.e., 6.2) are in fact sufficient to show the
first assertion of the proposition. However, (6.5) allows to show that {¢(X;)}o<;<n is in fact a basis of
the cotangent space (see Remark 6.15 below).
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6.6.

We state and prove two elementary lemmas used before.

Lemma 6.7. Let k be a field, £ be an integer, Fi,...,Fr be € elements of the polynomial ring
k[Yo,Y1,...,Ye], K be an extension of k, and y(t) = (yo(t),...,ve(t)) be € + 1 elements of K[[t]].
For 0 < r < ¢, set J,(1) = [0y, Fj(y(2))] 1<]<[ Assume that F,(y(t)) =0, 1 < r < ¢, there exists

ro € {0, ..., €}, such that det(J, (t)) # 0 and ordt(yo(t)) > 1. Then det(Jy(2)) # 0.
Assume moreover, that ord,(yo(z)) < ord,(y;(z)) < 400, 1 < i < €. Then ord,(det(Jy(1))) <
ord; (det(J;(1))), 1 <i < ¢.

Proof. Differentiating the relations F, (y(¢)) =0, 1 < r < ¢, one obtains

Jo(0) - [yi(Dh<ie + yo(0) - [0 Fi(y (D)) |1 <i<e =

Multiplying by the adjugate matrix of Jy(¢) and using Lemma 6.8 below, one finds the relation

det(Jo(1)) - [yi(D]1<i<e + yo (1) - [det(Ji (1) |1 <i<e = 0. (6.6)

If ro = 0, there is nothing to do. Otherwise, one has ro € {1,...,¢}, since y((#) # 0 and k[[7]]
is a domain, (6.6) for i = ro shows that det(Jo(¢)) # 0. The last assertion is also a straightforward
consequence of (6.6). O

Lemma 6.8. Let [m; j]1<i<a be a matrix with d rows and d + 1 columns with coefficients in a ring B.
0<j<d
For 0 < s < d, let My be the adjugate matrix of [m; ;] 1<i<a . Then one has
0<j#s<d

My - [mioli<i<a = [det([mi,j] l<i<d )] .
O<j#r< l<r<d
More generally

My - [misli<i<a = [det([mi,j] I<i<d )] ,
0<j#rs(r)<d/) |1<r<a

where Ty is the unique increasing bijection from {1, ...,d} t0o {0,...,d + 1} \ {s}.

Proof. 1t is a direct application of the expansion of the determinant along a column. O

6.9.

From now on, we use the following notation:

K[[X=°,Y="]] := K[[(X; )0<j<n7(Ylj) 1<i<e 11, and  K[[X™*, Y]] .= K[[(Xj)o<j<n, (Vi i <i<el]-
0<j<m;
The following result uses Proposition 5.3 (i.e., Hensel’s lemma for an arbitrary set of variables) in
order to “eliminate” the ¥; ; for 1 <i < ¢, j > m;.

Proposition 6.10. Let us keep the preceding notation, in particular, K := Frac(p(R)) C Aisa coefficient
field of the local ring A. We denote by I the morphism of complete local K-algebras K[[ X=*,Y<*]] — A
mapping X to «(X;) for0 < j <nand¥; jtou(Y; ;) for1 <i<€and0 < j<m,.

Then, there exist £ nonnegative integers Ni,...,N¢ and € elements ﬁ, R E of the ring
K[[t]1[X,.Y1,...,Ye], such that the following holds:
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1. For any K-algebra A and any elements (X (1),Y(1)) € (A[[t]])'*¢, one has
VI<r<e Fo(X(1),Y(t) =0Vl <r <, F(X(1),Y(t) =0.

2. There is a unique family (Vi j)i1<i<e of elements of the maximal ideal of K[[X<*,Y<*]], such that,
Jjzm;
forevery 1 <r < ¢, we have

degtﬁ Z X]' -tj+xp(t), Z Yi7j‘lj+yp,i(t)+ Z yiJ‘lj < N,.

0<j<n 0<j<m; Jjzm;

3. For1 <i<tandj>m onehasI1(Y; ;) = (Y ;) — p(Yi ;).

Proof. Assertions (1) and (2) are a straightforward consequence of Proposition 5.3 with m = 1, the F}.’s
are those introduced at the beginning of the section, and C = K[[X<*, Y*<*]], taking

X(t):= Y X;ot/+ ) p(X)) -/ and V()= D Yjtl4 ) p(¥p) -, 1<i<e

0<j<n j=n 0<j<m; j=zm;

Indeed, for 1 < r < ¢, we have F; (x,(1),y,(7)) = 0 (by (6.1)) and
det([dy,; Fi(xp(1),y,(1)]i<ij<e) #0  (by (6.2))).
Assertion (3) is also a consequence of Proposition 5.3, applied now to the complete local ring A, taking

X(1) = Z (X)) -t/ +x,(t) and  Y;(1) := Z WY) -t +y,0(1), 1<is<C

0<j<n 0<j<m;

Indeed, on the one hand, since i, C ker(¢), and using assertion (1), one has, for 1 < r < ¢,

Fo Y Xy o0, Y ¥ p) o7 =0.

j20 Jj20 1<i<t

For1 <i <{andj > m;set Z; ;= u(Y; ;) —p(Y: ;). Since pz ot = pzop (definition 4.2), Z; ; € M7
and, by Proposition 4.8, the above expression reads, for 1 < r < ¢,

Fol D) x| >0 i)t wypi(t)+ Y 2o = 0.

0<j<n 0<j<m; jzm; l<i<t

On the other hand, the second part of this proposition implies that, for 1 < r < ¢, one has

degtH F; Z Xj ~tj+xp(t), Z Y[,j'tj+yp’[(l‘)+ Z y[’j'tj < N,.

0<j<n 0<j<m; j=m; l<i<t

Thus, by the very definition of IT and Proposition 4.8, we have for 1 <r < ¢

deg, Fr| > (X)) -t/ +x(), > ¥ -t/ +ypi(6)+ D TV p) -1/ | <N,

0<j<n 0<j<m; j=zm;
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Thus, for 1 < r < ¢, the conditions

deg, Fr| > (X)) -t 4xp(0,| D i) t) 4y, i)t 4 D iyt <N,

0<j<n 0<j<m; Jzmi l<i<t

hold forboth z; ; = Z; j = «(Y; ;) —p(Y; ;) and z; ; = I1(Y; ;). Then we may conclude by the uniqueness
in Proposition 5.3. O

6.11.

We can finally obtain our “deformation-theoretic” presentation of the formal neighborhood of the
primitive stable arc (see Remark 6.13).

Theorem 6.12. Let us keep the preceding notation, in particular, K := Frac(p(R)) C Aisa coefficient
field of the local ring A. Let e: R — K[[X<*,Y<*]] be the morphism of k-algebras, such that

o for j = n, &(X;) = p(X;);
oforl<i<tlandj>m;e(Y;;)=p;;)+ Vi where (V; j)i<i<c is the family of elements of the
Jjzm;
maximal ideal of K[[X<*,Y<*]] given by Proposition 6.10;
o for0<j<mn e(X;)=X;;
oforl <i<{and0 < j <m;, S(Yi,j) =Y.

Then:

1. The morphism I1 of Proposition 6.10 induces an isomorphism
K[[X=", Y= ]]/(e(i)) = A.

2. Let ¢: K[[X=*,Y]] — K[[X=*,Y=*]] be the morphism (in the category TopLocg, see Section 2)
mapping X; to Xj for0 < j <n Y jtoY;jfor1 <i<tland0 < j <my andY; jto ), for

1 <i<{landj = m;. Leti by the ideal of K[[X=*, Y]] generated by the t-coefficients of the formal
power series

F Z Xj -t +x,(1), Z Yi,j~tf+yp,i(t)+ZYi,j~tf , Fei

0<j<n 0<j<m; j=m;
Then ¢ induces an isomorphism (in the category TopLocg )
KX Y]/i = KX, Y]] /(e (i)

Proof. We apply Proposition 5.7 with the following identifications: the ring B in Proposition 5.7 will

be R=”, the family X will be {X}o<j<n U {Yi,j}olsigg (thus, B[X] = R), the ideal j will be i, the
<j<m;

morphism 6 will be II, and the other identiﬁcatior{s are self-explanatory. Assumption (A) holds by

(4.3), and also do assumption (B) (by Proposition 6.4) and assumption (C) (by Proposition 4.8). As for

assumption (D), let us note that (X;) = p(X;) for j > nand &(Y; ;) = p(Y; ;) + Y, jfor1 <i < ¢,

J = m and Y ;€ ((Xj)o<j<ns (Yi’j)ol <i<¢ yby definition (cf. Proposition 6.10). Let us prove that

<j<m;

assumption (E) also holds. For every 1 < r < £, we have that IT o e(F, (X (¢), Y(¢))) equals

O F| Y Xt axp@,| D) Yoy -t/ + ) (0 + Vi) - o/

0<j<n 0<j<m; Jjzm; 1<i<t
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Now, by Propositions 4.8 and 6.10, this equals

FL D) -+ 3 x| DT i)+ Y )

O<j<n jzn O<j<m; Jjzm;

0.

I<i<t

This shows that (E) holds.
Let us now show the second part of the theorem. Note that {&(is)) is the ideal of K[[X<*,Y<*]]
generated by the 7-coeflicients of the formal power series

F Z Xj -t/ +x,(1), Z Yl-,j-tf+yp,l-(t)+2yi,j-tf , (Fei).

0<j<n 0<j<m; jzm;

Thus, ¢ clearly induces a morphism K[[X<*,Y]]/i — K[[X=*,Y<*]]/{e(ix)). In order to con-
clude, by Lemma 2.1, it suffices to show that, for any object (A, M 4) of CplLocg, the induced map
at (K[[X=*, Y]]/ (A) = (K[[X=*,Y=*]]/(&(ix))) (A) is a bijection.

The set (K[[X<*,Y]]/])(A) (respectively, (K[[X<*,Y<*]]/{e(ix)))(A)) identifies with the set of

elements (x)o<j<n, (¥i,j)1<i<e (respectively, (x;)o<j<n, (¥i,j) 1<i<c ) of MM 4 which satisfy the relations
jeN 0<j<m;

F Z Xj- lj +Xp(l), Z Yi,j- [j +yp,i(t) + Z Yi,j- tj = O, (F € I), (67)

0<j<n 0<j<m; Jjzm;

respectively

FI Y xth4x,0, D it 4y + Y Vijey) - ||=0, (Fei)  (68)

0<j<n 0<j<m; Jjzm;

and ¢ 4 maps an element ((xj)Osj<n, (yi,j)lgigf) to ((xj)Osj<n7 i) 1<i<e » (Vij (xJ))lsise)- But
jeN 0<j<m; j=m;

J <J i
by Proposition 5.3, and arguing similarly as in the proof of part (3) in Proposition 6.10, from relations
(6.7) and (6.8), we may deduce the relations y; ; = V; j(x,y) for 1 <i < £ and j > m;, which shows
that ¢ 4 is bijective and concludes the proof. m

Remark 6.13. For any object A of CplLocg, (6.7) gives us an explicit interpretation of the A-points
of A in terms of (a specific subset of the set of) deformations with values in A of the arc (x, (1), y,(t))

in the arc scheme £ (C).

Remark 6.14. An explicit finite set of generators of the ideal (¢(i)) is given by the union, for 1 < r < ¢,
of the N, t-coefficients of lowest degree of the power series

F, Z Xj -t +x,(1), Z Yijt) +ypu(1)+ Z Vit

0<j<n 0<j<m; Jjzm;

Indeed, by Remark 6.2, relations (6.8) are equivalent to the same relations imposed only on the F;.’s.
One concludes by assertions (1) and (2) of Proposition 6.10.

Remark 6.15. Using (6.7) in case A = K[u]/{u)? is the ring of dual numbers and only for Fi, ..., Fy
(see the previous remark), and arguing as in the proof of Proposition 6.4, one concludes that the classes

of Xy, ..., X,,_1 are a basis of the cotangent space of K[[X<*, Y]]/ i;g, thus recovering the main result
of [MR18] in the case of curve singularities.
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7. Proof of the comparison theorem
7.1.

In this section, we prove Theorem 1.7, under the following more precise form.

Theorem 7.2. Let k be a field of characteristic zero. Let C be a curve and ¢ € C(k), such that
C is analytically irreducible at c. Let v = ord; op be the valuation on C induced by any primitive
parametrization p: Oc.. — k[[t]] of C at c. Let N be a positive integer, N¢(N - v) the maximal
divisorial set associated with N - v, nc.n ., its generic point, and k(N - v) its residue field. Let Oy be
the nonempty open set of N¢(v) defined in Section 2.8. Then there exists a Noetherian complete local
k-algebra M, such that:

(i) The complete local k-algebras @gmvyv and (M®k(v))[[u]] are isomorphic.
(ii) Foreveryarcy € Oy (k), @:;W?V\),y and M[[(u;)iex]] are isomorphic (in the category TopLoc, ),

in other words, M is a finite formal model of y (see Section 2.4).

Remark 7.3. Until the statement and the proof of Proposition 7.6, we assume that N = 1 (see Remark
4.6 for the modifications needed to make the arguments valid in the general case).

We retain all the previous notation. In particular, C = Spec(k[X,Y,...,Y,]/i), p is a primitive
parametrization of C, such that the associated ¢ + 1-tuple of power series is (t", (Y ,,,l-(t)) l<i< {), where

Yy € k[[t]] and ord, (Y, (¢)) = m;. Aisa complete local ring isomorphic to @y:(\T (see Section

.y
4.1), pr k[(X))jen, Vi ji<i<es XL] — A is an algebraic presentation of the coefficient field of A as in
© jeN "

Proposition 4.8, and K := Frac(p(R)) C A is a coefficient field of A (see Remark 4.3).
For the sake of simplicity, we denote by (C, M) the object of TopLocg given by K[[X<*,Y]].
Recall that, by Remark 4.10, one has

VF ei, F(x,(1),y,(1) =0. (7.1)

For any uniformizing parameter u of K[[¢]], write ¢t = ué(u), with 8(u) € K[[u]]* and define the
following elements of C[[u]]:

X(u) = > Xj- uO(w) +x, (ub())
0<j<n
and
and  Y;() = ) ¥ ;- (b)) +y, (ub(w)).
70
Remark 7.4. Letj, be the ideal of C generated by the u-coefficients of the following elements of C[[u]]:
F(X(u), (Yi(u)h<ize), (F€t). (7.2)

Then {,, coincides with the ideal | of Theorem 6.12, and by the same theorem, Alis isomorphic to C/j,,.

Recall that p(X;,) = «(X},) is a unit in A and thus is a nonzero element of K. By Proposition 2.11
applied to (x,(2),y,(7)), there exists a uniformizing parameter u of K'[[u]], such that

X(u) = Z X; - (ub(u)) +u" (7.3)
0<j<n
and V1<i<€ Yi(u)i= ) Yij- b))l +Y,w). (7.4)
j=0

From now on, we fix such a uniformizing parameter u.
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Lemma 7.5. There exists a unique family (v, ), of elements of Wc, such that, setting v = 3.5 v, -u",
one has

deg,(X(u+v)—u") <n-1.

Moreover, let (TJX)OSJ' <n-1 and (Tiyj)l <i<¢ be the families of elements of M¢ defined by the relations
Y j=0

X(u+v)=u"+ Z o u

0<j<n-1

and Yi(u+v)= ZTZJ- ~uj+Yp,,v(u), 1<i<t.
j=0

Then the endomorphism of C defined by
Xj1¥, 0<j<n-1, Y1, 1<i<t, j20

is an automorphism.
Proof. Define (G) € mag by
X(u) =u" + Z X (ub(u)) =u" +ZGf ul.
0<j<n j>0

Consider the homogeneous system of polynomial equations in the variables (v,),>o given by the u-
coeflicients of degree > n of the formal power series

(u+Zvr-ur)"—u"+ZGj‘(u+Zvr‘ur)j.
r>1 Jj=0 r>1

Then v, =0, r > 1 is a solution modulo . Moreover, the linear terms of these polynomial equations
are given by

- Vi_psl + Z J-Gj Vicjr1, k=>n.
1< <k

Since G; € M, Hensel’s lemma guarantees the existence and uniqueness of a family (v,),»1 of

elements of M as in the statement.
Now, from expressions (7.3) and (7.4), one sees that one may write

X(u+v) —u" = Z HY -u/ (mod MZ[[u]])

0<j<n-1
and, for 1 <i <,
_ Y 2
Yi(u+v) =Y, i)=Y HY;-ul (mod ML[[u]]), (1.5)
j=0
where, for 0 < j < n -1, H;( — X; is a linear form in Xp,...,X;j and,for1 <i < {and j > 0,
HY . - Y; jis a linear form in Y; o, ..., Y; j_1. This shows the second part of the statement.

L]
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Now let j;, be the ideal of C generated by the u-coeflicients of the following elements of C[[u]]:

Flut+ > Xiul, (V) + ) Yej-uicice],  (F €d). (7.6)

0<j<n-1 j=0

Since u = u + .5 v, - u" defines an automorphism of the C-algebra C[[u]], C/j, is isomorphic to
the quotient of C by the ideal generated by the u-coefficients of the following elements of C[[u]]:

FX(u+v), (Yi(u+v)<ice), (F€i). (1.7)

By Lemma 7.5, the latter quotient is K-isomorphic to C/j;,. Then Remark 7.4 shows that Ais isomorphic
to C/i,,.
Let Cy = k[[(Xj)o<j<n, (Y, j)1<i<c]]. Note that, since Y}, ; (u) € k[[u]], the formal power series of
jeN

J
(7.6) are elements of C [[u]]. Denote by j; the ideal of Cy generated by the coefficients of these formal

power series. Then by the above result, Ais isomorphic to (Cx/j;) ® K. Note that Cy/j; is an object
of NthCplLoc,.
The following proposition then concludes the proof of Theorem 7.2.

Proposition 7.6. Keep the above notation. Let y be the k-rational arc on C defined by
(N (Y i (tN )1 <i<e). Then Cy /i, is a finite model of y and is cancellable.

Proof. We define functors 1, F», and F3 on the category CplLoc, : for any object (A, M 4) of this cat-
egory, let 71 (A) (respectively, F2(.A), respectively, F3(.A)) be the set of elements (x4 (7), (yi, 4(?))) €
(MA[[£]])7*! with deg, (x4(1)) < N - n — 2 (respectively, with deg, (x4(¢)) < N - n — 1, respectively,
with no extra condition on x 4(¢)) and such that

F(tN " 4+ x4(8), Vpi (1Y) +y;,4(1) =0, (F €1).

In particular, Cy/j; represents F, and @my prorepresents JF3, in the sense that for any object

A € CplLoc,, one has a functorial bijection between HomTgpLoc, (@;wzv\)’y, A) and F3(A). Also,
JF is clearly representable by a quotient M of Cy/j;. Moreover, if x4(¢) € M4[[t]] is such that
deg,(x.4(t)) < N-n—1, there is a unique element a € M 4, such that deg, ((t+a)" +x4(t+a) —t") <
N-n—2.This shows that the functors 7 and A +— Fi(A) x9N 4 are isomorphic. Thus, Cy /j; = M|[[u]]
is cancellable.

Now we claim the following (such a property is also used in [Bou21]): let m > 2 be an integer; for
any x4 (1) € M 4[[2]], there exists a unique element f4 € M 4[[¢]] satisfying the following property:
the image 1™ + % 4() of 1™ + x_4() by the automorphism A[[1]]—=A[[7]],  — ¢+ f4(¢) is such that
Xa(t) € M 4[] and deg, (X 4(1)) < m —2. Indeed, one can check by successive approximations modulo
M4, M2, etc., that the equation

m-2
(t+ faO)™ + Y e (1 fa(D) = 1" +x4(0),
r=0
with unknowns f4(¢) € M4[[t]], a2, ..., am € M 4, has a unique solution.

The above property (for m = N -n) shows that the functors 73 and A +— F1(A) Xﬂﬁz are isomorphic,
thus (Lemma 2.1) that M is a finite formal model of y (remember Definition 2.5 and the remark that
follows it). |
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8. Deformations of arcs on hypersurfaces

In this section, we consider a divisorial valuation v on a hypersurface V (with additional assumptions, see
Section 8.1), and we proceed similarly to the case of curves to obtain in Proposition 8.12 a presentation
of the formal neighborhood of Z,, (V) at the generic point of the maximal divisorial set Ay (v), which
can also be interpreted in terms of infinitesimal deformations of this generic point. Finally, we state in
Question 8.13 a conjectural connection between this formal neighborhood and that of a generic rational
point of Ny (v).

8.1. The setting

LetV={F =0} C Ai\’ = Spec(k[X1,...,Xn]) be an affine hypersurface containing the origin, and
equipped with a divisorial valuation v, centered at the origin. As before, one denotes by p,, the prime
ideal of I'(Z«(V)) corresponding to the generic point ny _,, of the maximal divisorial set Ny (v).

For 1 <i < N, set @; := v(X;). Forany G € k[X),...,Xn] and any d > 0, let G be the d-
homogeneous part of G with respect to the weighted grading on k[ X1, . . ., Xy ] defined by («y, ..., an).
Write

F= Z F@  with F@ £0.

dza
We, hereafter, assume the following:

o F@ is irreducible.
o The valuation v is monomial with respect to the embedding V c AY, by this we mean that, for any
semivaluation v’ on V, one has:

VI<i<N, V(X;)2v(X;)=Vfel(X), v(f)=v(f). (8.1)

Example 8.2. Let F := Xl2 + X23 + Xf € k[Xj, X2, X3]. The origin is the unique singular point of
V and an Eg-type singularity. One considers the action of G,, on V given by 4 - (X1, X», X3) :=
(A5 - X;,4'0 - X5, 2% - X3), which corresponds to an N-grading I'(V) = P, nT(V)p on T (V). Let v
be the G,,-invariant valuation on V defined as follows: let f = 3, N fn € T(V) = @, oy T'(V)n; then
v(f) := Inf{n € N, f,, # 0}. Thus, v is monomial with respect to the embedding V c Ai. Moreover,
a=30and F = F(9.

8.3. Description of p,

We denote the set of variables {X; j}1<i<n (respectively, {X; ;j}1<i<n , respectively, {X; j}1<i<n) by
Jj=0 0<j<a; Jjza;i

X (respectively, X <%, respectively, X =%). Let {F;}en be the family of elements of k[X] defined by

the relation

ZFj-lj =F ZXI"]HIJ-
70 70

and i, be the ideal of k[ X] generated by the F;’s. Thus, Z (V) is isomorphic to Spec(k[X]/ic).
Let {F f"‘ }jen be the family of elements of k[ X =] defined by the relation

DFE = F ) Xi,j.tf)

Jj=0 Jjza;
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and iZ® be the ideal of k[ X>?] generated by the {F =@} ien. In particular, the k-algebras k[X]/(ic +
(X<%)) and k[X>%]/iZ% are isomorphic. Set L >"’(V) Spec(k[X>%]/iZ%). By (8.1) and the
definition of Dy (v), one has:

Lemma 8.4. The support of the closed subscheme Ls>* (V) of ZLo(V) is Dy (v).

The following proposition is the analog in our new setting of Lemma 3.13 part (iv) and Corollary
3.16 in the case of curves, relating the maximal divisorial set Ny (v) with the set Dy (v) and thus
providing an explicit description of the ideal p, corresponding to its generic point iy ,,.

Proposition 8.5. The scheme Z»>* (V) is irreducible. In particular, its support is Ny (v), and one has
Py =rad(ie + (X)) = rad(i2® + (X=)).
Moreover, the natural morphism
ZoZ(V) = Spec(k[(Xi,a)]1/(F“ ((Xia)))
is dominant, and for any i, such that X; appears in F (¥ the preimage of the open set {ox, F (@ (X, o)) #
0} in L>%(V) is an integral scheme.
Remark 8.6. In particular, forany 1 < i < N, such that X; appears in F@, one has dy, F (%) ((Xir,ay)) €

p, and the extension of the ideal p, to the localization k[X][ coincides with the

F((’ ((Xl (1 )
extension of the ideal 1o, + (X <%).

Proof. Write

F in,,-~zf) D NN X ot | =09 DGy, (8.2)

Jjza; d>a j=0 j=0

where G; is an element of k[(X;¢) 1<i<v ]. In particular, Gy = F(“)((Xi,ai)). Let ¥ =

@ <C<a;+j

Spec(k [Xi’m.]/F(“) ((Xi,a,))), which is an integral k-scheme by assumption on F@ Forn e N, set

n>a(v) = Spec(k[(X; J)a 1<<Jl<<‘ly\/ n]/<Gj>0§j£n)'
Note that #,>* (V) = Y and that, for m > n, there are natural truncation morphisms 71, ,, : %, =% (V) —
Z,2%(V) and Z>®*(V) = lim Z,>*(V) by (8.2).

It suffices to address the case where X; appears in F(@). Let Y’ be the dense open set
{0x, F'“((Xi.a,)) # 0} of Y. Let n > 0. The Taylor formula applied to G, shows that there is
an isomorphism of %1 = (V) with a closed subscheme Z,, of &,>* (V) x Spec(k[(Xi,q;+n+1)1<i<N])s
such that 7,41, corresponds to the first projection and Z,, is defined by a relation of the shape

Z Xi, ap4n+l aX,-F(a)((Xi’,a,-/)lsi/sN) =H

i=1
where H, is an element of k[(X; ;) 1<i<y ]. Thus, for any n > 0, there is an isomorphism
a;<j<a;+n
n+1 oY’ )—>7T‘0(Y ) X AN !, such that 41 ,(Y'): 7Tn+1 oY) — ﬂnO(Y ) corresponds to the first
projection. In particular, e o: Zw>%(V) — Y is dominant. Moreover, let U be the open set of Zw (V)
defined by dx, F'“((X;.q;)) # 0. Thus, U N ZLu>*(V) = 7T_0(Y) is an integral scheme. Now, by
Kolchin’s irreducibility theorem [Kol73, Ch. IV/§17/Pr0p051t10n 10], U is dense in Z, (V). Thus,
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ZoZ%(V) is irreducible. Using Lemmas 3.9 and 8.4, one obtains the remaining assertions on Ay (v)
and p,. ]

8.7. An algebraic presentation of a coefficient field

We use the generic notation of Section 4.1 with R = k[X], I = i, and
B :=p, = rad(ic + (X)) = rad(i2® + (X<9)). (8.3)

From now on, and without loss of generality, we assume that the indeterminate X appears in F(@

Proposition 8.8. We keep the preceding notation. Then there exists an algebraic presentation p: R — A
of a coefficient field of A, such that, for everyi > 2 and j > a;, one has 1(X; ;) = p(X; ;).

Remark 8.9. Assume that p is a morphism as in the statement of Proposition 8.8. We adopt the following
notation: for I <i < N, setx, (1) := 3 54, p(Xi j) - /. In particular

F((5.(0) <y ) = 0. (8.4)
Proof. (of Proposition 8.8) First, note that by the description (8.3) of p,,, one has

{L(Xi,j)}olgigN c My (8.5)

<j<a;i-1

For1 <i < Nand0 < j < a; -1, one sets p(X; ;) = 0. In particular, Ker(p) will contain (X=%).
Moreover, for 2 < i < N and j > a;, one sets p(X; ;) = (X, ;).
Now one has to define p(X),;) for j > a;. It suffices to show the following: there exists a family

(X1.))j2ar € A, such that p z(X1 ;) = pz(u(Xy,;)) for j > a1 and

F Z X]yj'lj, Z L(X,"j)'l‘j) =0.
2<i<N

jza j>a;

Indeed, one may then set p(X; ;) = &j ; for j > ;. Then, using, in particular, (8.5), the property
Pi©p = pjotisclear by construction. Moreover, by the definition of p, one has

Z p(Xi,j) 'fj) =0.
1<i<N

Jjzai

F|

Thus, Ker(p) contains i2%, and, therefore, contains iZ%* + (X <) by (8.5). On the other hand,
(P70 P)(0x, F'((Xi.a)) = pz(e(9x, F“ (Xi.a)))

and by Remark 8.6, ((9x, FV ((X;.q4;))) € A*. Thus, also (0%, F9((Xi.a;))) € A%, By Remark 8.6
and (8.3), one concludes that Ker(p) contains p,,.

Let us show the existence of the X} ;’s as above, using Hensel’s lemma for an arbitrary set of
variables, that is, Proposition 5.3.

Let us consider (viewing now the (X} ;)j>q, as indeterminates) the infinite polynomial system
defined by the vanishing of the ¢-coefficients of

Jjza Jjzai

Fl Y &0, ( > uxiy) ~rf) e 1 (A[(X1))j5a 111A1D).
2<i<N
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Note that, since p,, contains iZ%, then X i=Dp X(L(X 1,)), for j > ay, is a solution of the reduction in
k 7 of this system. For j’ > a;, one may write

(9XIJ, F Z Xl’j-lj,(z L(Xi,j)-lj) =lj,(9XlF Z Xl’j'lj,(ZL(Xi,j)-lj) .
2<i<N 2<i<N

jzag Jj>a; jzag JjZza;

Using the weighted homogeneous decomposition F = F(@) 4+ F(@*D 4. this shows that the reduction in
k 7 of the Jacobian matrix of the polynomial system under consideration, evaluated at (p 7(¢(X1,7))j>a»
is upper triangular, and every coefficient on the diagonal equals p 7 (9x, F (@) (((X;.q;))), Which is nonzero
by Remark 8.6. Thus, one may apply Proposition 5.3. O

8.10. A presentation of the formal neighborhood and a conjectural comparison theorem

We fix a morphism p, as in Proposition 8.8, and we set K := Frac(p(R)) C A which is a coefficient
field of A. Arguing, as in the proof of Proposition 6.4, one shows the following. Again, the result may
be seen as a particular case of Reguera and Reguera-Mourtada’s general study of the cotangent space of
stable points [Reg09, Reg18, MR 18], or of Chiu-Docampo-de Fernex’s result [CdFD22, Theorem 8.1].

Proposition 8.11. The «4-vector space I 4 /imﬁ is generated by the images of the set {X; j}o<i<n . In
O£j<ai

particular, A is Noetherian, and the set {t(X; ;)}2<i<n generates the cotangent space of A.
0<j<a;

We set

K[[X1, (X[ h<i<n]] = K[[(X1,);20, (Xi j)2<i<n]].

J<ai

Now, arguing similarly as in Section 6, we obtain the following proposition, the last statement of which,
as in the case of curve singularities, may be interpreted as a “deformation-theoretic” presentation of the
formal neighborhood of the generic point of the maximal divisorial set Ay (v).

Proposition 8.12. Let us keep the previous notation, and set e := ord; (0x, F ((x,,;(¢)))).

1. Let (C,Mc) be an object of CplLoc. Let (X;(t))1<i<n be an N-tuple of elements of C[[t]] whose
image in (C/Mc)[[1]] = K[[t]] is (xp,i ()h<i<n-
Then, there exists a unique family (X j);>aq, of elements of Mc, such that:

deg, | F

Xi(1) + Z Xij- tj,(Xi(f))zsisN)) <e.

Jjza

2. Let IT: K[[X~Y]] — A be the morphism of complete local K-algebras mapping X; j (1 <i < N,
J < aj)to (X ;). Let (X1 j)j>a, be the family of elements obtained by applying the first assertion
toC = K[[X<?]] and

Xi(1) = Z Xi -t + Z p(Xij) -t/

0<j<a; jza;

Then, for j > a1, one has II(X ;) = (X1 ;) — p(X1,).
3. Lete: k[X] — K[[X=Y]] be the morphism of k-algebras, such that
o f0r2 <i< Nand] 2, S(Xi’j) = P(Xi,j)i
o forj 2 ay, &(X1;) = p(X1,;)+ &1
oforl <i<Nandj<a;e(X;;)=X;;
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Then 11 induces an isomorphism

K[[X<]]/(e(iw)) = A

4. Let ¢: K[[X1, (X[ "1<i<n]] = K[[X=]] be the morphism (in the category TopLocy ) mapping
XijtoX;jforl <i < Nand0 < j < a;, and X ; to Xy ; for j > ay. Let i be the ideal of
K[[X1, (X ")<i<n]] generated by the t-coefficients of the formal power series

F xp’l(t)+le’j 'l‘j, )Cp’i(l‘)+ Z Xi,j 'l‘j . (8.6)

Jj=0 0<j<a; 2<i<N

Then ¢ induces an isomorphism (in the category TopLocg )
K[[X1, (X7 <ien]]/i = K[[X™]]/(e(ix))-

Proposition 8.12 then provides a presentation of Aasa quotient of K[[Xy, (X" )<i<n]] whose

relations are given by the 7-coefficients of the formal power series (8.6). Recall that p: k[X] —» K C A
has kernel p,,, thus, it factors through k[ X]/p, . Therefore, setting

D := (k[X]/p)[[ X1, (X[ n<i<n]],

the power series (8.6) may be seen as an element of D[[¢]], and the r-coefficients (H;);>o of this
element belong to the ideal of D generated by {(Xi ;);>0,(Xi j)2<i<n}. Informally speaking, the

J<ai
following question asks whether the formal neighborhood of 7y ,, specializes to a finite formal model of

a sufficiently generic element of Ny (v) (k). To the best of our knowledge, it is open, unless dim(V) = 1
or V is toric.

Question 8.13. Let us keep the preceding notation. Let v = (x;(1)i<i<n € Zw(V)(k) with
ord, (x;(t)) = a;. In particular, y induces a morphism y*: k[X]/p, — k.Is

k[[X1, (de)zgigN]]/W*(Hj»ij

a finite formal model of y?
Equivalently: consider the functor which associates with any object (A, M 4) of CplLoc, the set of

families ((xa,1,7)j>0, (Xa,i,j)2<i<n )of elements of M 4, such that
J<ai

Fxl(t)+ZxA,1,j-tj, )Ci(t)+ Z XA,i,j* tj =0.

j=0 0<j<a; h<i<N

Is this functor represented by a finite formal model of y?

Remark 8.14. The fact that Question 8.13 admits a positive answer does not imply that the answer to
the first part of Question 1.3 is also positive. Let us consider Example 8.2 again and the set of arcs

Ny (v)°(k) = {(xi(D)<i<3 € Zeo(V)(K),  ord; (x;(1)) = i},

which correspond to the set of k-rational points of a dense open subset of Ay (v). Using the %o (G-
x; (1)?
x3(r)°
Ny (v)°(k), the isomorphism class of the formal neighborhood is constant. Now let (x; (¢), x2 (), x3(¢))
and (y1(1), y2(1), y3(¢)) be two elements of Ay, (v)°(k), such that =L 85 + U 85 It would be interesting
to decide whether or not the formal neighborhoods of these arcs are 1som0rph1c

action on Z (V) induced by the G,,-action on V, one sees that, on the subset { = constant} of
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