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ABSTRACT
The adoption by radiologists of deep-learning based solutions
to the bone fracture problem has helped improved diagnos-
tic performances and patient care. The base models behind
these tools were initially designed to solve problems on natu-
ral images, favoring transfer learning between standard image
datasets and sets of radiographs. Those architectures could
yet be made more specific to radiographs using neural archi-
tecture search (NAS). Unfortunately, current NAS approaches
do not benefit from transfer learning. In this paper, we in-
troduce an efficient scheme to exploit transfer learning when
performing NAS. Using our approach, we validate the archi-
tecture tailoring paradigm to radiographs. On a custom frac-
ture classification task, we find a new model with improved
performances and reduced computational overhead over its
counterparts pre-trained on ImageNet.

Index Terms— Neural Architecture Search (NAS), Med-
ical Imaging, Fracture Classification

1. INTRODUCTION

Radiography is the main tool for fracture diagnosis and one
of the most prevalent imaging modality worldwide. Yet, the
reading of radiographs is a demanding task requiring medical
expertise that gets scarcer as the volume of images to analyse
increases. A promising direction to facilitate interpretation
and reduce the prevalence of errors is to assist radiologists
with a computer-aided diagnosis software. The recent advent
of deep learning has made such software capable of improv-
ing the performance of radiologists [9] and even outperform
experts on their own [4, 6].

These systems are usually built on top of existing object
detection frameworks, and reuse long-established convolu-
tional backbones such as ResNet or DenseNet, which were
designed to perform well on natural images datasets such
as CIFAR-10, ImageNet or COCO. Re-using off-the-shelf
models allows them to rely on transfer learning through fine-
tuning, a feature that is key to improve performance when
working with scarce data sources [8]. Tailoring model ar-
chitectures to radiographs using Neural Architecture Search
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(NAS) appears as a promising lead for improved perfor-
mance, and may be a key step towards lightweight archi-
tectures, which are key to make these medical tools widely
available through smartphones or embedded medical devices.
Unfortunately, classical NAS approaches are hardly compati-
ble with pre-training, as they involve training many different
architectures for which no set of pre-trained weights are avail-
able in advance. This makes NAS algorithms impractical in
scenarios where transfer learning is key.

In this paper, we insist on the importance of transfer learn-
ing on a fracture patch classification task. We then introduce a
procedure that reconciles classical NAS approaches and trans-
fer learning in a reasonable setting. Finally, we challenge the
efficacy of the architecture fitting paradigm, and demonstrate
using a plain genetic algorithm that it is possible to assemble
architectures adapted to radiographs that are slightly better
than architectures selected on ImageNet, whilst having less
parameters and multiply-adds.

2. RELATED WORK

2.1. Deep Learning for Fracture Detection

Several deep learning based solutions to the fracture detection
problem have been studied in the literature, but no technolog-
ical breakthrough has clearly emerged so far. All the authors
de facto reuse an off-the-shelf architecture designed and pre-
trained on datasets of natural images, which they fine-tune on
private annotated datasets of fractures. This work is based on
previous studies of Gleamer [4, 6], in which a Mask-RCNN
[7] model pre-trained on COCO, is assembled using the De-
tectron2 framework [23] and fine-tuned on a private internal
dataset of 60,000 radiographs of patients with trauma gath-
ered from 22 institutions and annotated by medical experts.

2.2. Neural Architecture Search

In the last decade, a paradigm shift was observed, from hand-
designing features that can be fed to a machine learning algo-
rithm, to hand-designing architectures of neural networks that
can extract those features automatically. However, designing
neural networks is itself a time-consuming task that requires
domain-dependent expertise. The automatic arrangement



of those architectures through Neural Architecture Search
(NAS) [5], is an interesting way to mitigate this burden.
Several approaches to NAS have been studied in the litera-
ture, from using deep reinforcement learning (RL) [27, 28],
evolutionary algorithms [15, 14] or even fully differentiable
approaches [10]. The inherent training cost of a single deep
learning architecture is a strong limitation of this paradigm.
Early NAS algorithms [14, 28, 27] suffered from impractical
computational costs, requiring up to thousands of GPU days
worth of computing.

Several methods have since been suggested to alleviate
those costs. In particular, a plethora of papers rely on weight-
sharing (WS) [11], a computational trick which allows to
train all the architectures of a search space at once. This WS
mechanism is however poorly understood, and several recent
works suggest that its efficacy in a realistic scenario is limited
[12, 26, 24], due to restricted correlations with real evaluation
scores, and bias in the super-net training that favors certain
architectures at the expense of others. WS can still be partic-
ularly useful in scenarios calling for a quick access to decent
weights for many different architectures. In this paper, rather
than using a super-net to directly conduct NAS, we propose
to exploit a super-net trained on natural images as a generator
of pre-trained weights used to fine-tune architectures on our
fracture classification task.

3. METHODS

In this section, we first introduce our dataset of fracture
patches. We then describe our scheme to combine NAS and
transfer learning from natural images. From there, we in-
troduce the Once For All framework [2], and the genetic
algorithm with which we perform NAS. Finally, we describe
the individual training setup of architectures.

3.1. Fracture Patches Dataset

Due to the complex and wide variety of patterns that can ap-
pear on medical images, medical detection models often re-
quire an associated false positive classification network to im-
prove their specificity [19]. We thus propose to challenge the
architecture tailoring process on a patch classification task.
We rely on the detection model mentioned in Section 2.1 to
create a dataset of diverse and realistic patches. During infer-
ence, the detection model produces bounding boxes of inter-
est, each coming with an associated score, ranging from 0 to
100, expressing the confidence of the network in the presence
of a fracture within the suggested region.

We performed a forward pass on the training images of
our private internal dataset and kept the predicted bounding
boxes with a confidence above 10. This procedure generated
500,000 patches, which we split into a training, a validation
and a test dataset, respectively containing 60%, 20% and 20%
of the samples. Extracting patches solely from the detection
training dataset is necessary for fair model comparisons as it

ensures that the distribution of prediction localization is the
same during training, validation and test of the classification
task. Predicted bounding boxes that had an intersection over
union (IoU) with a ground truth bounding box above 0.5 were
considered positives. Samples with an IoU below 0.2 were
deemed negatives. During training, boxes with intermediate
IoUs between 0.2 and 0.5 were ignored so as not to confuse
the classification networks, but were considered as negatives
during testing.

Fig. 1. Examples of patches created using the procedure de-
scribed in Section 3.1. On the left, a false positive fracture
patch located on a patient’s heel. On the right, a patch con-
taining a toe fracture, marked by a white arrow.

3.2. ImageNet pre-training

Fine-tuning architectures pre-trained on large image classifi-
cation datasets such as ImageNet is a well known strong base-
line when working with scarce data sources [8]. Although the
extent to which this transfer learning is beneficial ultimately
depends on the task at hands [8], we found that leveraging
ImageNet pre-training was essential for our fracture classifi-
cation task. As will transpire clearly in Section 4, the perfor-
mance increase resulting from ImageNet pre-training is sub-
stantially greater than what is usually gained by optimizing
an architecture to a problem.

Nonetheless, NAS algorithms commonly train architec-
tures from scratch. This is reasonable, as the ImageNet
dataset itself is used to evaluate NAS procedures. Besides,
naively incorporating this pre-training further increases com-
putational expenses, as each architecture needs to be first
pre-trained, then fine-tuned on the task of interest. Instead of
pre-training each individual architecture separately, we pro-
pose to exploit a pre-trained super-net. Indeed, by design, the
weights of all associated architectures can be extracted from
the sole training of this super-net. Although the individual
performance obtained with shared pre-trained weights are
likely worse than those of individual training, they provide a
cheap and efficient proxy.

3.3. Search Space

Training super-nets is a long and minute process that requires
clever tricks [2, 25]. To overcome this difficulty, we rely on
publicly available assets. Few of the approaches described
in the literature provide the code used for their development.
The sole work additionally providing the weights of their



trained super-net that we could find was the Once For All
(OFA) framework of [2]. The goal of the OFA approach is
to quickly find neural architectures adapted to specific infer-
ence settings, a task in which WS particularly shines given its
ability to very quickly evaluate architectures of interest. Each
model of their search space can be divided into five stacks of
several convolutional layers. The number of convolution lay-
ers in each stack varies between 2, 3 and 4. Individual layers
are based on inverted residual blocks [17], and each layer has
an expansion ratio chosen between 3, 4 and 6, and a kernel
size, chosen between 3, 5 and 7. In total, an architecture is
described by 45 parameters, each taking 3 possible values.
For deeper understanding of the ins and outs of OFA, we refer
the reader to the original paper.

3.4. NAS Configuration

There is evidence in the literature that local search based NAS
algorithms are quite efficient [3, 22]. Using a genetic algo-
rithm to optimize the architecture follows naturally, especially
considering the original results of [14, 15]. To perform the
optimization, we opt for a plain (1 + 1) evolution strategy
which benefits from straight-forward parallelization [16]. At
any time, to suggest an architecture, the algorithm consid-
ers the best model found so far, and creates a child candidate
by applying random mutations. During this mutation pro-
cess, each of the 45 parameters of the current best model is
modified with probability p, which varies with the considered
heuristic. Typically, p is set to the inverse of the dimension
of the problem, such that on average a single parameter is
modified. To further accelerate the process, we bootstrap the
search from the best model found on ImageNet by the OFA
authors, and set it as the first best architecture. Still, to pre-
vent the optimization process from getting stuck around this
model, we mimic brain storm optimization [18], by decay-
ing the mutation probability from 1 to 1

45 over the course of
the optimization. Since we indirectly encourage the NAS ap-
proach to search for architectures in the neighbourhood of the
best OFA model, we do not impose strong computational con-
straints on the found architectures, and optimize solely for the
performance metric described in the next section. The opti-
mization is performed using the Nevergrad framework [13].

3.5. Architecture Training and Evaluation

To reduce the computational cost of search, we follow the
path of [20, 21] and evaluate models after five training epochs.
We optimize architectures with standard stochastic gradient
descent, using an initial learning rate of 0.02 decayed to 0
over the course of the five epochs using a cosine annealing
scheme, a momentum of 0.9, batch-size 128 and a weight-
decay of 10−4. We additionally use exponential moving av-
erage of the weights, with a decay of 0.99. To evaluate the
obtained models on the validation dataset, we report the per-
formance of the underlying detection model obtained when

replacing the scores of the original detection model with those
of the newly trained model. Each patch is associated to the
fracture score returned by the classification model, and we
compute the area under the Free-ROC curve (AUFROC) [1]
as the metric of interest. Images of our datasets are grouped
in studies, with each study corresponding to a unique patient
examination. The F-ROC curve is obtained by performing a
study-wise average of the recall, as a function of the average
number of false positives. A fracture is considered detected
if it is accurately pinpointed on at least one of the images of
the considered study. The AUFROC is the area under the re-
sulting curve. To avoid having to work with varying intervals
of definition, we choose to integrate the AUFROC between
0.02 and 0.5 false positives per image, as those two points
cover most of the operating points of radiologists [4]. During
the NAS run, we evaluate 100 architectures. Each individual
training is performed on a cluster of four K80 GPUs, with 10
cluster running in parallel at all times.

4. RESULTS

We report the evolution of the validation scores of the models
selected by the NAS algorithm in Figure 2. The total com-
puting time amounts to around 450 hours. The influence of
the brainstorm process introduced in Section 3.4 can be de-
ducted from the performance evolution. The top left point,
which corresponds to the best ImageNet model found by the
OFA authors, provides a strong anchor point to the search.
In the beginning of the run, the high mutation rate results in a
performance drop, but several candidates of interest are found
later on.
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Fig. 2. Evolution of validation performance over the search.
The red point marked by a star on the top left corresponds
to the best architecture found on ImageNet by [2]. The
red (resp. green) horizontal line indicates the corresponding
score, (resp. the best found validation metric).

Figure 3 provides a scatter plot of the number of train-
able parameters of the architectures encountered over the run,
against their validation score. Interestingly, no architecture
was sampled with more parameters than the reference OFA



model. Among the sampled parameters, the first five act most
on the number of parameters, as they dictate the number of
convolutions appearing in each of the five blocks constitut-
ing the model. For the original OFA architecture, four out of
those five parameters were set to their maximum value. This
makes it hard to sample an architecture with more parame-
ters in the early part of the brainstorm process where search
is close to random. In the middle of the search, the algorithm
could find an architecture with less convolution layers that
performed better. This new architecture became the reference
around which the next architectures were more closely sam-
pled as the brainstorming faded away, which made sampling
architectures with less parameters easier.
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Fig. 3. Scatter plot of the validation performance against the
number of parameters of the architectures seen during NAS.
The red star marks the best OFA ImageNet architecture.

From the architectures found by the NAS, we extract the
three with the best validation metrics and re-train them with
the setting described in Section 3.5, but increasing the num-
ber of epochs to 20. Out of the three, our final architecture is
the one with the best validation performance after this longer
training. We refer to it as FractNet. We also perform this
re-training for the best ImageNet OFA model. Additionally,
we train with the same setting ResNet-152 and DenseNet-
161 baselines, which are both used in the current Gleamer
pipeline, and models from the EfficientNet family [21], which
are state-of-the-art lightweight models, obtained using NAS
on the ImageNet dataset over a different search space than
OFA. All of those additional networks were pre-trained on
ImageNet. To illustrate the relevance of pre-training, we fur-
ther gather the performances of the OFA model and our Fract-
Net, when training from scratch under the same setting.

Table 1 reports the final test metrics, as well as the number
of parameters and the number of multiply-adds for the pro-
cessing of a single image for each architecture and training of
interest. The results first show that transfer learning is key to
the problem, and that performing NAS without pre-training
would be pointless. Secondly, our final FractNet model per-
forms slightly better than the best ImageNet-selected OFA

network, whilst having around 18% less parameters. This in-
dicates that the architecture tailoring process has potential for
improving performances in computationally constrained set-
tings. Thirdly, our FractNet model has about the same num-
ber of parameters as an EfficientNet-b1, whilst performing
slightly better. This strengthens our stand that task-specific
architectures can improve performances. Finally, we see that
our FractNet model reaches promising results compare to
much larger models such as ResNet-151 or DenseNet-161,
which require 20 and 13 times as many multiply-adds opera-
tions per image processed respectively.

Network AUFROC #Params #MAdds
DenseNet-161 0.773[0.769,0.777] 26.3M 7.7B
ResNet-152 0.768[0.764,0.772] 58.2M 11.7B

EfficientNet-b0 0.740[0.736,0.744] 4.0M 0.38B
EfficientNet-b1 0.748[0.744,0.752] 6.5M 0.57B

OFA 0.746[0.742,0.750] 7.8M 0.61B
FractNet 0.754[0.750,0.758] 6.4M 0.56B
OFA • 0.676[0.672,0.680] 7.8M 0.61B

FractNet • 0.674[0.670,0.678] 6.4M 0.56B

Table 1. For each model of interest, we report the test
AUFROC with a 90% confidence interval estimated using
bootstrap, the number of trainable parameters (#Params), and
the number of multipy-adds operations for the inference of a
single image (#MAdds). OFA refers to the best model found
on ImageNet by the authors of the OFA framework [2]. Fract-
Net refers to the model selected using our NAS approach.
Models marked with a black bullet were trained without Ima-
geNet pre-training.

5. CONCLUSION

In this paper, we considered the problem of achieving com-
putationally efficient NAS in a specific context where data is
scarce: the fracture classification paradigm. We have shown
that exploiting transfer learning was key to alleviate data spar-
sity and drastically reduce computing times. To perform NAS
without losing the benefits of pre-training, we have proposed
to exploit a super-net trained on ImageNet as a generator
of pre-trained weights used to fine-tune architectures on our
fracture classification task. From there, we introduced a plain
genetic NAS algorithm and performed NAS on the search
space of computationally efficient architectures introduced
by the authors of the OFA framework. With this approach,
we have created the FractNet model, which obtains better
performances on the fracture classification problem whilst
reducing computational overheads. This validates both the
relevance of the architecture tailoring process, as well as our
introduced super-net pre-training protocol. As further work,
one could try to replicate this scheme on other search spaces,
such as the EfficientNet search space. It would also be inter-
esting to explore whether the performance gap with respect
to much larger architectures could be reduced through tech-
niques such as model distillation, or by slightly increasing
model capacity using the EfficientNet growing strategy.
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