
HAL Id: hal-03753626
https://hal.science/hal-03753626

Submitted on 18 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regular expressions for tree-width 2 graphs
Amina Doumane

To cite this version:
Amina Doumane. Regular expressions for tree-width 2 graphs. International Colloquium on Au-
tomata, Languages and Programming, Jul 2022, Paris, France. �10.4230/LIPIcs.ICALP.2022.121�.
�hal-03753626�

https://hal.science/hal-03753626
https://hal.archives-ouvertes.fr

Regular Expressions for Tree-Width 2 Graphs
Amina Doumane
CNRS, LIP, ENS Lyon, France

Abstract
We propose a syntax of regular expressions, which describes languages of tree-width 2 graphs. We
show that these languages correspond exactly to those languages of tree-width 2 graphs, definable in
the counting monadic second-order logic (CMSO).

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Tree width, MSO, Regular expressions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.121

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Acknowledgements I want to thank Denis Kuperberg for helpful discussions on the content and
presentation.

1 Introduction

Regular word languages form a robust class of languages. One of the witnesses for this
robustness is the variety of equivalent formalisms defining them. They can be described by
finite automata, by monadic second-order (MSO) formulas, by regular expressions or by finite
monoids [3, 6, 10]. Each of these formalisms has some advantages, depending on the context
where it is used. For example, MSO is close to natural language, regular expressions define
regular languages via their closure properties, automata have good algorithmic properties
and can be used as actual algorithms to decide membership in a language, etc. Similarly,
regular tree languages have equivalent formalisms, for various kinds of trees [11, 13, 9].

We will here further generalize the structures considered, by moving to graphs of bounded
tree-width. Intuitively, they can be thought of as “graphs which resemble trees”. In this
framework, we already know that counting MSO (CMSO), an extension of MSO with counting
predicates, and recognizability by algebra are equivalent [1, 2], yielding a notion that could
be called “regular languages of graphs of tree-width k”. Engelfriet [7] also proposes a regular
expressions formalism matching this class, but by his own admission, these expressions closely
mimic the behavior of CMSO. The main feature missing in Engelfriet’s regular expressions is
a mechanism for iteration, which is the central operator for word regular expressions: the
Kleene star.

In this paper, we propose a syntax of regular expressions for languages of tree-width 2
graphs, that follow more closely the spirit of regular expressions on words, using Kleene-like
iterations. This constitutes a first step towards the long term objective of obtaining such
expressions for languages of graphs of tree-width k. We believe the case of tree-width 2 is
already a significant step in itself. Graphs of tree-width 2 form a robust class of graphs with
several interesting characterizations. One of them is the characterization via the forbidden
minor K4, the complete graph with four vertices. By the Robertson-Seymour theorem [12], it
is known that for every k ∈ N, the class of tree-width k graphs is characterized by a finite set
of excluded minors. However, this result is not constructive, and only the forbidden minors
for k ≤ 3 are known.

EA
T
C
S

© Amina Doumane;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 121; pp. 121:1–121:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2022.121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

121:2 Regular Expressions for Tree-Width 2 Graphs

Let us now give more intuition about our expressions for graphs of tree-width 2. Our
Kleene-like iteration is defined in terms of least fixed points µx. e. However without restriction,
such an operator is too powerful and takes us outside of the CMSO-definable graphs. This
phenomenon actually already happens on words: with an arbitrary fixed point, we can write
µx. (axb), defining the non-regular language {anxbn | n ∈ N}. The Kleene star on words can
be seen as a restriction of the least fixed point operator: only fixed points of the form µx. ex

are allowed, where x does not appear in e. Here the idea is the same, but our restriction
will be more involved, and will require a fine understanding of the structure of tree-width 2
graphs.

This work was inspired by the work of Gazdag and Németh [8] on regular expressions for
bisemigroups and binoids. One of the main difference with our work is that their operators
are only associative, while the operations generating our graphs satisfy more properties.

The paper is structured as follows. Sec. 2 is a preliminary section where we introduce
graphs of tree-width 2, the logic CMSO and recognizability by algebra, which are known to
be equivalent. In Sec 3, we introduce regular expressions, explain the condition that the
iteration should satisfy, and give some examples to illustrate it. At the end of this section,
we state our main result, which says that this formalism is equivalent to the two introduced
in the preliminary section. We introduce in Sec. 4 the logic CMSOr, an extension of CMSO
with a very restricted form of quantification over relations, and show that it is equivalent
to CMSO. Based on this, we show in section 5 that regularity implies CMSO-definability.
Finally, we show in section 6 that recognizability implies regularity, proving our main result.

2 Preliminaries

Let Σ1 and Σ2 be two disjoint sets of unary and binary letters respectively. Throughout the
paper, we work with the alphabet Σ = Σ1 ∪ Σ2.

2.1 Tree-width 2 graphs
▶ Definition 1 (Graphs). A graph G is a tuple (V,E1, E2, s, t, l1, l2, ι, o), where V is a set of
vertices, E1 and E2 are two disjoint sets of unary and binary edges, s : E1 ⊎ E2 → V and
t : E1 → V are a source and a target functions specifying the source and the target of each
edge1, l1 : E1 → Σ1 and l2 : E2 → Σ2 are labeling functions indicating the label of each edge,
ι is the input vertex and o is the output vertex, ι and o are the interface vertices of G. All
the vertices of G which are not interface vertices are called inner vertices. The interface of G
is the pair (ι, o) if ι ̸= o, or the vertex ι otherwise. An a-edge is an edge labeled by the letter
a. We say that G is unary if ι = o, and binary otherwise. The interface of a binary edge e is
(s(e), t(e)), the interface of a unary edge e is s(e). An interface in G is a list of vertices of
length 1 or 2. A graph is empty if it has no edges, and if all its vertices are interface vertices.

▶ Remark 2. What we call here a graph is what is usually called a hypergraph (because
of the unary edges) with interface. We depict graphs with unlabeled ingoing and outgoing
arrows to denote the input and the output, respectively.

▶ Definition 3 (Paths). A path p of G is a non-repeating list (v0, e1, v1, . . . , en, vn) where vi

is a vertex of G and ei is an edge of G, such that the interface of ei is either (vi−1, vi) or
(vi, vi−1), for every i ∈ [1, n]. The path p is directed if the interface of ei is (vi−1, vi) for
every i ∈ [1, n]. The vertex v0 is the input of p, vn is its output and (v0, vn) its interface.
The path p is safe if it does not contain an interface vertex of G as an inner vertex.

1 For unary edges, we specify only their source.

A. Doumane 121:3

▶ Example 4. Here are some examples of graphs. The c-edge in the graph G a unary edge.

▶ Definition 5 (tw2 graphs). Consider the signature σ containing the binary operations ·
and ∥, the unary operations ◦ and dom, and the nullary operations 1 and ⊤. We define tw2
terms as the terms generated by the signature σ and the alphabet Σ:

t, u := a | t·u | (t ∥ u) | t◦ | dom(t) | 1 | ⊤ a ∈ Σ

We define the graph of a term t, G(t), by induction on t, by letting:

G (1) = G (⊤) = G (a) = G (b) = b

and interpreting the operations of the syntax as follows:

G·H = G H G∥H = G

H

dom(G) = G◦ = G

In the picture above, we represent the graph G by an arrow from its input to its output. For
example, the graph dom(G) is obtained from G by relocating the output to the input. We
usually write tu instead of t·u and give priorities to the symbols of σ so that ab∥c parses to
(a·b)∥c. We define the set of tw2 graphs as the graphs of the terms above. The graphs of a
and a ∥ 1, where a ∈ Σ, are called atomic.

We will sometimes identify terms with the graphs they generate. For example we may say
that (a ∥ b) is binary or connected to say that its graph is so.

▶ Example 6. Below, from left to right, two tw2 graphs and a graph which is not tw2.

▶ Remark 7. The tw2 graphs are exactly those graphs whose skeleton2 has tree-width 2 [4].

▶ Definition 8 (Graph languages). Sets of graphs are called graph languages. A graph
language is unary or binary if all its graphs have this arity.

2.2 Counting monadic second-order logic
We introduce CMSO, the counting monadic second-order logic, which is used to describe
graph languages.

2 The skeleton of a graph is the graph obtained by forgetting the labels and the orientation of the edges,
and by adding an edge between the input and the output.

ICALP 2022

121:4 Regular Expressions for Tree-Width 2 Graphs

▶ Definition 9 (The logic CMSO). Let V be the relational signature which contains two
binary symbols source and target, two unary symbols input and output and a unary symbol a
for each (unary or binary) letter a ∈ Σ.

Let X1 be a countable set of first-order variables and X2 a countable set of set variables
The formulas of CMSO are defined as follows:

φ,ψ := r(x1, . . . , xn) | x ∈ X | x = y | ∃x.φ | ∃X.φ | φ∨ψ | ¬φ | (|X| ≡ k) [m]

where r is an n-ary symbol of V, x1, . . . , xn, x ∈ X1, X ∈ X2 and k,m ∈ N. Free and bound
variables are defined as usual. A sentence is a formula without free variables. We use the
usual syntactic sugar, for example φ ⇒ ψ as a shortcut for ¬φ ∨ ψ.

We define the semantics of CMSO formulas. To handle free variables, CMSO formulas
are interpreted over pointed graphs.

▶ Definition 10 (Semantics of CMSO). Let G be a graph and Γ be a set of variables. An
interpretation of Γ in G is a function mapping each first-order variable of Γ to an edge or
vertex of G, and each set variables to a a set of edges and vertices of G. A pointed graph
is a pair ⟨G, I⟩ where G is a graph and I is an interpretation of a set of variables Γ in G.
If Γ is empty, we denote it simply as G. Let φ be a CMSO formula whose free variables
are Γ and let ⟨G, I⟩ be a pointed graph such that I is an interpretation of Γ. We define the
satisfiability relation ⟨G, I⟩ |= φ as usual, by induction on the formula φ. Here is an example
of the semantics of some CMSO formulas:

source(v, e) : the source of the edge e is the vertex v. input(v) : v is the input of G.
target(e, v) : the target of the edge e is the vertex v. output(v) : v is the output of G.

(|X| = k)[m] : the size of X is congruent to k modulo m. a(e) : e is an a-edge.

If φ is a sentence, we define L(φ), the graph language of φ as follows:

L(φ) = {G | G is a graph and G |= φ} .

▶ Definition 11 (CMSO definability). A graph language is CMSO definable if it is the graph
language of a CMSO sentence.

▶ Example 12. The language of graphs having an a-edge from the input to the output is
definable in CMSO, by the following formula for instance:

φ := ∃e. ∃i. ∃o. input(i) ∧ output(o) ∧ a(e) ∧ source(i, e) ∧ target(e, o)

Note that the graphs of this language may not be tw2 graphs.

▶ Example 13. The set of tw2 graphs is a CMSO definable language. Indeed, tw2 graphs are
those graphs which exclude K4, the complete graph with four vertices, as minor. The set of
graphs which exclude a fixed set of minors can be easily defined in CMSO [5].

The set of tw2 graphs having an a-edge from the input to the output is definable in
CMSO, by the conjunction of the formula φ of Ex. 12 and the formula defining tw2 graphs.

We state below a localization result, which allows us to transform a CMSO sentence into
another one which talks only about a part of the original graph.

▶ Proposition 14. Let φ be a CMSO sentence, x, y ∈ X1 and X ∈ X2. There is a CMSO
formula φ|(x,X,y) such that, for every graph G and interpretation I : (x 7→ s,X 7→ H, y 7→ t),
such that (s,H, t) is a subgraph of G, we have:

⟨G, I⟩ |= φ|(x,X,y) ⇔ (s,H, t) |= φ

A. Doumane 121:5

▶ Remark 15. There is another presentation of the syntax of CMSO, where we remove
first-order variables and the formulas including them, and add the following formulas:

X ⊆ Y and r(X1 . . . , Xn) where r is an n-ary symbol of V.

The formula X ⊆ Y is interpreted as “X is a subset of Y ” and r(X1 . . . , Xn) as “for each i,
Xi is a singleton containing xi and r(x1 . . . , xn)”. This presentation is more convenient in
proofs by induction as there are less cases to analyze.

2.3 Recognizability
We can specify languages of graphs by means of σ-algebras, generalizing to graphs the notion
of recognizability by monoids. A σ-algebra A is the collection of a set D called its domain,
and for each n-ary operation o of σ, a function oA : Dn → D. A homomorphism h : A → B
between two σ-algebras A and B is a function from the domain of A to the domain of B
which preserves the operations of σ. Note that the set of tw2 graphs, where the operations of
σ are interpreted as in Def. 5, forms a σ-algebra which we denote by Gtw2 .

▶ Definition 16 (Recognizability). We say that a language L of tw2 graphs is recognizable if
there is a σ-algebra A with finite domain, a homomorphism h : Gtw2 → A and a subset P of
the domain of A such that L = h−1(P).

▶ Theorem 17. If a language of tw2 graphs is CMSO definable, then it is recognizable.

2.4 Operations on graph languages
The operations of σ can be lifted from graphs to graph languages in the natural way. We say
that an operation on graph languages is CMSO compatible if, whenever its arguments are
CMSO definable, then so is its result.

▶ Proposition 18. Union and the operations of σ are CMSO compatible.

We define two additional operations: substitution and iteration.

▶ Definition 19 (Substitution and iteration). Let x be a letter, L and M be tw2 graph languages
and let be G a tw2 graph. We define the set of graphs G[L/x] by induction on G as follows:

x[L/x] = L, a[L/x] = a (a ̸= x) and o(G1 . . . , Gn)[L/x] = o(G1[L/x], . . . , Gn[L/x])

where o is an n-ary operation of σ. We define M [L/x] as:

M [L/x] =
⋃

G∈M

G[L/x]

We define similarly the simultaneous substitution M [L⃗/x⃗], where L⃗ and x⃗ are respectively a
list of tw2 graph languages and a list of letters of the same length.

For every n ≥ 1, we define the language Ln,x and the iteration µx.L as follows:

L1,x := L, Ln+1,x =: L[Ln,x/x] ∪ Ln,x, µx.L :=
⋃

n≥1
Ln,x.

▶ Remark 20. Substitution and iteration are not CMSO compatible in general. For instance,
the iteration of the CMSO language {axb}, which is the set {anxbn | n ∈ N}, is not CMSO
definable. However, under a guard condition that we introduce later, we recover CMSO
compatibility.

ICALP 2022

121:6 Regular Expressions for Tree-Width 2 Graphs

We finally consider two restricted forms of iteration called Kleene and parallel iteration.

▶ Definition 21 (Kleene and parallel iteration). We define the Kleene iteration L+ and the
parallel iteration L∥ of a language L as follows, where x is a letter not appearing in L:

L+ = (µx. L·x)[L/x], L∥ = (µx. L∥x)[L/x].

2.5 Pure graphs and modules
▶ Definition 22 (Pure graphs.). Let G be a graph. If we remove the interface vertices of G
we obtain one or several connected components which we call the faces of G. The arity of a
face is the number of interface vertices of G it is incident to.

We say that G is pure if it has at least one face and all it faces have the same arity as itself.
We say that G is prime if it has exactly one face, and composite if it has at least two faces.

▶ Remark 23. Pure graphs are connected and non-empty. Not all graphs are pure.

▶ Definition 24 (Type of a pure graph). The type of a pure graph is a pair specifying its
arity and whether it is prime or composite. We say that a graph is series if it is binary and
prime, parallel if it is binary and composite, domain if it is unary and prime and test if it is
unary and composite. We denote by s, p, d and t the type series, parallel, domain and test
respectively. Series, parallel domain and test graphs look like this:

A graph language is (of type) series, parallel, domain or test if all its graphs have this type.

There is a canonical way to decompose pure graphs of type series, parallel and test.

▶ Proposition 25 ([4]). Let G be a pure graph. The graph G has the following shape:

G := P0 · U1 · P1 . . . Un · Pn if G is series,
G := S0 ∥ · · · ∥ Sn if G is parallel,
G := D0 ∥ · · · ∥ Dn if G is test,

Pj being parallel or atomic, Ui unary, Si series and Di domain, for all j ∈ [0, n], i ∈ [1, n].

Here is a picture illustrating this proposition:

A. Doumane 121:7

▶ Definition 26 (Contexts). Let S be a set of special (unary and binary) letters, and let
n ≥ 1. An n-context is a graph such that n of its edges, called holes, are numbered from 1 to
n, and labeled by n distinct special letters. We call 1-contexts simply contexts.

Let C be an n-context whose holes are h1 . . . , hn and let H1, . . . ,Hn be graphs such that
hi and the Hi have the same arity, for all i ∈ [1, n]. We define C[H1, . . . ,Hn] as the graph
obtained from the disjoint union of C and H1, . . . ,Hn, by removing the holes of G, and for
every i ∈ [1, n] identifying the input of hi with the input of Hi, the output of hi with the
output of Hi, and by letting its interface of to be that of C.

▶ Definition 27 (Islands and modules). An island of a graph G is a graph H such that there
is a context C satisfying G = C[H]. A module is a island which is pure. Two islands (or
modules) of a graph are parallel if they have the same interface.
Since modules are pure, we can speak of series, parallel, domain and test modules of a graph.

The following picture illustrates a unary and binary island of a graph.

▶ Remark 28. Our notion of modules is different from the one usually used in graph theory,
more precisely in the setting of modular decompositions.

▶ Remark 29. The parallel composition of two islands of a graph G with the same interface
is also an island of G with the same interface. Similarly, the parallel composition of two
modules of a graph G with the same interface is also a module of G with the same interface.
This justifies the following definition.

▶ Definition 30 (Maximal islands and modules). Let G be a graph and I an interface in G.
The maximal island at I is the parallel composition of all the islands of G whose interface is
I, we denote it by max-islandG(I). The maximal module at I is the parallel composition of
all the modules of G whose interface is I, we denote it by max-moduleG(I).

▶ Remark 31. The maximal module at a given interface does not always exist.

▶ Proposition 32. Being series, parallel, domain, test, an island, a module, a maximal
island, a maximal module are CMSO definable properties.

3 Regular expressions for tw2 graphs

3.1 Regular expressions for word and multiset graphs

▶ Definition 33 (Word and multiset alphabets). Let Σw be the set of terms whose graphs have
the following form, where a, b ∈ Σ2 and c ∈ Σ1:

Let Σm be the set of terms whose graphs have the following form, where a ∈ Σ2 and b ∈ Σ1:

ICALP 2022

121:8 Regular Expressions for Tree-Width 2 Graphs

Word graphs are the graphs generated from those of Σw by series composition, and multiset
graphs are the graphs generated from those of Σm by parallel composition.

▶ Example 34. Below, from left to right, a word graph and two multiset graphs.

▶ Definition 35 (Word an multiset expressions). Word expressions are defined as follows:

e, f := a | e · f | e ∪ f | e+ (a ∈ Σw)

Multiset pre-expressions are defined as follows:

e, f := a | (e ∥ f) | e ∪ f | e∥ (a ∈ Σm)

Multiset expressions are those pre-expressions, where each sub-term appearing under a
parallel iteration, is built using a single element a ∈ Σm (all the other operations are allowed).
The graph language of an expressions is defined as usual.

▶ Remark 36. To see why the condition on multiset regular expressions is useful, consider the
expression e = (a∥b). The language of its parallel iteration is the set of multiset graphs which
have the same number of a-edges and b-edges, and this is not a CMSO definable language.

3.2 Context-free expressions
▶ Definition 37 (Context-free expressions). We define context-free expressions as the set of
terms generated by the following syntax:

e, f := ew | em

| e · f | (e ∥ f) | e◦ | dom(e) | 1 | ⊤
| e ∪ f | e[f/x] | µx.e

where ew and em are respectively word and multiset regular expressions. We define the
language of a context-free expression e, denoted L(e), by induction on e, interpreting the
operations of the syntax as described in Sec. 2.4.

Regular expressions for tw2 graphs will be defined as a restriction of context-free expressions,
where substitution and iteration are allowed only under a guard condition that we shall
explain in the following.

3.3 The guard condition
▶ Definition 38 (Guarded letters). Let G be a graph and x a letter. We say that:

x is s-guarded in G if x is binary and every x-labeled edge of G is parallel to a module.
x is p-guarded in G if x is binary and no x-labeled edge of G is parallel to a module.

A. Doumane 121:9

x is d-guarded in G if x is unary.
x is t-guarded in G if x is unary and no x-labeled edge of G is parallel to a module.

Let τ ∈ {s, p, d, t} be a type and L a graph language. We say that x is τ -guarded in L if it is
τ -guarded in every graph of L.

▶ Definition 39 (Guard condition). Let x be a letter, M a tw2 graph language and L a pure
language of type τ . The substitution M [L/x] is guarded if x is τ -guarded in M . The iteration
µx.L is guarded if x is τ -guarded in L.

We say that the iteration µx.L is of type τ if L is of type τ .

▶ Definition 40 (Regular expression). A regular expression is a context-free expression where
every substitution and iteration is guarded. A language of graphs is regular if it is the
language of some regular expression.

▶ Remark 41. When L is test and x is a unary letter, then µx.L is always guarded.

▶ Proposition 42. We can decide if a context-free expression is regular.

▶ Remark 43. Be aware that prop. 42 is about deciding a syntactic property of e, namely
that the iterations and substitutions are guarded. However, the problem of determining if a
context-free expression defines a CMSO language is undecidable. This apparent contradiction
comes from the fact that some context-free expressions, which are not guarded, define CMSO
languages, as we shall see in the upcoming examples.

3.4 Examples
▶ Example 44. The iteration µx.axb is not guarded. Indeed, the language of axb is series,
as it contains a single series graph G. However, the letter x is not s-guarded in G, because it
is not parallel to any module of G. The graph of this iteration look like this:

▶ Example 45. The iteration µx.a(x ∥ c)b is guarded. Indeed the language of a(x ∥ c)b is
series, actually it contains a single graph G, depicted below left, which is series. The letter x
is s-guarded in G, because it is parallel to a module, namely the c-edge. The graph of this
iteration look like this:

Note the similarity between the graph language of µx.axb and that of µx.a(x ∥ c)b: the
former is obtained by forgetting the c-edges of the latter. Yet, the latter is CMSO definable,
while the former is not. In the case of µx.a(x ∥ c)b, the c-edges will guide a CMSO formula
to relate the a-edges and the b-edges of the same iteration depth. This is the main intuition
behind the guard condition for series languages.

▶ Example 46. The iteration µx.(axa ∥ axa) is guarded. Indeed, the language of (axa ∥ axa)
is parallel, as it contains a unique graph G (the left graph below) which is parallel. The
letter x is p-guarded because all the occurrences of x are not parallel to any module of G.
Note that the graphs of this expression have the following shape: they all start with a binary
tree whose edges are labeled by a, end ends with the mirror image of this tree, while the
corresponding leafs are connected by an x-edge. Those trees are colored in red below.

ICALP 2022

121:10 Regular Expressions for Tree-Width 2 Graphs

At first glance, this expression dos not seem to be CMSO definable, as it seems that we need
to test whether a graph starts and ends with the same tree. We will see however that the
language of this expression, as those of all regular expressions, is CMSO definable.

The guard condition is not “perfect”, in the sense that some non-guarded context-free
expressions might generate CMSO definable languages, as shown in the following example.

▶ Example 47. The context-free expression (µx.axb)[1/a, 1/x, 1/b] is not regular because the
iteration µx.axb is not guarded. However its language, the graph of 1, is CMSO definable.

▶ Remark 48. Intuitively, the guard condition allows only those graphs where series and
parallel operations alternate. This why we add the word and multiset expressions: to allow
graphs where we can iterate only series or parallel operations respectively.

3.5 Main result
The main result of this paper is the following theorem:

▶ Theorem 49. Let L be a language of tw2 graphs. We have:

L is recognizable ⇔ L is CMSO definable ⇔ L is regular

Thanks to Thm. 17, CMSO definability implies recognizablity. We show that regularity
implies CMSO definability in Sec. 5 and that recognizabilty implies regularity in Sec. 6.

4 Companion relations

▶ Definition 50 (Companion relation). Let G be a graph. Two paths of G are orthogonal if
they do not share any edge, and whenever they share a vertex, it is necessarily an interface
vertex of one of them. A set of paths is a set of orthogonal paths if its paths are pairwise
orthogonal.

A relation R on the vertices of G is a companion relation if there is a set of orthogonal
paths P such that (v, w) ∈ R iff (v, w) is the interface of a path p ∈ P . We say that p is a
witness for (v, w), and that P is a witness for the relation R.

▶ Example 51. The relation indicated by the green dotted arrows below is a companion
relation. This is not the case for the one indicated by the red dotted arrows.

We introduce CMSOr, an extension of CMSO where quantification over companion
relations is possible.

A. Doumane 121:11

▶ Definition 52 (The logic CMSOr). Let Xr be a set of relation variables, whose elements
are denoted R,S, The formulas of CMSOr are of the following form:

φ := CMSO | ∃R. φ | (x, y) ∈ R (R ∈ Xr, x, y ∈ X1).

As for CMSO, we need to define the semantics of a formula over pointed graphs to handle
free variables.

▶ Definition 53 (Semantics of CMSOr). Let G be a graph and Γ be a set of variables. An
interpretation of Γ is as usual, but here every relation variable is mapped to a binary relation
on the vertices of G. We define the satisfiability relation ⟨G, I⟩ |= φ as usual, by induction
on the formula φ. The only new cases are the quantification ∃R which is interpreted as “there
exists a companion relation R on the vertices of the graph”, and the formulas (x, y) ∈ R

which are interpreted as “there is a pair of vertices (x, y) in R”.

4.1 The logic CMSOr have the same expressive power as CMSO
To guess a companion relation in CMSO, we show how to encode a set of guarded paths by a
collection of sets called a footprint.

▶ Definition 54 (Frontier edges of a path). Let p = (v0, e1, v1, . . . , en, vn) be a path. If n > 1,
we call e1 the opening edge of p and en its closing edge. If n = 0, we call e0 its single edge.
Opening, closing and single edges are called the frontier edges of p, the other edges are called
its inner edges.

▶ Definition 55 (Footprint). A footprint in a graph G is the following collection of data:
a partition of the vertices of G into non-path and path vertices, a partition of edges into
non-path and path edges, a partition of path edges into frontier and inner edges, a partition
of frontier edges into opening, closing and single edges and a partition of path edges into
direct and inverse edges.

The partition of path edges into direct and inverse ones provides them with a new
orientation: they conserve their original orientation if they are direct, or get reversed (we
swap the source and target) if they are inverse edges.

Let F be a footprint. A path p is encoded by F if its edges and vertices are path edges and
path vertices of F, if its inner, frontier, opening, closing and single edges are edges of the
corresponding sets in F. Moreover, p must form a directed path with the new orientation
dictated by F.

▶ Example 56. We represent below a footprint in the left graph of Ex. 51. Non-path edges
and vertices are grey, path vertices are black, opening edges are green, closing edges are
yellow, single edges are pink and all the other inner edges are black. For path edges, we
display the new orientation induced by the footprint instead of the original one. The set of
paths encoded by this footprint are a witness that the green relation of Ex. 51 is a companion
relation.

▶ Proposition 57. Let G be a graph and P a set of orthogonal paths of G. There is a
footprint F such that P is the set of paths encoded by F.

▶ Corollary 58. If a language is CMSOr definable then it is CMSO definable.

ICALP 2022

121:12 Regular Expressions for Tree-Width 2 Graphs

5 Regular implies CMSO definable

▶ Theorem 59. If a language is regular, then it is CMSO definable.

To prove Thm. 59, we proceed by induction on regular expressions. The cases of word
and multiset regular expressions follow from the similar result for words and commutative
words. The cases of union and the operations of the signature σ follow from Prop. 18. We
are left with the cases of substitution and iteration; the rest of this section is dedicated to
proving the following proposition.

▶ Proposition 60. Let x be a letter and L and M be languages of tw2 graphs. We have:

M [L/x] is guarded and L and M are CMSO-definable ⇒ M [L/x] is CMSO-definable.
µx.L is guarded and L is CMSO-definable ⇒ µx.L is CMSO-definable.

We handle the case of iteration, the case of substitution being similar. We show first that
the iteration of a CMSO definable language, without any guard condition, is definable in an
extension of CMSO where we are allowed to quantify existentially over sets of subgraphs
of the input graph, which we call CMSOd. This logic is obviously strictly more expressive
then CMSO, because it amounts to quantify over sets of sets. Based on this, we show that
the guarded iteration of a CMSO definable language is definable in CMSOr, the extension of
CMSO with companion relations defined in the previous section. This concludes the proof,
the logic CMSOr being equivalent to CMSO.

5.1 Iteration of CMSO formulas is CMSOd definable
5.1.1 Decompositions
When a graph is in the iteration µx.L of some language L, it is possible to structure it into
a tree shaped decomposition, such that each part of this decomposition “comes from L”. In
the following, we define such decompositions.

▶ Definition 61 (Independent graphs). Let G be a graph and H,K be subgraphs of G. We
say that H and K are independent if they do not share any edge; and whenever they share a
vertex, it is necessarily an interface vertex of both H and K.

▶ Definition 62 (Decompositions). A decomposition of G is a set D of modules of G such
that G ∈ D and for every pair of graphs in D, they are either independent, or module one of
the other. We call the graphs of a decomposition its components. We call the interfaces of D
the set of interfaces of its components.

Let H and K be components of a decomposition D. We say that H is a child of K, if H
is a module of K, and if there is no component C of D, distinct from H and K, such that H
is a module of C and C is a module of K.

The graph G is called the head of D. A component of D is a leave if it does not contain
another component of D as a module.

▶ Definition 63 (Body of a component). Let G be a graph, D a decomposition of G and C a
component of D.

The body of C is the subgraph of G whose vertices are those of C minus the inner
vertices of its children; and whose edges are those of C minus those of its children.

The x-body of C is the graph whose interface is the interface of C, whose vertices are
the vertices of the body of C, and whose edges are the edges of the body of C plus, for each
child F of C, an x-edge whose interface is the interface of F . We denote it by x-bodyD(C).

A. Doumane 121:13

▶ Definition 64 (L-decompositions). Let L be a graph language. An L-decomposition of a
graph G is a decomposition of G such that the x-body of each of its components is in L.

▶ Remark 65. The body of a component is a subgraph of G, but its x-body is not a subgraph
of G in general, because of the added x-edges.

▶ Proposition 66. Let L be a graph language. We have:

G ∈ µx.L ⇔ ∃D. D is an L-decomposition of G.

5.1.2 The logic CMSOd

Let φ be a CMSO formula defining a graph language L. Using Prop 66, we can express that
a graph G is in the iteration µx.L by guessing a decomposition D of G, and ensuring that
the x-body of each component satisfies φ. But guessing a set of subgraphs is not expressible
in CMSO. This is why we introduce CMSOd, an extension of CMSO where this is allowed.

▶ Definition 67 (CMSOd logic). Let Xd be a set of graph set variables, whose elements are
denoted X ,Y The formulas of CMSOd are of the following form:

φ := CMSO | ∃X . φ | (s, Z, t) ∈ X (X ∈ Xd, Z ∈ X2, s, t ∈ X1).

Free and bound variables are defined as usual. As for CMSO, we need to define the semantics
of a formula over pointed graphs to handle free variables.

▶ Definition 68 (Semantics of CMSOd). Let G be a graph and Γ be a set of variables.
An interpretation of Γ is a function mapping every first-order variable of Γ to an edge

or vertex of G, every set variable to a set of edges and vertices of G, and every graph set
variable to a set of subgraphs of G.

We define the satisfiability relation ⟨G, I⟩ |= φ as usual, by induction on φ. The only new
cases compared to CMSO are the quantification ∃X which is interpreted as “there exists a set
of subgraphs X ”, and the formulas (s, Z, t) ∈ X which are interpreted as “the graph whose
input is s, whose output is t and whose set of edges and vertices is Z, is an element of X ”.

▶ Proposition 69. There is a CMSOd formula decomp(X), without graph set quantification,
such that for every graph G and every set of subgraphs D of G, we have:

⟨G,X 7→ D⟩ |= decomp(X) ⇔ D is a decomposition of G.

5.1.3 Iteration is expressible in CMSOd

Given a CMSO formula φ, we construct a formula JφK having X as unique free variable,
which expresses the fact that the x-body the head of the decomposition X satisfies φ. To
construct JφK, we need the following definition.

▶ Definition 70 (Complete sets). Let D be a decomposition of a graph G.
Let H be a set of edges and vertices of G. We say that H is complete if, whenever it

contains an edge or an inner vertex of a child C of G (seen as a component of D), then it
contains all the edges and inner vertices of C.

Let K be a set of edges and vertices of the x-body of G. We denote by completeD(K) the
set of edges and vertices of G, obtained from K by replacing every x-edge coming from a
child C of G by the set of edges and inner vertices C.

ICALP 2022

121:14 Regular Expressions for Tree-Width 2 Graphs

▶ Remark 71. Note that if H is complete, there is a set S such that H = completeD(S).

Here is a picture illustrating complete sets. The green part is the body of G and the
purple modules are its children. The yellow sets are complete, but the pink one is not.

▶ Proposition 72. The following formulas are CMSOd definable:

childX (Y) : Y is the set of edges and inner vertices of a child of the input
graph w.r.t. the decomposition X .

is-completeX (Y) : Y is complete wrt X .

body-edgeX (Y) : Y is a singleton containing an edge from the body of the input
graph wrt X .

sourceX (Y, Z) : childX (Z) and Y is a singleton containing the input of the cor-
responding child.

targetX (Y, Z) : the same as above, where input should be replaced by output.

choiceX (Y, Z) : Z contains all the body elements of Y , and for every child con-
tained in Y , Z contains exactly one element of this child.

We construct the formula JφK by induction on the structure of φ. We suppose that φ is build
using the syntax of CMSO where only set variables are allowed.

▶ Definition 73. Let φ be a CMSO formula whose free variables are Γ. We define the CMSOd

formula JφK, whose free variables are Γ ∪ {X }, by induction as follows:

Jφ ∨ ψK = JφK ∨ JψK

J¬φK = ¬ JφK

J(|Y | ≡ k)[m]K = ∃Z. choiceX (Y,Z) ∧ (|Z| ≡ k)[m]
JY ⊆ ZK = Y ⊆ Z

Ja(Y)K = a(Y) (a ̸= x)
Jx(Y)K = childX (Y) ∨ (body-edgeX (Y) ∧ x(Y))
J∃Y. φK = ∃Y. is-completeX (Y) ∧ JφK

Jsource(Y, Z)K = (body-edgeX (Z) ∧ source(Y,Z)) ∨ (childX (Z) ∧ sourceX (Y,Z))
Jtarget(Y,Z)K = (body-edgeX (Z) ∧ target(Y, Z)) ∨ (childX (Z) ∧ targetX (Y,Z))

Transfer results are results of this form: to check that a transformation f(G) of a structure
G satisfies a formula φ, construct a formula f−1(φ) that G should satisfy. The proposition
below is a transfer result, where the transformation is the x-body.

▶ Proposition 74. Given a CMSO sentence φ defining, there is a CMSOd formula JφK having
X as unique free variable, such that for every graph G and every decomposition D of G whose
components are non-empty:

⟨G,X 7→ D⟩ |= JφK ⇔ x-bodyD(G) |= φ.

A. Doumane 121:15

The formula JφK expresses the fact that the x-body of the head of a decomposition
satisfies φ. Using this formula and the localization construction of Prop. 14, we construct a
formula µx.L saying that the x-body of all the components of a decomposition satisfy φ.

▶ Definition 75. If φ is a CMSO formula, we let µx.φ be the following CMSOd formula:

µx.φ := ∃X . decomp(X) ∧ ∀s.∀Z. ∀t. (s, Z, t) ∈ X ⇒ JφK |(s,Z,t)

The following proposition says that the language of µx.φ is the iteration of that of φ.

▶ Proposition 76. If φ is a CMSO formula defining a language of non-empty graphs, then:

L(µx.φ) = µx.L(φ).

▶ Corollary 77. If L is CMSO definable then µx.L is CMSOd definable.

5.2 Guarded iteration of CMSO languages is CMSOr

The idea here is that when the iteration µx.L is guarded, L-decompositions can be encoded
by sets of edges and vertices and by companion relations.

5.2.1 The case of test languages
Let µx.L be a guarded iteration of type test, G ∈ µx.L and D an L-decomposition of G.
Suppose that G is the left graph below, and that the red vertices are the interfaces3 of D.

We claim that, thanks to the guard condition, this information is enough to reconstruct the
whole decomposition D. More precisely, we claim that the components of D are exactly the
maximal modules of G, whose interfaces are the red vertices, as depicted above.

▶ Definition 78. Let G be a graph and S be a set of vertices of G. We define Dt(S) as the
set of maximal modules of G, whose type is test, and whose interfaces belong to S.

▶ Proposition 79. Let µx.L be a guarded iteration of type test. We have:

G ∈ µx.L ⇔ ∃S. S is a set of vertices of G and
Dt(S) is an L-decomposition of G.

Proof. (⇒) Follows from Prop. 66. To prove (⇐), we define the property Pn as follows:

Pn : ∀G. G ∈ Ln,x ⇒ ∃S. S is a set of vertices of G and
Dt(S) is an L-decomposition of G.

We prove, by induction on n, that Pn is valid for every n ≥ 1, and this is enough to conclude.

3 Recall that test graphs are unary, hence all the components of a decomposition of G are unary.

ICALP 2022

121:16 Regular Expressions for Tree-Width 2 Graphs

When n = 1, take S to be the singleton containing the interface of G. We have that
Dt(S) = {G} and since G ∈ L, we have that Dt(S) is an L-decomposition of G.

Let G ∈ Ln+1,x. By definition, there is a k-context H and graphs G1, . . . , Gk such that:

G = H[G1, . . . , Gk], H[x, . . . , x] ∈ L and Gi ∈ Ln,x, for i ∈ [1, k].

Thanks to the guard condition, there is no module of H parallel to a hole of H. For every
i ∈ [1, k], let Si be the set of vertices provided by the induction hypothesis applied to the
graph Gi. Here is a picture illustrating these notations:

The set of subgraphs D defined below is an L-decomposition of G.

D := Dt(S1) ∪ · · · ∪ Dt(Sk) ∪ {G}

To conclude we only need to find a set of vertices S of G such that Dt(S) = D. Let
S = S1 ∪ · · · ∪ Sk ∪ {ι}, where ι is the interface of G. Let us show that Dt(S) = D. This is a
consequence of the following lemma:

▶ Lemma 80. Let C be a context, K a graph and I an interface in H of the same arity as
the hole of C. Suppose that the hole of C is not parallel to any module. We have:

max-module C[K](I) = max-module K(I) ◀

▶ Theorem 81. Suppose that µx.L is a guarded iteration of type test. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

Proof. Let φ be a CMSO formula whose language is L. We transform the CMSOd formula
µx.φ of Def. 75, whose language is µx.L, into a CMSO formula µxg.φ of the same language.
The formula µxg.φ is obtained by replacing the quantification ∃X . by the set quantification
∃S. , and by replacing every sub-formula of µx.φ of the form (s, Z, t) ∈ X by this formula:

(s = t) ∧ s ∈ S ∧ “(s, Z, t) is a maximal module”

The last part of this formula is expressible in CMSO thanks to Prop. 32. The language of
µxg.φ is the set of graphs for which we can find an L-decomposition encoded by a set of
vertices S, and this is precisely the language µx.L thanks to Prop. 79. ◀

5.2.2 The case of domain languages
Let µx.L be a guarded iteration of type domain, G ∈ µx.L and D an L-decomposition of G.
Contrarily to the test case, the interfaces of D are not enough to reconstruct D. Indeed, in
this case, a component of D whose interface is v is not necessarily the maximal module at v,
but some domain module of interface v, among possibly many others. A way to determine
if a domain module is in the decomposition is to check whether it contains an interface of
the decomposition. This works only for the components which are not the leaves of the
decomposition. This is why we need to say explicitly which domain modules are the leaves.
We do so by coloring the edges of the later.

A. Doumane 121:17

In the following, we show that a set of vertices of a graph (representing the interfaces
of a decomposition) together with a coloring of this graph (indicating which modules are
leaves), is enough to recover the decomposition.

▶ Definition 82 (Coloring, active modules.). A coloring of a graph G is a set of its edges
called leaf edges. A module of G is active if it contains a leaf edge.

▶ Definition 83 (Dd(S, col)). Let G be a graph, S a set of vertices and col a coloring of G.
We let Dd(S, col) bet the set of active modules of G of type d, whose interfaces belong to S.

▶ Proposition 84. Let µx.L : d be a guarded iteration. We have:

G ∈ µx.L ⇔ ∃S, col. S is a set of vertices and col a coloring of G such that
Dd(S, col) is an L-decomposition of G.

Proof. Similar to the proof of prop. 79. ◀

As in the previous section, we use Prop. 84 to get the following theorem.

▶ Theorem 85. Suppose that µx.L : d be a guarded iteration. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

5.2.3 The case of parallel languages
The case of guarded iterations of type parallel is similar to the test case. Let µx.L be a
guarded iteration of type parallel, G ∈ µx.L and D an L-decomposition of G. We show that
the interfaces I of D is enough to recover the whole decomposition D, because its components
are the maximal modules of G whose interfaces belong to I. However, in this case, I is no
longer a set of vertices, but a set of pairs of vertices, that is a relation on the vertices of G.
We will show that this relation is necessarily a companion relation. Using this result and the
fact that CMSO and CMSOr have the same expressive power, we prove that the iteration is
CMSO definable.

▶ Definition 86 (Dp(R)). Let G be a graph and R a relation on the vertices of G. We define
Dp(R) as the set of maximal modules of G, whose type is parallel, and whose interfaces
belong to S.

▶ Proposition 87. Let µx.L be a guarded iteration of type parallel. We have:

G ∈ µx.L ⇔ ∃R. R is a set of vertices of G and
Dp(R) is an L-decomposition of G.

▶ Proposition 88. Let µx.L be an iteration of type parallel and let G a graph. The interfaces
of every L-decomposition of G form a companion relation.

Proof. We prove by induction on n ≥ 1 that the interfaces of every L-decomposition of
depth n of some graph G form a companion relation, witnessed by a set of paths P , such
that the interface of G is witnessed by two parallel paths of P .

When n = 1, the decomposition D is reduced to the graph G. Since G is parallel, it has
two parallel paths whose interface is the interface of G. Take P to be these two paths.

Suppose that D is a decomposition of depth n+ 1. Hence it is of the form:

D = D1 ∪ . . .Dk ∪ {G}

ICALP 2022

121:18 Regular Expressions for Tree-Width 2 Graphs

where Di is an L-decomposition of depth at most n, of a graph Gi, for every i ∈ [1, k]. Let
Pi be the set of paths provided by the induction hypothesis for Di, and let pi, qi be the two
paths witnessing the interface of Gi, for i ∈ [1, k].

We set H := x-bodyD(G). Since H is parallel, it has two parallel paths p and q whose
interface is the interface of H. We transform the paths p and q of H into the paths p′ and q′

of G as follows. The paths p′ and q′ are obtained from p and q respectively by the following
procedure: if e is an x-edge of H which is substituted by some Gi, then replace e by the
path of pi. Let P be the following set of paths:

P = (P1 \ {p1}) ∪ . . . (Pk \ {pk}) ∪ {p′, q′} .

The set P is orthogonal and witnesses the interfaces of D. Moreover, the interface of G is
witnessed by two parallel paths of P , namely p′ and q′. This concludes the proof. ◀

▶ Theorem 89. Suppose that µx.L is a guarded iteration of type parallel. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

5.2.4 The case of series languages
Let µx.L be a guarded iteration of type series, G a graph in µx.L and D an L-decomposition
of G whose set of interfaces is I. As for the domain case, the set I is not enough to reconstruct
the decomposition D, and we need a coloring of the graph to determine which modules are
the leaves of the decomposition D. We show also that the set of interfaces I is a companion
relation, which will be enough to conclude.

▶ Definition 90 (Ds(R, col)). Let G be a graph, R a relation on the vertices of G and col
a coloring of G. We let Ds(R, col) bet the set of active modules of G of type series, whose
interfaces belong to R.

▶ Proposition 91. Let µx.L be a guarded iteration of type series. We have:

G ∈ µx.L ⇔ ∃R, col. R is a relation on the vertices of G,
col is a coloring of G and
Ds(R, col) is an L-decomposition of G.

▶ Proposition 92. Let µx.L be a guarded iteration of type series and let G be a graph. The
interfaces of every L-decomposition of G form a companion relation.

▶ Theorem 93. Suppose that µx.L is a guarded iteration of type series. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

6 Recognizable implies regular

▶ Theorem 94. If a language of tw2-graphs is recognizable, then it is regular.

We proceed gradually, by showing that this result holds for domain-free graphs, for
domain-free graphs, then for tw2 graphs.

▶ Definition 95 (Domain-free). A graph is domain-free if all its domain modules are atomic.

To give an example of how these proofs work, suppose that we have the following property:

A. Doumane 121:19

▶ Proposition 96. If a language of domain-free graphs is recognizable, then it is regular.

Using Prop. 96, let us show the following property:

▶ Proposition 97. If a language of domain graphs is recognizable, then it is regular.

Proof. Let L be a language of domain graphs, A an algebra whose domain is D, h : Gtw2(Σ) →
A a homomorphism and F ⊆ D such that h−1(F) = L. Let us show that Lv, the set of
graphs over Σ whose image is v, is regular for every v ∈ D.

We associate every v ∈ D with a new letter xv and let Γ := {xv | v ∈ D}. If Q ⊆ D, we
denote by XD the letters of Γ corresponding to these elements. We extend the homomorphism
h to tw2-graphs over the alphabet Σ ∪ Γ by letting h(xv) = v for every xv ∈ Γ.

Let v ∈ D, Q ⊆ D and X ⊆ Γ. We define the set of graphs LQ,X
v as follows. We let G be

in this set if and only if:
G is a domain graph over the alphabet Σ ∪X,
the image of G is v,
the image of the strict domain modules of G belong to Q.

Let us show that LQ,X
v is regular when XQ ∩X = ∅. We proceed by induction on the size

of Q. Suppose that Q = ∅. This case is based on the following lemma, obtained by case
analysis on the graph G.

▶ Lemma 98. Let G be a domain graph whose domain modules, distinct from G itself, are
all atomic. There is a domain-free graph H such that G = dom(H).

For every w ∈ D, let MX
w be the set of domain-free graphs over the alphabet Σ ∪X whose

image is w. By Lem. 98, we have the following equation:

L∅,X
v =

⋃
w∈D

dom(w)=v

dom(Mw)

which concludes the base case, thanks to Prop. 96. To handle the inductive case, we notice
the following equality:

LQ∪{w},X
v = LQ,X∪{xw}

v [µxw. L
Q,X∪{xw}
w /xw][LQ,X

w /xw] ◀

7 Conclusion

We are interested in studying the complexity-theoretic properties of our expressions. For
instance understanding the complexity of deciding whether an expression is guarded, and
what are the costs of translations between different formalisms (expressions, CMSO, algebra).
This can help us get a better grasp of what role these expressions can play, and what is the
fine interplay between these different formalisms. As stated in the introduction, this work on
tree-width 2 graphs is meant to constitute a first step towards the case of tree-width k.

References
1 Mikolaj Bojanczyk and Michal Pilipczuk. Definability equals recognizability for graphs of

bounded treewidth. In LICS, pages 407–416. ACM, 2016.
2 Mikolaj Bojanczyk and Michal Pilipczuk. Optimizing tree decompositions in MSO. In STACS,

volume 66 of LIPIcs, pages 15:1–15:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

ICALP 2022

121:20 Regular Expressions for Tree-Width 2 Graphs

3 J. Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960. doi:0.1002/malq.19600060105.

4 Enric Cosme-Llópez and Damien Pous. K4-free graphs as a free algebra. In MFCS, volume 83
of LIPIcs, pages 76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

5 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic – A
language-theoretic approach. In Encyclopedia of mathematics and its applications, 2012.

6 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98:21–51, 1961.

7 Joost Engelfriet. A regular characterization of graph languages definable monadic second-
order logic. Theor. Comput. Sci., 88(1):139–150, October 1991. doi:10.1016/0304-3975(91)
90078-G.

8 Zsolt Gazdag and Zoltán L. Németh. A kleene theorem for bisemigroup and binoid languages.
Int. J. Found. Comput. Sci., 22:427–446, 2011.

9 Ferenc Gécseg and Magnus Steinby. Tree languages. In Handbook of Formal Languages, 1997.
10 S.C. Kleene. Representation of events in nerve nets and finite automata. In C.E. Shannon

and J. McCarthy, editors, Automata Studies, pages 3–40, 1956. Princeton.
11 Dietrich Kuske and Ingmar Meinecke. Construction of tree automata from regular expressions.

RAIRO – Theoretical Informatics and Applications – Informatique Théorique et Applications,
45(3):347–370, 2011. doi:10.1051/ita/2011107.

12 Neil Robertson and Paul D. Seymour. Graph minors. IV. Tree-width and well-quasi-ordering.
J. Comb. Theory, Ser. B, 48:227–254, 1990.

13 James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic. Mathematical systems theory, 2:57–81, 2005.

https://doi.org/0.1002/malq.19600060105
https://doi.org/10.1016/0304-3975(91)90078-G
https://doi.org/10.1016/0304-3975(91)90078-G
https://doi.org/10.1051/ita/2011107

	1 Introduction
	2 Preliminaries
	2.1 Tree-width 2 graphs
	2.2 Counting monadic second-order logic
	2.3 Recognizability
	2.4 Operations on graph languages
	2.5 Pure graphs and modules

	3 Regular expressions for tw_2 graphs
	3.1 Regular expressions for word and multiset graphs
	3.2 Context-free expressions
	3.3 The guard condition
	3.4 Examples
	3.5 Main result

	4 Companion relations
	4.1 The logic CMSO^r have the same expressive power as CMSO

	5 Regular implies CMSO definable
	5.1 Iteration of CMSO formulas is CMSO^d definable
	5.1.1 Decompositions
	5.1.2 The logic CMSO^d
	5.1.3 Iteration is expressible in CMSO^d

	5.2 Guarded iteration of CMSO languages is CMSOr definable
	5.2.1 The case of test languages
	5.2.2 The case of domain languages
	5.2.3 The case of parallel languages
	5.2.4 The case of series languages

	6 Recognizable implies regular
	7 Conclusion

