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Group anomaly detection in mobile app usages: a spatiotemporal convex hull methodology

Analysing mobile apps communications can unleash signicant information on both the communication infrastructure state and the operations of mobile computing services. A wide variety of events can engender unusual mobile communication patterns possibly interesting for pervasive computing applications, e.g., in smart cities. For instance, local events, national events, and network outages can produce spatiotemporal load anomalies that could be taken into consideration by both mobile applications and infrastructure providers, especially with the emergence of edge computing frameworks where the two environments merge. Being able to detect and timely treat these anomalies is therefore a desirable feature for next-generation cellular and edge computing networks, with regards to security, network and application performance, and public safety. We focus on the detection of mobile access spatiotemporal anomalies by decomposing, aggregating and grouping cellular data usage features time series. We propose a methodology to detect rst raw anomalies, and group them in a spatiotemporal convex hull, further rening the anomaly detection logic, with a novel algorithmic framework. We show how with the proposed framework we can unveil details about broad-category mobile events timeline, their spatiotemporal spreading, and their impacted apps. We apply our technique to extensive real-world data and open source our code. By linkage with ground-truth special events that happened in the observed period, we show how our methodology is able to detect them. We also evidence the existence of ve main categories of anomalies, nely characterising them. Finally, we identify global patterns in the anomalies and assess their level of unpredictability, based on the nature of the impacted mobile applications.

Introduction

Through mobile apps, a telecom operator can witness a wide variety of anomaly events happening, ranging from local (e.g., football matches or concerts) to national events (e.g., political happenings), passing through network outages at both network access and Internet/cloud levels, app updates and failovers. Often, the detection of such events can allow reconguring the network to work around the negative eect a given event can have in terms of infrastructure overload and mobile application 1 interruption.

Understanding the spatiotemporal characteristics of mobile app usages anomaly and related impacted apps can therefore be useful for both the mobile network operator and application providers. The penetration of multi-access edge computing (MEC) infrastructures, into the access networks, further exacerbates the impact that an in-depth knowledge of mobile app-related anomalies can grant in terms of resource scaling and cloud stack orchestration.

First, the network operator can take into account the spatiotemporal dynamics of mobile access loads during a Email addresses: agathe.blaise@thalesgroup.com (Agathe Blaise), mathieu.bouet@thalesgroup.com (Mathieu Bouet), vania.conan@thalesgroup.com (Vania Conan), stefano.secci@cnam.fr (Stefano Secci) 1 referred to as `mobile app' as well specic or special event in the way the network and computing infrastructure is operated (e.g., during a match there is more trac around the stadium, while before and after it, the supporters coming from and going back home being split in dierent neighbourhoods). Knowing the typology of impacted mobile apps related to a given category of events can support ecient resource allocation, in runtime or even in advance for known events. For instance, it can be useful to allow more bandwidth for streaming apps during bank holidays and lock-downs. The operator can also distinguish between known and unknown events, and in the latter case, thanks to mobile app data analysis, try to understand the root causes and take countermeasures.

Second, understanding per-app spatiotemporal trac peaks can serve existing and forthcoming pervasive computing applications [START_REF] Calabrese | The geography of taste: Analyzing cell-phone mobility and social events[END_REF][START_REF] Satyanarayanan | Pervasive computing: vision and challenges[END_REF]. For example, navigation systems could avoid known congested areas, and social apps could lead people to or away from the crowds. Other apps include emergency plans, accident or crime zone prediction, and the inference of points of interest. The characterisation of neighbourhoods based on mobile app usages could also allow for real-time maps exploitable for the advertisement or construction industries.

In this paper, we propose a group anomaly detection methodology named Anomaly SpatioTEmporal Convex Hull Preprint submitted to Elsevier August 18, 2022 (ASTECH ). We dene a 3-step algorithm that isolates and groups raw singleton (per: app, cell, timeslot, feature) anomalies as follows:

It decomposes the features time series, extracts the residual component, and detects anomalies as usage drops and peaks.

Anomalies are thus grouped into snapshots, which represent the network state at a given place and time. Upon spatiotemporal categorisation of anomalies, it groups the abnormal snapshots both spatially and temporally to get spatiotemporal convex hulls that we call group anomalies. This enables to qualify them, unveiling details about their timeline, spatiotemporal spreading, and impacted apps.

It applies a further clustering to the set of detected group anomalies, to partition them into low-grain categories.

We apply it to extensive real-world data collected by a major mobile network operator in the whole Ile-de-France over three months. We show how our algorithm is able to detect known and unknown anomalies impacting the mobile trac data during these three months. In particular, leveraging on additional ground-truth event information, we evidence the existence of ve categories of anomalies:

local events, national events, outages, bank holiday, and app updates. We also found specic typologies of impacted apps for each category inducing a trac increase. For the sake of reproducibility, our source code is publicly available at [START_REF] Github | Source code for special events detection[END_REF]. Our contributions can be summarised as follows.

i) We propose a novel methodology to detect group anomalies in mobile apps usage data and classify them via per-app proles. Focusing on group anomalies, i.e., spatiotemporal events, diers from detecting traditional anomalies and allows getting insights about their duration, their spatial spreading, and the group of impacted mobile apps. Contrary to previous approaches, the information about app proles enables us to classify events in addition to detecting them. We then investigate several main questions corresponding to the two research questions below.

ii) Can we identify and classify events happening in the city from the analysis of mobile network use? We show that we are able to identify and group the anomalies that impacted mobile trac in a given area during a given period. Such anomalies include local events, national events, app failovers or updates, Internet outages, and bank holidays. We rely on three main characteristics to represent an event: the variation of trac (i.e., more or less trac than usual), its spatial spreading, and the list of impacted apps during the event. The clustering of the detected events shows that 75% of the events were correctly classied compared to ground-truth labels.

iii) Which correlations exist between the mobile apps that are impacted and the type of detected events? Hereafter, we attempt to model the coarse patterns that we can detect in terms of impacted mobile applications, as well as the slight variations in these models. Our results show that we can easily identify service fail-overs and application updates as they are impacted by a single app. For local and national events, specic typologies of anomalous apps were observed depending on the event category; for example, messaging and streaming apps were usually impacted during matches. We showed that there actually exists typologies of impacted apps depending on the type of events; however slight dierences among each category can also be observed. Spatially, variations in intensity occur between central places and suburbs, while temporally, slightly dierent behaviours can be observed between commuting and working hours.

Our contributions dier from existing special events detection approaches in three main aspects. First, contrary to previous approaches, we are able to nely characterise the identied events, in addition to just detecting them; ve classes of special events have been observed with specic characteristics and can be assigned using clustering algorithms. Second, some works in the literature paid attention to the app usage, but never for the purpose of special events detection; we show that the apps impacted during a given event are strongly correlated to the type of event, with implications in city management, since this knowledge can be critical information on which to make decisions about events management and the prediction of services usage. Finally, our algorithm has a polynomial time complexity, which is less than other approaches from the state-of-the-art, especially compared to deep learningbased approaches such as LSTM networks [START_REF] Trinh | Detecting mobile trac anomalies through physical control channel ngerprinting: A deep semi-supervised approach[END_REF] or Gaussian Mixture Models (GMM) [START_REF] Chalapathy | Group anomaly detection using deep generative models[END_REF].

The paper is organised as follows. Sect. 2 presents the related work and positions our work with respect to the state of the art. Sect. 3 introduces the dataset that we employed in our study. In Sect. 4, we describe our methodology. In Sect. 5 we focus on the extraction of raw anomalies, while Sect. 6 presents how we extract and rene group anomalies. In Sect. 7, we present results from the numerical evaluation. In Sect. 8, we qualify the space and time complexity of ASTECH and discuss its scalability. Finally, Sect. 9 concludes the paper.

Related work

In this section, we review the related work and position our work with respect to the state of the art.

Detection of spatiotemporal anomalies

The survey [START_REF] Naboulsi | Largescale mobile trac analysis: A survey[END_REF] reviews large-scale mobile trac analysis with respect to social, mobility, and network aspects.

From a social perspective, demographic, economical, or environmental factors do inuence the way users consume mobile apps indeed. The possible relationships between the environment, in terms of both geographical and temporal features, and the communication structure are also Polynomial described. Among them, the authors focus on the detection of special events, ranging from political happenings (e.g., elections or manifestations) to entertainment occasions (e.g., concerts, sports games), and accidents (e.g., power outages or exception road congestion).

Authors in [START_REF] Calabrese | The geography of taste: Analyzing cell-phone mobility and social events[END_REF][START_REF] Candia | Uncovering individual and collective human dynamics from mobile phone records[END_REF] propose threshold-based algorithms to detect special events. In [START_REF] Marques-Neto | Understanding human mobility and workload dynamics due to dierent large-scale events using mobile phone data[END_REF], the authors analyse human mobility and the resulting dynamics in the network workload caused by dierent types of large-scale events.

They use heat maps to visually analyse the spatiotemporal dynamics of the movement patterns of the participants of the large-scale event, but do not propose a broader model to characterise such events and detect similar ones. Authors in [START_REF] Hussain | Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks[END_REF] focus on the detection of unusually low user activity to detect cell outages and unusually high user trafc areas to detect the need for additional resource allocation. In [START_REF] Cici | On the decomposition of cell phone activity patterns and their connection with urban ecology[END_REF], authors use the information on residual communication to determine how dierent geographical areas are aected by the same unusual event. Using a time series decomposition, they exploit the seasonal components to segment the city into clusters with similar patterns, and compare the residual components of similar areas to detect local events. Other approaches [START_REF] Trinh | Detecting mobile trac anomalies through physical control channel ngerprinting: A deep semi-supervised approach[END_REF] use deep learning algorithms to detect spatiotemporal anomalies in mobile trac data, such as Long Short-Term Memory (LSTM) algorithms. Finally, attention is also paid to events that are not the result of social behaviours, but of natural or human-caused disasters [START_REF] Bagrow | Collective response of human populations to large-scale emergencies[END_REF].

Table 1 provides an overview of existing state-of-theart approaches in special events detection and a compari-son to the proposed approach, considering several criteria.

Most techniques cover one or two specic types of events, e.g., social events [START_REF] Marques-Neto | Understanding human mobility and workload dynamics due to dierent large-scale events using mobile phone data[END_REF] or emergency events [START_REF] Bagrow | Collective response of human populations to large-scale emergencies[END_REF], while our approach covers a broader variety of detected events, ranging from social and national events to emergency situations and network outages. Furthermore, very few approaches of the state-of-the-art tackle the classication of special events in addition to detecting them. Our algorithm relies on per-app proles and spatiotemporal group analysis for that purpose. Finally, our algorithm has a polynomial space and time complexity, which is less than other approaches using Deep Learning (DL) techniques.

Per-app mobile trac analysis

Hereafter, we review the literature on mobile trac analysis covering per-mobile app analysis.

Up to our knowledge, in the literature, the detection of anomalies such as special events is not tackled at the app level yet. We believe that analysing per-app usages can give valuable details about the nature of events, and thus can help nely characterise them. In the literature, attention is paid to the app usage for other purposes than special events detection [START_REF] Furno | A tale of ten cities: Characterizing signatures of mobile trac in urban areas[END_REF][START_REF] Marquez | Not all apps are created equal[END_REF][START_REF] Xu | Understanding mobile trac patterns of large scale cellular towers in urban environment[END_REF][START_REF] Zhang | Understanding the characteristics of cellular data trac[END_REF]. In [START_REF] Marquez | Not all apps are created equal[END_REF], authors provide an analysis of spatiotemporal heterogeneity in nationwide app usage -they notice a large bias between apps (even within the same category) that makes the time series clustering inconclusive, and some heterogeneity even when looking to activity peaks of individual apps. Authors in [START_REF] Zhang | Understanding the characteristics of cellular data trac[END_REF] investigate the similarities and dierences across dierent apps; as a result, they identify several welldierentiated clusters for each category of apps. In [START_REF] Xu | Understanding mobile trac patterns of large scale cellular towers in urban environment[END_REF], the authors design a system able to identify key patterns of cellular tower trac by clustering custom pattern identiers in trac into ve categories: resident, transport, ofce, entertainment, and comprehensive, area. They study time and frequency-domain representations for trac modelling by analysing interrelationships between trac patterns and using a frequency-domain Fourier transformbased analysis. [START_REF] Furno | A tale of ten cities: Characterizing signatures of mobile trac in urban areas[END_REF] provides a complete comparative evaluation of the techniques for signature classication, including Weekday-Weekend, typical week, median week, etc.

Results unveil the diversity of baseline communication activities across countries but also evidence the existence of a number of mobile trac signatures that are common to all studied areas and specic to particular land uses.

Group anomaly detection

While anomaly detection typically regards data point anomalies, group anomaly detection seeks to detect anomalous collections of points. Traditionally, Seeded Region Growing [START_REF] Adams | Seeded region growing[END_REF] has been used in image processing to form regions into which the image is segmented, by grouping seeds (i.e., either individual pixels or regions). The Mixture of GMM uses topic modelling for group anomaly detection. Adaptive topics are useful in recognising point-level anomalies, but cannot be used to detect anomalous behaviour at the group level. More recently, [START_REF] Xiong | Group anomaly detection using exible genre models[END_REF] studies the group anomaly detection problem by discovering anomalous aggregated behaviours of groups of points. They propose the Flexible Genre Model, which is able to characterise groups' behaviours at multiple levels, contrary to traditional topic models. This detailed characterisation enables the detection of various types of group anomalies.

[11] performs group anomaly detection with an emphasis on irregular group distributions. The authors formulate two deep generative models for group anomaly detection.

Other approaches specically focus on spatiotemporal outlier detection. In [START_REF] Gupta | Outlier detection for temporal data: A survey[END_REF], the authors review outlier detection for spatiotemporal data, among other things.

Considering the temporal and spatial neighbourhood for detecting outliers, they dene spatiotemporal outliers as spatiotemporal objects whose behavioural attributes are signicantly dierent from those of other objects in their spatial and temporal neighbourhoods. They propose a typical spatiotemporal-outlier detection pipeline. Many approaches leverage clustering to compute spatial outliers [START_REF] Birant | Spatio-temporal outlier detection in large databases[END_REF][START_REF] Cheng | A multiscale approach for spatiotemporal outlier detection[END_REF]. Others use distance-based outlier detection and Voronoi diagrams to establish spatial clusters [START_REF] Adam | Neighborhood based detection of anomalies in high dimensional spatiotemporal sensor datasets[END_REF].

Our contribution

With respect to the above described related work, our solution does also cover the detection of so-called group anomalies, besides possible infrastructure-related anomalies. In addition, contrary to most similar approaches, our solution nely characterises the identied events through per-app proles, for which we are not aware of specic literature at the state of the art, in particular looking for a typology of impacted apps mapped to a given category of events. Relatively to group anomaly detection, we use a two-step algorithm to detect abnormal spatiotemporal events, i.e., groups of anomalies spatially and temporally close. We rst group them spatially by applying a recursive algorithm by region growing as the rst approaches of the state of the art did. To do so, we prior neighbours as adjacent Voronoi cells, then identify abnormal cells as those with many anomalies. We then join spatial groups temporally with a custom algorithm. Consequently, our algorithm has a polynomial time complexity, which is less than other approaches from the stateof-the-art, especially compared to deep learning-based approaches such as LSTM networks [START_REF] Trinh | Detecting mobile trac anomalies through physical control channel ngerprinting: A deep semi-supervised approach[END_REF]. Ethics. Note that our study does not breach user privacy or raise ethical or legal issues. On the one hand, we never processed individual or personal data, as raw data is aggregated at the antenna level, which ensures that application demands are merged over several hundreds of subscribers. On the other hand, all data used in the analysis classify as secondary use data; i.e., the data were not collected by the mobile network operator specically for our study, but prior to it under the control of Orange Data Privacy Ocer and in compliance with applicable regulations.

Measurements and dataset

ASTECH Methodology

In this section, we introduce our methodology to detect group anomalies from mobile app usage data, which we name ASTECH (Anomaly SpatioTEmporal Convex Hull) detection.

Algorithmic approach

For the sake of presentation, let us illustrate our methodology with the reference map of the space covered in our tests, the Ile-de-France area (Paris suburbs); this region contains various land uses including residential areas, employment areas, tourist areas, and recreation areas. We compute rst the Voronoi tessellation from the list of the antennas' coordinates. Step 1: Time series decomposition, extraction of residual component, and anomaly detection;

Step 2.1: Aggregation of multi-source anomalies into snapshots;

Step 2.2: Detection of group anomalies via spatiotemporal grouping of abnormal snapshots;

Step 3: Classication of group anomalies into several categories through feature-based clustering. Fig. 3 depicts the group anomaly detection methodology steps as well as its four components. We then describe each step in detail in the following two sections. We describe hereafter and in Table 2 the notations that we use in the paper. Let T be the set of timeslots 2 , and A be the set of apps that can be associated with each session by the provider.

V (Φ) Voronoi diagram of Φ F Set of features A Set of apps T Set of timeslots
We compute features on a per-app (a ∈ A) and per cell (c ∈ V(Φ)) basis; the features f in F we use are: the number of users; the uploaded trac volume, measured as the total number of uploaded packets; the downloaded volume, measured as the total number of downloaded packets.

In our tests, thousands of mobile apps are used; to limit the number, we selected the top-40 apps totalling 80% of the trac volume. Trac volumes generated by mobile 2 In our tests, we use 30-minute timeslots in the period from Mar. 16 to June 6, 2019., where n = 4320. apps follow a power-law [START_REF] Shaq | Characterizing and modeling internet trac dynamics of cellular devices[END_REF], hence only a very limited set of services yield considerable demands that are worth investigating. The set of 40 mobile apps that we get encompasses video and audio streaming (e.g., YouTube and Spotify), social media (e.g., Facebook), messaging (e.g., WhatsApp), stores (e.g., Google Play), navigation (e.g., Google Maps and Waze), as well as trac generated by generic digital activities (e.g., web browsing, newspapers, and email).

Time series anomaly detection

We further develop our methodology to detect raw anomalies from feature-based time series. We rst decompose time series into several components (Sect. 5.1). We then process the residual component derived from the decomposition to detect raw single-ton anomalies (Sect. 5.2).

Time series decomposition

For each app a ∈ A and each Voronoi cell c ∈ V(Φ), we denote the time series of feature f ∈ F as: y 

Y = {y f c,a }, ∀ f ∈ F, ∀c ∈ V(Φ), ∀a ∈ A (1)
The decomposition of time series [START_REF] Giord | The movements of interest rates, bond yields and stock prices in the united states since 1856[END_REF] is the process of 

c,a (t) = T f c,a (t) + S f c,a (t) + R f c,a (t) while the multiplicative decomposition is written as y f c,a (t) = T f c,a (t) × S f c,a (t) × R f c,a (t).
The additive decomposition is appropriate if the magnitude of the seasonal uctuations does not vary with the level of the time series. When the variation in the seasonal pattern appears to be proportional to the level of the time series, then a multiplicative decomposition is more convenient [START_REF] Shiskin | The x-11 variant of the census method ii seasonal adjustment program[END_REF]. In our case, we use the additive decomposition because we do not experience a strong trend-cycle component that would signicantly amplify the whole signal.

Let us review the main techniques for time series decomposition, to then justify the one we use.

The classical time series decomposition method originated in the 1930s, and widely used then, is the Moving Average (MA) one [START_REF] Giord | The movements of interest rates, bond yields and stock prices in the united states since 1856[END_REF]. It is used as the basis of many time series decomposition methods. This technique does not t well data containing outliers. The trend component is computed as the moving average over the time series, then in the case of an outlier, the trend gets very high during a whole sliding window after the beginning of the outlier. This may perpetrate false positives, i.e., a very high amount of trac, then an articial drop in trac (see more details in subsection 7.1). Other time series decomposition techniques are those using month-granularity metrics such as X11 [START_REF] Shiskin | The x-11 variant of the census method ii seasonal adjustment program[END_REF] and SEATS [START_REF] Gómez | Programs tramo and seats, instructions for the user[END_REF].

Finally, another time series decomposition technique is the Seasonal and Trend decomposition using LOESS (STL) [START_REF] Cleveland | STL: A seasonal-trend decomposition[END_REF]. LOESS stands for LOcally Estimated Scatterplot Smoothing. This method estimates nonlinear rela- (iii) Contrary to other methods, STL can be robust to outliers, so that unusual observations do not aect the estimates of the trend-cycle and seasonal components. This alternative STL version uses LOWESS [START_REF] Cleveland | LOWESS: A program for smoothing scatterplots by robust locally weighted regression[END_REF] (Locally Weighted Scatterplot Smoothing), which re-weights data when estimating the LOESS using a data-dependent function. Using the robust estimation allows the model to tolerate larger anomalies in the original signal.

We apply the robust STL decomposition to the y f c,a time series with the periodicity set to 7 × 48 = 336 (for 7 days multiplied by 48 30' timeslots in a day), to take into account the hourly and daily seasonality occurring during a week. We then retain the residual component R f c,a in order not to be inuenced by seasonal and trend variations. The set of residual components computed from the set Y of time series is written R. Using the residual component rather than the original one can avoid seasonal anomalies, e.g., during rush hours, and also accentuate anomalies when framed in their context. We develop such benets in Sect. 7.1.

Detection of raw anomalies

We detect the activity peaks and drops in the R f c,a time series using the z-score algorithm [START_REF] Iglewicz | How to detect and handle outliers[END_REF] 3 . It compares the original signal versus its z-score, and tags elements whose absolute values are greater than the threshold as anomalies. The algorithm exploits the principle of dispersion: if a new data point is a given x number of standard deviations away from some moving mean, it is marked as an anomaly.

It takes three parameters as inputs: the threshold τ, i.e., the z-score at which the algorithm produces an anomaly; the lag l, i.e., the number of past samples in a one-week sliding window. τ is set to 3.5 as recommended in [START_REF] Iglewicz | How to detect and handle outliers[END_REF].

As we use time series with a 30' granularity in the weekly seasonality, the lag is equal to 48 × 7 = 336.

Let Z(t) be the z-score at time t computed as:

Z(t) = (|R f c,a (t)| -R f c,a )/ν, (2) 
with R f c,a and ν respectively the mean and standard deviation computed over the list of R f c,a values from t -1l to t -1. If |Z(t)| is strictly greater than τ, an anomaly can be denoted by the 5-tuple (t, c, f , a, Z(t)) as composition of several attributes: its intensity equal to Z(t) that can be positive or negative (i.e., there is respectively an increase or a drop in the given app usage), the timeslot t, the Voronoi cell c, the feature f , and the app a. To solve the equation, the algorithm works on a time-sliding window basis: at each timestamp t, the mean and standard deviation over the l last values are updated. Then, an anomaly is output is the absolute value of the z-score exceeds τ.

We refer to positive anomalies as anomalies with a positive intensity, e.g., Z(t) > τ and to negative anomalies as anomalies with a negative intensity, e.g., Z(t) < -τ.

Note that we handle time series only above a given number of non-null samplings. For example, some cells (like those covering the stadium stands) are active only when an event occurs. If there are too few values in the time series, the learning period is not relevant and this may produce false positives. We then apply the z-score only when the learning period contains at least 30 values (out of the 336 timeslots during one week), corresponding to 15 hours coverage on the week-wide window. We chose 30 as the least value because, the sides cases with 30 quasi-consecutive non-null samplings (15 hours) can cover one full day, or two long evenings, which we esteem sucient enough for detecting only major anomalies lasting hours.

By applying this lter, we go from 848,688 to 92,940 anomalies, eliminating those that were identied as anomalies because of too few values in the time series.

The set of raw anomalies L found by applying the zscore on the set of residual time series R is thus:

L = {(t, c, f , a, Z(t)) ∀t ∈ T if |Z(t)| > τ}, ∀ R f c,a (t) ∈ R, c ∈ V(Φ), f ∈ F, a ∈ A (3) 
3 Implementation available at https://gist.github.com/ximeg/.

We refer to the elements of L as raw anomalies because related to a single app and not yet grouped, which is covered by the next steps.

Group anomalies

In this section, we present our methodology to detect group anomalies, meant as groups of raw anomalies that are spatiotemporally adjacent, i.e., they form what we call a `convex hull'of anomalies adjacent in time and space.

First, we pass through a grouping into `snapshots', then grouped in turn spatially and temporally to form group anomalies.

Identication of abnormal snapshots

A snapshot is dened as a group of anomalies pertaining to the same timeslot t and Voronoi cell c. We distinguish between snapshots of positive and negative anomalies, i.e., the anomalies whose z-score is respectively posi- 

Fine-grained characterisation of group anomalies

A precise characterisation of the detected group anomalies is needed to understand possible usages. We identied several broad categories of anomalies (including local events, national events, outages, bank holidays, app updates), however, we lack ground-truth labels. Therefore we chose to apply a clustering algorithm to the set of group anomalies, of positive and negative anomalies separately.

Clustering algorithms are designed to group similar vectors into clusters and to identify isolated ones as outliers.

The similarity between two vectors is commonly evaluated using a distance function like the Euclidean distance. Two vectors are dened as similar if they are close to each other, else dissimilar. of events that we identied.

Fig. 4 illustrates the three super-features we leveraged to classify group anomalies and the categories of events we observe. We rst evaluate the group sparsity (superfeature 1 in the gure), to determine if the group is rather localised (happening in a specic place) or distributed (happening in many far places at the same time). Then, we estimate whether the group covers rather a single app or a whole set of apps (super-feature 2). These two rst super-features are determined by continuous variables, i.e., the group can be more or less sparse, and more or less split among a group of apps, as meant by the arrows in the gure. The last super-feature is the sign of the trac variation (super-feature 3), i.e., whether it is a group of positive or negative anomalies. The list of attributes in the k-means algorithm thus includes:

for super-feature 1, the weighted spatial 2D barycentre of the impacted cells for the anomaly;

for super-feature 2, a one-hot encoded vector containing the 5 most recurrent apps during the given anomaly;

we leverage on super-feature 3 for clustering of positive and negative anomalies, separately.

Six broad categories of group anomalies emerge from the combination of super-features: local event, national event, app update, app malfunction, operator outage/bank holiday, and local outage. Note that there are eight possible combinations from the set of super-features, however we labelled only six categories as the two combinations made from "centralised / unique app / positive variation" and "localised / unique app / negative variation" were never observed and not quite relevant.

In order to get satisfying results for the clustering, we retain only major group anomalies, using ad-hoc thresholds for the anomalies' spatial spreading. Then, after the clustering, we map unclassied groups (i.e., below the threshold) to spot anomalies occurring at the same time to classify a larger range of anomalies.

Numerical results

In this section, we test the ASTECH detection methodology against data related to the Ile-de-France area for the period from Mar. 16 to June 6, 2019. We rst analyse raw anomalies (related to Step 1 in Fig. 3, Sect. 5), then group anomalies (related to the other Steps, Sect. 6). Finally, we classify and characterise the group anomalies.

The source code used for the detection and evaluation is available in [START_REF] Github | Source code for special events detection[END_REF].

Raw anomalies

We present results justifying Step 1 of our methodology. Average (MA) (Fig. 5a), Seasonal-Trend Decomposition using Loess (STL) (Fig. 5b), and robust STL (Fig. 5c).

As previously discussed in Sect. 5.1, MA can be inuenced by extreme values (i.e., strong anomalies) and thus may perpetrate false anomalies during a whole sliding window after a large outlier: in Fig. 5a, there is a large increase in trac on May 23 due to a football match at Stade de France; then the trend component is abnormally large during one whole week after this large outlier. The seasonal The trend is also lightly impacted by the large outlier.

Finally, some drops in trac occur on Saturday evenings before and after the match in the residual series, which are false positives induced by the match.

With respect to the robust STL decomposition (using LOWESS), in Fig. 5c, the trend component is not impacted by the outlier, the seasonal component is recomputed each week and thus the residual component does not contain any false positive. Given that we observe these patterns for every time series in the dataset, as anticipated we choose the robust STL as it proved to be robust against outliers.

Component # of pos. anomalies # of neg. anomalies Observed 

Advantages in using the residual signal

As seen in Sect. 5.1, we handle the residual component instead of the original one in our analysis. This presents several advantages. First, we avoid anomalies caused by seasonality, i.e., produced by seasonal variations like trafc peaks during rush hours and trac drops on weekends.

In addition, this enhances sudden trac variations and makes the anomalies more visible (i.e., the z-score of the detected anomalies is even greater when using the residual component). Table 3 shows the number of positive and negative anomalies, i.e., anomalies whose z-score is respectively greater than threshold τ and lower than -τ (τ = 3.5, cf. Sect. 5.2). We observe fewer positive anomalies when using the residual series rather than the observed one, as anomalies during rush hours are less visible when contextualised. Therefore, using the residual component signicantly reduces the number of false positives. On the contrary, there are no negative anomalies when using the observed component, for all time series (no matter the feature, app, and Voronoi cell). This means that there is no signicant drop in the original series. If we lower τ to 1.5, we notice drops at night, when there is almost no trac anymore, but still no drops during bank holidays and massive outages. However, using the residual series enables one to emphasise these variations and thus to produce negative anomalies during outages and bank holidays. In total, we observe 799,617 negative anomalies using the residual component.

Group anomalies

We analyse group anomalies built from raw anomalies. 

Representation of a given event

Typology characterisation of abnormal apps

Typology characterisation (global patterns). We now investigate whether there is a typology of the im- pacted apps specic to each category of events (e.g., local event, national event). The support of app a for category e is computed as the ratio of instances from e that contain at least one anomaly produced by app a. However, there may be a correlation between the app's popularity, i.e., the number of packets for the given app, and the number of anomalies produced by this app. Therefore the support of a given app may be high because the app is highly used in general (thus often produces anomalies), and not because it is highly impacted during this category of group. Therefore, instead of computing the support of app a, we dene the rarity coecient ρ a for app a and category e of events as:

ρ a = Pr(a ∈ L | e) Pr(a ∈ L) =
# events e containing a / # events e # events containing a / # events .

Then, a rarity index ρ a smaller than 1 for event e means that app a appears less frequently during event e than usual, while a rarity index greater than 1 means that a appears more frequently during e than usual. Ultimately, a rarity index ρ a equal to 10 for event e means that app a appears 10 times more frequently during e than usual. Fig. 7 shows the value of the ρ a coecient for each app a within each category of groups of positive anomalies. The colour of each bar represents the category of app, as dened by Orange. During national events (Fig. 7a), a whole subset of apps is impacted, including web apps (Wikipedia, AMP, Yahoo and NewsPaper), and some streaming and chat apps. During local events (Fig. 7b), the subset of most impacted apps is mostly composed of web Apps (SportNews, Waze, GoogleNAV, Weather) and MMS and chat (WhatsApp and SnapChat) apps. During app updates (Fig. 7c), there is clearly a single impacted app which is Apple push. Therefore for groups of positive anomalies, we can induce a typology of the impacted apps for each category of groups. Local events (matches or concerts), national events (like the Notre-Dame de Paris re), and app updates have a dierent signature, each one being represented by a specic set of apps.

Fig. 8 shows, for each category of groups of negative anomalies, the ρ a coecient of each app a. We observe that during bank holidays (Fig. 8a), all apps are (more or less) impacted because they are less used than usual, e.g., with a rarity index close to 1. For the two outages (Fig. 8b), there is only a small subset of impacted apps, with a rarity index close to 1. The most impacted apps are Google NAV, Apple Web, and Google API. Therefore, contrary to groups of positive anomalies, we do not notice a specic typology for groups of negative anomalies.

Figure 10: Heatmap of the Jaccard distances between every possible combination of two cells, on May 13, 2019 at 00:30.

Model of unpredictability (spatiotemporal dynamics of abnormal apps). We showed that there actually exist typologies of impacted apps depending on the type of events. We now study for a given event how the sets of impacted apps evolve in time and space. The Jaccard distance [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et du jura[END_REF] between Σ c,t1, * and Σ c,t2, * measures the dissimilarity between the sets of impacted apps from two snapshots of a same group, at two distinct timeslots t1 and t2:

dist(Σ c,t1, * , Σ c,t2, * ) = |(Σ c,t1, * ∪ Σ c,t2, * ) -(Σ c,t1, * ∩ Σ c,t2, * )| |Σ c,t1, * ∪ Σ c,t2, * | (5) 
Similarly, we can compute the Jaccard distance between the sets Σ c1,t, * and Σ c2,t, * of impacted apps from two snapshots of a same group at t, in two cells c1 and c2.

Following the evolution of such distances through time and space enables one to identify temporal and spatial patterns in the evolution of the sets of impacted apps. Fig. 9a and Fig. 9b show the temporal evolution of the sets of impacted apps, respectively for the match on Apr. 27 in cell Cornillon Stade and during Easter on Apr. 22 from 07:30 to 19:00 in cell Saint-Denis canal. Fig. 10 shows an example of the spatial evolution of the sets of impacted apps for the concert on May 13 at 00:30. The heatmaps are matrices of Jaccard distances between every possible combination of timeslots for a given cell for the temporal evolution, and of cells for a given timeslot for the spatial one. The darkest areas highlight two sets of very similar impacted apps.

We rst investigate the spatiotemporal evolution of local events such as concerts and matches. For the temporal evolution (Fig. 9a), we observe that the similarity within sets of apps slightly increases, then is stable during the event (between 19:00 and 00:00), then slightly decreases at the end of the event. We nd this pattern for a majority of local events. For the spatial evolution (Fig. 10), we observe that the cells located around the stadium (the ones covering the stands) are very similar to one another, while the cells farther away in the suburbs are quite dissimilar.

We then study the spatiotemporal evolution of bank holidays. For the temporal evolution (Fig. 9b), we notice an interesting pattern: rst, we note some dark squares during commuting hours; the time ranges [08:00; 09:30],

[12:30; 14:00], and [17:30; 19:00] exhibit very similar sets of apps. Further inspection of the recurrent impacted applications shows that it includes mostly Spotify and social networks. Then, the working hours [09:30; 12:30] and [13:00; 16:00] exhibit very similar sets of apps, with mail servers and LinkedIn mainly impacted.

This heatmap shows drops in usage during Easter; meaning that these apps are less used than during normal working days. We observed this pattern for a majority of groups happening during bank holidays. For the spatial evolution, we do not observe any specic pattern in this case.

To sum up, we show that what our algorithm detects is exceptional behaviour from users, which we consider anomalous. We can then observe through these visualisations the extent in time and space of these types of behaviours, and for example notice localised events, their timeline, population displacement, etc. and the ground-truth label. Table 4a shows the groups of positive anomalies. We detected a number of local events, such as matches, concerts, talks, festivals, the Paris marathon, and demonstrations. We also identied national events like the European Parliament elections, the Notre-Dame de Paris re, the Lyon bombing with related activity at Paris-Gare-de-Lyon in Paris, and Brexit. Finally, we detected app updates from the Apple Push app.

Group anomalies classication

Table 4b lists prominent groups of negative anomalies.

We detected all of the bank holidays occurring during this period and in particular Easter, Labour Day, Victory in Europe Day, and Ascension Day. We also detected two outages on the Orange 4G network on Apr. 15 [START_REF] Turcan | Panne chez Orange : des problèmes de connexion Internet et 4G sur toute la France[END_REF] and May 27 [START_REF] Schmid | Panne Orange et SFR : des problèmes sur l'internet xe et la 4G. URL[END_REF]. Note that we propose in the supplementary materials the representation of the spatiotemporal spreading of the group anomalies we detected.

We now perform the clustering operation on the set of detected events. Given the knowledge of the ground-truth class assignments of the samples, three key related metrics reect the quality of a clustering operation. Homogeneity is a measure of the ratio of samples of a single class pertaining to a single cluster; the fewer dierent classes included in one cluster, the better. Completeness is the ratio of the member of a given class that is assigned to the same cluster. V-measure is the harmonic mean of homogeneity and completeness. We choose the number k of clusters in the k-means algorithm so that the V-measure is the largest. As an example, we focus hereafter on clustering the groups of positive anomalies. Fig. 11 shows the homogeneity, completeness and V-measure values depending on k. For k set to 6, the homogeneity equals 1, the completeness 0.62, and the V-measure 0.75. Note that if we do not know the number of clusters (i.e., the ground-truth labels)

in advance, we are not able to tune k. Nevertheless, the V-measure is quite high starting from 4 clusters, hence the k value is not essential to get satisfying results.

To understand the composition of the 6 clusters for groups of positive anomalies (while there are 4 groundtruth labels in our dataset), we indicate the cluster numbers assigned to the groups by k-means in last column of Table 4a. The homogeneity equals 1, thus instances from dierent classes never pertain to the same cluster. 

Discussion

In this section, we rst discuss the tuning of the hyperparameters of our algorithm and their impact on the results. We then qualify the space and time complexity of ASTECH, considering its dierent steps, and discuss its scalability and applicability in real-life environments. 

Tuning of the hyperparameters

Time series anomaly detection

The z-score is then applied in a rolling window basis on the residual time series to detect outlier values. Note that steps 1 and 2 can be merged to avoid parsing twice each tuple of apps, features and base stations. 

Conclusion and perspectives

Getting a better understanding of the spatiotemporal dynamics of the group anomalies occurring in a large area can help to anticipate the load for such events. We Our main contributions can be summarised as follows:

(i) We designed a methodology able to detect a number of special events in the Ile-de-France area surrounding Paris. As a result, we identied specic typologies of events, including local events, national events, app updates, outages, and bank holidays. We showed that these group anomalies can be adequately categorised through a k-means clustering operation. Insightful features include the trac variation (positive or negative), the spatial spreading, and the impacted apps. The resulting clusters of anomalies appear to be 75% correct compared to ground-truth labels. Compared to existing works, we are able to nely characterise the type of events that may appear in a city, by also considering the set of apps that are impacted.

(ii) We showed that the apps impacted during a given event are strongly correlated to the type of event, with implications in city management, since this knowledge can be critical information on which to make decisions about events management and the prediction of services usage.

Local events rather impact streaming and messaging apps, national events impact newspapers and Twitter apps, and updates impact the Apple push app. However, for groups of negative anomalies such as outages or bank holidays, no specic typology was identied as the anomalies consist of slight decreases in trac compared to normal working days, thus all apps are impacted. Also, regarding unpredictability, we identied two patterns of temporal variations for the sets of impacted apps: one for local and national events where the similarity is at its peak during the heart of the event, slightly increases, then is stable during the anomaly, and slightly decreases at the end, and the other for bank holidays composed of an alternation of commuting/break hours and working hours.

Timely detecting network anomalies allows operators to maintain the right operation of the network. Automatically detecting and characterising network anomalies allows the ecient allocation of resources. The operator can anticipate the load produced by specic types of events and provision additional resources accordingly. Also, impromptu events can be quickly detected and characterised based on their similarity to previously observed events.

Areas more likely to host these events are automatically 
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 1 Figure 1: Simplied 2G/3G/4G network with passive probes.

Fig. 2

 2 depicts the Voronoi tessellation of the studied area. The colour of each cell of the diagram varies with the number of packets during the 3month period that we study, from yellow for the smallest number of packets to purple for the largest one.

Figure 2 :

 2 Figure 2: Voronoi tessellation of the Ile-de-France area centred on Paris. The colour gradient represents the number of packets accounted for in the cell over the 3-month period.

  Time series for feature f , Voronoi cell c and app a R f c, a Residual component of time series y f c, a Y Set of original time series R Set of residual components from original time series L Set of local anomalies σ c, t, * Snapshot of cell c at t and trac variation * in {+, -} Γ Set of group anomalies 4.2. Notations Let Φ be a set of n distinct base stations (BSs) on the Euclidean place R 2 . At a given BS site, there are in practice several co-located BSs that cover dierent frequencies and especially 2G, 3G, and 4G: we assimilate such a group of co-located BSs to one single BS site in this work. Let V(Φ) denote the Voronoi diagram from Φ.

Figure 3 :

 3 Figure 3: ASTECH processing steps. Step 1: collection of time series, one for each unique app, feature, and Voronoi cell; extraction of the residual component over which a change point detection (z-score) algorithm is applied to collect sudden time series changes leading to a set of anomalies. Step 2.1: anomalies are aggregated into snapshots, then Step 2.2 only the most abnormal ones are aggregated into spatial groups, which are in turn grouped into spatiotemporal groups that we call group anomalies. Finally, Step 3 provides the categorisation of such group anomalies through three super-features, by using the k-means clustering algorithm.

  ,1 , ..., y f c,a,n }. Let Y be the set of time series y, dened for each feature f , Voronoi cell c and app a.

  deconstructing a time series into several components, each representing one among many possible underlying pattern categories. A trend component and a cycle component are usually combined into a single trend-cycle component (often called the trend). We adopt a conventional set of three components, as follows: T f c,a (t), the trend-cycle component at time t, which reects the long-term progression of the series (the secular variation), while the cyclical component reects repeated but non-periodic uctuations. S f c,a (t), the seasonal component at t, reecting seasonality (seasonal variation). A seasonal pattern exists when a time series is inuenced by seasonal factors. Seasonality occurs over a xed period (e.g., the day of the week, the hour of the day).

  (t), the residual component at t, which describes random, irregular inuences. It represents the residual or remainder of the time series after the other components are removed. Two types of decomposition are commonly used. The additive decomposition is y

  f

  tionships by combining multiple regression models based on k-nearest-neighbour models. It ts simple models, such as linear least squares regression, to localised subsets of the data that confer the exibility of nonlinear regression. Taking into account the locality thus describes the deterministic part of the variation in the data, point by point. It presents several advantages over the MA, X11, and SEATS decomposition methods: (i) Unlike X11 and SEATS, STL handles any type of seasonality, not only monthly and quarterly data.(ii) The change rate for the seasonal component as well as the smoothness of the trend-cycle can be chosen by the user.

  tive and negative. A snapshot σ c,t, * is thus dened by four elements: the Voronoi cell c; the timeslot t (30-minute in our tests); the operator * in {+, -}, respectively for positive and negative anomalies; the set of impacted apps denoted Σ c,t, * . Our objective is to identify abnormal snapshots, we mean those with an abnormally high number of anomalies. To identify extreme values in our dataset, we use the Interquartile Range (IQR) on the snapshot cardinality.Above a threshold we set to the conventional 1.5 times the IQR, we spot snapshots with an abnormally high number of anomalies in a given cell as abnormal ones.6.2. Detection of group anomaliesOur objective is to identify group anomalies, dened as a group of abnormal snapshots in a spatiotemporal convex hull, that is a compact spatiotemporal area of adjacent cells and timeslots: we group together abnormal snapshots that are close in terms of space and time. We propose a 2-phase grouping process: (1) group nearby abnormal snapshots at the same timeslot to create spatial groups, then[START_REF] Adams | Seeded region growing[END_REF] group spatial groups which are temporally close in order to form spatiotemporal events, the so-called group anomalies.Phase 1: Creation of spatial groups. The objective is to recursively form spatial groups of nearby abnormal snapshots at timeslot t. The function get_spatial_groups starts from an abnormal snapshot, then applies a region growing algorithm that recursively inspects all of the cells in its neighbourhood which are also abnormal, then their own abnormal neighbours, etc, until there are no more abnormal neighbouring cells to study. The function in charge of recursively nding all of the recursive neighbours of a cell is denoted get_neighbours.

Figure 4 :

 4 Figure 4: 3 super-features to classify group anomalies: (1) spatial spreading, (2) prole of impacted apps, (3) variations in mobile trafc; and 6 broad categories of events.

Figure 5 :

 5 Figure 5: Comparison of time series decomposition techniques: MA, STL, robust STL in a 6-week period.
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 11 Fig. 5 illustrates the decomposition of the time series composed of the number of WhatsApp downloaded packets over time, using three decomposition techniques: Moving

Figure 6 :

 6 Figure 6: Timeline of the football match on March 25, 2019 in Stade de France. Coloured cells on the map represent abnormal snapshots at a given instant. Group anomalies are composed of spatial groups sharing at least one cell at two consecutive timeslots. Further inspection of the group anomalies gives insights about the recurring mobile applications that are impacted.

Fig. 6

 6 Fig. 6 represents the timeline of the football match between France and Iceland in the national stadium named Stade de France situated in Saint-Denis on Mar. 25, 2019, generating group anomalies. First, in (a), at 19:00, before the match, we observe several impacted cells centred around the stadium. The coloured Voronoi cells represent cells whose snapshot is abnormal at that time (i.e., with an abnormally high number of anomalies). At that time
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 7 Figure 7: ρ a coecient of each app for dierent categories e of groups of positive anomalies.

  (a) For bank holidays. (b) For outages.

Figure 8 :

 8 Figure 8: ρ a coecient of each app for dierent categories e of groups of negative anomalies.

  (a) During the match on Apr. 27 in Cornillon Stade. The pink square highlights the heart of the match, when impacted apps were very similar. (b) During Easter in Saint-Denis canal. Green squares show dark areas with similar patterns during commuting hours, while blue ones show similar patterns during working hours.

Figure 9 :

 9 Figure 9: Heatmap of the Jaccard distances between every possible combination of two timeslots.

Figure 11 :

 11 Figure 11: Homogeneity, completeness, and V-measure values depending on the number k of clusters in the k-means algorithm, for groups of positive anomalies.

  Groups of negative anomalies. a : Victory in Europe Day.

  However, national events are split into three dierent clusters. The rst one contains the group anomaly provoked during the Brexit announcement, the second one covers the Notre-Dame de Paris re, and the third one contains the May Day demonstration, the Lyon bombing, and the European Parliament election. These anomalies belong to three dierent clusters because of high variations of intensity and dierent typologies of anomalies impacted. Finally, the sixth cluster contains unknown anomalies that we did not identify and that do not appear in the table.

  Space complexity: the seasonal component is obtained by recombining sub-series composed of average values computed for each timestamp of the considered period, e.g., in our setting, a week. Therefore, the space complexity equals O( |T | w ×|F |×| A|×φ), with w the number of weeks considered in T, F the set of features, A the set of apps, and φ the set of base stations. The trend component is computed by applying LOESS to the series without the seasonal component, thus the space complexity is O(|T |×|F |×| A|×φ), with |T | the set of timeslots. The residual component is computed by subtracting the seasonal and trend components from the time series, thus its space complexity is O(|T |×|F |×| A|×φ). With |F | | A| φ and |T | w 2|T |, the asymptotic space complexity for this step is O(|T |×φ). In our case, |T | is approximately the same scale as φ, such that the asymptotic space complexity for this step is quadratic with the number of base stations. Time complexity: the seasonal component has a time complexity of O(|T |×| A|×φ), with |F | | A|. The time complexity for computing the trend component is O(|T |) × | A|×φ, with |F | | A|. The time complexity for computing the residual component is O(3 × |T |×φ), with |F | | A| φ. With the values of |T | and φ from the same scale, the asymptotic time complexity is quadratic with the number of base stations.

  Space complexity: for each time series, one needs to temporarily store values for the mean, the standard deviation, and the z-score. Then, the list of anomalies should also be stored, thus the total space complexity is O(3+|L|), which can be approximated to O(|L|), where L is the set of detected local anomalies. Time complexity: the time complexity to compute the mean, standard deviation, and z-score at each timeslot is O(|T |).

  Time complexity: the aggregation of anomalous snapshots into group anomalies requires parsing at most twice the list of places and once the list of timeslots, i.e., the worst-case for time complexity is O(φ 2 × |T |).

8. 2 . 4 .

 24 Group anomalies classicationFinally, group anomalies are characterised and classied using the k-means clustering algorithm. Space complexity: the k-means clustering operation presents a space complexity of O(k + |Γ|), e.g., to store the positions of the |Γ| points along with their belongings to the k clusters. With k |Γ|, the complexity gets O(|Γ|).Time complexity: the k-means clustering operation presents a time complexity of O(t × |Γ|×d × k), with t iterations, |Γ| (d-dimensional) points, and k clusters. In the current setting, the time complexity is thus equal to O(18 × t × |Γ|) accounting for 6 clusters and 3 dimensions.

8. 3 .

 3 Scalability and applicability in real-life environmentsThe asymptotic space complexity of ASTECH for the four steps is thus O(φ 2 + |L|+|Γ|), while the asymptotic time complexity is O(φ 3 ), assuming φ and |T | are approximately on the same scale. Our algorithm has thus polynomial time and space complexity, which is less than some approaches in the state-of-the-art, especially compared to deep learning-based approaches based on DNN (Deep Neural Network) or LSTM networks. In real-life environments, several aggregations can be considered to reduce the time execution of the proposed approach, while keeping a good detection accuracy. Both space and time complexity directly depends on | A| and φ, which is why it is better to minimise the numbers of apps and base stations to consider. In particular, the base stations can be aggregated into zones, e.g., with clusters of Voronoi cells or grid squares, and apps into larger categories such as video and audio streaming, social media, messaging, and navigation.

analysed 3 -

 3 month real-world mobile trac data in which we detected transient changes in customer demand, ash crowds, and anomalies caused by unexpected crowd gathering in metropolitan areas.As a result, we detected several matches, concerts, festivals, and races, the Notre-Dame de Paris re, elections, demonstrations, two network outages, and the four bank holidays happening during this period.

  identied and tagged to be closely watched, which could allow for real-time maps exploitable for the advertisement or construction industries. Finally, knowing in advance the mobile apps impacted during given events supports ecient resource allocation. As further work, we plan to develop an online algorithm based on our existing system detecting group anomalies in cellular trac data. Another further work is running the analysis on a geographically larger coverage, with broader tessellation units than the base station Voronoi cell. Finally, another future work is to use noise reduction techniques in the time series in addition to time series decomposition. In [46], the authors introduce a technique to remove noise in the time series, by rst smoothing the workload via a SavitzkyGolay lter, then adopting wavelet decomposition to decompose the smoothed outcome into multiple components.

Table 1 :

 1 Overview of special events detection and comparison to the proposed approach.

	Ref	Events Social National Emergency Threshold DL Technique	AD	Granularity Place Feature App	Complexity Classif
	[3]			Bombings, outages, natural disasters			BS	Call duration event volume,	Linear
	[8]	Sports, arts					Grid space	Users mobility	Linear
	[10]						Grid space	Call volume	Linear
	[28]	Sports	Bank events political holidays,						Linear
	[13]					Clustering	Grid space	Call volume	Polynomial
	[25] [32] [21]	Sports, arts Sports, reli-gious events		Cell outage	LSTM, Au-toen-coders	Semi-supervised AD based statistical-	BS BS Grid space	Call volume Trac volume Trac volume	Polynomial Polynomial Polynomial
	Our work	Sports, arts	Political events, bank holidays, app update	Outage, re, bombing		Spatio-temporal group AD	BS	Trac volume, sparsity, app typology

Table 2 :

 2 NotationsVariable Description

Φ

Set of n distinct base stations

  It takes into account the set of abnormal snapshots S t, * at t of sign * , the neighbours to study N (i.e., if they belong to an abnormal snapshot, we add them to the given group), the list studied of -1, then we initialise a new group. From the set of spatial groups G, we obtain the set of group anomalies denoted Γ. Each group anomaly γ ∈ Γ is dened by its starting timeslot t start , its end timeslot t end , and the list cells of the sets of impacted cells, one for each intermedi-

	cells that have already been inspected and the dictionary
	D that contains the cells in V(Φ) as keys and their neigh-
	bours in the Voronoi diagram as values. We then repeat
	the operation for abnormal snapshots at t that are not yet
	grouped.
	Phase 2: Creation of group anomalies. This
	phase consists of grouping spatial groups at successive
	timeslots into spatiotemporal group anomalies, with the function get_group_anomalies. The objective is to
	group spatial groups at two successive timeslots that have
	at least one Voronoi cell in common. If a group at t does
	not have any cell in common with a group anomaly occur-
	ring at t ate timeslot.

Table 3 :

 3 Number of positive and negative anomalies, respectively for the observed and residual components.

	Residual	3,256,175 2,293,081	0 799,617

Table 4

 4 sums up the list of prominent group anomalies that we detected in our dataset, containing mobile trac data in Ile-de-France during the period from Mar. 16 to

	June 6, 2019. In total, we obtained 4,325 initial positive
	group anomalies and 1,063 negative ones. By selecting the
	top 40 % of the most spatially and/or temporally spread

Table 4 :

 4 Major group anomalies detected in Ile-de-France from Mar. 16 to June 6, 2019. Groups of positive anomalies contain events with a positive intensity, such as local events, national events, and application updates. Groups of negative anomalies contain events with a negative intensity, such as bank holidays and outages. group anomalies, we obtain 20 prominent positive group anomalies with 15 examples shown in the table, and 64 prominent positive negative anomalies with 6 examples in the table. For each group, we indicate the date, the name,

Table 5

 5 

	provides the list of the hyperparameters that
	need to be tuned, their recommended values, and a dis-
	cussion on their impacts on the results. The table shows
	the impact of the hyperparameters at dierent steps of the
	algorithm. These settings may have an inuence over the
	noise present in anomalies (threshold values), the sparsity
	of group anomalies (spatial neighbourhood degree), and
	the characterisation of group anomalies (k ).

Table 5 :

 5 Discussion on the hyperparameters and their impact on the results.

	Hyperparameter	Tuning	Impact on the results
	Periodicity in STL (Sect. 5.1 ) and lag l in	One to several weeks Higher periodicity can account for more accurate phenomena aris-
	the z-score (Sect. 5.2 )		ing in cycles, e.g., seasons or school holidays.
	Threshold τ on the z-score (Sect. 5.2 )	[3, 3.5] (as in [22])	Lower threshold can account for noisier data but smaller local
			events detected.
	Threshold on the number of anomalies in a	[1.2 * IQR, 1.5 *	Lower threshold can account for more anomalous snapshots de-
	snapshot (Sect. 6.1 )	IQR]	tected.
	Spatial neighbourhood degree (Sect. 6.2 )	[1, 3]	In the current setting, only 1-neighbour spatial snapshots are
			aggregated. Considering higher neighbourhood degree enables to
			detect spatially disconnected group anomalies.
	Number k of clusters in k-means (Sect. 6.3 ) [3, 7]	Higher k can account for more specic types of group anomalies.
	8.2.3. Spatiotemporal aggregation into group anomalies	
	Abnormal snapshots are then aggregated in space and	
	time to form group anomalies.		
	Space complexity: the spatiotemporal aggregation of	
	anomalous snapshots has a spatial complexity of O(|Γ|+|L|)	
	to store the list of group anomalies and the list of local	
	anomalies associated with each. The set of local anoma-	
	lies being far larger than the one of group anomalies, the	
	space complexity gets O(|Γ|).		
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