Benefits and Limitations of Unsupported and Supported IrO_x Nanoparticles for the Acidic Oxygen Evolution Reaction

Camila Daiane Ferreira da Silva ^{1,2}, Fabien Claudel ¹, Marion Scohy, ¹ Sofyane Abbou ¹, Raphaël Chattot ¹, Vincent Martin ¹, Bruno Gilles, ³ Laetitia Dubau ¹, <u>Frédéric Maillard</u> ¹

¹ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI,

38000 Grenoble, France

² São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador Saocarlense, 400, São Carlos, SP, Brazil

³ Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000 Grenoble, France

Symposium on the Future of Chemical Energy Conversion – The Role of Catalysis in Future Energy Systems: From Molecules to Systems – June 13-14, 2022 | Düsseldorf, Germany

Acknowledgements

Camila Daiane Ferreira da Silva, Fabien Claudel, Marion Scohy, Raphaël Chattot, Sofyane Abbou, Vincent Martin and Laetitia Dubau.

Bruno Gilles.

Funding

Alkaline vs. acidic water electrolysis

Alkaline water

electrolysis

Alkaline WE

Source: KIMA (Egypt) 165 MW, 37,000 m³ h⁻¹ of H₂ used in fertilizer industry

Pros

Commercialized

- Abundant non-PGM catalysts (cost & availability)
- Durability: long-term
- Stacks: MW range
- □ Reliability

Cons

- Current density: low
- Low operational

pressure

- Degree of purity: low (crossover)
- Electrolyte: corrosive
- Start/stop conditions (intermittency)

Source: Proton On site: M Series PEM water electrolyzers, 100-400 m³ h⁻¹ of H₂

Pros

- Current density: high
- Can be operated at high pressure (EC compression)
- Degree of purity: high
- Quick start/stops (intermittency)
- Efficiency: 70-80 %

Cons

- On-going
 - commercialization
- PGM catalysts (cost & availability)
- Durability: depends on the operating point and material
- Membrane electrolyte

[1] M. M. Rashid, M. K. Al Mesfer, H. Naseem, M. Danish, *Int. J. Eng. Adv. Technol.*, **2015**, *4*, 80-93.
[2] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, *Int. J. Hydrogen Energy*, **2013**, *38*, 4901-4934.

PEMWE

OER electrocatalysts

OER activity: Ru > Ir > Pd > Rh > Pt > Au > Nb ^[1-3].

Stability in acidic OER conditions : Ir >> Ru (RuO₂ corrodes in RuO₄) ^[4-5].

 \Box Unsupported micrometer-sized IrO_x particles used as OER catalyst in PEMWE

Potential at which the current density attains 2 mA cm⁻² in 0.1M H_2SO_4 , 80 °C.

[1] M. H. Miles, M. A. Thomason, J. Electrochem. Soc., **1976**, 123, 1459-1461.

[2] I.C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, *ChemCatChem*, **2011**, *3*, 1159-1165.
 [3] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, *Int. J. Hydrogen Energy*, **2013**, *38*, 4901-4934.

[4] C. Iwakura, K. Hirao, H. Tamura, *Electrochimica Acta*, **1977**, 22 (4), 329-334.

[5] P. Millet, R. Ngameni, S. A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etiévant, Int. J. Hydrogen Energy, 2010, 35, 5043-5052.

Typical Pt/Ir loadings in PEM water electrolyzers

Catalyst loadings (anode and cathode) for typical PEMWE experiments.

2013: Typical cathode loadings were ranging between 0.5 and 1.0 mg_{Pt} cm⁻² ^[1].

□ 2018: Pt loading can be reduced to 0.025 mg_{Pt} cm⁻² without any adverse effect on performance ^[2].

2013: Typical anode loadings were ranging between
 2.0 and 4.0 mg_{lr} cm⁻².

2022: Ir loading can be reduced to 1 mg_{Ir} cm⁻²

[1] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, *Int. J. Hydrogen Energy*, **2013**, *38*, 4901-4934.
[2] M. Bernt, A. Siebel, H.A. Gasteiger, *J. Electrochem. Soc.*, **2018**, 165, F305–F314.

Effect of IrO₂ loading on PEMWE performance

- Thin anodes (< 2 μm, Ir loading < 0.5 mg_{Ir} cm⁻²), the PEMWE performance decreases (non-contiguous character of the thin catalyst layer).
- □ Thick electrodes (>10 μ m, Ir loading >2 mgIr cm⁻²), increase of cell voltage and HFR at high current densities, which is attributed to the high water transport resistance through the thick catalyst layer.
- □ Best performance in systems obtained for Ir loading ≈1 mg_{lr} cm⁻², which corresponds to an anode electrode thickness of ≈ 4 µm.

[1] C. Rozain, E. Mayousse, N. Guillet, P. Millet, *Applied Catal. B: Environmental*, **2016**, *182*, 153–160.
[2] M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc., **2018**, *165*, F305-F314.

The oxidation state of Ir atoms influences the long-term OER performance

- **D** Negative degradation rate for $Ir(0) : -26 \mu V h^{-1}$,
- **D** Positive degradation rate for Ir(IV): + 10 μ V h⁻¹,
- □ Ucell variation flattens with time in both cases,
- □ Changes in PEMWE performance related to changes in Ir oxidation state.

Durability tests at 1 A cm⁻² and 80°C for two different Irblack and IrO_2 catalysts-based MEAs.

Outline

Insights into the early stages of surface oxidation on well-defined Ir(hkl) single crystals using X-ray photoelectron spectroscopy and inductively-coupled plasma mass spectrometry

Towards a reduction of the Ir loading in PEMWE's anodes

- Which supports for IrO_x nanocatalysts?
- Structure-activity-stability relationships

Conclusions

Ir(hkl) model surfaces

[1] Scohy, M.; Abbou, S.; Martin, V.; Gilles, B.; Sibert, E.; Dubau, L.; Maillard, F., ACS Catal. 2019, 9, 9859-9869.

Faceting of Ir(210) in O₂ atmosphere

STM images of a fully faceted Ir(210) surface prepared by flash annealing to 1800 K and cooling to room temperature in O₂ atmosphere.

700nm x 700nm STM-image for nano-faceted Ir(210) in 0.1 M HClO₄.

[1] Ermanoski, I.; Pelhos, K.; Chen, W.; Quinton, J. S.; Madey, T. E., *Surf. Sci.* 2004, *549*, 1-23.
[2] Ermanoski, I.; Kim, C.; Kelty, S. P.; Madey, T. E., *Surf. Sci.* 2005, *596*, 89-97.

[3] Soliman, K. A.; Simeone, F. C.; Kibler, L. A., *Electrochem. Com.* **2009**, *11*, 31-33.
[4] Kaghazchi, P.; Simeone, F. C.; Soliman, K. A.; Kibler, L. A.; Jacob, T., *Faraday Discuss.* **2008**, *140*, 69-80.

Characterization of the fresh Ir(hkl) surfaces

[1] Scohy, M.; Abbou, S.; Martin, V.; Gilles, B.; Sibert, E.; Dubau, L.; Maillard, F., ACS Catal. **2019**, *9*, 9859-9869.

Characterization of the fresh Ir(hkl) surfaces

□ CVs agree with literature ^[1, 2]

[1] Motoo, S.; Furuya, N., *Electroanal. Chem.* **1984**, *167*, 309-315.
[2] Soliman, K. A.; Kolb, D. M.; Kibler, L. A.; Jacob, T., *Beilstein J. Nanotechnol.* **2014**, *5*, 1349-1356.

After 15 potential cycles between 0.05 V and 1.6 V vs. RHE

 $IrO_{x}(OH)_{y} + \delta H^{+} + \delta e^{-} \rightleftharpoons IrO_{x-\delta}(OH)_{y+\delta}$

[1] R. Kötz, H, Neff, S. Stucki, J. *Electrochem. Soc.*, **1984**, *131*, 72–77.
[2] Mozota, J.; Conway, B. E, *Electrochim. Acta.* **1983**, *28*, 1-8.

After 15 potential cycles between 0.05 V and 1.6 V vs. RHE

	lr(0)	lr(III)	lr(IV)
Electrochemically-activated Ir(210)	7 %	88 %	5 %
Electrochemically-activated 'nanostructured' Ir(210)	30 %	14 %	56 %
Electrochemically-activated Ir(111)	75 %	0 %	25 %

□ Crystallographic orientation-dependent composition of Ir oxides,

□ Ir(III) absent from compact Ir(111) surface, predominant on nanostructured Ir(210).

[1] Pfeifer, V.; Jones, T. E.; Velasco Velez, J. J.; Massue, C.; Greiner, M. T.; Arrigo, R.; Teschner, D.; Girgsdies, F.; Scherzer, M.; Allan, J.; Hashagen, M.; Weinberg, G.; Piccinin, S.; Havecker, M.; Knop-Gericke, A.; Schlögl, R., *Phys. Chem. Chem. Phys.* **2016**, *18*, 2292–2296.
[2] Freakley, S. J.; Ruiz-Esquius, J.; Morgan, D. J., *Surf. Interface Anal.* **2017**, *49*, 794–799.

After chronoamperometry at 1.6 V or 1.7 V for 2 h

Drop of the intensity of the peak at 0.9 V, especially after CA at 1.7 V associated with H_{upd} region,

Decrease in Ir(III) content?

[1] J. Mozota, B. E. Conway, *Electrochim. Acta* **1983**, *28*, 1–8.
[2] Frazer, E. J.; Woods, R., *J. Electroanal. Chem.* **1979**, *102*, 127–130.
[3] B. E. Conway, J. Mozota, *Electrochim. Acta* **1983**, *28*, 9–16.

After chronoamperometry at 1.6 V or 1.7 V for 2 h

		lr(0)	lr(III)	lr(IV)
lr(210)	Electrochemically activated	7 %	88 %	5 %
	After CA at 1.6 V	28 %	13 %	59 %
	After CA at 1.7 V	76 %	2%	22 %
lr(111)	Electrochemically activated	75 %	0 %	25 %
	After CA at 1.6 V	80 %	0 %	20 %
	After CA at 1.7 V	85 %	0 %	15 %
Nanostructured Ir(210)	Electrochemically activated	30 %	14 %	56 %
	After CA at 1.6 V	35 %	11 %	53 %
	After CA at 1.7 V	59 %	4 %	37 %

Both Ir(III) and Ir(IV) species content decreasing, Ir(0) content increasing.

Ir(III) species are dissolving in the electrolyte, [1]
 Released Ir content increases with increasing concentration of low-coordinated sites.

After chronoamperometry at 1.6 V or 1.7 V for 2 h

- After chronomaperometry: decrease of the OER activity,
- Same specific activity for the three Ir(hkl) surfaces after 2 hours of polarization at 1.7 V,
- OER specific activity correlates with Ir(III) content determined *ex situ*.

[1] Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D.; Stamenkovic, V. R.; Markovic, N. M., J. Phys. Chem. Lett. **2014**, *5*, 2474–2478.

Ir(III) and O(-I) species correlated?

- Electrophilic oxygen O(-I) species shown to be active site towards the OER [1-3]. Similarities with PS II [3].
- □ Ir leaching from IrO_x lattice \rightarrow injection of vacancies in the IrO_x shell \rightarrow number of *d*-band holes on surface Ir increases \rightarrow increase in the hole character on the O ligands and shorter Ir-O bonds.
- □ Ir(III) and O(-I) contents correlated [4-6].
- Ex situ Ir(III) content was used as a more easily accessible OER activity descriptor.

[1] Pfeifer, V.; Jones, T. E.; Velasco Vélez, J. J.; Massué, C.; Greiner, M. T.; Arrigo, R.; Schlögl, R et al., Phys. Chem. Chem. Phys. 2016, 18, 2292–2296.

- [2] Pfeifer, V.; Jones, T. E.; Wrabetz, S.; Massué, C.; Velasco Vélez, J. J.; Arrigo, R.; Schlögl, R. et al., Chem. Sci. 2016, 7, 6791–6795.
- [3] Pfeifer, V.; Jones, T. E.; Velasco Vélez, J. J.; Arrigo, R.; Piccinin, S.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. Chem. Sci. 2017, 8, 2143–2149.

[4] Nong, H. N.; Reier, T.; Oh, H.-S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R.; Jones, T.; Strasser, P. *Nature Catalysis* **2018**, *1*, 841–851.

[5] Massué, C.; Pfeifer, V.; van Gastel, M.; Noack, J.; Algara-Siller, G.; Cap, S.; Schlögl, R., ChemSusChem. 2017, 10, 4786-4798.

[6] Spoeri, C.; Briois, P.; Nong, H. N.; Reier, T.; Billard, A.; Kuehl, S.; Teschner, D.; Strasser, P., ACS Catal. 2019, 9, 6653-6663.

Activity – Stability – Factor values

- □ Potential-dependent ASF ^[1] values,
- ASF values decrease with increasing concentration of low-coordinated sites,
- \Box Maximal ASF values on IrO₂ particles.

where *J* is the total current density and *S* is the rate of Ir dissolution (equivalent current density calculated from ICP-MS).

[1] Kim, Y. T.; Lopes, P. P.; Park, S. A.; Lee, A. Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V.; Erlebacher, J.; Snyder, J.; Markovic, N. M., Nat. Commun. 2017, 8, 1449.

Intermediate conclusion

Whatever the initial crystallographic orientation, proportion of high- and lowcoordinated atoms or oxidation state, Ir single crystal surfaces converge towards a less active yet stable state.

[1] Scohy, M.; Abbou, S.; Martin, V.; Gilles, B.; Sibert, E.; Dubau, L.; Maillard, F., ACS Catal. 2019, 9, 9859-9869.

Outline

Insights into the early stages of surface oxidation on well-defined Ir(hkl) single crystals using X-ray photoelectron spectroscopy and inductively-coupled plasma mass spectrometry

Towards a reduction of the Ir loading in PEMWE's anodes

- Which supports for IrO_x nanocatalysts?
- Structure-activity-stability relationships

Conclusions

OER electrocatalysts

-

$\Box \quad Ir is rare and costly \rightarrow any alternative?$

- Mixing IrO₂ with a cheaper "diluent": IrO₂ + SnO₂ ^[1, 2], Ta₂O₅ ^[3], Nb₂O₅ ^[4], Sb₂O₅ ^[5], and their mixtures (e.g. SnO₂-IrO₂-Ta₂O₅ ^[6]) → unsuccessful (mostly loss of electron conductivity),
- Ti@IrO₂ core@shell structure ^[7, 8]→ beware: TiO₂ layer growths at the interface between the Ti core and the IrO₂ shell,
 - Decrease of the IrO_x crystallite size ^[8].

[1] C. P. De Pauli, S. Trasatti, J. Electroanal. Chem., 1995, 396, 161-168C.

[2] E. Mayousse, F. Maillard, F. Fouda-Onana, O. Sicardy, N. Guillet, Int. J. Hydrogen Energy, 2011, 36, 10474-10481.

[3] (a) M. Morimitsu, R. Otogawa, M. Matsunaga, *Electrochimica Acta*, **2000**, *46*, 401-406, (b) J. M. Hu, H. M. Meng, J. Q. Zhang, C. N. Cao, Corr. Sci. **2002**, *44*, 1655-1668.

[4] A. J. Terezo, J. Bisquert, E. C. Pereira, G. Garcia-Belmonte, J. Electroanal. Chem., 2001, 58, 59-69.

[5] G. H. Chen, X. M. Chen, P. L. Yue, J. Phys. Chem. B, 2002, 106, 4364-4369.

[6] S. Ardizzone, C. L. Bianchi, G. Cappelletti, M. Ionita, A. Minguzzi, S. Rondinini, et al., J. Electroanal. Chem., 2006, 589, 160-166.

[7] A. de Oliveira-Sousa, M. A. S. da Silva, S. A. S. Machado, L. A. Avaca, P. de Lima-Neto, Electrochimica Acta, 2000, 45, 4467-4473.

[8] M. Bernt, C. Schram, J. Schröter, C. Gebauer, J. Byrknes, C. Eickes, H. A. Gasteiger, J. Electrochem. Soc., 2021, 168, 084513

[8] C. Daiane de Ferreira, F. Claudel, V. Martin, K. Kumar, L. Dubau, F. Maillard et al. ACS Catal., 2021, 11, 4107-4116.

Building a library of materials

[1] C. Daiane de Ferreira, F. Claudel, V. Martin, R. Chattot, S. Abbou, K. Kumar, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, L. Solà-Hernandez, C. Beauger, M. Faustini, J. Peron, B. Gilles, C. Beauger, L. Piccolo, F. H. Barros de Lima, L. Dubau, F. Maillard, ACS Catal. 2021, 11, 4107-4116.

Electrochemical conditions

□ H-cell (a P3 glass frit "slows down" redeposition of Ir^{z+} species produced at the WE onto the CE)

- WE: 20 μ g_{Ir} cm⁻² (50 μ g_{Ir} cm⁻² for the unsupported catalysts, except for IrO₂ comm. and IrO_x/IrO₂ comm.),
- Separated CE (GC) and WE/Ref. (RHE)
- Ar-saturated 0.05 M H₂SO₄, 25°C.

□ Potentials are corrected with iR drop and reported *vs*. RHE.

□ Activation: 100 cycles 0.05 – 1.4 V vs. RHE, 500 mV s⁻¹, 25°C.

□ Base voltammograms: 3 cycles 0.05 - 1.4 V vs. RHE, 50 mV s⁻¹, 25°C.

□ OER: LSV from 1.2 to 1.6 V *vs.* RHE, 5 mV s⁻¹, 25°C.

Galvanostatic AST: 10 mA cm⁻² (*ca*. 500 A g⁻¹_{lr}) and $T = 80^{\circ}$ C

Physical and electrochemical characterization of the catalysts

- □ Amorphous Ir oxyhydroxides produced by polyol route well performing towards the OER ^[1-3],
- □ Supported >> unsupported catalysts [4]

S. Gottesfeld, S. Srinivasan, J. Electroanal. Chem. Interfacial Electrochem., 1978, 86, 89.
 R. Kötz, H, Neff, S. Stucki, J. Electrochem. Soc., 1984, 131, 72-77.
 T. Reier, D. Teschner, T. Lunkenbein, A. Bergmann, S. Selve, R. Kraehnert, R. Schlögl, P. Strasser, J. Electrochem. Soc., 2014, 161, F876–F882
 F. Claudel, L. Dubau, G. Berthomé, L. Sola-Hernandez, C. Beauger, L. Piccolo, F. Maillard, ACS Catal., 2019, 9, 4688-4698.

Charge-normalized activity towards the OER

Amorphous Ir oxyhydroxides best performing towards the OER, in agreement with ^[1-3].

Supported > Unsupported

[1] T. Reier, D. Teschner, T. Lunkenbein, A. Bergmann, S. Selve, R. Kraehnert, R. Schlögl, P. Strasser, J. Electrochem. Soc., 2014, 161, F876–F882.

[2] S. Cherevko, T. Reier, A. R. Zeradjanin, Z. Pawolek, P. Strasser, K. J. J. Mayrhofer, K. J. J., *Electrochem. Com*. **2014**, *48*, 81-85

[3] F. Claudel, L. Dubau, G. Berthomé, L. Sola-Hernandez,C. Beauger, L. Piccolo, F. Maillard, *ACS Catal.*, **2019**, *9*, 4688-4698.

Mass-normalized activity towards the OER

□ Supported > Unsupported

□ MA = ASD x TOF x F/Na ^[1]

- With MA, the OER mass activity (A g⁻¹ powder),
- ASD, the active site density (site g⁻¹ powder),
- TOF, the turnover frequency (electrons site⁻¹ s⁻¹),
- F the Faraday's constant (A s mol⁻¹),

-Na Avogadro's number (electrons mol⁻¹)

Reasons are combined effects of mixed Ir oxidation states, small crystallites and high ASD values

[1] Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., *Appl. Catal. B.*, **2005**, *56*, 9-35.

Towards S-number values

Galvanostatic AST: 10 mA cm⁻² (*ca*. 500 A g⁻¹_{lr}) and $T = 80^{\circ}$ C until cut-off voltage (U = 2V) is reached.

Changes in morphology

Changes in morphology

[1] F. Claudel, L. Dubau, G. Berthomé, L. Sola-Hernandez, C. Beauger, L. Piccolo, F. Maillard, ACS Catal., 2019, 9, 4688-4698.

- Most efficient OER catalysts also seem to be the most durable,
- Combined effects of TOF and ASD:
 MA = ASD x TOF x F/Na implies that the most active catalysts operate at lower potential (less oxidizing conditions)
- The time required to reach cut-off voltage is in fact poorly related to the durability of the catalyst.

□ Passivation of the backing electrode ^[1]?

[1] Geiger, S.; Kasian, O.; Mingers, A. M.; Nicley, S. S.; Haenen, K.; Mayrhofer, K. J. J.; Cherevko, S., ChemSusChem. 2017, 10, 4140-4143.

[1] Geiger, S.; Kasian, O.; Mingers, A. M.; Nicley, S. S.; Haenen, K.; Mayrhofer, K. J. J.; Cherevko, S., ChemSusChem. 2017, 10, 4140-4143.
[2] El-Sayed, H. A.; Weiss, A.; Olbrich, L. F.; Putro, G. P.; Gasteiger, H. A., J. Electrochem. Soc. 2019, 166, F458-F464.

- □ Passivation of the backing electrode ^[1]?
- Time to reach cut-off voltage is inversely % to current density and to Ir loading ^[2].
 - Poisoning by O₂ bubbles in/at the TF electrode:
 - Time to reach cut-off voltage is inversely % to current density and Ir loading ^[2].
- OER activity stable upon sonication, otherwise drops continuously ^[3]

[1] Geiger, S.; Kasian, O.; Mingers, A. M.; Nicley, S. S.; Haenen, K.; Mayrhofer, K. J. J.; Cherevko, S., *ChemSusChem.* 2017, *10*, 4140-4143.
[2] El-Sayed, H. A.; Weiss, A.; Olbrich, L. F.; Putro, G. P.; Gasteiger, H. A., *J. Electrochem. Soc.* 2019, *166*, F458-F464.
[3] Hartig-Weiss, A. Tovini, M. F.; Gasteiger, H. A.; El-Sayed, H. A., *ACS Appl. Energy Mater.* 2020, *3*, 10323-10327

S-number values^[1]

Unsupported >> Supported

□ Porous IrO_x -450°C: 6-fold enhancement of the *S*-number value with respect to reference $IrO_{2 \text{ comm.}}$

S-number values calculated for all the electrocatalysts during a galvanostatic AST performed in Ar-saturated 0.05 M H_2SO_4 at *j* = 10 mA cm⁻²_{geo}, *T* = 80 °C, $U_{cut-off}$ = 2 V vs. RHE

$$S - number = \frac{n(O_2)}{n(Ir)} = \frac{i}{i_{\text{dissol}}} [1] \qquad \qquad n_{O_2} = \frac{1}{zF} \int i(t)dt \qquad \qquad n_{Ir} = \frac{[Ir]}{M_{\text{Ir}}}$$

Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z.; Oellers, T.; Fruchter, L.; Ludwig, A.; Mayrhofer, K. J. J.; Koper, M. T. M.; Cherevko, S., *Nat. Catal.* 2018, 1 (7), 508-515.
 S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, *ACS Catal.*, 2020, 10, 7283-7284.

S-number values^[1]

 \Box IrO_x/TaTO, best supported catalyst in terms of *S*-number.

 \Box In agreement with ^[2].

S-number values calculated for all the electrocatalysts during a galvanostatic AST performed in Ar-saturated 0.05 M H₂SO₄ at *j* = 10 mA cm⁻²_{geo}, *T* = 80 °C, $U_{cut-off}$ = 2 V vs. RHE

$$S - number = \frac{n(O_2)}{n(Ir)} = \frac{i}{i_{\text{dissol}}} [1] \qquad \qquad n_{O_2} = \frac{1}{zF} \int i(t)dt \qquad \qquad n_{Ir} = \frac{[Ir]V}{M_{Ir}}$$

Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z.; Oellers, T.; Fruchter, L.; Ludwig, A.; Mayrhofer, K. J. J.; Koper, M. T. M.; Cherevko, S., *Nat. Catal.* 2018, 1 (7), 508-515.
 S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, *ACS Catal.*, 2020, 10, 7283-7284.

Flow cell ICP-MS

ATO improves the stability of IrO_x NPs vs. Vulcan XC72 but...
 Amount of Ir and Sb being dissolved correlate.

 $\Box 20 \, \mu g_{\rm lr} \, \rm cm^{-2} \, (100 \, \mu g_{\rm lr} \, \rm cm^{-2} \, for \, \rm IrO_2)$

- $\Box \quad \text{Ar-saturated } 0.05 \text{ M H}_2\text{SO}_4 @ 22 \pm 2^{\circ}\text{C}$
- 100 mV steps between 0.9 1.6 V vs. RHE
 300 s each 25°C)

PMP - LEP0003

Flow cell ICP-MS

Negligible Ta and Sn dissolution ^[1];
 Ir NPs dissolve at *E* > 1.4 V *vs*. RHE (similar to bulk Ir disk ^{[2}]).

[1] S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, ACS Catal., 2020, 10, 7283-7284.
[2] S. Cherevko, S. Geiger, O. Kasian, A. Mingers, K.J.J. Mayrhofer, J. Electroanal. Chem., 2016, 773, 69–78

t/s

Spontaneous TaTO-core@Ta₂O₅-shell structure formation in acidic OER conditions

 \Box Negligible Ta dissolution but formation of Ta₂O₅-shell ^[1].

[1] S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, ACS Catal., **2020**, 10, 7283-7284.

S-number values^[1]

□ Subtle effect of thermal annealing under air.

 \Box Best illustrated by porous IrO_x NPs.

S-number values calculated for all the electrocatalysts during a galvanostatic AST performed in Ar-saturated 0.05 M H₂SO₄ at *j* = 10 mA cm⁻²_{geo}, *T* = 80 °C, $U_{cut-off}$ = 2 V vs. RHE

$$S - \text{number} = \frac{n(02)}{n(\text{Ir})} = \frac{i}{i_{\text{dissol}}} [1] \qquad \qquad n_{O_2} = \frac{1}{zF} \int i(t)dt \qquad \qquad n_{Ir} = \frac{[Ir]}{M_{\text{Ir}}}$$

Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z.; Oellers, T.; Fruchter, L.; Ludwig, A.; Mayrhofer, K. J. J.; Koper, M. T. M.; Cherevko, S., *Nat. Catal.* **2018**, *1* (7), 508-515.
 S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, ACS Catal., **2020**, *10*, 7283-7284.

Effect of thermal annealing on structure and morphology of porous $IrO_x NPs$

□ Subtle effect of thermal annealing under air.

□ At high *T*, increase of crystallite size and formation of Ir(+IV) species along with structure collapse.

Faustini, M.; Giraud, M.; Jones, D.; Rozière, J.; Dupont, M.; Porter, T. R.; Nowak, S.; Bahri, M.; Ersen, O.; Sanchez, C.; Boissière, C.; Tard, C.; Peron, J., *Adv. Energy Mater*. **2018**, 0, 1802136.

S-number values^[1]

S-number values calculated for all the electrocatalysts during a galvanostatic AST performed in Ar-saturated 0.05 M H₂SO₄ at j = 10 mA cm⁻²_{geo}, T = 80 °C, U_{cut-off} = 2 V vs. RHE

Subtle effect of thermal annealing under air (see porous IrO_x NPS).

□ Thermal annealing at 450 °C causes recrystallization + formation of Ir(+IV) species: decrease of $i_{dissol} \rightarrow S$ -number increase,

□ Thermal annealing at > 450°C leads to increase in crystallite size and structure collapse: decreased ASD values \rightarrow smaller *i* values \rightarrow *S*-number decrease

 \square Best compromise: Porous IrO_x-450°C

 $M_{\rm Ir}$

$$S - \text{number} = \frac{n(02)}{n(\text{Ir})} = \frac{i}{i_{\text{dissol}}} [1] \qquad \qquad n_{O_2} = \frac{1}{zF} \int i(t)dt \qquad \qquad n_{Ir} = \frac{[Ir]V}{M_{\text{Ir}}}$$

[1] Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z.; Oellers, T.; Fruchter, L.; Ludwig, A.; Mayrhofer, K. J. J.; Koper, M. T. M.; Cherevko, S., Nat. Catal. 2018, 1 (7), 508-515. [2] S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, ACS Catal., 2020, 10, 7283-7284.

Conclusions

□ Library of 18 supported and unsupported materials:

- OER mass activity basis: Supported nanocatalysts > unsupported catalysts (high density of active sites because of amorphous domains/small crystallites + mixed Ir oxidation states);
- Long-term stability: Unsupported catalysts > supported catalysts;
- Long-term stability of supports: TaTO >> ATO ~ C;

 \Box Thermal annealing under air enhances stability but lowers OER mass activity of IrO_x NPs (ASD + TOF decrease).

 F. Claudel, L. Dubau, G. Berthomé, L. Sola-Hernandez, C. Beauger, L. Piccolo, F. Maillard, ACS Catal., 2019, 9, 4688-4698
 S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernández, C. Beauger, L. Dubau, F. Maillard, ACS Catal., 2020, 10, 7283-7284.
 C. Daiane Ferreira da Silva, F. Claudel, V. Martin, R. Chattot, S. Abbou, K. Kumar, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, L. Solà-Hernandez, C. Beauger, M. Faustini, J. Peron, B. Gilles, C.

Beauger, L. Piccolo, F. H. Barros de Lima, L. Dubau, F. Maillard, ACS Catal., 2021, 11, 4107-4116.

Synthesis of porous hollow IrO_x catalysts

□ $IrCl_3$ + PMMA solution sprayed → drying chamber → collection itnto glass vessel

Calcination at different T leads to different crystallite sizes and change in Ir oxidation states

Porous IrO_x-400°C Porous IrO_x-450°C Porous IrO_x-500°C Porous IrO_x-800°C

Faustini, M.; Giraud, M.; Jones, D.; Rozière, J.; Dupont, M.; Porter, T. R.; Nowak, S.; Bahri, M.; Ersen, O.; Sanchez, C.; Boissière, C.; Tard, C.; Peron, J., *Adv. Energy Mater*. **2018**, 0, 1802136.

Crystallite size rather than Ir oxidation state determines OER activity.

[1] M. Elmaalouf, M. Odziomek, S. Duran, M. Gayrard, M. Bahri, C. Tard, A. Zitolo, B. Lassalle-Kaiser, J.-Y. Piquemal, O. Ersen, C. Boissière, C. Sanchez, M. Giraud, M. Faustini, J. Peron, *Nature Comm.*, **2021**, *12*, 3935.

Synthesis of doped SnO₂ aerogels

+ antimony III isopropoxide **Sol-gel process** into which a solution gradually evolves toward the formation of a gel-like network featuring both a liquid and a solid phase.

[1] Ozouf, G., Beauger, C., J. *Mater. Sci.*, **2016**, *51*, 5305-5320.
[2] L. Solà-Hernández, F. Claudel, F. Maillard, C. Beauger, *Int. J. Hydrogen Energy*. **2019**, 44, 24331-24341.

Sb-doped SnO₂ aerogels

- □ Highly porous structure;
- \Box High BET surface area (85 m² g⁻¹), essentially 20-50 nm-sized pores (mesoporous);
- □ High electronic conductivity: 0.1 S cm⁻¹.

[1] Ozouf, G., Beauger, C., J. *Mater. Sci.*, **2016**, *51*, 5305-5320.
[2] L. Solà-Hernández, F. Claudel, F. Maillard, C. Beauger, *Int. J. Hydrogen Energy*. **2019**, 44, 24331-24341.

Structure of IrO_x catalysts

74

Chemical state of thermally-annealed IrO_x catalysts

Effect of thermal annealing

- □ Peaks originating from Ir and Sb;
- Decreasing quantities of Sb and Ir;
- \Box Synchronous IrO_x and Sb peaks: detachment of portions of the catalytic layer?

Electrochemical conditioning

10 cycles @ 10 mV s⁻¹ [0.9 – 1.4 V *vs*. RHE] 25°C.

- Decreasing quantities of dissolved Sb and Sn;
- □ Synchronous IrO_x dissolution and Sb dissolution: detachment of portions of the catalytic layer due to oxygen evolution?

 \Box IrO₂ comm. > Ir/C comm. ~ IrO_x/ATO > IrO_x/C

 \Box Ir/C comm. more agglomerated than IrO_x/C

Electrochemical break-in

10 cycles @ 10 mV s⁻¹ [0.9 – 1.4 V *vs*. RHE] 25°C.

□ IrO_2 comm. > Ir/C comm. ~ $IrO_x/ATO > IrO_x/C$ □ Ir/C comm. more agglomerated than IrO_x/C

 $IrO_2 \text{ comm.} > IrO_x/TaTO-2.5 \sim IrO_x/TaTO-5.0 > Ir/C \text{ comm.} \sim IrO_x/ATO > IrO_x/TaTO-31.5 > IrO_x/TaTO-18.0 \sim IrO_x/C$

Accelerated stress test (CVs between 1.2 - 1.6 V vs. RHE – 50 mV s⁻¹ – 60°C)

 Enhanced CV stability for TaTO samples after cycling between 1.2 and 1.6 V vs.
 RHE @ 60 °C.

Accelerated stress test (CVs between 1.2 - 1.6 V vs. RHE – 50 mV s⁻¹ – 60°C)

Activity @ 1.51 V vs. RHE after potential stepping between 1.2-1.6 V vs. RHE @ 60 °C

- □ Normalizing the OER current by the nominal Ir mass suggests superior activity and stability for IrO_x/TaTO 5 %;
- □ Increasing Ta content results in a better stability (up to 87 % of initial OER activity retained after 500 cycles between 1.2 and 1.6 V vs. RHE $T = 80^{\circ}$ C).