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Divide & Conquer Imitation Learning

Alexandre Chenu1, Nicolas Perrin-Gilbert1 and Olivier Sigaud1

Abstract— When cast into the Deep Reinforcement Learning
framework, many robotics tasks require solving a long hori-
zon and sparse reward problem, where learning algorithms
struggle. In such context, Imitation Learning (IL) can be a
powerful approach to bootstrap the learning process. However,
most IL methods require several expert demonstrations which
can be prohibitively difficult to acquire. Only a handful of IL
algorithms have shown efficiency in the context of an extreme
low expert data regime where a single expert demonstration is
available. In this paper, we present a novel algorithm designed
to imitate complex robotic tasks from the states of an expert
trajectory. Based on a sequential inductive bias, our method
divides the complex task into smaller skills. The skills are
learned into a goal-conditioned policy that is able to solve each
skill individually and chain skills to solve the entire task. We
show that our method imitates a non-holonomic navigation task
and scales to a complex simulated robotic manipulation task
with very high sample efficiency.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has been successful
in solving complex simulated ([1], [2], [3]) and physical
robotic control problems [4]. However, even in simulation,
DRL is still limited when applied to complex tasks including
sparse reward signals [5], long control-time horizons and
critical states [6]. In this context, Imitation Learning (IL)
is a fruitful alternative to failing DRL algorithms. In IL,
a number of expert demonstrations are used to guide the
learning process so that the behavior of an agent matches
that of an expert.

However, most imitation learning algorithms require a
large set of expert demonstrations which can be hard to
acquire, particularly in the context of long-horizon problems.
In this context, a few methods strive to design an IL
algorithm that can work with a single demonstration. Among
these methods, the Go-explore approach ([7], [3] relies on
a strategy called Backplay [8], [9]) which learns a single
controller by starting further and further away from the final
point. As it needs to learn and play many longer and longer
trajectories, this approach suffers from sample inefficiency.
Another recent approach that can handle single demonstra-
tions is PWIL [10], which uses offline learning to define an
episodic reward function based on the demonstration, and
performs IL without formulating it as an adversarial learning
problem, contrary to most recent approaches. This improves
the efficiency and stability of the IL process, but this still
resorts to performing DRL on a long horizon task, which
limits the potential gain in sample efficiency.

In this paper, we present Divide & Conquer Imitation
Learning (DCIL), a DRL-based IL algorithm relying on
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Fig. 1: Chaining of four skills learned using DCIL in a sim-
ulated object transportation task. The pink sphere represents
the success zones defined in the goal space. The goal space
contains the Cartesian positions of the end effector and a
Boolean indicating if the object is grasped or not.

a sequential inductive bias to solve long-horizon imitation
tasks using a single demonstration. As the name implies,
DCIL divides the complex task into skills. The skills are
learned into a goal-conditioned policy (GCP) that is able to
solve each skill individually and chain skills to solve the
entire task. In complex problems, it may be necessary for
the goal space to have a lower dimensionality than the state
space, which means that skills may lead to states that do not
match the expert demonstration. As a result, the chaining
of the skills becomes challenging, and we address this issue
by introducing, for each skill, a chaining reward bonus that
depends on a value function learned over the next skill. We
first evaluate our approach in a toy Dubins maze environment
where the dynamics of the controlled system is constrained,
and show that our chaining mechanism plays a crucial
role in ensuring the success of the method, resulting in a
sample efficiency that is several orders of magnitude better
than that of Backplay and PWIL. We then turn to a more
challenging Fetch environment where an object has to be
grasped and put into a drawer with a simulated robotic arm,



and demonstrate an even greater gain in sample efficiency
compared to Backplay, the method used by Go-Explore on
this benchmark.

II. RELATED WORK

IL is usually transformed into an optimization problem
whose objective is to reproduce the behavior of an expert.
It can be done directly in Behavioral Cloning [11], which
relies on regression to learn a policy that mimics the actions
of the expert. A more indirect approach is Inverse Reinforce-
ment Learning (IRL) [12], which consists in estimating an
unknown reward function from demonstrations of an expert
considered optimal and training a policy using the learned
reward function.

These approaches are severely limited by the necessity
to measure the actions of the expert, and by their typical
need for many demonstrations. More specifically, with few
demonstrations, BC tends to suffer from compounding error
caused by covariate shift [13]. In the case of IRL, it can
be difficult to extract a reward from a unique demonstration.
For instance, popular adversarial methods for IRL ([14], [15],
[16], [17]) rely on a generator-discriminator architecture that
may become unstable if the discriminator is not trained on
sufficiently many samples from expert trajectories.

There are contexts in which demonstrations are rare or
difficult to generate, but only a few of the deep learning-
based methods are capable of producing good results in this
low data regime. In our experimental validation, we mainly
consider two of them: PWIL and Backplay.

A. IL from a single demonstration

1) PWIL: Primal Wasserstein Imitation Learning (PWIL)
[10] is a recent IRL method that minimizes a greedy version
of the Wasserstein distance between the state-action distribu-
tions of the agent and the expert. The Wasserstein distance
presents several good properties that have been proficiently
used in the Deep Learning community [18]. PWIL solves
an occupancy matching problem between an agent and
the demonstration without relying on adversarial training,
which makes it more stable than adversarial methods. More
specifically, it defines an episodic reward function based
on the demonstration, and performs IL by maximizing this
reward without introducing an inner minimization problem
as adversarial approaches do. PWIL achieves strong perfor-
mances in complex simulated robotics tasks like humanoid
locomotion using one single demonstration.

2) Backplay: The Backplay algorithm ([8], [9]), is an
approach explicitly designed for IL from a single demon-
stration. It has been used in the robustification phase of
the first version of the Go-Explore algorithm [7] to achieve
state-of-the-art results on the challenging Atari benchmark
Montezuma’s revenge and in the Fetch problem that we
tackle in Section V-D. In Backplay, the objective is to reach
the final state of the expert demonstration. The RL agent is
initialized close to the rewarding state and the starting state is
progressively moved backward along the demonstration if it
is successful enough at reaching the desired state. Backplay

can be seen as a curriculum for RL approaches in the context
of sparse reward and long-horizon control [19].

B. Skill-chaining

In this paper, we propose to address the single demon-
stration imitation problem by transforming a demonstration
into a sequence of RL tasks. This divide & conquer type of
strategy is a common way to solve a complex RL problem by
learning a set of policies on simpler tasks and chaining them
to solve the global task [20]. For example, this principle
is applied by the Backplay-Chain-Skill part of the Play-
Backplay-Chain-Skill (PBCS) algorithm [21]. The Backplay
algorithm is used to learn a set of skills backward from
the final state of a single demonstration obtained using a
planning algorithm. However, in PBCS, the agent must reach
the neighborhood of a precise state to transit from one skill
to the next. In high-dimensional states, the constraint of
reaching a sequence of precise states quickly becomes a very
hard learning problem, and as a result PBCS struggles to
scale to complex robotic tasks.

There are similar approaches in the recent skill-chaining
literature ([22], [23]), in which skills are formalized using
the option framework ([24], [25]). An option is composed of
an initial set of states in which this option can be activated,
a termination function which decides if the option should
be terminated given the current state, and the intra-option
policy which controls the agent at a single time-step scale
to execute the option. After completing an option, the agent
uses an inter-option policy to decide which option should be
applied depending on its current state. In Deep Skill Chaining
(DSC) [22], for a given goal, a first option is learned to
reliably reach it from a nearby region. Then, iteratively, a
chain of options is created to reach the goal from further
states. The goal of each option is to trigger the initiation
condition of the next one, and the phase of construction
of the initiation classifiers requires various successful runs
randomly obtained via exploration or RL. This framework
has not been applied to imitation, but it is possible that a
modified version could address IL. However, with a single
demonstration and a complex problem, the initiation condi-
tions could end up being very small and precise, in a similar
way to PBCS, with the same difficulty to scale to high-
dimensional problems. Some adversarial approaches rely on
the framework of options to efficiently perform IL (e.g. [17]),
but as other AIL-based methods, they tend to fail in the low
expert data regime that we consider.

In our method, we consider a goal space as a low-
dimensional projection of the state space. Instead of targeting
the neighborhood of a precise state to complete a skill as in
PBCS, we aim at the neighborhood of a low-dimensional
goal. Moreover, skills are not performed by independent
policies as in the option framework. Instead, we learn a
single goal-conditioned policy able to perform different skills
depending on the goal it is conditioned on. Finally, skills are
not trained independently. Along the chain of skill, the policy
is trained in order to complete a skill by reaching states that
are compatible with the execution of the following skill.



III. BACKGROUND

In our proposed approach, we extract a sequence of targets
from the demonstration, and rely on the formalism of Goal-
Conditioned Reinforcement Learning (GCRL) to learn a
unique policy able to reach the consecutive targets in order.

A. Goal-conditioned Reinforcement Learning

A DRL problem is described by a state space S , an action
space A , an unknown reward function R : S ×A → IR, an
unknown transition probability p(st+1|st, at), and potentially
a distribution of initial states. In a finite horizon setting,
an episode has a maximum length of Tmax control steps.
A GCRL problem extends the RL formalism to a multiple
goal setting where the reward function R : S ×A × G →
IR depends on the goal that is considered. In addition to
sampling an initial state, a goal is sampled at the beginning
of each episode using a goal distribution ρG .

The objective in GCRL is to obtain a goal-conditioned
policy (GCP) [26] π(a|s, g) that maximizes the expected
cumulative rewards E[

∑Tmax

t=0 R(st, g)] for a goal g.

B. Distance-based sparse reward

In most DCRL settings, the reward signal is sparse as the
goal-conditioned agent only receives a reward for achieving
the desired goal g.

In our method, we consider a common version of GCRL
where goals represent low dimensional projections of states.
A state is projected to a goal according to a mapping
pG : S → G associated to the definition of the goal
space. To achieve a goal, the agent must transit to any state
s ∈ S that can be mapped to a goal gs = pG (s) ∈ G
within a distance less than ϵsuccess from g, ϵsuccess being
an environment-dependent hyper-parameter. Those success
states form the success state set Sg associated with goal g
and their corresponding goals constitute its success goal set
Gg . We use the common L2-norm to compute the distance
between two goals but other norms can be considered. Note
that reaching a goal corresponding to a low-dimensional
projection of a state does not fully condition the state that the
agent is in. This can be very problematic when chaining two
skills as illustrated in Figure 2 and discussed in Section IV-
C.3.

The environment-agnostic reward function is defined as:

R(s, g) =

{
1 if s ∈ Sg

0 otherwise. (1)

To assess how much reward can be expected by following
policy π conditioned on a goal g from state s, we use a goal-
conditioned value function V π defined as the expected sum
of future rewards, given s and g:

V π(s, g) = E[
Tmax∑
t=0

R(st, g)|s, π(., g)]. (2)

This value function is the central tool used to compute the
chaining reward bonus Rbonus (see Section IV-C.3).

Fig. 2: In this example, an expert demonstrates how to
navigate a Dubins car (grey trajectory) in a simple 2D
maze. The demonstration is split into a set of skills. Here,
the two skills consists in reaching g0 and g1, two x-y
positions represented as Gg0 and Gg1 , whereas states are
three-dimensional and include the orientation of the car. If
the GCP is trained naively, the agent could solve the first skill
by reaching states with an invalid orientation for the next
skill (green trajectory). DCIL helps the agent to complete
skills by reaching success states with a valid orientation to
successfully chain the skills (blue trajectory).

C. Relabelling

Exploring the state space in the context of sparse reward
can be challenging even for modern deep RL algorithms
([27], [28], [29]). To simplify exploration in the GGI frame-
work, GCRL agents often use the Hindsight Experience
Replay (HER) relabelling technique [1]. If the agent fails
to reach the goal it is conditioned on, HER relabels the
transitions of the episode by replacing the goal initially
intended with the goal it accidentally achieved.

IV. METHODS

The Divide & Conquer Imitation Learning (DCIL) al-
gorithm is designed to solve what can be called a Goal-
Guided Imitation (GGI) problem. In a GGI problem, instead
of imitating the whole expert demonstration, we rely on the
divide & conquer paradigm and divide the imitation problem
into learning a sequence of goal-conditioned chainable skills.
This implies a small loss of generality as it relies on the
assumption that demonstrations can be decomposed into a
sequence of goal-conditioned tasks. Arguably, this assump-
tion is often true, especially in a robotic context, and as
we show in Section V, the GGI approach can significantly
accelerate the IL process.

A. Goal-Guided Imitation

The Goal-Guided Imitation (GGI) framework can be for-
mulated as a variant of GCRL. A set of Nskills goal-
based skills are extracted from a single expert demonstration
τe = {se0, se1, ..., seN} and the objective is to obtain a GCP
that is able to complete each skill sequentially. From this
trajectory τe, we derive skills by extracting a set of goals
(gi)i∈[0,Nskills] ∈ G Nskills . Each skill Ki is defined by its
goal gi. To avoid any ambiguity, we call skill-goals the



goals gi associated with skill Ki. The objective in the GGI
framework is to obtain a GCP that is able to reach skill-
goals gi+1, gi+2, ... after completing skill Ki. This GCP is
then used to chain the successive skills in order to reach the
final state seN of the expert trajectory. Unlike in GCRL, in
the GGI framework, ρg is a distribution of skill-goals only,
as only skill-goals may be sampled to condition the GCP.

B. DCIL hypotheses

We formulate three main hypotheses in DCIL. We assume
a weak form of reset-anywhere, that expert actions are not
provided and that a definition of the goal space is given.

1) Reset: Training the GCP in DCIL (see Section IV-
C.2) assumes that the agent can be reset in some selected
states of the expert demonstration. A similar form of reset
is assumed in Backplay which requires that the agent can be
reset in each demonstrated state. Stronger forms of reset such
as the assumption that the agent can be reset in uniformly
sampled states (reset-anywhere) have also been considered
in the GCRL literature [30]. PWIL is based on the more
classical assumption of a unique reset, and BC does not
require any reset at all.

2) No expert actions: Similarly to Backplay, the imitation
in DCIL is solely based on the expert trajectory in the state
space. Learning from states only is crucial when the expert
actions are difficult to collect (e.g. human demonstrations).
On the contrary, both PWIL and BC require state-action
demonstrations.

3) Goal-space definition: As a GCRL-based method,
DCIL requires a definition of the goal space and the cor-
responding mapping from the state space to the goal space.
No such assumption is made in Backplay, PWIL or BC as
none of them uses a GCP.

C. The Divide & Conquer Imitation Learning algorithm

In DCIL, we extract skills goals and initial states from the
expert trajectory (Section IV-C.1). The GCP is then trained
to perform each skill using a DRL algorithm. Training for a
skill boils down to starting in the associated initial state and
completing a local rollout to reach the skill-goal (Section IV-
C.2). While the agent learns a skill, it is encouraged to
complete it by reaching states that are compatible with the
execution of the next ones (Section IV-C.3). Finally, the
agent can recover the expert behavior by chaining the skills
sequentially (Section IV-C.4). These different stages of DCIL
are detailed in the four next sections and summarized in
Algorithms 1 and 2.

1) Extracting skills from the expert trajectory: To trans-
form the expert trajectory into teachable skills, we project it
in the goal space and divide it into Nskill sub-trajectories
(τi)i∈[0,Nskill] of equal arc lengths ϵdist. For each sub-
trajectory, we extract one tuple (si0, gi, T

i
max) that we as-

sociate to a skill, where si0 corresponds to the demonstrated
state that resulted in the initial goal of the sub-trajectory, gi
the initial goal of the next sub-trajectory and T i

max = β|τi|,
where |τi| is the length of the sub-trajectory in time steps,

Algorithm 1 DCIL - GCP training

Input: πϕ, Qθ, Qθ̄ ▷ actor, critic and target critic
networks
B ← [] ▷ replay-buffer
for n = 1 : Nepisode do

(sn0 , T
n
max, gn)← select skill() ▷ Step 1

st ← env.reset(sn0 ) ▷ Step 2
t← 0
while not done do

at ← πϕ(st|gn)
st+1 ← env.step(at)
rt ← 0
if |pG (st+1)− gn|2 ≤ ϵsuccess then

success, done← True, True
else

success, done← False, False

if t ≥ Tn
max then

done← True
B ← B + [(st, at, st+1, rt, gn, done, success)]
t← t+ 1
if success then ▷ Step 3

success, done← False, False
( , Tn

max, gn)← next skill(gn) ▷ overshoot
t← 0

SAC update(πϕ, Qθ, Qθ̄, B) ▷ Algo 2

and β > 1 is a predefined coefficient1 used to facilitate
exploration while learning the skill (see Section IV-C.2). The
initial goal of the next sub-trajectory gi constitutes the skill-
goal. The initial state si0 and the length T i

max are used to
learn the skill.

2) Learning the skills: To train the GCP on the different
skills, DCIL runs a three-step loop.

a) Step 1: DCIL selects a skill Ki = (si0, gi, T
i
max) to

train on (function select skill in Algorithm 1) and resets the
environment in si0. Note that the selection of skills is biased
towards skills with a low ratio of successful rollouts over
the total number of trials for these skills. We implemented
such distribution using a fitness proportionate selection [31]
where the fitness corresponds to the inverse of this ratio.

b) Step 2: DCIL conditions the GCP on gi and the
agent performs a rollout to complete the skill which is
interrupted either if the agent reaches Sgi or if skill length
T i

max is exceeded.
c) Step 3: When the agent successfully completes skill

Ki, DCIL applies an overshoot mechanism (see Section IV-
C.3) and returns to Step 2. Otherwise, the complete loop is
repeated.

The rollouts are saved in a unique replay buffer. For each
interaction with the environment, the saved transitions are
sampled in a batch to perform a SAC update [32] of the critic
and actor networks including the chaining reward bonus (see
Section IV-C.3). In a sampled batch of transitions, half of the

1In our experiments, we use β = 1.25.



Algorithm 2 modified SAC update (+ HER + Chaining
Reward Bonus)

Input: πϕ, Qθ, Qθ̄, B ▷ actor, critic and target critic
networks
batchHER ← HER(B) ▷ HER relabelling
batch← B ▷ no HER relabelling
for (skt , a

k
t , s

k
t+1, g

k, rk, done, success) in batch do
if success then ▷ Chaining reward bonus

( , , gk
′
)← next skill(gk)

rk ← 1 +Qθ̄(s
k
t+1, πϕ(s

k
t+1, g

k′), gk
′
)

batch← batch+ batchHER

for gradient step = 1 : Ngradient step do ▷ see [32]
πϕ, Qθ, Qθ̄ ← gradient step(πϕ, Qθ, Qθ̄, batch)

Output: πϕ, Qθ, Qθ̄

transitions are relabelled using HER. This three-step loop is
summarized in Algorithm 1.

3) Ensuring successful skill chaining: To ensure that skills
can be chained, we use an overshoot mechanism and a
chaining reward bonus.

a) Overshoot: Successfully chaining the skills requires
that the agent completes any first skill by reaching states
from which it is able to perform the next ones. When the
agent completes a skill, it can reach either valid initial
states in I valid

i from which it will successfully perform
the next skills or invalid initial states from which it will
not (see Figure 3). During a training rollout for a skill, if
the agent reaches a success state, the overshoot mechanism
immediately conditions the GCP on the skill-goal of the next
skill (function next skill in Algorithm 1). The agent instantly
starts a new rollout for this next skill from its current state.

With these overshoot rollouts, the agent can learn how
to perform the next skills while starting from other initial
states than the ones extracted from the demonstration. As
the agent progresses at performing skills from those different
initial states, some previously invalid initial states become
valid. So the purpose of the overshoot mechanism is to
make Ivalid grow. However, in complex environments (e.g.
under-actuated and non-holonomic environments) not all
invalid initial states can become valid. Therefore, another
mechanism is necessary to help the agent to complete skills
by only reaching valid starting states.

b) Chaining reward bonus: To facilitate skill comple-
tion by only reaching valid initial states for the next skills, we
add a chaining reward bonus to the sparse reward received
by the agent each time it successfully completes a skill. The
chaining reward bonus is defined as the goal-conditioned
value function V π(., gi+1) of the agent, conditioned on the
skill-goal of the next skill (see Algorithm 2 for additional
information on goal-conditioned value computation). There-
fore, the modified reward function is defined as:

R̄(s, gi) =

{
1 + V π(s, gi+1) if s ∈ Sgi

0 otherwise. (3)

The idea behind this bonus is that valid initial states should

Fig. 3: To retrieve the expert behavior (dotted line), the
agent has to perform each skill (represented as funnels)
sequentially. To successfully chain the skills the agent must
transit between their set of valid initial states I valid

i (pink
disks) via the blue-shaded path and avoid solving a skill by
reaching the other success states in Sgi \I valid

i .

have a higher value than invalid ones. Indeed, by training the
value function V π(., gi+1) with transitions extracted from
successful episodes and successful overshoots from valid
initial states, the rewards from skills Ki+1,Ki+2, ... are
propagated backward up to valid initial states.

In complex environments, if I valid
i only contains a few

isolated valid initial states (or even only the demonstrated
state si0), the chaining bonus reward may be difficult to prop-
agate along the skills. A well-balanced entropy-regularized
soft update of SAC, using either a hand-tuned entropy
coefficient or an adaptive one, forces the agent to explore
diverse trajectories to reach Sgi [33]. It helps the agent
to eventually find a path towards valid initial state and
propagate the chaining bonus reward.

4) Retrieving the expert behavior: To reproduce the ex-
pert behavior, we reset the environment in the initial state
of the expert demonstration. We condition the GCP on the
skill-goal g0 of the first skill K0. After completing this first
skill, the agent is conditioned on g1 and solves K1. This
process is repeated for every skill Ki until the final skill is
completed.

V. EXPERIMENTS

In this section, we introduce the experimental setup used
to evaluate DCIL (Section V-A), we present an ablation study
of the two main components of DCIL (Section V-B) and we
compare DCIL to three baselines: BC, Backplay and PWIL
(Section V-C). The code of DCIL based on Stable Baselines
3 [34] is provided here: https://github.com/AlexandreChenu/
dcil.

A. Experimental setup

We evaluate DCIL in two environments: the Dubins Maze
environment that we introduce and the Fetch environment
presented in [3].

1) Dubins Maze: In the Dubins Maze environment, the
agent controls a Dubins car [35] in a 2D maze. The state
s = (x, y, θ) ∈ X × Y ×Θ where (x, y) are the coordinates
of the center of the Dubins car in the 2D maze and θ is
its orientation. The forward speed of the vehicle is constant
with value 0.5 and the agent only controls the variation θ̇ of
the orientation of the car. The goal space associated with this
environment is X×Y . In the absence of a desired orientation



in the skill-goal conditioning the GCP, the agent can easily
reach a success state for a given skill with an orientation that
is invalid for the next skills. Demonstrations for this envi-
ronment are obtained using the Rapidly-Exploring Random
Trees algorithm [36].

2) Fetch: We also evaluate DCIL in the simulated grasp-
ing task for a 8 degrees-of-freedom deterministic robot
manipulator. This environment was presented in the First
Return then Explore paper [3]. The objective is to grasp an
object initialized in a fixed position on a table and put it on a
shelf. The state is a 604-dimensional vector which contains
the Cartesian and angular positions and the velocity of each
element in the environment (robot, object, shelf, doors...)
as well as the contact Boolean evaluated for each pair of
elements. On the opposite, the goal only corresponds to the
concatenation of the 3D coordinates of the end-effector of the
manipulator with a Boolean indicating whether the object is
grasped or not. Therefore, the agent may complete a skill
prior to the contact with the object with an invalid state
(e.g. with an orientation or a velocity that prevents grasping).
Demonstrations are collected using the exploration phase of
the Go-Explore algorithm [7].

3) Baselines: We compare DCIL to three IL methods.
The first baseline is a naive BC method using a single
demonstration. The two others are state-of-the-art methods
that are proficient in the context of imitation from a single
demonstration: Backplay ([9], [8]) and PWIL [10]. A com-
parison of the different key assumptions required by each
algorithm is detailed in Section IV-B. For PWIL, we used the
implementation provided by the authors with the same hyper-
parameter. For Backplay, we re-implemented it to evaluate
it in the Dubins Maze and extracted the results obtained for
the Fetch environment in [3].

B. Ablation study

Using the Dubins Maze environment, we compare the full
version of DCIL to variants without the chaining reward
bonus, without the overshoot mechanism and without both.

The performance shown in Figure 4 is evaluated using
the proportion of runs that solved the maze depending on
the number of training steps. First, we can notice that the
chaining reward bonus is critical to chain the skills and
achieve a high success rate. Indeed, the two variants of
DCIL using the chaining reward bonus (DCIL full and DCIL
w/o overshoot) outperform the other two variants. Besides,
only the full version of DCIL recovers the expert behavior
in 100% of trials. Finally, DCIL also benefits from the
overshoot mechanism as its success rate increases faster
than DCIL without overshoot during the 50.000 first training
steps.

Figure 5 presents a training run of the full version of
DCIL. Although the GCP is training on skills separately, it is
able to chain them in order to recover the expert behavior and
to navigate the maze. In order to visualize how the chaining
reward bonus encourages the agent to complete the skills by
reaching valid initial states, we evaluated DCIL and DCIL
w/o chaining bonus reward in a simplified version of the

Fig. 4: Ablation study of DCIL in the Dubins Maze environ-
ment. We evaluate the success rate of four versions of DCIL
(full DCIL DCIL w/o overshoot, DCIL w/o chaining bonus
reward, DCIL w/o both) throughout training. Means and
standard deviations ranges over 30 total runs (3 random seeds
for 10 different expert trajectories). Stars indicate significant
differences over DCIL (full) as reported by Welch’s t-test
with α = 0.05 [37].

Dubins Maze where the agent only has two skills to chain.
As Figure 6 shows, the chaining reward bonus increases the
value of the states with a similar orientation to the states in
the expert demonstration and results in successful chaining
of the two skills.

Fig. 5: Training run of DCIL in the Dubins Maze. For each
skill, the initial state is represented by a purple arrow and
the success goal set by a pink disk. Grey lines correspond
to skills training rollouts. Blue car trajectories correspond to
the agent skill chaining every 1000 training steps.



Fig. 6: Learning the first skill (reaching Gg0 ) without chain-
ing reward bonus prevents the agent from completing it by
reaching an valid initial state for the second skill (reaching
Gg1 ) as illustrated by the purple trajectory. The chaining
reward bonus increases the value of the states with an
orientation similar to the states of the expert demonstra-
tion (in grey) as shown by the difference between the g0-
conditioned values learned with a chaining reward bonus
(V πw/bonus(., g0)) and without (V πw/o bonus(., g0)).

C. Comparison to baselines in Dubins Maze

Figure 7 evaluates how DCIL performed when trained on
1e6 training interactions with the Dubins Maze compared
to the three selected baselines. As the three baselines do
not solve the maze after 1e6 training interactions, we use a
metric based on the progression through the maze. The maze

Fig. 7: Comparison of DCIL to Backplay, PWIL and BC with
a single demonstration. We evaluate the progression through
the Dubins Maze Environment (left) using 22 zones (right).
For DCIL, PWIL and BC, the progression corresponds to
the maximum zone reached during evaluation. For Backplay,
the progression corresponds to the difference between the
highest zone number and the zone from which the agent
started. Means and standard deviations ranges over 3 random
seeds for 10 different expert trajectories (30 total runs for
each variant) for each method.

is decomposed into 23 zones. The agent starts in zone 0 and
the end of the maze is zone 22. DCIL is the only method able
to solve the maze within the allocated budget. It requires at
most 105 training interactions. This is mainly due to the fact
that DCIL trains on very short rollouts compare to PWIL
which trains on fixed-length episodes and Backplay which
trains on episodes of increasing length.

Fig. 8: Comparison of DCIL to Backplay in the Fetch
environment. The results of DCIL present the mean and
standard deviation over 5 seeds for 5 expert demonstrations
(25 total runs). The results of Backplay are extracted from
[3] and could not be reproduced despite running the author’s
code with the same hyper-parameters. For DCIL, in ∼ 10%
of the runs, the critic networks used in SAC diverge which
results in failed runs. Only the runs that did not diverge are
presented here.

D. Scaling to a complex object manipulation task

While the experiments in the Dubins Maze demonstrate
the performance of DCIL in a low-dimensional environment,
we finally test our approach in the Fetch environment where
observations are 604-dimension vectors and the transition
function involves a much more complicated dynamic.

Figure 8 evaluates how DCIL performs when trained on
1e6 training interactions. We compare our approach to the
performance of Backplay presented in [3]. As in the Dubins
Maze, DCIL solves the Fetch task three orders of magnitude
faster than Backplay. DCIL is able to learn the full fetch
behavior by training only on short rollouts.

DISCUSSION & CONCLUSION

In this paper, we have introduced Divide & Conquer
Imitation Learning (DCIL), an imitation learning algorithm
solving long-horizon tasks using a single demonstration.
DCIL relies on a sequential inductive bias and adopts a
divide & conquer strategy to learn smaller skills that, chained
together, solve the long-horizon task. In order for a goal-
conditioned policy to learn each skill individually and to
apply skill-chaining to recover the expert behavior, we in-
troduced an overshoot mechanism and a chaining reward
bonus that indirectly make skills aware of the next ones,
and significantly improves the chainability of the skills. We



highlighted the key contribution of both mechanisms in the
performance of DCIL by conducting an ablation study in a
maze environment with a Dubins car. Moreover, we showed
the efficiency of DCIL by comparing it to three IL baselines
and by successfully applying it to a complex manipulation
task.

Compared to the baselines, we obtain an improvement of
sample efficiency of several orders of magnitudes, which,
in future work, will be critical when applying the method
to physical robots. Yet, the application of DCIL to physical
robots would require at least one modification of the algo-
rithm which concerns the reset assumption. The usual option
would be to replace resets to any previously encountered state
by a unique fixed reset. This could be done by learning a way
to ”return to interesting states”, an approach that has been
studied in one of the variants of the Go-Explore algorithm
[3]. However, even this assumption of a single reset can
be troublesome with physical robots, especially when object
manipulation is involved. For this reason, our main research
direction will be to consider the possibility of learning small
robotic skills that are not only chainable but reversible, which
in particular robotic contexts could lead to a sample-efficient
divide & conquer approach for imitation learning that would
not require any kind of reset at all.
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