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Abstract

We propose a two-stage recoverable robustness approach that minimizes the recovery cost. In many applica-
tions, once the uncertainty ξ is revealed, it can be more important to recover a solution xξ which is as similar
as possible to the nominal solution xnom than to minimize the nominal objective value of xξ. This for example
occurs when the nominal solution is implemented on a regular basis or when the uncertainty is revealed late. We
define the proactive problem which minimizes the weighted recovery costs over a discrete set of scenarios while
ensuring optimality of the nominal objective value of xnom. We model the recovery cost of a scenario by a distance
between the first-stage nominal solution and the second-stage solution recovered for this scenario.

We show for two different solution distances dval and dstruct that the proactive problem is NP-hard for
both the integer min-cost flow problem with uncertain arc demands and for the integer max-flow problem with
uncertain arc capacities. For these two problems, we prove that once uncertainty is revealed, even identifying a
reactive solution xr with a minimal distance to a given solution xnom is NP-hard for dstruct, and is polynomial
for dval.

We highlight the benefits of the proactive approach in a case study on a railroad planning problem. First, we
compare it to the anchored and the k-distance approaches. Then, we show the efficiency of the proactive solution
over reactive solutions. Finally, we illustrate the recovery cost reduction when relaxing the optimality constraint
on the nominal objective of the proactive solution xnom.

We also consider the min-max version of the proactive problem where we minimize the maximal recovery cost
over all scenarios. We show that the same complexity results hold for this version. We also exhibit a class of
problems for which the set of extreme points of the convex hull of a discrete uncertainty set always contain a
worst-case scenario. We show that this result does not hold for three distinct classes deduced from the first one.

Keywords: Robust optimization; Uncertainty modelling; Recoverable robustness; NP-hardness; Proactive prob-

lem; Mixed-Integer Linear Programming.

1 Introduction

Recoverable robustness can be viewed as a particular case of two-stage robustness. It identifies a recover-
able solution of a deterministic nominal problem P . A solution of P is said to be recoverable if it can be
recovered by limited means in all likely scenarios [23]. In this article, we focus on recoverable solutions
which minimize recovery costs.

In many real-world problems, all solutions are recoverable as an operational solution must be imple-
mented regardless of the scenario that occurs. For example, a railway company with a failing network
will carry as many passengers as possible. In this context, recoverable robustness amounts to solving the
deterministic problem as it would return any of the optimal solutions of P . However, not all of these
optimal solutions are equivalent in terms of recovery costs. Thus, we propose a two-stage recoverable
robustness approach that identifies an optimal solution of P and that additionally minimizes the sum of
recovery costs. In this framework, a nominal solution is determined in the first stage while the second
stage associates a solution to each scenario of a discrete uncertainty set.

A first motivation for minimizing the recovery costs is that the later the uncertainty is revealed,
the more limited the recovery actions are. For example, in railway scheduling, a recovery may require
communication between different departments to synchronize their resources or early transfers of trains
between stations. These type of actions with a high recovery cost cannot be performed on short notice
which may lead to worse-than-expected recovered solutions.

Moreover, the risk of human errors increases with the number of recovery actions. This is particularly
the case in industrial applications where a solution is used on a regular basis. For example, in railway
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planning a single schedule can be repeated every week. Since such a solution is regularly implemented,
people involved in its realization (e.g., employees, clients, ...) are used to it. Therefore, when it must
be recovered, they may, by habit, disrupt the realisation of the recovered solution. For example, users
may miss a train if it leaves earlier than usual or an operator may activate a railroad switch that is
no longer required. These disruptions may lead to incidents and customers dissatisfaction or even the
need to recover the solution again. Consequently, the closer the recovered solutions are to the nominal
solution, the less likely human errors are. Thus, we model the recovery costs by distances between the
nominal solution of the deterministic problem P and the recovered solutions for each scenario.

We apply our approach to two robust network optimization problems: the integer min-cost flow with
uncertain demands and the integer max-flow with uncertain capacities. This article is inspired by a prac-
tical flexible scheduling problem of SNCF, the French national railway company [24, 25]. This previous
work motivated our choice to focus on two flow problems as they correspond to sub-problems of net-
work design problems encountered by railway companies. In this context, the graph under consideration
can represent a railway network and the flow the path of passengers or trains. Recovery costs for such
problems can be expensive, hence the need to design relevant robust approaches.

In Section 2 we formally present this approach and introduce the nominal, the reactive and the
proactive problems. We discuss links with existing approaches in Section 2.4. Sections 3 and Section 4
are dedicated to two network problems namely, the min-cost flow problem and the max-flow problem
within the framework of solution robustness. We characterize the complexity of the reactive and the
proactive problems for two different solution distances. We present a case study on a railroad planning
problem in Section 5, highlighting the benefits of the proactive approach over the reactive approach. We
compare the proactive approach to two other approaches from the literature: the anchored approach and
the k-distance approach. Eventually, in Section 6 we consider a version of the proactive problem in which
we consider the recovery cost of the worst-case scenario rather than the sum of the recovery costs over
all scenarios. We show that the complexity results found for the sum of the recovery costs also hold in
this worst-case version. We also show a class of problems for which considering a discrete set of uncertain
scenarios is equivalent to considering its convex hull.

2 Reactive and proactive robustness solutions

We consider an optimization problem in which the set of feasible solutions depends on uncertain param-
eters within a set of possible realizations U . Let ξnom be the nominal value of these parameters. In the
deterministic version of this optimization problem, called the nominal problem, the uncertain parameters
take their nominal value ξnom. The nominal optimization problem is:

P

 min f(x)

s.t. x ∈ X(ξnom)

where X(ξnom) is the mapping which provides the feasibility set associated with parameters ξnom. The
objective function f : Rn → R is called the nominal objective.

We model the uncertainty by a discrete set of scenarios that may occur U = {ξi}|U |i=1. To each scenario
ξi ∈ U is associated its feasibility set X(ξi) and a weight wξi ∈ R+ which represents its importance or
its probability of occurrence. Both feasibility sets X(ξnom) and X(ξi) can be any subsets of Rn. Each
scenario in U corresponds to a possible realisation of the uncertainty (e.g., changes in the passenger
demands, unavailability of resources, ...). Consequently, feasibility sets X(ξnom) and X(ξi) may often
in practice share similar constraints whose coefficients may vary. Note that X(ξi) does not depend on
the nominal solution xnom. Thus, the reactive problem always has a solution provided that X(ξi) is non
empty.

In this article we will often consider robust flow problems which can be modelled as mixed-integer
linear programs (MILP). To represent uncertain flow demands or capacities on the arcs of a graph, we
consider uncertain right-hand side coefficients in Sections 3 and 6, where we prove complexity results, as
well as in the case study presented in Section 5. In that context, a scenario ξ is a vector of Rm which
directly corresponds to the value of these coefficients: X(ξ) = {x ∈ Zn1 × Rn2 | Ax ≤ ξ}.

We now introduce two problems that represent two possible approaches to handle the uncertainty. In
the reactive problem, the uncertainty has not been anticipated and once it is revealed, a feasible solution
must be obtained. The proactive problem is a robust approach in which a nominal solution and a recovery
solution for each scenario are computed a priori.
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2.1 Reactive robust solutions

We suppose that the implementation of a solution xnom of the nominal problem P is planned and that
scenario ξ ∈ U occurs at operating time (i.e., a few days or hours before its realisation). To cause as
little disruption as possible, the reactive problem provides a reactive solution xr ∈ X(ξ) whose distance
to xnom is minimal:

P r(ξ, xnom)

 min d(xr, xnom)

s.t. xr ∈ X(ξ)

where d : Rn × Rn → R is a distance function between xr and xnom which models the recovery cost.
The reactive problem P r is considered once the uncertainty is revealed. We now introduce the proactive
problem which allows us to further minimize the recovery cost by anticipating the uncertainties.

2.2 Proactive robust solutions

A reactive solution xr may have a high nominal objective value f(xr) as f is not taken into account in
the reactive problem. Furthermore, the recovery cost may also be high as it has not been anticipated.
To address these issues, we introduce the two-stage proactive problem P p whose variables are a proactive
solution xp of the nominal problem, set in the first stage, and a recovery solution xi for each scenario
ξi ∈ U , set in the second stage:

P p(U , c∗)

 min
xp∈X(ξnom)

∑
ξi∈U

wξi min
xi∈X(ξi)

d(xp, xi) (1)

s.t. f(xp) = c∗ (2)

where c∗ is the optimal value of the nominal problem.
Objective (1) minimizes the weighted sum of the recovery costs over all the scenarios while ensuring

that xp is feasible for (P ) and that each xi is feasible for scenario ξi. This objective is more similar to
those of stochastic approaches, which consider an expectation over all scenarios, than to those of robust
approaches, which tend to focus on the worst-case scenario. We study a min-max variant of the proactive
problem in Section 6.

Constraint (2) ensures that the nominal objective value of xp is equal to c∗. Consequently, xp is an
optimal solution of the nominal problem which additionally minimizes the weighted sum of the recovery
costs over U . Similar to P r, the first stage solution xp does not constrain the second stage feasibility sets
{X(ξi)}ξi∈U .

Since the weights wξi are positive, each solution xi is an optimal solution to the reactive problem
P r(ξi, x

p). As a consequence, if the nominal problem has a unique optimal solution x∗ then, solving
P p(U, c∗) is equivalent to solving P and P r(ξi, x

∗) for i ∈ {1, ..., |U |}.
The proactive problem P p requires us to know the optimal value c∗ of an optimal solution of the

nominal problem. This should generally not be limiting as P is a significantly smaller problem than P p

given that P only finds one solution x while P p simultaneously finds |U |+ 1 solutions.

In order to further reduce the recovery costs, Constraint (2) can be relaxed to allow the nominal
objective of the proactive solution f(xp) to deviate from optimality:

f(xp) ≤ c∗(1 + ε), (3)

where ε ∈ R+ represents the maximal allowed percentage of increase of the nominal objective value of xp.
We observe the gains in terms of recovery costs resulting from this variation in the case study considered
in Section 5.4.2.

2.3 Defining the recovery cost by two distances

A first intuitive distance corresponds to the `1 norm that we call the distance in values.

Definition 2.1. The distance in values between two solutions x1 ∈ Rn and x2 ∈ Rn is

dval(x
1, x2) ,

n∑
j=1

|x1j − x2j |.

�
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Depending on the context, dval is not necessarily the most relevant distance. In rail planning, for
example, increasing the number of cars in an existing train by one is much less expensive than planning
a new train with only one car. This is because creating a train requires checking the availability of a
locomotive and agents as well as the compatibility of the new train’s schedule with that of other trains.
Thus, we also introduce a distance in structure. Let 1b be equal to 1 if condition b is true and 0 otherwise.

Definition 2.2. The distance in structure between two solutions x1 ∈ Rn and x2 ∈ Rn is

dstruct(x
1, x2) ,

n∑
j=1

|1x1
j>0 − 1x2

j>0|.

�

Sometimes a problem has several categories of variables. For example, in a location problem, we have
location variables and assignment variables. In such a context, it may be relevant to apply the distance
to only one category of variables.

2.4 Literature review on recovery cost in robust optimization

In the line of [31], robust optimization approaches often search a nominal solution which is feasible for
any value of the data in an uncertainty set [8, 11]. In this context, the recovery cost is equal to 0 as the
solution is not modified once the uncertainty is revealed and the price of robustness [11] corresponds to
the minimal increase of the nominal objective required to ensure the feasibility of a single solution in all
possible scenarios.

However, in many concrete problems, a competitive nominal solution may not be feasible for all pos-
sible realisations of the uncertainty. To alleviate this problem, two-stage robust optimization approaches
have been introduced where the value of recourse variables is computed only once the uncertainty is
revealed [3, 7]. To ease the resolution of such problems, restrictions are often imposed on the recourse
variables [7]. Their value can even be directly deduced from the uncertain data [5, 18, 28, 29], thus
significantly reducing the complexity of the problem. In [6], the authors use such an approach for a
robust supply chain problem in which a retailer commits to order predetermined quantities {wt}Tt=1 at
each period of a fixed horizon T . The retailer can adjust the orders up and down at time t according to
the demand of its clients but at the price of a penalty which is proportional to the deviation from wt.
This deviation can be viewed as a recovery cost. The objective is then to minimize a weighted sum of
both the deviations and usual costs: ordering, holding, and shortage.

Liebchen et al. [23] introduced a general two-stage framework, called recoverable robustness, in which
a solution x and a recovery algorithm A are determined such that the nominal objective is optimized and,
once uncertainty is revealed, it is guaranteed that applying A to x leads to a feasible solution. Constraints
can be imposed on A such as limiting its complexity or the distance between x and the recovered solution.
This last constraint can be used to limit the recovery cost. However, it is usually not easy to ensure that
these restrictions are satisfied for any uncertainty realization.

In [9] the authors consider a particular recoverable robustness approach for a scheduling problem in
which the nominal objective is bounded and where the weighted sum of anchored jobs is maximized. A
job is said to be anchored if it cannot be rescheduled once the uncertainty is revealed. This objective can
be viewed as a way to limit the recovery cost. The authors consider uncertain processing times and show
that maximizing the weight of the anchored jobs is polynomial for the box uncertainty set. It is however
NP-hard for both the budgeted and the polytope uncertainty sets.

Two other examples of recoverable robustness applied to shortest path problems are introduced in [13].
In k-distance recoverable robustness, the recovery actions are limited since at most k new arcs can be
used once the uncertainty is revealed. In the second approach, called rent recoverable robustness, an edge
is said to be rented if it is used in the first stage and it is bought if it is used in the second stage. For
each scenario s and each arc e the cost cse incurred for both renting and buying arc e is defined. The cost
of the arc is lower if it is only rented (αcse with α ∈]0, 1[) and higher if it is only bought ((1 + β)cse with
β ≥ 0). This second approach is more flexible than the first one since the number of new edges used in
the second stage is not constrained but it is also less generic. Indeed, the notion of renting and buying
edges is relevant in problems such as railway scheduling where the network is owned by a company and
exploited by others but it is not suitable for all applications. The authors study the complexity of both
variants on three uncertainty sets and show that only the rent recoverable robustness on the interval set is
polynomial. In Section 5, we compare the k-distance recoverable robustness and the anchored approach
to our proactive approach.

Another type of recoverable robustness called recovery-to-optimality has been introduced in [16]. One
of the main characteristics of this approach is that it constrains each recovered solution xξ to be optimal
for the deterministic problem in which the uncertain data take their values from scenario ξ ∈ U . Similar
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to our proactive approach, it minimizes the average or the worst recovery cost over all the scenarios.
However, in recovery-to-optimality, a nominal solution xnom may require a significantly higher recovery
cost in order to be transformed into a solution xξ with an optimal nominal objective for scenario ξ. The
authors apply their approach to a linear program for timetabling in public transportation. The optimality
constraints of the recovered solution xξ for each scenario ξ are harder to ensure than the optimality of
xnom required by our approach. As a consequence, they consider a heuristic in which optimal solutions
of a subset of scenarios U are first computed and then a solution x which minimizes the recovery cost to
these solutions is obtained.

The notion of (a, b)-supermodel introduced in [15] is related to the recovery cost. A solution x is said
to be an (a, b)-supermodel if whenever the value of at most a variables in x is changed, then a feasible
solution of the original problem can still be obtained by changing the value of at most b other variables.
The authors show that a (1, 1)-supermodel of SAT can be obtained by solving a larger instance of SAT.
The originality of this approach is the fact that the uncertainty is not in the data but in the value of the
solution itself.

The identification of efficient schedules both in terms of nominal objective and recovery cost has been
considered under different names: predictability [26, 27], stability [19, 20, 21, 22], solution robustness [30,
32]. Exact approaches are rarely considered to solve such problems. One exception is [21] in which
a hand-made branch-and-bound algorithm is considered to solve a single-machine scheduling problem
in which only one job is expected to be disturbed. In other works, heuristic approaches are generally
considered. For example, in [30] the authors present a multi-objective genetic algorithm in which both
the recovery cost and the nominal objective are optimized.

In the next two sections, we apply the reactive and proactive frameworks defined in Sections 2.1
and 2.2 for the integer min-cost flow and the integer max flow problems. It is well known that the
deterministic version of both of these problems can be solved with polynomial time algorithms [1]. We
show that this is not the case for their proactive counterparts with uncertain arc demands for the min-cost
flow problem and uncertain arc capacities for the max-flow problem. Note that polynomial problems that
become NP-hard when uncertainty is added have been studied previously for various robust approaches
(see e.g., [2, 7, 10, 12, 13]).

3 Minimizing recovery cost of the min-cost flow problem with
uncertain arc demands

The min-cost flow problem can be stated as:

Min-Cost Flow Problem

Input: A digraph G = (V,A) with arc demands ξnoma ∈ N, capacities ua ∈ N and unit cost
ca ∈ R+ of each arc a ∈ A and node demands bv ∈ Z for each node v ∈ V (bv > 0 if v is
a supply node, bv < 0 if v is a demand node and bv = 0 if v is a transshipment node).

Output: Find an integer flow with minimal cost.

For a node v ∈ V , let δ−(v) and δ+(v) be the set of predecessors and successors of v in G, respectively.
An integer flow f ∈ N|A| is feasible for this problem if it satisfies all the arc demands and capacities (i.e.,
fa ∈ [ξnoma , ua] ∀a ∈ A) and the node demands (i.e.,

∑
u∈δ−(v) fuv −

∑
u∈δ+(v) fvu = bv ∀v ∈ V ).

We assume that the uncertainties are on the arc demands ξnom. Consequently, each scenario ξ ∈ U
is a vector of arc demands in N|A| and X(ξ) represents the set of feasible integer flows when the arc
demands are set to ξ. The corresponding reactive and proactive problems can be stated as follows:

Reactive Min-Cost Flow Problem

Input: A min-cost flow problem, one of its solutions fnom ∈ X(ξnom), a distance d : N|A| ×
N|A| → R+ and arc demands ξ ∈ N|A|.

Output: Find a reactive flow fr ∈ X(ξ) which minimizes d(fnom, fr).

Proactive Min-Cost Flow Problem

Input: A min-cost flow problem with demands ξnom ∈ N|A|, its optimal flow value c∗, a distance
d : N|A| ×N|A| → R+, a discrete set of scenarios U ⊂ N|A| and for each scenario ξ ∈ U , a
weight wξ ∈ R+.

Output: Find a proactive flow fp ∈ X(ξnom) and a flow fξ ∈ X(ξ) for each scenario ξ ∈ U which
minimize

∑
ξ∈U wξd(fp, fξ).
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In the following subsections, we characterize the complexity of the four reactive and proactive min-
cost flow problems associated with distances dval and dstruct, as represented in Table 1. Note that all
these problems are in NP.

Problem
Distance

dval dstruct

Proactive strongly NP-hard (Section 3.1)
strongly NP-hard (Section 3.2)

even with 1 scenario

Reactive Polynomial (Section 3.1) strongly NP-hard (Section 3.2)

Table 1: Complexity of the min-cost flow problems with uncertain arc demands associated with distances
dval and dstruct.

3.1 Complexity of the robust min-cost flow with distance dval

We show in this section that for distance dval the proactive problem is NP-hard and that the reactive
problem is polynomial.

Theorem 3.1. The proactive min-cost flow problem with distance dval, MCF pdval , is strongly NP-hard.

Proof. We prove this result with a reduction from problem 3-SAT. This problem considers a boolean
expression composed of n variables X = {x1, ..., xn} and m clauses {C1, ..., Cm}. Let a literal be either a
boolean variable xi or its negation xi. Each clause of a 3-SAT problem is a conjunction of three literals
(e.g., C1 = (x1 ∨ x2 ∨ x3)). The aim of this problem is to determine whether there exists an assignment
of the variables which satisfies all the clauses.

We now present how to construct an instance IMCF of the optimization problem MCF pdval from
an instance ISAT of the feasibility problem 3-SAT. Instance IMCF has m scenarios. We prove that an
optimal solution of IMCF leads to a recovery cost of value 4mn if and only if ISAT is a yes-instance.

Construction of IMCF

As illustrated in Figure 1a, the set of nodes V of the constructed graph G = (V,A) is composed of:

• one source node s with supply bs = n and one sink node t with demand bs = −n;

• for each boolean variable xi one variable node xi and two literal nodes li and li with no demand
bxi = bli = bli = 0;

• for each clause Cp one clause node Cp with no demand bCp = 0.

The arc set A is composed of the following subsets:

• Asl contains one arc from s to each literal node;

• Alx contains one arc from each literal node to its corresponding variable node;

• AlC contains one arc (l, Cp) for each clause Cp and each literal l in this clause;

• Axt contains one arc from each variable node to t;

• ACt contains one arc from each clause node to t;

• Ast contains one arc from s to t.

The nominal arc demand of the arcs is 0 except for the n arcs of Axt where it is equal to 1. The
capacity of any arc is m and its cost is 0. One can easily check that the nominal flow problem is feasible,
see the illustration in Figure 1b. Any feasible flow costs 0. Consequently, c∗ is equal to 0.

Note that the size of the constructed graph is polynomial in n and m. It has 3n + m + 2 nodes and
5n+ 4m+ 1 arcs.

Instance IMCF contains m scenarios, one scenario ξp ∈ N|A| per clause Cp. For each scenario ξp the
weight wξp is set to 1, the arc demands are all set to 0 except ξps,t which is set to n− 1 and ξpCp,t which

is set to 1 (see Figure 1a).

Solving ISAT from a solution of IMCF
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Let f be a nominal feasible flow of IMCF . Since the graph does not contain any cycle, the n units
supplied by s are necessarily sent on n different paths to satisfy the arc demands ξnomxi,t = 1 for all
i ∈ {1, ..., n} (see example in Figure 1b).

(a) Graph and scenarios of IMCF . Only the positive
demands are represented.

(b) Nominal flow f .

(c) Flow of the first scenario fξ1 . (d) Flow of the second scenario fξ2 .

Figure 1: Example of the reduction to MCF pdval of an instance of the 3-SAT problem with three variables
and two clauses C1 = (x1 ∨ x2 ∨ x3) and C2 = (x1 ∨ x2 ∨ x3). Figures 1b, 1c and 1d represent an optimal
solution (f, fξ1 , fξ2) to MCF pdval . The arcs with a flow of value 0 are colored in gray.

Let fξp be the flow of scenario ξp. To satisfy the arc demands ξps,t = n − 1 and ξpCp,t = 1, flow fξp

necessarily sends n− 1 units of flow on arc (s, t) and one unit of flow on a path (s, l, Cp, t) with l a literal
included in clause Cp (see Figures 1c and 1d). As represented in Table 2, each scenario leads to a recovery
cost of value 4n or 4n+ 2. A cost of 4n is obtained if and only if the arc of Asl used in fξp is also used
in the nominal flow.

Consequently, the recovery cost over all the scenarios is at least 4mn. A cost of 4mn is obtained if
and only if all the arcs of Asl used by the scenarios are also used in the nominal flow (i.e., if setting to
true all the variables xi such that fs,li > 0 and to false the others enables us to satisfy all the clauses).
Therefore, the answer to instance ISAT is true if and only if the optimal solution value of IMCF is 4mn.

Definition 3.1. ([1], Section 1.2) A convex cost flow problem is a min-cost flow problem where the cost
of an arc is a piecewise linear convex function of its flow.

Property 3.1. The reactive min-cost flow problem with distance dval, MCF rdval , is a convex cost flow
problem.

Proof. The cost of an arc a ∈ A is |xra − xa| which is a convex piecewise linear function of flow xra.
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Arc sets
∑
a fa

∑
a f

ξp
a Recovery cost

Ast 0 n− 1 n− 1

Alx n 0 n

Axt n 0 n

AlC 0 1 1

ACt 0 1 1

Asl n 1 n− 1 or n+ 1

Total 4n or 4n+ 2

Table 2: Recovery cost induced by scenario ξp for each set of arcs in the proof of Theorem 3.1. The second
column corresponds to the sum of the flows for any nominal solution while the third column contains the
sum of the flows for any solution of scenario ξp. The recovery cost associated with Asl is either n− 1 if
the arc of Asl used in fξp is also used in the nominal flow or n+ 1 otherwise.

Theorem 3.2. ([1], Section 14.3) A convex cost flow problem with piecewise linear convex cost functions
can be transformed into a min-cost flow problem.

Corollary 3.1. The reactive min-cost flow problem with distance dval, MCF rdval , is a polynomial problem.

3.2 Complexity of robust min-cost flow with distance dstruct

We show that for distance dstruct both the proactive and the reactive problems are NP-hard.

Theorem 3.3. The proactive min-cost flow problem with distance dstruct, MCF pdstruct , is strongly NP-
hard.

Proof. We prove the theorem with a reduction from problem 3-Partition. This problem considers a set
E = {1, 2, ..., 3m} of 3m elements and a positive integer B. To each element i ∈ E is associated a size
s(i) ∈]B4 ,

B
2 [ such that

∑
i∈E s(i) = mB. The aim of this problem is to determine whether there exists a

partition {E1, ..., Em} of E into m subsets such that the size of each subset Ej ,
∑
i∈Ej s(i), is equal to B.

Note that since s(i) ∈]B4 ,
B
2 [, the cumulative sizes of 2 and 4 objects are respectively lower and greater

than B. As a consequence each set necessarily contains exactly 3 elements.
We now present how to construct an instance IMCF of the optimization problem MCF pdstruct from an

instance I3P of the feasibility problem 3-Partition and we prove that a solution of IMCF has a recovery
cost of 7m if and only if I3P is a yes-instance.

Construction of IMCF

Figure 2a illustrates the graph obtained for an instance of problem 3-Partition with m = 2 and
B = 100.

The set of nodes V of the constructed graph G = (V,A) is composed of one node α, one node Vi for
each element i ∈ E and one subset node Ej for each subset j ∈ {1, ...,m}. The demand of all the nodes
is equal to 0.
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(a) Graph of IMCF . All node demands are 0. For
any arc, demand is 0, capacity is B and unitary cost
is 1.

(b) Positive demands of the scenario.

(c) Optimal proactive flow inducing the 3-partition
E1 = {1, 2, 6} and E2 = {3, 4, 5}. The arcs with a
flow of value 0 are colored in gray.

Figure 2: Example of the reduction to MCF pdstruct of an instance of the 3-Partition problem with m = 2,
B = 100 and elements of size (30, 30, 30, 35, 35, 40).

The arc set A contains one arc (α, Vi) for each i ∈ E and one arc (Vi, Ej) for each i ∈ E and each
j ∈ {1, ...,m}. The graph also contains an additional set of arcs, denoted by AEα, which contains one
arc from each subset node to α. Note that the size of the graph is polynomial in n and m as it contains
4m+ 1 nodes and 3m2 + 4m arcs.

For any arc, the nominal demand is 0, the capacity is B and the unitary cost is 1. It follows that the
only optimal nominal solution is the empty flow, with the objective value c∗ = 0.

One unique scenario ξ is considered in which the only arc demands different from 0 are ξα,Vi of arcs
(α, Vi) for all i ∈ E which are set to s(i) (see Figure 2b).

Solving I3P from a solution of IMCF

Since c∗ = 0, the only feasible proactive solution is the empty flow.
Let fξ be a feasible solution for scenario ξ. Observe that the outgoing flow from α is at least Bm.

Moreover, arcs (Ej , α) have a capacity of B. Thus, the arcs (Ej , α) must all be saturated and the flow
running through α is exactly Bm. Since the flow on each arc (Ej , α) is 0 in the nominal flow and B in
fξ, these m arcs induce a recovery cost of m.

We now show that at least an additional cost of 2|E| is induced by the remaining arcs. Each Vi has
an ingoing flow of value s(i). Consequently, fξ must send a total flow of s(i) on at least one of the m
following paths {(α, Vi, Ej)}mj=1. To sum up, fξ uses at least 2 additional arcs for each element i ∈ E,
leading to a recovery cost of m+ 2|E| (see Figure 2c). The use of several paths to satisfy a demand ξαVi
would increase the recovery cost as several arcs from {(Vi, Ej)}mj=1 would be used.

Consequently, a recovery cost of 7m is obtained if and only if for each i ∈ E exactly one path is used
to satisfy the demand ξαVi (i.e., if a partition with subsets of size B is obtained by assigning each element

i to the unique set Ej such that fξViEj > 0).

Theorem 3.4. The reactive min-cost flow problem with distance dstruct, MCF rdstruct , is strongly NP-
hard.

Proof. In the reduction considered in the proof of Theorem 3.3, the proactive flow is unique and known
a priori as it is necessarily empty. Consequently, this flow can be given as an input of the problem rather
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than being part of its solution without altering the validity of the reduction.
This new reduction leads to an instance of MCF rdstruct since the nominal flow is fixed and only 1

scenario is considered.

4 Minimizing recovery cost of the max-flow problem with un-
certain arc capacities

The max-flow problem can be stated as:

Max-flow Problem

Input: A digraph G = (V,A) with a source s ∈ V , a sink t ∈ V and capacities ξnoma ∈ N on the
flow of each arc a ∈ A.

Output: Find an integer flow with maximum value.

We consider max-flow problems with uncertainties on the capacities. Consequently, each scenario
ξ ∈ U is a vector of arc capacities in N|A|. Note that the associated reactive and proactive problems are
not particular cases of the ones considered in the previous section as the uncertainty is not on the arc
demands and X(ξ) represents the set of feasible integer flows when the arc capacities are set to ξ. The
corresponding reactive and proactive problems can be stated as follows:

Reactive Max-Flow Problem

Input: A max-flow problem, one of its solutions fnom ∈ X(ξnom), a distance d : N|A|×N|A| → R+

and arc capacities ξ ∈ N|A|.

Output: Find a reactive flow fr ∈ X(ξ) which minimizes d(fnom, fr).

Proactive Max-Flow Problem

Input: A max-flow problem with capacities ξnom ∈ N|A|, its optimal flow value c∗, a distance
d : N|A| × N|A| → R+ and for each scenario ξ ∈ U , a weight wξ ∈ R+.

Output: Find a proactive flow fp ∈ X(ξnom) and a flow fξ ∈ X(ξ) for each scenario ξ ∈ U which
minimize

∑
ξ∈U wξd(fp, fξ).

In the remainder of this section we determine the complexity of the four reactive and proactive max-
flow problems associated with distances dval and dstruct, as represented in Table 3.

Problem
Distance

dval dstruct

Proactive strongly NP-hard (Section 4.1)
strongly NP-hard (Section 4.2)

even with 1 scenario

Reactive Polynomial (Section 4.1) strongly NP-hard (Section 4.2)

Table 3: Complexity of the max-flow problems with uncertain arc capacities associated with distances
dval and dstruct.

4.1 Complexity of the robust max-flow with distance dval

We show in this section that for distance dval the proactive problem is NP-hard and that the reactive
problem is polynomial.

Theorem 4.1. The proactive max-flow problem with distance dval, MF pdval , is strongly NP-hard.

Proof. The proof of this theorem is similar to the one of Theorem 3.1. An instance IMF of the optimization
problem MF pdval is constructed from an instance ISAT of the feasibility problem 3-SAT and we prove that
IMF has an optimal solution with a recovery cost equal to m(3n + 2m − 1) if and only if ISAT is a
yes-instance.

Construction of IMF

10



(a) Graph of IMF .
(b) Nominal flow f . The nominal capacities differ-
ent from +∞ are represented between brackets.

(c) Flow fξ
1

of the first scenario ξ1. The scenario
capacities different from +∞ are represented be-
tween brackets.

(d) Flow fξ
2

of the second scenario ξ2. The sce-
nario capacities different from +∞ are represented
between brackets.

Figure 3: Example of the reduction to MF pdval of an instance of the 3-SAT problem with three variables
and two clauses C1 = (x1 ∨ x2 ∨ x3) and C2 = (x1 ∨ x2 ∨ x3) to MF pdval . Figures 3b, 3c and 3d represent

an optimal solution (f, fξ
1

, fξ
2

). The arcs with a flow of value 0 are colored in gray.

As represented in Figure 3, the graph associated with IMF has the same sets of nodes and arcs as the
ones in the proof of Theorem 3.1 except for the arc (s, t) which does not exist. The graph also includes
an additional set of arcs AsC which contains one arc between s and each clause node.

The nominal capacity of all the arcs is +∞ except for the arcs in Axt and ACt for which it is equal
to 1 and the arcs in AlC for which it is null. As proved below, c∗ is equal to n+m.

Instance IMF contains m scenarios {ξ1, ..., ξm} with weights equal to 1. The capacities of the arcs of
a scenario ξp are all equal to +∞ except for the arcs in Axt, AsC and ACt\{(Cp, t)} for which it is equal
to 0 and ξpCp,t which is equal to 1 (see Figure 3a).

Solving ISAT from a solution of IMF

Let f be a nominal feasible flow of IMF . Since the n+m arcs arriving in t all have a nominal capacity
of 1, the nominal flow value is at most n+m = c∗.

Flow f necessarily sends one unit of flow for each clause Cp on path (s, Cp, t) and one unit of flow for
each variable xi on one of the following two paths (s, li, xi, t) or (s, li, xi, t) (see example in Figure 3b).

Let fξ
p

be the flow of scenario ξp. Due to the scenario capacities, fξ
p

can either be an empty flow
(solution fξ

p,0) or send one unit of flow from s to t through a path (s, l, Cp, t) with l a literal of clause
Cp (solution fξ

p,l) (see Figures 3c and 3d). As represented in Table 4, solution fξ
p,0 leads to a recovery

cost of value 3n+ 2m and fξ
p,l to a recovery cost in [3n+ 2m− 1, 3n+ 2m+ 1]. A cost of 3n+ 2m− 1

is obtained if and only if the arc of Asl used in fξ
p,l is also used in the nominal flow.

Consequently, the sum of the recovery costs over all the scenarios is between m(3n + 2m − 1) and
m(3n + 2m + 1). An optimal cost of m(3n + 2m − 1) is obtained if and only if all the arcs of Asl used
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Arc sets
∑
a fa

∑
a f

ξp,0
a

∑
a f

ξp,l
a

Recovery cost∑
a |fξ

p,0
a − fa|

∑
a |fξ

p,l
a − fa|

AsC m 0 0 m m

AlC 0 0 1 0 1

ACt m 0 1 m m− 1

Asl n 0 1 n n± 1

Alx n 0 0 n n

Axt n 0 0 n n

Total 3n+ 2m 3n+ 2m± 1

Table 4: Recovery cost induced by scenario ξp for each set of arcs in the proof of Theorem 4.1. The second
column corresponds to the sum of the flows for any nominal solution of value c∗ = n+m. The third and
the fourth columns contain the sum of the flows for the two possible types of solutions of scenario ξp:
the empty flow fξ

p,0 and a unitary flow fξ
p,l. In the last column, the recovery cost associated with Asl

is either n− 1 if the arc of Asl used in fξ
p,l is also used in the nominal flow or n+ 1 otherwise.

by the scenarios are also used in the nominal flow (i.e., if setting to true all the variables xi such that
fs,li > 0 and to false the others enables us to satisfy all the clauses).

We show that MF rdval corresponds to a convex cost flow problem which is known to be polynomial.

Property 4.1. The reactive max-flow problem with distance dval, MF rdval , is a polynomial problem.

Proof. MF rdval is a convex cost flow problem since the cost of an arc a ∈ A is |xra − xa|. Since a max-
flow problem is a particular min-cost flow problem, according to Theorem 3.2, MF rdval is a polynomial
problem.

4.2 Complexity of the robust max-flow with distance dstruct

We show that for distance dstruct both the proactive and the reactive problems are NP-hard.

Theorem 4.2. The proactive MF pdstruct is strongly NP-hard.

Proof. Similar to the proof of MCF pdval , we use a reduction from problem 3-SAT.
Let ISAT be an instance of the feasibility problem 3-SAT with m clauses and n variables. As repre-

sented in Figure 4, we create an instance IMF of the optimization problem MF pdstruct with one unique
scenario ξ. We prove that an optimal solution of IMF leads to a recovery cost of 3n+ 2m if and only if
ISAT is a yes-instance.

Construction of IMF

In IMF , the set of nodes V of graph G = (V,A) is composed of:

• two nodes s and t;

• 2n literal nodes {li}ni=1 and {li}ni=1;

• 3n variable nodes {x1i , x2i , x3i }ni=1;

• 2m clause nodes {C1
p , C

2
p}mp=1.

The arc set A is composed of the following subsets:

• As,l which contains one arc from s to each literal node;

• As,x which contains one arc from s to each first variable node x1i ;

• Al,x which contains one arc from each literal node to its corresponding first variable node x1;

• Ax which contains arcs (x1i , x
2
i ) and (x2i , x

3
i ) for each i;

• Ax,t which contains one arc from each last variable node x3i to t;
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Arc sets
Capacities

ξnom ξ

As,l 0 m+ 1

As,x, As,C 1 0

Al,x, Al,C 0 1

Ax, Ax,t, AC , AC,t 1 1

Table 5: Capacities of each set of arcs for the nominal case and scenario ξ in instance IMF .

• As,C which contains one arc from s to each first clause node C1
p ;

• Al,C which contains one arc (l, C1
p) for each clause Cp and each literal l in Cp. Hence, 3 such arcs

exist for each clause;

• AC which contains one arc (C1
p , C

2
p) for each clause Cp;

• AC,t which contains one arc from each clause node C2
p to t.

Note that the size of the constructed graph is polynomial in n and m. It has 5n+ 2m+ 2 nodes and
8n+ 6m arcs.

As proved below, the value of c∗ is equal to n + m. The nominal capacities ξnom and the scenario
capacities ξ for each arc subset are presented in Table 5.

Solving ISAT from a solution of IMF

Let f be a nominal flow of IMF . As exemplified in Figure 4b, the maximal nominal flow is c∗ = n+m
and it can only be reached by a unique flow which sends:

• one unit for each clause Cp through path (s, C1
p , C

2
p , t); and

• one unit for each variable xi through path (s, x1i , x
2
i , x

3
i , t).

Let fξ be the flow of the scenario. An empty flow fξ would lead to a recovery cost of 4n+ 3m (i.e.,
the number of arcs used by the nominal flow). This can be improved by sending, for each variable x, one
unit of flow along one of the two following paths: Px = (s, l, x1, x2, x3, t) or P x = (s, l, x1, x2, x3, t). Let
us assume without loss of generality that only Px is used. This leads to a reduction of 1 of the recovery
cost. Indeed, three arcs of the path are also used in the nominal flow ((x1, x2), (x2, x3), (x3, t)) and two
are not ((s, l) and (l, x1)). Note that both Px and P x cannot be used simultaneously as the capacity of
(x1, x2) is equal to 1. Thus, the recovery cost of fξ is reduced by n by sending one unit of flow on either

Px or P x for each variable x (see Figure 4d). Let Aξsl be the subset of arcs of Asl now used in fξ.
To further reduce the recovery cost, fξ must use arcs from AC and AC,t. The clause nodes associated

with a clause C can only be reached by fξ through a path (s, l, C1, C2, t) with l one of the three literals

included in C. If (s, l) ∈ Aξsl the use of this path reduces by 1 the recovery cost (since (C1, C2) and
(C2, t) are also used in f and (l, C1) is not), otherwise the recovery cost remains the same. Thus, the
recovery cost can be further reduced by at most m if each clause node is reached through a path which
includes an arc in Aξsl.

In conclusion, there exists an optimal solution to IMF with recovery cost equal to 3n+2m if and only
if ISAT is satisfiable. In that case, the solution of ISAT consists in fixing to true the variables xi such
that fξs,li > 0 and to false the others.

Corollary 4.1. The reactive max-flow problem with distance dstruct, MF rdstruct , is strongly NP-hard.

Proof. The reduction used in the proof of Theorem 4.2 can also be used to prove this theorem since it
only requires one scenario. The main difference is that the only feasible nominal solution (exemplified in
Figure 4b) is given as an input of the reactive problem.
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(a) Nominal capacities.
(b) Unique optimal nominal solution with flow
value n+m.

(c) Capacities of the scenario. (d) Flow of the scenario of an optimal solution.

Figure 4: Example of the reduction to MF pdstruct of an instance of the 3-SAT problem with three variables
and two clauses C1 = (x1 ∨ x2 ∨ x3) and C2 = (x1 ∨ x2 ∨ x3). The arcs with a capacity or a flow of value
0 are colored in gray.
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5 A case study - The line optimization Problem with uncertain
demands

In this section, we apply our robust approach to a railroad planning problem inspired from [14, 17].
We compare our approach with two approaches from the literature and highlight their similarities and
differences. We then assess the recovery cost reduction when relaxing the optimality constraint on the
nominal objective of our approach. Finally, we show the efficiency of the proactive approach over the
reactive approach.

The line optimization Problem occurs in a railway system with periodic timetables. A line in an urban
transportation network is a path from a departure station to an arrival station with stops in intermediary
stations. The frequency of a line is the number of times a train has to be operated on this line in a given
time interval in order to cover passenger demands. We consider the problem of determining the lines
deployment and frequencies in order to minimize the line costs.

5.1 Deterministic problem description

We are given the set V of stations and the network N = (V, E, d) where edges of E represent the
undirected links between stations and de is the length of e ∈ E. A symmetric origin-destination (OD)
matrix ξnom ∈ N|V|×|V| provides the number of passengers that must be able to travel from any station
s to any other station s′, within one hour.

We consider a set L of potential lines which contains one line `ij for each pair of stations i, j ∈ V such
that i < j and ξnomij > 0. A line ` is characterised by a pair (s1` , s

2
`) of departure and arrival stations

together with a shortest path in N linking the two stations. Trains are planned to run on the deployed
lines and all trains are supposed to have the same carriage capacity of C passengers. Therefore, if a line `
is scheduled with frequency f , then up to C × f passengers per hour may be carried on each edge of line
`. Due to technical considerations, the frequency of any line is limited by a given value MF ∈ N. We are
also given the cost K` of deploying line ` and the unitary cost K ′` associated with frequencies on line `.

We introduce a binary variable x` equal to 1 if and only if line ` ∈ L is deployed and 0 otherwise.
When ` is deployed, variable f` indicates the hourly frequency of line `. A solution (x, f) is feasible for
a given OD matrix ξ if it is included in set X(ξ) defined by the following constraints:

X(ξ)



C ×
∑

`∈L:e∈`

f` ≥
∑

`∈L:e∈`

ξs1` ,s2` e ∈ E (4)

f` ≤ MFx` ` ∈ L. (5)

x` ≤ f` ` ∈ L (6)

f` ∈ N ` ∈ L
x` ∈ {0, 1} ` ∈ L

Constraints (4) force the demand satisfaction of each edge. Indeed, their left-hand side corresponds to
the sum of the capacities of trains that use edge e. Moreover, since a line is associated to each positive
OD value, the right-hand side of these constraints is equal to the number of passengers whose shortest
path goes through e. Constraints (5) and (6) link variables x` and f`. If line ` is not deployed then x`
and f` are equal to zero, otherwise f` is not larger than MF.

The nominal objective of a solution (x, f) is defined as

NO(x, f) =
∑
`∈L

(K`x` +K ′`f`) (7)

The deterministic model is defined as

P

{
min NO(x, f)

s.t. (x, f) ∈ X(ξnom)

We now assume that the positive values of the OD matrix are uncertain and that this matrix can take
any value within a set U of scenarios. We are given the set {ξ1, ..., ξ|U |} of alternative matrices. To handle
the uncertainty, this case study compares three robust approaches: our proactive approach, the anchored
approach [9] and the k-distance approach [13]. Each approach either constrains or optimizes differences
between the nominal solution and the solution of the scenarios. Our proactive approach minimizes an
average distance between the nominal and the scenario solutions. The anchored approach maximizes the
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number of variables whose value is identical in all solutions while the k-distance approach requires that
the value of at most k variables can differ in the nominal solution and the solution of each scenario.

We consider two cases in which the differences between solutions are either measured on the frequency
variables f or on the line deployment variables x. For the proactive approach this can be viewed as
considering the distance in values dval over f in the first case and the distance in structure dstruct over
the lines deployment variables x in the second case.

We show how this problem can be modeled for each approach as a compact integer linear program.
The compactness of the formulations is made possible by the fact that the uncertainty is represented by
a finite set of scenarios U rather than by a continuous uncertainty set.

5.2 Recovery cost based on frequencies

In this section, the differences between solutions are measured through the frequency variables f0 of the
nominal solution and {fξ}ξ∈U of the scenario solutions.

Proactive approach

As presented previously, the proactive approach minimizes the average recovery cost between the
nominal solution (x0, f0) and the scenario solutions {(xξ, fξ)}ξ∈U while setting the nominal objective
NO(x0, f0) to its optimal value c∗. The recovery cost based on frequencies corresponds to the distance
in values dval from Definition 2.1 applied to the frequency variables f0 and {fξ}ξ∈U (i.e.,

∑
ξ∈U

∑
`∈L |f0`−

fξ` |). We consider variable dfξ` equal to |fξ` − f0` | for each ` ∈ L and ξ ∈ U :

P pf (U, c∗)



min
∑
ξ∈U

∑
`∈L df

ξ
`

s.t. (x0, f0) ∈ X(ξnom)

(xξ, fξ) ∈ X(ξ) ξ ∈ U
NO(x0, f0) = c∗

fξ` − f0` ≤ df
ξ
` ξ ∈ U, ` ∈ L

−fξ` + f0` ≤ df
ξ
` ξ ∈ U, ` ∈ L

Anchored approach

A nominal variable is said to be anchored if its value in the nominal solution and in all scenario
solutions are equal. For each line ` ∈ L, variable a` is equal to 1 if f0` is anchored and 0 otherwise. This
approach maximizes the number of anchored variables while ensuring that the nominal objective of the
nominal solution is optimal:

P af (U, c∗)



max
∑
`∈L a`

s.t. (x0, f0) ∈ X(ξnom)

(xξ, fξ) ∈ X(ξ) ξ ∈ U
NO(x0, f0) = c∗

fξ` − f0` ≤ MF(1− a`) ξ ∈ U, ` ∈ L
−fξ` + f0` ≤ MF(1− a`) ξ ∈ U, ` ∈ L
a` ∈ {0, 1} ` ∈ L

In any optimal solution, a` is equal to 1 unless (fξ` − f0` ) is different from 0 for some scenario ξ.

k-distance approach

In this approach, for each scenario ξ ∈ U , the number of variables f0` and fξ` which have different
values is limited to k ∈ N and the nominal objective of the nominal solution x0 is minimized. Variable
δξ` is equal to 1 if and only if the values of f0` and fξ` are different and 0 otherwise.
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P df (U, k)



min NO(x0, f0)

s.t. (x0, f0) ∈ X(ξnom)

(xξ, fξ) ∈ X(ξ) ξ ∈ U
fξ` − f0` ≤ MF δξ` ξ ∈ U, ` ∈ L
−fξ` + f0` ≤ MF δξ` ξ ∈ U, ` ∈ L∑
`∈L δ

ξ
` ≤ k ξ ∈ U

δξ` ∈ {0, 1} ξ ∈ U, ` ∈ L

5.3 Recovery cost based on lines deployment

In this section, the differences between the solutions are measured through the lines deployment variables
x0 of the nominal solution and {xξ}ξ∈U of the scenario solutions.

Proactive approach

The recovery cost based on lines deployment corresponds to the distance in structure dstruct from
Definition 2.2 applied to the lines deployment variables x0 and {xξ}ξ∈U (i.e.,

∑
ξ∈U

∑
`∈L |1x0

`>0−1xξ`>0|).
We consider variable dxξ` equal to |1xξ`>0 − 1x0

`>0| for each ` ∈ L and ξ ∈ U .

P px (U, c∗)



min
∑
ξ∈U

∑
`∈L dx

ξ
`

s.t. (x0, f0) ∈ X(ξnom)

(xξ, fξ) ∈ X(ξ) ξ ∈ U
NO(x0, f0) = c∗

xξ` − x0` ≤ dx
ξ
` ξ ∈ U, ` ∈ L

−xξ` + x0` ≤ dx
ξ
` ξ ∈ U, ` ∈ L

Anchored approach

In this version, the frequency of an anchored line ` can vary from one solution to another but if `
is opened in the nominal solution x0, it cannot be closed in the scenario solutions and vice versa. To
minimize the number of anchored variables, we introduce for each line ` ∈ L, a binary variable a` equal
to 1 if and only if x0` is anchored, that is, xξ` = x0` ∀ξ ∈ U .

P ax (U, c∗)



max
∑
`∈L a`

s.t. (x0, f0) ∈ X(ξnom)

(xξ, fξ) ∈ X(ξ) ξ ∈ U
NO(x0, f0) = c∗

xξ` − x0` ≤ 1− a` ξ ∈ U, ` ∈ L
−xξ` + x0` ≤ 1− a` ξ ∈ U, ` ∈ L
a` ∈ {0, 1} ` ∈ L

k-distance approach

In this k-distance approach, the number of lines which deployment may vary between the nominal
solution and the solution of a scenario is bounded by k and the nominal objective is still minimized.
Variable δξ` is equal to 1 if and only if the values of x0` and xξ` are different and 0 otherwise.

P dx (U, k)



min NO(x0, f0)

s.t. (x0, f0) ∈ X(ξnom)

(xξ, fξ) ∈ X(ξ) ξ ∈ U
xξ` − x0` ≤ δ

ξ
` ξ ∈ U, ` ∈ L

−xξ` + x0` ≤ δ
ξ
` ξ ∈ U, ` ∈ L∑

`∈L δ
ξ
` ≤ k ξ ∈ U

δξ` ∈ {0, 1} ξ ∈ U, ` ∈ L
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5.4 Numerical results

We adapt an instance from the data considered in [14]1 which provides an OD matrix ξnom and a network
N = (V, E, d) with |V | = 23, |E| = 31 and |L| = 210.

The maximum frequency MF is set to 6, which corresponds to 1 train on the line every 10 minutes
when considering a time interval of 1 hour. The line opening costs {K`}`∈L are deduced from the costs
provided in the instance. A fixed frequency cost {K ′`}`∈L of 100 is considered. The capacity of each train
is set to C = 200.

We consider a discrete uncertainty set consisting of 10 OD matrices {ξi}10i=1. To create a reasonable
deviation from the nominal OD matrix ξnom, the value ξsij has a 20% chance of being equal to ξnomij .
Otherwise, it is uniformly drawn from [0.9× ξnomij , 1.1× ξnomij ]. Consequently, ξsij = 0 whenever ξnomij = 0.

The adjacency matrix of the network N , the costs {K`}`∈L, and ξnom are explicitly given in Ap-
pendix B.

5.4.1 Comparison of the anchored and the k-distance approaches with our proactive ap-
proach

The results obtained for the robustness in frequencies and the robustness in lines deployment for the
considered approaches are presented in Tables 6 and 7, respectively.

In these tables, three instances with the first two, the first six, and all ten scenarios are considered
and this number of scenarios is reported in the first column. The k-distance approach requires us to fix
the value of parameter k ∈ N which represents the maximal number of differences between the nominal
solution and any scenario solution. Since there is no a priori relevant choice for this parameter we set
its value to 0, 1, 2, 4 and 10. Consequently, seven lines are associated to each instance, one for the
proactive approach, one for the anchored approach, and five for the k-distance approach. The proactive
and the anchored approaches both ensure that the nominal objective of the nominal solution is equal to
its optimal value c∗. This value is obtained by the resolution a priori of the nominal problem P . Note
that P is only solved once as c∗ = 81742 does not depend on the number of scenarios nor the recovery
cost.

For each line of Table 6, a nominal solution (x0, f0) as well as scenario solutions {(xξ, fξ)}ξ∈U are
obtained by solving P pf (U, c∗), P af (U, c∗), or P kf (U, k). From these solutions, we afterwards compute

the distance dval =
∑
ξ∈U

∑
`∈L |f

ξ
` − f0` |, the number of anchored lines frequency

∑
`∈L 1f0=fξ ∀ξ∈U

and the nominal objective NO(x0, f0) through (7). The nominal objective is reported in the third
column. Since its optimality is imposed by the proactive and the anchored approach, in both cases it
is equal to c∗ = 81742 regardless of the number of scenarios. This objective is larger for the k-distance
approach whenever k is small. This highlights a drawback of the k-distance approach which does not
allow us to constrain the nominal objective of the nominal solution. In other applications, a low value
of k could even lead to infeasibilities. The number of differences in frequencies dval is reported in the
fourth column of Table 6. Among all nominal solutions with an optimal value of the nominal objective
(81742), the proactive approach returns one whose number of differences is minimal (e.g., 50 for two
scenarios). The number of anchored lines frequency is reported in the fifth column. Among all nominal
solutions of nominal objective value 81742, the anchored approach returns one which maximizes the
number of anchored lines (e.g., 200 over 210 for two scenarios). Table 7 contains similar results. Nominal
and scenario solutions are computed by solving P px (U, c∗), P ax (U, c∗), or P dx (U, k). The fourth column

contains the number of differences in lines deployment dstruct =
∑
ξ∈U

∑
`∈L |x

ξ
` − x0` | while the fifth

column contains the number of lines which are anchored
∑
`∈L 1x0=xξ ∀ξ∈U .

The proactive and the anchored approaches do not lead to the same solutions as the recovery cost is
not optimal in the anchored approach and the number of anchored lines is not optimal in the proactive
approach. These differences are increased with the number of scenarios as it becomes harder to satisfy
both objectives simultaneously. Note that the increase in dval and dstruct provided by the anchored
approach is often greater than the decrease in number of variables anchored in the proactive approach.
This is due to the fact that anchoring a variable is quite constraining since it requires its value to be
identical in the nominal solution and in all the scenario solutions. The advantage is that it guarantees that
parts of the nominal solution will not be disrupted. However, this comes at a price in terms of flexibility
which is reflected by an increase of the recovery costs dval and dstruct. In the k-distance approach, an
increase of the nominal objective for low values of k enables us to obtain better recovery costs than the
proactive approach and more anchored variables than the anchored approach. In particular, when k = 0
the scenario solutions are necessarily identical to the nominal solution which leads to a recovery cost of 0
and an anchoring of all the 210 lines. However, we observe a quick deterioration of these two objectives
when k increases showing once again that the choice of parameter k can be challenging. Moreover, the

1https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_lop.html
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value k is shared by all scenarios while some of them may require fewer changes than others which can
lead to less suitable scenario solutions.

In most cases, resolutions are completed within seconds. However, we notice that the computation
time increases with the number of scenarios and even becomes prohibitive for k-distances with distance
dval. A resolution time of more than 39 hours is even reached for k = 2.

|U | Method NO(x0, f0)
Lines frequency Number of

Time (s)
differences dval anchored lines

2

Proactive 81742 50 192 (-4%) 9

Anchored 81742 78 (+56%) 200 18

0-distance 89028 (+9%) 0 (-100%) 210 (+5%) 0

1-distance 86663 (+6%) 12 (-76%) 208 (+4%) 7

2-distance 84740 (+4%) 19 (-62%) 206 (+3%) 8

4-distance 82156 (+1%) 43 (-14%) 202 (+1%) 7

10-distance 81742 96 (+92%) 194 (-3%) 3

6

Proactive 81742 120 185 (-7%) 22

Anchored 81742 189 (+58%) 199 80

0-distance 91998 (+13%) 0 (-100%) 210 (+6%) 1

1-distance 87274 (+7%) 27 (-78%) 204 (+3%) 23

2-distance 85178 (+4%) 56 (-53%) 201 (+1%) 503

4-distance 82158 (+1%) 122 (+2%) 195 (-2%) 75

10-distance 81742 248 (+107%) 170 (-15%) 18

10

Proactive 81742 196 181 (-9%) 25

Anchored 81742 327 (+67%) 198 500

0-distance 94308 (+15%) 0 (-100%) 210 (+6%) 0

1-distance 89733 (+10%) 39 (-80%) 202 (+2%) 4654

2-distance 86428 (+6%) 80 (-59%) 197 (-1%) 141417

4-distance 83124 (+2%) 153 (-22%) 190 (-4%) 4718

10-distance 81742 400 (+104%) 158 (-20%) 27

Table 6: Results of each approach when considering the recovery cost based on frequencies. For a given
number of scenarios |U |, the percentage in a cell corresponds to the relative change between the cell value
and the value in bold in the same column.

5.4.2 Flexibility of the nominal objective

Imposing an optimal nominal objective value on the nominal solution of the proactive approach may be
too restrictive as small increases of the nominal objective may lead to significant decreases of the recovery
cost. As presented in Inequality (3), a parameter ε ≥ 0 which corresponds to an acceptable percentage
of increase of the nominal objective can be introduced for this purpose. Consequently, the constraint in
P pf and P px which ensures that the nominal objective is equal to c∗ can be replaced by

NO(x0, f0) ≤ c∗(1 + ε). (8)

Tables (8a) and (8b) present the results obtained for four values of ε (0%, 1%, 2% and 5%) for the
robustness in frequencies and the robustness in lines deployment, respectively. In both cases, allowing
an increase of the nominal objective enables us to significantly reduce the recovery cost and increase the
number of anchored variables. In particular, for ε equal to 5%, the recovery cost is at most equal to 1
and the number of anchored variables is at least equal to 209 over 210 lines.

Similar results have been observed in Tables 6 and 7 with the recoverable robustness approach for small
values of k. The major difference with the proactive approach is that it seems easier for a decision maker
to choose an acceptable percentage ε of deterioration of the nominal objective rather than a maximal
number k of differences allowed in terms of variables values.
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|U | Method NO(x0, f0)
Lines deployment Number of

Time (s)
differences dstruct anchored lines

2

Proactive 81742 10 201 (>-1%) 4

Anchored 81742 15 (+50%) 202 7

0-distance 85709 (+5%) 0 (-100%) 210 (+4%) 0

1-distance 84486 (+3%) 2 (-80%) 208 (+3%) 1

2-distance 83340 (+2%) 4 (-60%) 206 (+2%) 1

4-distance 81950 (<1%) 8 (-20%) 203 (<1%) 1

10-distance 81742 20 (+100%) 193 (-4%) 2

6

Proactive 81742 23 193 (-4%) 14

Anchored 81742 41 (+78%) 202 1

0-distance 87598 (+7%) 0 (-100%) 210 (+4%) 4

1-distance 84774 (+4%) 6 (-74%) 204 (+1%) 1

2-distance 83621 (+2%) 12 (-48%) 200 (-1%) 4

4-distance 81952 (<1%) 22 (-4%) 194 (-4%) 2

10-distance 81742 52 (+126%) 175 (-13%) 2

10

Proactive 81742 37 191 (-4%) 84

Anchored 81742 71 (+92%) 200 8

0-distance 88907 (+9%) 0 (-100%) 210 (+5%) 0

1-distance 85921 (+5%) 10 (-73%) 203 (+2%) 5

2-distance 84045 (+3%) 18 (-51%) 200 2

4-distance 82634 (+1%) 37 191 (-4%) 13

10-distance 81742 87 (+135%) 166 (-17%) 8

Table 7: Results of each approach when considering the recovery cost based on lines deployment. For a
given number of scenarios |U |, the percentage in a cell corresponds to the relative change between the
cell value and the value in bold in the same column.

Once again the resolution times are generally small. The only exception is observed for distance dval
for 10 scenarios and epsilon equal to 5% which is solved in almost 3 hours. This could be due to a sudden
increase in the size of the feasible solution set.

5.5 Proactive and reactive approaches comparison

The reactive approach is considered when the uncertainty has not been anticipated and the nominal
solution (x0, f0) is infeasible for a scenario s. In that context, the reactive problem P r provides a
reactive solution (xr, fr) feasible for s and whose recovery cost with (x0, f0) is minimal. Problem P r

is similar to the proactive problem P p except that only one scenario ξ ∈ U is considered and that the
nominal solution (x0, f0) is given as an input rather than an output. The reactive line optimization
problem associated with the recovery cost based on frequencies can be modelled by considering a binary
variable d` equal to 1 if and only if fr` is equal to f0` for each ` ∈ L:

P r(ξ, x0, f0)


min

∑
`∈L d`

s.t. (xr, fr) ∈ X(ξ)

fr` − f0` ≤ d` ` ∈ L
−fr` + f0` ≤ d`` ∈ L

We do not present the reactive model for the recovery cost based on lines deployment as it only
requires in the last two sets of constraints replacing fr` and f0` by xr` and x0` , respectively.

Let Q∗ be the set of nominal solutions with an optimal nominal objective c∗. The aim of our proactive
approach can be viewed as finding a solution in Q∗ which minimizes the sum of the recovery costs over
the scenarios in set U . To assess the efficiency of the proactive solution, we compare its recovery cost to
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|U | ε NO(x0, f0)
Lines frequency

Time (s)
differences dval

2

0% 81742 50 9

1% 82558 29 2

2% 83348 24 10

5% 85797 11 10

6

0% 81742 120 22

1% 82558 71 52

2% 83338 55 12

5% 85802 32 35

10

0% 81742 196 25

1% 82558 121 140

2% 83338 93 61

5% 85730 59 9978

(a) Recovery cost based on the frequencies.

|U | ε NO(x0, f0)
Lines deployment

Time (s)
differences dstruct

2

0% 81742 10 4

1% 82450 6 1

2% 83340 4 1

5% 85812 0 0

6

0% 81742 23 14

1% 82349 16 3

2% 83374 11 9

5% 85809 2 1

10

0% 81742 37 84

1% 82449 25 12

2% 83166 19 47

5% 85734 6 2

(b) Recovery cost based on the lines deployment.

Table 8: Influence of parameter ε of our proactive approach on the recovery cost.

the ones of four other solutions from Q∗. These four solutions have been selected to be as different as
possible in order to be representative of Q∗ (see Appendix A for more details on the selection process).

Tables 9a and 9b present the results obtained when considering the recovery cost based on frequen-
cies and lines deployment, respectively. For each considered nominal solution (x, f), the recovery cost
v(P r(ξ, x, f)) of any scenario ξ ∈ U is obtained by solving the reactive problem P r(ξ, x, f). The sum of
the recovery costs over all scenarios in U is then obtained by computing

∑
ξ∈U v(P r(ξ, x, f)) and this

value is represented in the third column of both tables. The proactive solution necessarily returns the
optimal recovery cost and the others lead to a mean increase of 8% with a maximal increase of 24%. This
significant variability of the recovery cost among solutions from Q∗ highlights the relevance of considering
the proactive approach. In Table 9a, the first reactive solution is very similar to the proactive solution as
its recovery cost is identical for 2 and 6 scenarios and it is only incremented for 10 scenarios. In Table 9b
one reactive solution always leads to an optimal recovery cost but it is not always the same depending
on the number of scenarios. This shows that the choice of the scenarios is a sensitive task that may
significantly impact the proactive solution.

The resolution times of the proactive problems are significantly higher. This was expected since the
reactive problem contains the variables of only one solution while the proactive problem contains |U |+ 1.
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|U | Solution
Lines frequency

Time (s)
differences dval

2

Proactive 50 9

Reactive (xA, fA) 50 0

Reactive (xB , fB) 57 (+14%) 0

Reactive (xC , fC) 62 (+24%) 0

Reactive (xD, fD) 56 (+12%) 0

6

Proactive 120 22

Reactive (xA, fA) 120 0

Reactive (xB , fB) 123 (+2%) 0

Reactive (xC , fC) 133 (+11%) 0

Reactive (xD, fD) 121 (+1%) 0

10

Proactive 196 25

Reactive (xA, fA) 197 (+1%) 0

Reactive (xB , fB) 211 (+8%) 0

Reactive (xC , fC) 220 (+12%) 0

Reactive (xD, fD) 204 (+4%) 0

(a) Recovery cost based on frequencies.

|U | Solution
Lines deployment

Time (s)
differences dstruct

2

Proactive 10 4

Reactive (xA, fA) 10 0

Reactive (xB , fB) 12 (+20%) 0

Reactive (xC , fC) 11 (+10%) 0

Reactive (xD, fD) 11 (+10%) 0

6

Proactive 23 14

Reactive (xA, fA) 26 (+13%) 0

Reactive (xB , fB) 28 (+22%) 0

Reactive (xC , fC) 24 (+4%) 0

Reactive (xD, fD) 23 0

10

Proactive 37 84

Reactive (xA, fA) 38 (+3%) 0

Reactive (xB , fB) 43 (+16%) 0

Reactive (xC , fC) 39 (+5%) 0

Reactive (xD, fD) 37 0

(b) Recovery cost based on lines deployment.

Table 9: Comparison of the proactive and the reactive approaches with four different optimal nominal
solutions (xA, fA), (xB , fB), (xC , fC) and (xD, fD). For each solution (xi, yi) and each scenario ξ ∈ U
the reactive problem P r(ξ, xi, yi) is solved. The values in the table correspond to the sum of the recovery
costs obtained over all scenarios. For a given number of scenarios |U |, the percentage in a cell corresponds
to the relative change between the cell value and the value in bold.
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6 A min-max robustness version of the proactive problem

In this section, we introduce a version Pw of the proactive problem P p which is closer to classical robust
approaches. Instead of minimizing the weighted sum of the recovery costs over all scenarios, we minimize
the recovery cost of the worst-case scenario:

Pw(U , c∗)

{
min

xp∈X(ξnom)
max
ξi∈U

min
xi∈X(ξi)

d(xp, xi). (9)

s.t. f(xp) = c∗ (10)

For a given distance d, we denote by MCFwd and MFwd the proactive problems MCF pd and MF pd in
which the sum over the scenarios in the objective is replaced by a maximum.

In this section, we study the complexity of MCFwdval , MCFwdstruct , MFwdval and MFwdstruct . Then, we
show conditions on distance d and function X(ξ) under which the set of extreme points of the convex
hull conv(U) of a discrete uncertainty set U always contain a worst-case scenario. Finally, we prove that
this result is no longer true for three other classes deduced from the first one: when the variables must be
integer, when distance d is non-convex or when the uncertainty is on the left-hand side of the constraints
rather than their right-hand side.

6.1 Complexity results

As summarized in the following two propositions, we prove that the complexity results obtained previously
hold for this version of the proactive problem.

Proposition 6.1. MCFwdstruct and MFwdstruct are strongly NP-hard.

Proof. When only one scenario ξ is considered, the proactive problems P p and Pw are equivalent since the
recovery cost of ξ is both equal to the sum and to the maximum of the recovery costs over all scenarios.
The proofs of Theorems 3.3 and 4.2 only consider one scenario. Consequently, these proofs also provide
valid reductions from problem 3-SAT to problems MCFwdstruct and MFwdstruct .

Proposition 6.2. MCFwdval and MFwdval are strongly NP-hard.

Proof. In the proof of Theorem 3.1, for any instance ISAT of the 3-SAT problem with n boolean variables
and m clauses, we construct an instance IMCF for the proactive problem MCF pdval . We prove that all
ISAT clauses are satisfied if and only if the recovery cost of each scenario is equal to its lowest possible
value 4n. Thus, we finally conclude that ISAT is a yes-instance if and only the optimal value of MCF pdval
is at most 4nm.

The same reduction can be considered to prove the NP-hardness of MCFwdval . Since 4n is the lowest
possible recovery cost of a scenario, the maximal recovery cost over all scenarios is equal to 4n if and
only if the recovery cost of all scenarios is equal to 4n. Consequently, ISAT is a yes-instance if and only
if the objective value of MCFwdval is at most 4n.

A similar reasoning can prove the NP-hardness of MFwdval from the proof of Theorem 4.1.

6.2 Equivalence of optimization over the discrete set of scenarios set and its
convex hull

For many robust optimization problems it has been proved that considering a discrete set of uncertain
scenarios is equivalent to considering its convex hull (i.e., v(P (U)) = v(P (conv(U))) [4, 11, 29]. Such
results can make solving P (conv(U)) easier by restricting the set of scenarios considered during the
resolution.

We first prove that this result holds for a class Pw0 of proactive problems. Let Pw0 be the set of
proactive problems Pw in which the distance d is convex, each scenario ξ ∈ U is a vector of Rm, and
its feasibility set is X(ξ) = {x ∈ Rn | h(x) ≤ ξ}, with h : Rn → Rm a convex function. The class Pw0
for example includes the proactive problems which consider distance dval and linear constraints with
uncertain right-hand sides. Note that this class does not include MFwdval and MCFwdval as the variables
can be fractional.

Subsequently, we show that this result does not hold if the variables are imposed to be integers, if the
distance is non-convex or if the uncertainty is on the left-hand side of the linear constraints.

Proposition 6.3. Let Pw0 be the set of proactive problems Pw in which (i) the distance d is convex, and
(ii) the feasibility set of any scenario ξ ∈ Rm is a convex set defined as X(ξ) = {x ∈ Rn | h(x) ≤ ξ}, where
h : Rn → Rm is a convex function. It holds that v(Pw0 (U, c∗)) = v(Pw0 (conv(U), c∗)) for all P 0

w ∈ P0
w and

all discrete uncertainty sets U .

23



Proof. Let xp be a nominal solution and gxp : ξ 7→ min
x∈X(ξ)

d(xp, x) be the function which associates to any

scenario ξ ∈ conv(U) the distance between xp and its closest solution in X(ξ). So Pw0 can be re-written
as

Pw0 (U , c∗)

{
min

xp∈X(ξnom)
max
ξi∈U

gxp(ξi).

s.t. f(xp) = c∗

Let ξ1, ξ2 and ξ′ be three scenarios in conv(U) such that ξ′ = t ξ1 + (1− t)ξ2 with t ∈ [0, 1]. To prove
that gxp is convex, it is sufficient to show that there exists x′ ∈ X(ξ′) such that

d(xp, x′) ≤ t gxp(ξ1) + (1− t)gxp(ξ2). (11)

Let x∗1 = argminx∈X(ξ1)d(xp, x) (i.e., gxp(ξ1) = d(xp, x∗1)) and x∗2 = argminx∈X(ξ2)d(xp, x). We take
x′ = t x∗1 + (1− t)x∗2. We first prove that x′ is in X(ξ′) and then that it satisfies Inequality (11).

The convexity of h ensures that:

h(x′) ≤ t h(x∗1) + (1− t)h(x∗2) ≤ t ξ1 + (1− t)ξ2 = ξ′

and therefore x′ is in X(ξ′). Finally, Inequality (11) follows from the convexity of d.
Since conv(U) is a compact set, the convexity of gxp ensures that it reaches a maximum on one of its

extreme points which are all included in U .

We now define three classes of min-max proactive problems Pw: (i) Pw1 is the same as Pw0 but solutions
x are integers, (ii) Pw2 is the same as Pw0 but the distance d is no longer convex, and (iii) Pw3 is the same
as Pw0 but the the feasibility sets are polyhedra with uncertain constraint matrix. More precisely, in Pw3 ,
the scenarios are matrices in Rn×m and the feasibility sets are X : ξ 7→ {x ∈ Rn | ξx ≤ b} with b ∈ Rm.

For each of these classes, we prove that Property 6.3 does not hold.

Proposition 6.4. There exists an instance Pw1 ∈ Pw1 and a discrete uncertainty set U , such that
v(Pw1 (U, c∗)) < v(Pw1 (conv(U), c∗)).

Proof. We consider the nominal integer max-flow problem represented in Figure 5a. This problem has
an optimal flow value c∗ of 1 which can only be obtained by the two solutions x1 and x2 represented in
Figures 5b and 5c, respectively.

(a) Nominal capacities. (b) Nominal solution x1. (c) Nominal solution x2.

(d) Scenario ξ1. (e) Scenario ξ2. (f) Scenario ξ′ = 1
2
ξ1 + 1

2
ξ2.

Figure 5: An instance of MCFwdval to illustrate Proposition 6.4

Let us consider a discrete uncertainty set U = {ξ1, ξ2} whose two scenarios are represented in Fig-
ures 5d and 5e, respectively. The corresponding proactive problem is in Pw1 since its solutions must be
integers, distance dval is convex, each scenario ξ ∈ U is a vector in Rm of uncertain capacities and the
feasibility set X(ξ) can be expressed as linear constraints with uncertain right-hand sides.

The only feasible integer flows for scenario ξ1 are x1 and the empty flow x0. Similarly, x2 and x0 are
the only feasible solutions for scenario ξ2. Consequently, we deduce that

v(MFwdval(U, 1)) = min
xp∈{x1,x2}

max
(

min
xξ1∈{x0,x1}

dval(x
p, xξ1)︸ ︷︷ ︸

Recovery cost of ξ1

, min
xξ2∈{x0,x2}

dval(x
p, xξ2)︸ ︷︷ ︸

Recovery cost of ξ2

)
= 2.

Indeed, if the proactive solution xp is x1, then the maximal recovery cost is equal to 2 and it is
obtained for scenario ξ2 with solution x2. A symmetric reasoning with scenario ξ1 leads to the same
recovery cost if xp is x2.
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(a) Node and nominal arc demands. (b) Demands of scenario ξ1.

(c) Demands of scenario ξ2. (d) Demands of scenario 1
2
ξ1 + 1

2
ξ2.

Figure 6: Demands of an instance of MCFwdstruct .

We now consider scenario ξ′ = 1
2ξ1 + 1

2ξ2 in conv(U) represented in Figure 5f. The only feasible
integer flow for ξ′ is the empty flow x0 and hence its recovery cost is 3.

We now prove that the same result holds if we consider continuous variables and a non-convex dis-
tance d.

Proposition 6.5. There exists an instance Pw2 ∈ Pw2 and a discrete uncertainty set U , such that
v(Pw2 (U, c∗)) < v(Pw2 (conv(U), c∗)).

Proof. We consider a variation of the robust min-cost flow problem MCFwdstruct in which the flows are
not required to be integers. Such a problem is in Pw2 since the distance dstruct is non-convex and the
feasibility set X(ξ) can be expressed as linear constraints with uncertain right-hand side.

We consider an instance whose node and nominal arc demands are represented in Figure 6a and whose
arcs capacities {ua}a∈A and arcs unitary costs {ca}a∈A are all equal to 1. This instance contains two
scenarios U = {ξ1, ξ2} represented in Figures 6b and 6c.

There exists only one feasible nominal solution xp of cost c∗ = 2. Similarly, scenarios ξ1 and ξ2 only
each admit one feasible solution whose distance dstruct with xp is 2. However, the only feasible solution
of scenario 1

2ξ1 + 1
2ξ2 ∈ conv(U), represented in Figure 6d, leads to a distance dstruct of 3.

Eventually, we prove that if we consider uncertainty in matrix coefficients, then Property 6.3 does not
hold either.

Proposition 6.6. There exists an instance Pw3 ∈ Pw3 and a discrete uncertainty set U , such that
v(Pw3 (U, c∗)) < v(Pw3 (conv(U), c∗)).

Proof. Let us consider the feasibility set X(ξnom) = {x ∈ R2 |
(
−1 0

0 −1

)
x ≤

(
−1
−1

)
}. The nominal

problem: {
min x1 + x2

s.t. x ∈ X(ξnom)

only has one optimal solution x∗ =

(
1
1

)
of value c∗ = 2.

We consider the uncertainty set U = {ξ1 =

(
1 0
0 0

)
, ξ2 =

(
0 0
0 1

)
}.

Since the only possible solution of the proactive problem is x∗, the recovery cost is:

• min
x∈R2: x1≤−1

dval(x
∗, x) = 2 for scenario ξ1, which is obtained by solution

(
−1

1

)
;

• min
x∈R2: x2≤−1

dval(x
∗, x) = 2 for scenario ξ2, which obtained by solution

(
1
−1

)
;

• min
x∈X( 1

2 ξ1+
1
2 ξ2)

dval(x
∗, x) = 6 for scenario 1

2ξ1 + 1
2ξ2, which is obtained by solution

(
−2
−2

)
.
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7 Conclusion

We introduced a new robust approach which optimizes the recovery cost by minimizing the recovery cost
over a discrete set of scenarios while ensuring the optimality of the nominal objective. We proved that
the proactive counterparts of two polynomial network flow problems are NP-hard and that their reactive
counterparts are polynomial for dval and NP-hard for dstruct.

We show in a case study of a railroad planning problem that a proactive solution can significantly
reduce the recovery cost compared to other solutions with an optimal nominal objective. Relaxing the
optimality constraint on the nominal objective can also further reduce the recovery cost. Unlike the
k-distance approach, the proactive approach does not require the definition of a parameter k which may
prove difficult to fix. We also observed that the anchored approach tends to increase more significantly
the recovery cost than the proactive approach decreases the number of anchored lines.

In future works it would be interesting to study the complexity of other problems or distances in this
framework all the more so if it enables the identification of polynomial proactive integer problems. The
discrete set of scenarios U could also be replaced by classical sets such as box, budgeted or polytope
uncertainty sets. This may lead to more challenging problems from the numerical viewpoint as it would
no longer be possible to define a compact formulation which associates a set of variables to each possible
scenario. Finally, rather than imposing a bound on the nominal objective, the proactive problem could be
solved as a bi-objective problem in which both the recovery cost and the nominal objective are minimized.
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Appendix

A Nominal solutions generation

In Section 5.5 we consider four solutions from Q∗, the set of solutions which have an optimal nominal
objective c∗. We show that their recovery cost vary significantly. We detail in this section how these
solutions are obtained.

In order to be as representative as possible of Q∗, we want to generate iteratively solutions which
are as distant from one another as possible (i.e., which have a recovery cost as high as possible with
one another). More formally, if the recovery cost is defined by a distance d and if Q ⊂ Q∗ is the set of
solutions already obtained, the solution x of the next iteration is one whose distance is farthest from its
nearest solution in Q: x ∈ argmaxx∈Q∗ minxq∈Q d(x, xq).

This problem can be solved through a MILP for the line optimization problem when considering any
of the two distances presented in Section 5.1. Since both models are similar we only present that for
distance dstruct over the lines deployment variables x. In this model, variable z represents the objective
value while variables x and f correspond to the new solution. Finally, for each solution xq ∈ Q and each
line ` ∈ L, the binary variable dxq` is equal to 1 if and only if x` is equal to xq` .

Px(Q, c∗)



max z

s.t. z ≤
∑
`∈L dx

q
` xq ∈ Q (12)

(x, f) ∈ X(ξnom) (13)

NO(x, f) = c∗ (14)

xq` − x` ≤ dx
q
` xq ∈ Q, ` ∈ L (15)

−xq` + x` ≤ dxq` xq ∈ Q, ` ∈ L (16)

Constraints (12) ensure that the objective is at most the recovery cost between x and any xq ∈ Q.
Constraints (13) and (14) guarantee that (x, f) ∈ Q∗. Finally, the link between variables x and dxq is
ensured through constraints (15) and (16).

B Case study instance

This section gives more details on the case study instance considered in Section 5 which is inspired
from [14, 17]. Table 10 contains the adjacency matrix and Table 11 the line deployment costs {K`}`∈L.
The nominal OD matrix ξnom is presented in Table 12. The OD matrices of the scenarios are not
presented for the sake of conciseness.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows, Cambridge, Mass.: Alfred P. Sloan
School of Management, Massachusetts, 1988.

[2] H. Aissi, C. Bazgan, and D. Vanderpooten, Min–max and min–max regret versions of combinatorial
optimization problems: A survey, Eur. J. Oper. Res. 197 (2009), 427–438.

[3] A. Atamtürk and M. Zhang, Two-stage robust network flow and design under demand uncertainty,
Oper. Res. 55 (2007), 662–673.

[4] J. Ayoub and M. Poss, Decomposition for adjustable robust linear optimization subject to uncertainty
polytope, Comput. Manage. Sci. 13 (2016), 219–239.

[5] W. Ben-Ameur and H. Kerivin, New economical virtual private networks, Commun. ACM 46 (2003),
69–69.

[6] A. Ben-Tal, B. Golany, A. Nemirovski, and J.P. Vial, Retailer-supplier flexible commitments con-
tracts: A robust optimization approach, Manufacturing Service Oper. Manage. 7 (2005), 248–271.

[7] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, Adjustable robust solutions of uncertain
linear programs, Math. Program. 99 (2004), 351–376.

[8] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23 (1998), 769–805.

27



Ah Apd Asd Asdz Asn Bd Ehv Gn Gv Gvc Hgl Hr Lls Lw Mt Odzg Rsdg Rtd Shl Std Ut Zl Zvg

Ah 1 1

Apd 1 1 1

Asd 1 1 1 1

Asdz 1 1 1

Asn 1 1

Bd 1 1

Ehv 1 1

Gn 1

Gv 1 1 1

Gvc 1 1 1

Hgl 1 1

Hr 1 1

Lls 1 1 1

Lw 1

Mt 1

Odzg 1

Rsdg 1

Rtd 1 1 1 1

Shl 1 1 1 1

Std 1 1

Ut 1 1 1 1 1 1 1 1 1

Zl 1 1 1 1

Zvg 1

Table 10: Adjacency matrix.

28



Ah Apd Asd Asdz Asn Bd Ehv Gn Gv Gvc Hgl Hr Lls Lw Mt Odzg Rsdg Rtd Shl Std Ut Zl Zvg

Ah 923 892 1908 1253 1185 1066 1060 1727 1241 2014 1147 1035 1004 574 1210 224

Apd 767 929 1397 1222 1104 1097 642 2051 754 1185 1072 1041 1920 611 1197

Asd 923 767 1559 1135 1066 1733 599 599 1303 1484 549 1665 1896 1521 960 742 224 1659 455 966 1041

Asdz 892 929 1571 1147 1035 1746 592 592 1465 1496 561 1677 1864 954 736 218 1627 424 979 1010

Asn 1908 1559 1571 2120 2051 281 1933 1927 1116 2881 2014 1902 1684 2644 1440 698 2026

Bd 1253 1397 1135 1147 2120 1503 2401 661 667 1933 2045 1602 2332 2226 2045 630 517 1035 2095 892 1528 1478

Ehv 1185 1222 1066 1035 2051 1503 2226 1210 1203 1758 1977 1490 2157 829 1977 1291 1178 1147 698 717 1459 1303

Gn 1733 1746 281 2401 2226 2108 2101 1291 3055 2189 2076 1964 2818 1615 979 2201

Gv 1066 1104 599 592 1933 661 1210 2108 112 1640 1858 1047 2039 2039 362 249 480 1802 599 1235

Gvc 1060 1097 599 592 1927 667 1203 2101 112 1634 1746 1047 2033 2033 1746 368 256 480 1796 592 1228 1178

Hgl 642 1303 1465 1933 1758 1640 1634 2588 218 1721 1609 1578 2457 1147

Hr 1727 1484 1496 2045 1977 1858 1746 1041 287 2700 1939 1721 1609 2569 1260 623 1952

Lls 1241 549 561 1116 1602 1490 1291 1047 1047 1041 1222 2214 1303 1191 673 2083 773 524

Lw 2014 1665 1677 2332 2157 2039 2033 287 1222 2987 2120 2008 1896 2750 1546 910 2133

Mt 2051 1896 1864 2881 2226 829 3055 2039 2033 2588 2700 2214 2987 2120 2008 1977 237 1546 2182

Odzg 754 1521 2045 1977 1746 218 1721 1260

Rsdg 1147 1185 960 954 2014 630 1291 2189 362 368 1721 1939 1303 2120 2120 218 736 1989 680 1316

Rtd 1035 1072 742 736 1902 517 1178 2076 249 256 1609 1721 1191 2008 2008 1721 218 623 1771 567 1203 1154

Shl 1004 1041 224 218 1684 1035 1147 1964 480 480 1578 1609 673 1896 1977 736 623 1740 536 1091

Std 1920 1659 1627 2644 2095 698 2818 1802 1796 2457 2569 2083 2750 237 1989 1771 1740 1309 2051

Ut 574 611 455 424 1440 892 717 1615 599 592 1147 1260 773 1546 1546 1260 680 567 536 1309 742 692

Zl 1210 966 979 698 1528 1459 979 1235 1228 623 524 910 2182 1316 1203 1091 2051 742 1434

Zvg 224 1197 1041 1010 2026 1478 1303 2201 1178 1952 2133 1154 692 1434

Table 11: Line deployment costs {K ′`}`∈L.

29



Ah Apd Asd Asdz Asn Bd Ehv Gn Gv Gvc Hgl Hr Lls Lw Mt Odzg Rsdg Rtd Shl Std Ut Zl Zvg

Ah 726 721 16 136 101 109 741 11 8 13 320 180 60 4244 56 602

Apd 917 76 57 62 21 202 468 5 71 47 143 32 10 1160 83

Asd 726 917 235 154 437 205 730 2540 287 115 2783 90 37 22 2258 1756 6469 155 4919 400 489

Asdz 721 76 58 138 542 88 461 207 24 16 819 21 149 6 369 1456 203 5826 171 155

Asn 16 235 58 42 33 1720 13 117 152 14 48 125 32 28 502 854 19

Bd 136 57 154 138 42 950 34 531 228 39 16 6 14 79 5 329 1829 7 157 1165 79 14

Ehv 101 62 437 542 33 950 28 35 335 28 11 8 9 404 3 75 569 99 936 3109 47 11

Gn 205 88 1720 34 28 12 73 200 13 33 75 48 29 331 720 14

Gv 109 21 730 461 13 531 35 12 785 20 10 29 6 8 890 4586 1339 22 225 33

Gvc 741 202 2540 207 117 228 335 73 785 81 48 31 26 41 7 3 2829 1503 104 3138 163 229

Hgl 468 287 24 39 28 20 81 12 75 24 52 11 20 422

Hr 11 115 16 16 11 10 48 77 478 4 10 58 20 8 209 511 19

Lls 8 2783 819 152 6 8 200 29 31 77 77 1 15 46 103 2 89 390

Lw 13 90 21 14 9 6 26 478 77 4 7 36 20 9 145 380 14

Mt 5 37 149 14 79 404 13 8 41 12 4 1 4 22 73 29 863 359 21

Odzg 71 22 5 3 7 75 11 21

Rsdg 320 47 2258 6 48 329 75 33 890 3 24 10 15 7 22 1077 164 19 325 100

Rtd 180 143 1756 369 125 1829 569 75 4586 2829 52 58 46 36 73 11 1077 509 179 2260 182 157

Shl 60 32 6469 1456 32 7 99 48 1339 1503 11 20 103 20 29 164 509 44 278 64

Std 10 155 203 28 157 936 29 22 104 20 8 2 9 863 19 179 44 720 46

Ut 4244 1160 4919 5826 502 1165 3109 331 225 3138 422 209 89 145 359 21 325 2260 278 720 1112 996

Zl 56 400 171 854 79 47 720 33 163 511 390 380 21 100 182 64 46 1112 32

Zvg 602 83 489 155 19 14 11 14 229 19 14 157 996 32

Table 12: Nominal OD matrix ξnom.

30



[9] P. Bendotti, P. Chrétienne, P. Fouilhoux, and A. Pass-Lanneau, The anchor-robust project scheduling
problem, Oper. Res. (2022).

[10] D. Bertsimas, E. Nasrabadi, and S. Stiller, Robust and adaptive network flows, Oper. Res. 61 (2013),
1218–1242.

[11] D. Bertsimas and M. Sim, The price of robustness, Oper. Res. 52 (2004), 35–53.

[12] C. Buchheim and J. Kurtz, Robust combinatorial optimization under convex and discrete cost un-
certainty, EURO J. Comput. Optim. 6 (2018), 211–238.
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