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Abstract 10 

Segmentation procedures of concrete microscopic images and standard test methods devoted 11 

to the spacing factor calculation for the freeze-thaw resistance assessment of concrete are 12 

time-consuming and skill-dependent. Moreover, manual color treatment and careful image 13 

examination are often needed. Within the past few years, Convolutional neural networks 14 

(CNN) have proved unpreceded performances in image segmentation and object detection 15 

tasks, though they often showed limited reusability and modularity. This study introduces an 16 

open-source modular deep learning segmentation algorithm of concrete microscopic images. 17 

The algorithm is based on two CNN models dedicated to air voids and aggregates detection. 18 

The algorithm performances have been calculated using various concrete, mortar, and cement 19 

paste samples. The Protected Paste Volume (PPV) and distance-to-air-void have been 20 

computed and agreed well with the experimental spacing factor. Moreover, a better 21 

correlation between PPV and scaling was found than between experimentally measured 22 

spacing factors and scaling, highlighting a critical spacing factor interval from 200 µm to 300 23 

µm. 24 

 25 

Keywords: Deep Learning; Air-void analysis; Freezing and Thawing; Image Analysis; 26 

Microstructure. 27 
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1. Introduction 28 

Concrete formulations can be adapted to withstand particular exposure conditions, and 29 

formulation guidelines are most of the time given in the standards. Nonetheless, due to its 30 

heterogeneous nature, concrete is a complex material. While its macroscopic properties have 31 

been studied for a long time, its microscopic properties, governing the macroscopic ones, are 32 

historically less studied. One of the critical properties of concrete related to its durability, 33 

especially to freeze-thaw and permeability properties, is its air-void structure [1]. Air 34 

entraining agents can be employed to control the pore size distribution and the air content of 35 

concrete to increase its durability [2–5]. The number of pores and pore size distribution also 36 

impacts the mechanical properties of concrete. Pores are usually classified depending on their 37 

diameter: gel pores (≤ 10 nm), transition pores (10nm-100nm), capillary pores (100nm-38 

1000nm), and air voids (≥ 1000nm). The latter two are mainly due to the evaporation of free 39 

water during concrete life and created during the mixing process, respectively.  40 

Various techniques can be used for pore structure analysis, such as mercury intrusion 41 

porosimetry, gas absorption, nuclear magnetic resonance, and electron microscopy. However, 42 

due to sample size limitations, they are hardly applicable from an industrial point of view to 43 

get the overall properties of decimeters-large concrete samples. Therefore, generally manual 44 

or time-consuming techniques are defined in the standards such as fresh state air-void content 45 

[6] and petrographic analysis based on microscopic images. The ASTM [7] and Eurocode [8] 46 

methods consist in sectioning a concrete block, the section is then polished and air voids are 47 

detected and counted visually using the help of a microscope [9]. Additional parameters like 48 

the protected paste volume can be calculated [10,11]. Several methods have been proposed to 49 

enhance the contrast between the air voids of the concrete matrix and the aggregates that is a 50 

critical issue. For example, manual color treatment (using black ink to color the surface and a 51 

white powder to fill air-voids, or a phenolphthalein-based color treatment to increase the 52 
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contrast between the paste and the aggregates ) has been proved to be efficient but can be both 53 

time-consuming and skill-dependent [12–14]. Indeed, the colorant that is added to distinguish 54 

the paste and the aggregates can be trapped in some aggregate or sand particles because of 55 

their porosity or polishing defects, while the clear powder used to detect the air voids can be 56 

easily trapped in the cement paste because of bad polishing. Then, it has been shown that the 57 

image analysis process can be accelerated using automatic methods like the RapidAir 457 58 

testing instrument [12,15]. These methods have been well documented but mostly rely on the 59 

manual or semi-automatic distinction between air voids and the remaining concrete matrix by 60 

coloration, which depends on the operator and is a critical error-prone step. This critical 61 

coloration procedure might significantly impact on the later analysis, such as automated 62 

segmentation, and leads to the loss of a massive amount of image information, as in the case 63 

of the black and white coloration procedure, which mainly requires the use of a grey-scale 64 

version of the images. For these reasons, completely automated techniques, without any 65 

coloration step, could help improve the concrete air void analysis making it faster and more 66 

reliable. 67 

As for criterion settlement regarding air-void system quality in terms of frost-resistance, 68 

Powers’ spacing factor L̅ [3], which corresponds approximatively to the maximal distance of 69 

any point in cement paste to the edge of the nearest void, remains the most used in the 70 

normative context. It is commonly considered that concrete with a L̅ ≤ 200 µm is freeze/thaw 71 

immune. However, several other parameters have been proposed and studied, such as the 72 

content of micropores A300 and the protected paste volume (PPV) calculated following 73 

different approaches [11,16]. In [11], the presence of aggregates was partially taken into 74 

account in calculating PPV by subtracting the area of aggregates on protected paste calculated 75 

images. A comparison with the spacing factor of frost-resistant concretes was conducted, and 76 

the results suggested a better correlation between the frost resistance and the PPV than 77 
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between the frost resistance and the spacing factor. The authors highlighted the need for 78 

further studies and the time-consuming and challenging segmentation procedure because of 79 

the manual preparation and microscopic examination.  80 

Machine Learning (ML) based techniques have been applied to various Civil Engineering 81 

problems such as concrete properties predictions like strength [17], creep [18] and shrinkage 82 

[19]. Image-related problems have also been addressed for some years, from edge detection 83 

[20] to visual crack detection and monitoring [21,22] to component detection and 84 

classification [23,24] or industrial applications like helmet use detection for construction 85 

safety [25]. ML-based techniques have also been used to supplement image information by 86 

other measurements such as chemical analysis [26] indentation measurements [27,28]. 87 

Therefore, advanced image analysis techniques could help solve the issues related to air voids 88 

structure analysis and phase segmentation in concrete. In computer vision, deep learning 89 

image analysis has become popular for image analysis-related problems. Convolutional neural 90 

networks (CNN) have achieved unprecedented accuracy and efficiency in pattern recognition 91 

and semantic segmentation. Using training images, then comparing the model’s error using 92 

validation images, and finally testing the model performance on a test set of images, complex 93 

CNN architectures made of successive convolutional and pooling layers have been built. For 94 

example, the Resnet architecture [29], introduced some years ago, has considerably improved 95 

CNN results in international competitions.  96 

Recently, semantic segmentation CNN models have successfully addressed air voids detection 97 

problems in concrete materials petrographic analysis [30] [31]. These latter models exhibited 98 

good accuracy, but several major difficulties remain and need to be overcome before an 99 

eventual large-scale use. First, the semantic segmentation models inherently lack accuracy in 100 

distinguishing close instances, e.g., air voids in this problem, which is a major drawback 101 

because of the importance of the size distribution and location of air voids regarding 102 
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concrete’s durability [32]. This shortcoming can be addressed using other cutting-edge CNN 103 

models like deep learning instance segmentation models such as the Mask R-CNN or the 104 

PANet model [33]. These models, based on backbones like Resnet can lead to better accuracy 105 

with a limited amount of resources because they create masks of the detected instances 106 

besides bounding boxes. Mask R-CNN [34] model has been successfully applied recently in 107 

Civil Engineering for crack inspection [35–37] after similar work done using semantic 108 

segmentation using Unet [38,39], 3D micro-tomography image analysis [40]. Various studies 109 

published up-to-date make Mask R-CNN a good candidate for industrial usage as it might 110 

show a better precision than other models such as PANet [41]. Recently, Mask R-CNN 111 

proved to be a very effective algorithm for macro-pore detection [42]. 112 

The present manuscript addresses the challenge of fast and accurate phase segmentation of 113 

concrete with the minimum amount of sample preparation and human bias-prone preparation 114 

and interpretation. The main objective is to demonstrate the potential of the instance 115 

segmentation technique as opposed to classic pixel-based techniques for air voids and 116 

aggregate detection in concrete prior to a potential industrial deployment of a modular model 117 

for cementitious materials with various microstructures: from normal strength, eventually 118 

with lightweight aggregates, concrete to ultra-high performance concrete, with different types 119 

of aggregates and eventually mineral substitutions (calcined clay, slag) to considerably 120 

change the concrete aspect and properties [43,44]. To this end, an extended dataset of 121 

concrete, mortar, and cement paste microscopic images is built to train two complementary 122 

instance segmentation models based on Mask R-CNN architecture to quickly and accurately 123 

detect air voids and aggregates, respectively. The accuracy of the trained model is quantified 124 

and validated on test images, and its versatility is demonstrated. Then, an inference strategy 125 

on large-scale concrete images is defined to study the aggregates  and air void structure on 126 

real petrographic concrete slices. The model performance is discussed to highlight its benefits 127 
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and possible improvements. Finally, the Protected Paste Volume is calculated using the large-128 

scale segmented images using a novel multi-threaded open source algorithm, and the relation 129 

with scaling-resistance is established. 130 

 131 

2. Materials and methods 132 

2.1 Mix designs, samples preparation, and experimental tests 133 

2.1.1 Concrete, mortar & cement paste specimens dedicated to model training 134 

During the training stage, 30 concrete, mortar and cement paste specimens of 12 various 135 

compositions (8 concrete, 2 mortar, and 2 cement pastes formulations) were studied. In order 136 

to cover a wide variety of air void structures, some concrete formulations included AEA, 137 

generating an important number of air voids, while others, like self-compacting concretes 138 

(SCCs) contained a limited amount of air voids. All the concrete formulations were similar to 139 

formulations used on site, some of them to design frost-resistant concrete (XF2 or XF3 140 

according to Eurocodes) or normal to high-strength concretes with or without commonly used 141 

supplementary cementitious materials (SCM) like slag or calcined clay, giving different 142 

colors to the cement paste. Special attention was paid to the variety of the aggregates 143 

(siliceous, calcareous, granite, basalt) and their size distribution. Figure 1 illustrates the 144 

variety of the samples studied and Table 1, resp. Table 2, gives the composition of one 145 

concrete, resp. one mortar. The other formulations are not given due to confidentiality 146 

restrictions. After at least 7 days of curing, the samples were sawn in order to obtain slices: 147 

4 x 4 x 1 cm3 slices for cement pastes and mortars and 10 x 10 x 2 cm3 ones for concrete 148 

specimens. The slices were then polished with SiC paper down to SiC 4000 before image 149 

acquisition described in paragraph 2.1.3. 150 

 151 

Table 1. Example of one concrete formulation (kg/m3) 152 
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Cement  Sand 0/4  
Gravel 

4/10 

Gravel 

10/20 
Water Superplasticizer 

385 850 289 640 169 1.925 

 153 

Table 2. Example of one mortar composition 154 

Cement 

(kg/m3) 

Calcareous Sand 0/4 

(kg/m3) 

Water 

(kg/m3) 

 

 
W/C 

Paste volume 

(%) 

566 1344 270  0.43 45 

 155 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

 

g) h) 
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Fig 1: Overview of some samples photographs used in the deep learning instance 156 

segmentation model: a) – e) concrete samples, f) and g) mortar samples (mortars 1 and 2), h) 157 

cement paste sample (cement paste 1). 158 

 159 

2.1.2 Specimens and experiments for model testing and validation 160 

In order to test, validate the model and calculate the protected paste volume, concretes of 15 161 

different formulations were prepared. The compositions are reported in Table 3). AEA was 162 

added to the mix and with various contents. Air content and slump were measured after 163 

mixing according to NF EN 12350-7 and NF EN 12350-2 standards, respectively. Concrete 164 

samples were cast in 15 x 15 x15 cm3 molds, covered with plastic foil and cured for 1 day in 165 

20°C and 50% relative humidity room. After 24h, the cubes were unmolded and cured in 166 

water 7 days; then some of the cubes were subjected to standard spacing factors 167 

measurements (ASTM C457 / C457M-16) and freeze-thaw tests according XP P18-420 168 

standard, others were further cured in water until testing time. Two slices were cut from the 169 

same cubic sample to measure the standard spacing factor and the air content in the solid 170 

section. Besides, scaling was measured during 56 freeze-thaw cycles on four 15 x 15 x 7 cm3 171 

prisms for C1 to C4, C8, C9, C10 and C12 concretes. The measured properties are 172 

summarized in Table 4. 173 

 174 
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Table 3. Concrete compositions (kg / m3) (add 1 and add 2 refer to admixtures, by default in 175 

kg / m3, sometimes only in percentage relative to cement mass (%), C5a to C5d differ by the 176 

cement provider only, C6 and C7 include CEM II/A-LL 42.5N instead of CEM I 52.5 N for 177 

other concretes) 178 

Name Cement Sand 

0/4 

Sand 

0/1 

Gravel 

4/10 

Gravel 

10/20 

Water Add 1 Add 2 AEA W/C 

C1 385 795 - 244 701 171 3.08 0.963 0.193 0.42 

C2 385 795 - 245 701 181 3.08 0.963 0.231 0.42 

C3 350 880 - 918 - 162 2.275 0.350 0.420 0.44 

C4 385 795 - 244 701 171 3.08 0.963 0.501 0.42 

C5a-d 385 850 - 289 640 169 1.925 - 0.270 0.45 

C6 320 537 249 310 641 172 4.160 0.640 0.128 0.50 

C7 320 537 249 310 641 172 4.160 0.640 0.128 0.50 

C8 385 750 - 300 760 155 0.35% 0.2% 0.13% 0.40 

C9 385 768 - 421 610 165 1.06% - 1.54% 0.43 

C10 420 770 - 420* 530 170 3.4 1.58 0.75 0.40 

C12 385 811 - 355 613 162 0.45% 0.1% 0.05% 0.42 

* Gravel 4/16 179 

 180 

Table 4. Slump and freeze-thaw related properties of concretes (spacing factor and air content 181 

in the solid sections are the mean values of two measurements, scaling is the mean value of 182 

four measurements) 183 

Name Slump 

(cm) 

Air content 

(%) 

Spacing factor 

(µm) 

Scaling 

(g/m²) 

C1 16.0 3.6 411 2192 
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C2 15.0 4.0 382 3784 

C3 3.0 4.5 302 3454 

C4 11.0 4.5 310 561 

C5a 20.7 11.6 132 - 

C5b 13.5 9.8 142 - 

C5c 9 9.2 154 - 

C5d 10 9.14 155 - 

C6 14.0 6.7 177 - 

C7 17.0 5.2 258 - 

C8 16.0 6.13 173 717 

C9 0.35 7.93 115 542 

C10 21.0 8.13 138 59 

C11 18.0 5.3 259 - 

C12 12.0 4.27 222 1570 

 184 

2.1.3 Image acquisition of samples surface 185 

2D maps of the sections surfaces were obtained using a Hirox RH-2000 3D microscope by 186 

merging hundreds of images evenly spaced along the section. The size of the equivalent field 187 

of vision was around 8-10 x 8-10 cm2 for concrete samples and 3.5 x 3.5 cm2 for cement paste 188 

and mortar samples. Magnification of x 50 was chosen according to the standard suggestion 189 

leading to final horizontal resolutions of the 2D projected image of 3.13 µm / pix. High-190 

definition images of around 30000 x 30000 pix were finally obtained for concrete samples. 191 

Various parts of these images of samples described in paragraph 2.1.1, referenced as ‘raw 192 

images’ in the article, were selected to train and test the deep neural network algorithm, while 193 

images from samples described in paragraph 2.1.2 were used to test the model and compare 194 
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its results with manual spacing factor measurements and freeze-thaw resistance of the various 195 

concrete formulations. 196 

 197 

2.2 CNN model 198 

2.2.1 CNN model architecture 199 

A deep learning instance segmentation model was used in order to detect circular-shape voids 200 

and polygonal-shape aggregates at a multi-pixel level. Mask R-CNN was used due to its 201 

accuracy, relatively good detection speed, and the limited number of training images needed 202 

[45]. As illustrated in Fig. 2 Mask R-CNN model is a multi-layered convolution neural 203 

network based on Tensorflow 1.14, which uses the convolution kernels to extract features and 204 

generate masks. The image is finally restored to its original size with the associated mask 205 

using upsampling strategies. Resnet-101 backbone architecture was selected due to its 206 

sensitivity. 207 

Two separate Mask R-CNN, detecting air voids and aggregates respectively, were combined. 208 

Even though detection by a single model would be faster, the combination of two models 209 

enhances the model's modularity, and several other single models would be added to either 210 

the pore detection or the aggregate detection algorithm in the future. After training, which will 211 

be developed in the next section, detection could then be performed on the same concrete 212 

image with several resolutions from the original resolution to a 16 x smaller resolution, as 213 

illustrated in Fig. 3. Several detection results could be obtained using these two models and 214 

several input image resolutions: smaller instances (voids or aggregates) were detected using 215 

the high definition images, while larger instances were detected using lower resolution 216 

images. After detection, binary images of the detected instances were generated and merged 217 

in order to obtain a high resolution map of the air voids and a high-resolution map of the 218 

aggregates. The code is open-sourced at [46]. 219 
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 220 

Fig. 2. Mask R-CNN architecture 221 

 222 

 223 

Fig. 3. Combination of deep learning air voids detection algorithm and deep learning 224 

aggregate detection algorithm for modular deep learning instance-based concrete 225 

segmentation. 226 
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2.2.2 CNN model training 227 

Subparts with sizes of 608 x 608 pix of the raw images with a resolution divided by 2, 8 or 16 228 

were used to train the aggregate-detection algorithm, while 608 x 608 pix subparts of the raw 229 

images with the original resolution and a resolution divided by 4 were used to train the air 230 

voids detection algorithm. Two sample datasets, containing 1470 images and 554 images, 231 

were built for the air voids detection and the aggregate detection algorithm respectively. The 232 

training dataset composition of the air voids detection model is described in Table 5. These 233 

datasets were divided into training, validation and test sets given the following proportions: 234 

78%, 13%, 9% for the air voids detection algorithm and 56% 22% and 22% for the aggregate 235 

detection algorithm. All the images were annotated using VGG Image Annotation software 236 

[47] at an approximate pace of 50 - 100 instances per hour (total annotating time around 30 237 

hours) by an experienced operator. Polygonal shapes were used to manually annotate the 238 

images used to train the model for aggregate detection. These annotations were divided into 239 

‘sand’ and ‘aggregate’ based on the visual size of the elements, as illustrated in Fig. 4. Similar 240 

circular annotations were done to prepare training images for the air voids detection 241 

algorithm. These circular annotations can help the model detect air voids with similar shapes. 242 

Aggregates were annotated using polygonal shapes to help the algorithm find the air void and 243 

aggregate cutting surface. In some cases, small sand particles with a diameter smaller than 30 244 

µm have not been annotated as the model could hardly detect them due to resolution 245 

limitations.  246 

 247 

Table 5. Image dataset main characteristics 248 

Specimen type Number of images Magnifications Resolutions 

(µm/pix) 

Cement paste 1 32 ×50, ×25, ×12.5 3.13, 6.27, 12.54 
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Cement paste 2 19 ×50, ×25, ×12.5 3.13, 6.27, 12.54 

Mortar 1 210 ×50, ×12.5 3.13, 6.27 

Mortar 2 188 ×50, ×12.5 3.13, 6.27 

Concrete 1 59 ×50 3.13 

Concrete 2 52 ×50 3.13 

Concrete 3 129 ×50, ×12.5 3.13, 6.27 

Concrete 4 350 ×50, ×25, ×12.5 3.13, 6.27, 12.54 

Concrete 5 121 ×50, ×25, ×12.5 3.13, 6.27, 12.54 

Concrete 6 125 ×50, ×25 3.13, 6.27 

Concrete 7 105 ×50 3.13 

Concrete 8 80 ×50 3.13 

 249 

a) 

 

 

 

b) 

 

 

 

c)  
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d) 

 

 

 

Fig. 4. Training images for the aggregates detection model (sand and aggregates in light blue 250 

shades or white and unannotated portions in dark blue) 251 

 252 

Data augmentation has been used to generate more training images artificially. Three 253 

techniques were used in a random order using the ImgAug package [48]: horizontal flip, 254 

vertical flip, and multiplication to generate brighter or darker images. 255 

Both models were trained using commercial GPU (Nvidia RTX 2080 Ti, 11 Go GDDR6) as 256 

follows: initial weights from COCO dataset were used then, first, during stage 1 of training, 257 

the head layers were trained during 125 epochs (250 steps/epoch) to build a good model 258 

adapted to air voids detection quickly (but not optimized regarding low-level features), then, 259 

during the stage 2 of training, all the layers except the first four were trained during 125 more 260 

epochs to tune almost all the weights of the Resnet-101 model, and finally, during the last 261 

stage, all the layers were trained during ten extras steps. The best model regarding the mean 262 

average precision (mAP) calculated on the test set was selected among the ten last ones. 263 
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Training parameters were adjusted to allow a fast convergence. These parameters are given in 264 

Table 6. 265 

Table 6. Training parameters of the Mask R-CNN model for aggregate and air voids detection 266 

General parameters Aggregates Air voids 

Batch size 4 4 

Image dimension 512 x 512 512 x 512 

Image resize mode Crop Crop 

Min confidence detection 0.7 0.7 

Validation steps 50 50 

Learning momentum 0.9 0.9 

Weight decay 0.0001 0.0001 

Training stage 1   

Epochs 150 125 

Steps per epoch 250 250 

Learning rate 0.001 0.001 

Training stage 2   

Epochs 125 500 

Steps per epoch 250 250 

Learning rate 0.0005 0.0005 

Training stage 3   

Epochs 10 10 

Steps per epoch 250 250 

Learning rate 0.0001 0.0005 

 267 
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2.2.3 CNN model validation 268 

Model results on the test images were first manually checked to assess the detection quality of 269 

hardly visible instances (small or irregular air voids, aggregates with a color similar to the 270 

surrounding cement paste, or granite aggregates with very irregular color patterns). Then, 271 

after training, mean average precisions (mAP) for IoU values between 0.5 and 0.95 (mAP 272 

@0.5-0.95) of the air voids detection algorithm and the aggregates detection algorithm were 273 

computed on test images. The general definition for the Average Precision (AP) is the area 274 

under the precision-recall curve for a given image. mAP is defined as follows: 275 

 
𝑚𝐴𝑃 =  

∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄
𝑞=1

𝑄
 

(1) 

where Q is the number of queries in the set and 𝐴𝑣𝑒𝑃(𝑞) is the average precision (AP) for a 276 

given query, q. 277 

All the precision - recall curves can be generated for the test images but a more visual idea of 278 

the quality of the prediction can be obtained by plotting the predictions vs. the ground truth 279 

definition. mAP indicator has the advantage of being discriminative enough to classify 280 

modern models precisely. The intersection over union (IoU) parameter has also been 281 

calculated for some of the final models. 282 

2.3 Protected Paste Volume (PPV) and distance-to-air-void calculation using segmented 283 

images 284 

2.3.1 Distance-to-air-void calculation considering aggregates effect 285 

Several algorithms were implemented in Julia language using a multi-threaded approach to 286 

analyze the high-definition pores and aggregates segmented images [49]. First, the distance 287 

between any point in the cement paste to the nearest void was calculated considering the 288 

aggregate presence. The median distance-to-air-void in the entire image was then saved in 289 
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order to be compared to experimentally measured spacing factor values. The algorithm can be 290 

summarized as follows:  291 

-locate all the pixels at the periphery of the pore,  292 

- compute the distance of their neighbors if they are not aggregates and select the minimum 293 

distance for each of these pixels,  294 

- repeat the procedure using these pixels as inputs and stop when 99.5% of the distances have 295 

been found.  296 

Several input segmented image resolution were used to find to the best compromise between 297 

precision of the calculated distances and computational time. The best results were obtained 298 

using segmented images with a resolution of 24 µm / pix and a size around 3500 x 3500 pix 299 

(raw images with a height and a width divided by 8). The distance-to-air-void calculation can 300 

be performed in approximately 100-150s using such parameters and a 10-cores commercial 301 

desktop computer.  302 

2.3.2 Protected Paste Volume (PPV) calculation 303 

The protected paste volume defined in [11] was calculated based on the segmented concrete 304 

images by the deep learning model. PPV represents the proportion of points in the paste for 305 

which the straight line distance to an air void is smaller than 200 µm. PPV was calculated 306 

using Julia and PPV values were saved to be compared to experimental spacing factors. High 307 

definition maps of the protected paste areas were finally generated for all the concrete 308 

samples. The number of air voids in the high definition images has been numerically 309 

calculated to complement PPV calculation by using ImageJ software. 310 
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3. Results and discussion 311 

3.1 CNN model training results 312 

The loss curves recorded during training are displayed in Fig. 5. A two-step decrease can be 313 

observed for both models as expected due to the first two stages during training. The loss 314 

reduction rate becomes relatively small after 300 to 400 steps (75k to 100k epochs), as the 315 

subsequent improvement could mainly be attributed to model overfitting (slow decrease of 316 

mAP calculated on the test set with increasing training). Indeed, a maximum mean average 317 

precision (mAP) (calculated on test images) of 0.5829 has been obtained after 154 steps (38.5 318 

k epochs) for the aggregate detection model, while a maximum mAP of 0.677 has been 319 

obtained after 275 steps (68.75k epochs) for the air voids detection model. These results 320 

confirm that the Mask R-CNN model is slightly slower to train than other models[31], but the 321 

obtained mAP values are on par with precisions of around 0.65 obtained on very large 322 

datasets in image recognition reference studies [34], highlighting the potential of the model. 323 

 324 

a) 

 

b) 
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Fig. 5. Loss curves obtained during training: loss value vs step number (each step corresponds 325 

to 250 epochs) for a) the air voids detection model, and b) the aggregates detection model. 326 

 327 

3.2 CNN model accuracy on test images 328 

3.2.1 Results of the air voids detection model  329 

Results of the model can be analyzed using the predictions on the test images in order to 330 

identify the most common shortcomings of the algorithm and its advantages compared to 331 

previously reported performances on similar algorithms.  332 

Fig 6 illustrates the testing performance of the air voids detection model on 608 x 608 pix 333 

images of different mortar and concrete samples with various types of aggregates with x 50 334 

magnification or an equivalent x 12.5 magnification (obtained dividing the size of x 50 by 4). 335 

The Mask R-CNN model performs well even in challenging situations and is able to detect the 336 

vast majority of the air voids with high confidence levels indicated by scores close to the 337 

masks in Fig. 6. As illustrated in Fig. 6.a) and 6. b) the model can detect non-circular air voids 338 

close to grey-color aggregates while a majority of the identified air voids used for training 339 

were declared of circular shape. Various air voids sizes can also be detected in the same 340 

image as illustrated by Fig. 6 c) due to an appropriate number of regions of interest (ROI) 341 
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used during training. The model is also robust regarding air voids detection in aggregates, as 342 

illustrated in Fig. 6 d) though this problem is relatively common in segmentation models 343 

previously described in the literature. Finally, because of the variety of the images in the 344 

training set, the model prediction capacity is relatively good in the case of poorly prepared 345 

images with relatively rough surfaces and illumination issues as illustrated by Fig. 6 g) and h). 346 

Last but not least, because the model is an instance-based model, it is able to distinguish very 347 

close air voids sharing some borders as exemplified by red and green air voids in Fig. 6 h). 348 

This capacity may potentially lead to a better estimation of the air voids size distribution in 349 

samples. 350 

 

a) 

 

b) 

 

c) d) 
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e) 

 

f) 

 

g) 

 

h) 

 

 

Fig. 6. Inference results of the instance segmentation model on various test images 351 

 352 
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The accuracy of the model can be measured using the mean average precision indicator on the 353 

test set. The general definition for the Average Precision (AP) is the area under the precision-354 

recall curve for a given image. All the precision - recall curves can be generated for the test 355 

images, but a more visual idea of the quality of the prediction can be obtained by plotting the 356 

predictions vs the ground truth definition as illustrated in Fig. 7 As it can be seen, the 357 

predictions closely match the ground truth manual definition of the air voids leading to a good 358 

precision even at relatively high IoU values. Computing the various precisions of the 359 

prediction for IoU values between 0.5 and 0.95, an average prediction value AP @0.50-0.95 360 

can be calculated for each image as illustrated in Table 7.   361 

 362 

Table 7. Average precision for different IoU values for one typical test image. 363 

Average precision at given IoU Value 

AP @0.50:  1.000 

AP @0.55:  1.000 

AP @0.60:  1.000 

AP @0.65:  1.000 

AP @0.70:  1.000 

AP @0.75:  1.000 

AP @0.80:  1.000 

AP @0.85:  1.000 

AP @0.90:  0.500 

AP @0.95:  0.500 

AP @0.50-0.95:  0.900 

 364 
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The final mean average precision of the model can then be calculated using the average 365 

precision of all the images. The cumulative distribution of the mAP values on the test set after 366 

230 steps (eg 57.5 k epochs) is reported in Fig. 7 a. The model exhibits mAP value higher 367 

than 0.5 for 70% of the test images and only 13.5% of the images are associated with a mAP 368 

smaller than 0.4. After 230 training steps, a mAP value of 0.6452 is obtained over the entire 369 

test set which is on par with mAP values reported for other datasets [27]. 370 

The mean average precision obtained on the test set can be calculated depending on the 371 

duration of the training stage. As illustrated in Fig. 7 b), mAP quickly increased as the top 372 

layers of the model were trained during the first stage of training. Then, during the second 373 

stage of training (starting after 125 steps), the precision of the model initially increased until 374 

275 training steps and a maximum mAP of 0.677 has been obtained with one model while 375 

several models exhibited mAP above 0.65 with a training duration between 230 and 2100 376 

steps. However, with more training steps (above 300 steps), even though the loss curve 377 

decreased, mAP started decreasing slightly and dropped to values close to 0.61 after 630 378 

training steps because of the model overfitting. Therefore, the later results about the model 379 

application will be based on the best model, considering mAP on the test set, obtained after 380 

244 training steps in stage 1 and 2 and 2 training steps of all the model layers in step 3 (see 381 

Table 6). 382 

 383 

a) 
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b) 

 

Fig. 7. Calculated mean average precisions of the model: a) typical cumulative distribution of 384 

the mean average precision (mAP@0.5-0.95) over the test set after 230 training steps; b) mAP 385 

on the test set depending on the training duration (1 step = 250 epochs). 386 

 387 

3.2.2 Results of the aggregate detection model 388 

Additionally, several predictions of the aggregate model have been displayed alongside 389 

original ‘ground truth’ manual annotations in Fig. 8 for eight test images with various mAP. 390 

First, it can be observed that the model correctly find the various types of aggregates in the 391 
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test images even for relatively small mAP of around 0.3 (Fig. 8 a and b), proving its 392 

versatility in detecting aggregates in a wide range of cementitious materials. The aggregate 393 

model could also detect some air voids with a relatively good precision even if the air voids 394 

specific model is more precise. Based on the analysis of the precision of the model on all the 395 

test images, it has been observed that the model exhibited very good results when the contrast 396 

between the aggregates, air voids and cement paste was high, for example in the case of light 397 

grey paste and dark aggregates.  398 

Fig 8 a) and b) illustrate the major shortcomings of the aggregate model during detection that 399 

occur for less than 8% of test images. As illustrated in Fig. 8 a), aggregates located at the 400 

border of images or cut by the image border were likely not entirely detected, and, as shown 401 

in Fig. 8 b), small bright aggregates or sand particles inside bright cement paste could not be 402 

detected at all in images with medium magnification. The first shortcoming was effectively 403 

reduced in high-definition concrete images by selecting several image magnifications (see 404 

paragraph 2.2.1) while the second shortcoming could be eliminated using higher 405 

magnification images. 406 

Median precision results are illustrated in Fig. 8 c) and d). These figures show that the 407 

aggregate model can detect the annotated aggregates very precisely from bright to dark 408 

aggregates, eventually with some local defects (here indentation imprints). In the mortar 409 

image, only a very limited amount of aggregates has not been found by the algorithm while, 410 

interestingly, the model correctly detected some aggregates in the normal strength concrete 411 

image even though they have not been manually annotated. 412 

The aggregate model exhibited relatively good mAP of around 0.45 to 0.5 on ultra-high 413 

strength slag-based concrete and lightweight aggregate concrete as illustrated in Fig. 8 e) and 414 

f) respectively. Most of the basalt aggregates were detected in the ultra-high performance 415 

concrete image while some small quartz particles were not detected. Concerning the 416 
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lightweight aggregate image, the instance-segmentation model correctly captured the 417 

aggregates, both their shape and size, without being influenced by the inner porosity leading 418 

to segmented images with a clear distinction between aggregates, air voids and cement paste 419 

as opposed to pixel-based models [31]. 420 

a) 

 

b) 

 

c) 

 

d) 

 

e) f) 
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Fig 8. Typical predictions on test images with various mean average precisions (mAP): a) 421 

prediction on a ×50 normal strength concrete image with mAP 0.313; b) prediction on a ×12.5 422 

normal strength concrete image with mAP 0.292; c) prediction on a ×50 normal strength 423 

concrete image with mAP 0.589; d) prediction on a ×50 high strength mortar image with mAP 424 

0.571 (partly covered with indentation imprints on the bottom part); e) prediction on a ×12.5 425 

ultra-high strength slag-blended concrete image with mAP 0.447; f) prediction on a ×12.5 426 

lightweight aggregate concrete image with mAP 0.49 (red contours: predictions, green 427 

contours: annotations) 428 

 429 

3.3 Application of the air voids detection model on concrete petrographic slices  430 

Using the air voids model alone and the aforementioned strategy, the model can be applied on 431 

a wide variety of large-scale concrete petrographic slices. Fig. 9 exposes the results obtained 432 

on an unknown concrete slice from an industrial partner with a size of approximately 433 

60 mm x 60 mm. Fig. 9 a) and b) detail the prediction results obtained in the high resolution 434 

reconstructed x 50 magnification image. As it can be seen, the model localizes various air 435 

voids of several sizes and does not predict the presence of air voids on the aggregates (even in 436 

the case of multicolored or white aggregates in the central part of the image, nor gray and 437 



 

30 

 

brown sand particles). However, due to the split of the images in several parts, some large air 438 

voids overlapping between several images may not be accurately detected. For this reason, the 439 

model is run on a reduced-size image as illustrated in Fig. 9 c) and d) in order to associate one 440 

instance to the largest air void. The model detects these air voids with a good accuracy but, 441 

due to the image size reduction, the model applied on a reduced-size image cannot detect the 442 

small air voids. Thus, the predicted air void content drops from 7.48 % for the full-size image 443 

to 3.94 % for the reduced-size image. However, thanks to the implemented strategy 444 

associating the detection on full-size and reduced-size image, the detection of air voids with 445 

various sizes with minimal diameters of around some pixels is possible (around 10-20 μm) 446 

and a final air void content of 7.76 % is predicted which is on par with the industrially-447 

measured air content. Further analysis can be performed, and the algorithm’s superior 448 

performance compared to manual contrast enhancement methods has been highlighted in 449 

another study [50].  450 
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a) 

 

b) 

 

c) 

 

d) 

 

Fig. 9. Inference result on a high-definition concrete slice image: a) full-size raw image and 451 

detected air voids instances, b) mask of the detected instances in the full-size image, c) 452 

reduced-size raw image and detected air voids instances, b) mask of the detected instances in 453 

the reduced-size image 454 

 455 
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3.4 Application of the modular deep learning model: interest of Protected Paste Volume 456 

(PPV) and distance-to-air-void calculation to assess freeze-thaw resistance 457 

3.4.1 Modular deep learning algorithm performance and automated distance-to-air-void 458 

calculation 459 

Combining the air voids and aggregate detection algorithms, the modular CNN model enables 460 

fast and accurate calculation of the distance of any point in the cement paste to the closest air 461 

void. The overall algorithm performance has been evaluated on concrete high-definition 462 

images. A mean mAP value of 0.66 was obtained, and the IoU calculated on several concrete 463 

images ranged from 0.855 to 0.910, highlighting outstanding results on par with pixel-based 464 

segmentation techniques. 465 

The median distance-to-air-void has been extracted from the cumulative curves as illustrated 466 

in Fig. 10. As expected based on Power’s theory, a positive correlation has been found as the 467 

median distance-to-air-void gradually increases for L factor ranging from around 130 µm to 468 

more than 430 µm. The best-fitting linear regression is found close to the identity line, 469 

demonstrating the model capacity for distance-to-air-void calculation. Interestingly, the 470 

median distance-to-air-void is found to be slightly larger than the experimentally measured L 471 

factor. This could be explained by the fact that some very small air bubbles might not have 472 

been detected as some samples with L factors smaller than 200 µm have slightly higher 473 

median distance-to-air-void, but this finding could more probably be attributed to samples 474 

with larger spacing factors (top right of the figure) as the algorithm takes into account the 475 

presence of aggregates which increase the larger distances to air voids as water should turn 476 

around the aggregate before reaching an air void. Finally, although a relatively large number 477 

of samples has been observed, it is worth noting that the 95 % confidence interval is rather 478 

extended and no clear distinction can be made between samples with spacing factors smaller 479 

than 300 µm while some of them might be frost resistant while others no. Last but not least, 480 
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although providing novel information and filling the gap between experimental and analytical 481 

models, cumulative distribution functions calculation is computationally expensive as all the 482 

distances to air voids might be calculated first. Therefore, other indicators should be found to 483 

better characterize concrete samples air void structure. 484 

 485 

Fig. 10. Distance-to-air-void vs measured spacing ratio (dashed line represents identity line, 486 

blue line linear regression and light blue zone 95 % confidence interval) 487 

 488 

3.4.2 Automated Protected Paste Volume (PPV) calculation and correlation with spacing 489 

factor 490 

The number of air voids per unit area, which is an easily computable parameter, has been 491 

compared with experimentally spacing factor for each concrete sample. As illustrated in 492 

Fig. 11, the number of air voids per unit area detected by the deep learning model ranged from 493 

around 0.3 air void per square millimeter to more than 1.2 air void per square millimeter on 494 
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average which illustrate the large variability of this parameter. The number of air voids per 495 

unit area exhibits an inverse correlation with the spacing factor. The correlation can be 496 

approximated by a linear regression confirming the capacity of the model to detect air voids 497 

and their critical role in the spacing factor determination. A relatively thin confidence interval 498 

has been found but the hardly physically interpretable values of the number of air voids per 499 

unit area limit the usage of this indicator. 500 

 501 

 502 

Fig. 11. Evolution of air voids content regarding experimentally measured spacing factor 503 

 504 

For this reason, the calculation of the PPV has been performed based on the high definition 505 

segmented maps provided by the deep learning model. In Fig. 12-a), PPV has been 506 

represented regarding experimentally measured spacing factor. The calculated PPV is in good 507 

agreement with the values reported in the literature based on the measure of air voids in 508 

concrete samples prepared manually following a time-consuming procedure from the authors’ 509 

opinion[11]: PPV values calculated based on the high definition images segmented using the 510 

deep learning algorithm ranged from 28% to 73%. The model is therefore able to considerably 511 
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accelerate the 2D calculation of PPV and the total computational time on a desktop computer 512 

has been measured to be around 5 to 10 minutes (including the deep learning segmentation 513 

and the multi-threaded PPV calculation). Therefore PPV can be calculated almost exclusively 514 

numerically (excepting for the polishing step of the sample) and then provide a quantitative 515 

and discriminative criteria between various concrete samples. 516 

Numerically calculated PPV evolution regarding spacing factor has been approximated using 517 

a linear regression. Samples with spacing factors smaller than around 200 µm have been 518 

found to exhibit PPV higher than 54 % which is close to the 80% limit supposed to be freeze-519 

thaw protective [32]. On the contrary, for samples exhibiting experimental spacing factors 520 

higher than 300 µm, calculated PPV has been found to be smaller than 43 % with some values 521 

around 30 % or less. The freeze-thaw resistance of such samples would then be relatively 522 

poor. Interestingly, a critical spacing factors range can be evidenced around 200 µm to 523 

300 µm as the PPV abruptly drops between samples with spacing factors close to 270 µm and 524 

PPV higher than 54% and samples with spacing factors close to 290 µm with PPV smaller 525 

than 30 - 40%. Therefore, a critical attention must be paid to concrete samples with spacing 526 

factors around 200 µm to 300 µm and PPV calculation would help assessing their potential 527 

freeze-thaw resistance. 528 

A positive correlation has been evidenced between PPV and the number of air voids per unit 529 

area as illustrated in Fig. 12-b). A linear trend can be observed for PPV smaller than 65-70%, 530 

then PPV might potentially ceil as no difference could be clearly established between samples 531 

with a high number of air void. Indeed a sample with more than 1.2 void / mm² has been 532 

found to exhibit a PPV of around 70% close to samples with a smaller number of air voids of 533 

around 1.1 void / mm². This observation confirms that overlapping air void do not increase 534 

PPV and might not lead to a better freeze-thaw resistance (while decreasing the mechanical 535 

properties). 536 
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a) 

 

b) 

 

 537 

Fig. 12. PPV calculation of the concrete samples: a) regarding the experimental L factor, b) 538 

regarding the number of air void per unit area. 539 

 540 
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In order to visualize protected paste regions and locate unprotected areas, high definition 541 

maps have been generated as illustrated in Fig. 13. A clear distinction can be observed 542 

between concrete samples exhibiting high and low PPV values. The extent of the green 543 

‘protected’ paste considerably varies. In samples with high PPV values as illustrated in Fig 13 544 

a), only a small portion of the cement paste cannot be considered as protected. Based on the 545 

visual observation of the generated maps, some of the unprotected zones have been located 546 

around the large aggregates confirming the importance of sand-to-aggregate ratio adjustment. 547 

Conversely, in samples with low PPV values, larger unprotected area have been found far 548 

from the large aggregates in large cement paste portions. In this case a lack of air voids in the 549 

paste, relatively far from any potentially influencing particle, might be mostly responsible of 550 

low PPV values. 551 

 552 

a) 

 

b) 

 

Fig. 13. Protected Paste Volume maps : a) concrete with a high PPV ratio, b) concrete with a 553 

low PPV ratio (green zone denotes the protected paste) 554 

 555 
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3.4.3 Comparison of experimental scaling values to numerical PPV and experimental spacing 556 

factor 557 

Fig. 14 represents measured scaling values of C1 to C4 concretes relatively to the numerically 558 

calculated mean PPV value or to the experimentally measured mean spacing factor, both 559 

calculated using two slices per concrete. It can be observed that the scaling resistance almost 560 

linearly decreased as regards to the numerically calculated mean PPV values starting from 561 

scaling values close to 3500 g/m² at low PPV around 30 % (C2 and C3) to 581 g/m² at 562 

intermediate PPV around 40 % for C4 concrete. Interestingly, C1 concrete which included the 563 

smallest amount of AEA did not generate more scaling than C2 and C3 concretes. This result 564 

could have be anticipated calculating PPV value based on the microscopic images as an 565 

almost linear trend has been found between numerically-calculated PPV and experimental 566 

scaling values. 567 

Conversely, as illustrated in Fig. 14 b, scaling values are not correlated with spacing factor for 568 

C1 to C4 concrete. C1 concrete exhibited the highest spacing factor while it did not lead to the 569 

highest scaling. Based on the generated PPV image, this could be due to an effective 570 

repartition of the air voids in the concrete volume even though a limited amount of AEA has 571 

been used. Moreover, C3 and C4 spacing factors were similar (around 310 µm) while their 572 

scaling behavior was found very different. Their scaling resistance cannot be explained by the 573 

experimentally spacing factor alone, while 2D-based numerically calculated PPV was found 574 

sensitive to the different air void distribution which is probably influenced by the difference 575 

in the maximum aggregate size in this case. 576 

 577 

a) 
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b) 

 

 578 

Fig. 14. Measured scaling values concretes relatively to: a) numerically calculated mean PPV 579 

value using the deep learning algorithm, b) the experimentally measured mean spacing factor. 580 

 581 
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4. Conclusions 582 

The main objective of this work was to demonstrate the potential of modular deep learning for 583 

civil engineering applications. To this end, a modular deep learning-based instance 584 

segmentation algorithm of concrete microscopic images has been developed. The algorithm is 585 

based on two CNN models dedicated to air voids and aggregate detection. Secondly, these 586 

two CNN models have been combined to perform the segmentation of high-definition 587 

concrete microscopic images. Then, the model has then been applied to freeze-thaw-related 588 

air void system characterization, namely Protected Paste Volume (PPV) and distance-to-air-589 

void calculation. The results can be summarized as follows: 590 

- The modular CNN model composed of two complementary Mask R-CNN 591 

architectures can be trained using distinct image sets of various magnifications. 592 

- The model can effectively detect air voids and aggregates considering their usual 593 

shape and generate segmented images containing separated instances. Due to the 594 

region-based algorithm, segmented images correctly represent the various instances 595 

sizes and shapes because of the mask usage (conversely to pixel-level based 596 

segmentation algorithms). 597 

- The large-scale predictions of the air voids model are in good agreement with the fresh 598 

state air void content and the ASTM 457-measured air void content due to the capacity 599 

of the model to detect both small air voids and large air voids.  600 

- The high definition-segmented images with aggregates and air-void instances can be 601 

used to quantify 2D parameters concerning freeze-thaw resistance of concrete such as 602 

Protected Paste Volume (PPV) and distance-to-air-void. While using a modern 603 

programming language and a multi-threaded approach, these parameters can be 604 

effectively calculated on commercial computers in some minutes. 605 
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- Algorithm speed and precision facilitate the analysis of concrete sections. Based on 606 

the analysis of 20 sections, it has been shown that very good correlations can be found 607 

between the calculated 2D parameters and experimentally measured spacing factors. 608 

- Based on the PPV calculated values, a critical spacing factor range has been evidenced 609 

around 200 µm to 300 µm. PPV can sharply decrease in this spacing factor range to 610 

around 80%, allegedly freeze-thaw protective, to around 40%, characterizing non-611 

resistant concretes. 612 

- Numerically calculated PPV using the modular deep learning algorithm is correlated 613 

with experimental freeze-thaw scaling resistance of moderately resistant and non-614 

resistant concrete. 615 

Future research directions towards improving the algorithm capabilities include the very 616 

small air voids detection and the delimitation of the small aggregates and air voids 617 

boundaries. Overall, this study might open up novel research paths regarding the potential 618 

modularity enhancement of deep learning models. Moreover, the precision of such 619 

models, which allowed a precise quantification of freeze-thaw parameters in this study, 620 

might help accelerate research towards novel findings.  621 

Acknowledgements: 622 

The authors would like to acknowledge Astrid-Marie Foucault, Sigma Beton (Vicat), for her 623 

help gathering information about concrete formulations. 624 

References 625 

[1] J.Elsena, N.Lensa, J.Vynckea, T.Aarreb, D.Quenardc, V.Smolej, Quality assurance and 626 

quality control of air entrained concrete, Cement and Concrete Research. 24 (1994) 1267–627 

1276. 628 

[2] T.C. Powers, A working hypothesis for further studies of frost resistance of concrete, in: 629 

Proceedings of the American Concrete Institute, 1945: pp. 245–272. 630 



 

42 

 

[3] T.C. Powers, Willis, T. F., The air requirement of frost resistant concrete., in: Proceedings 631 

of the Highway Research Board, 1950: pp. 184–211. 632 

[4] M. Pigeon, P. Plante, Study of cement paste microstructure around air voids: Influence 633 

and distribution of soluble alkalies, Cement and Concrete Research. 20 (1990) 803–814. 634 

https://doi.org/10.1016/0008-8846(90)90014-O. 635 

[5] K.A. Snyder, Numerical test of air void spacing equations, Advanced Cement Based 636 

Materials. 8 (1998) 28–44. https://doi.org/10.1016/S1065-7355(98)00007-8. 637 

[6] D.D. Magura, Air void analyzer evaluation, Federal Highway Administration, 1996. 638 

https://rosap.ntl.bts.gov/view/dot/42581 (accessed July 30, 2021). 639 

[7] ASTM C457 / C457M-16, Standard Test Method for Microscopical Determination of 640 

Parameters of the Air-Void System in Hardened Concrete, ASTM International, West 641 

Conshohocken, PA. (2016). https://doi.org/10/ghdg8z (accessed July 30, 2021). 642 

[8] EN 480-11, Admixtures for concrete, mortar and grout. test methods. Determination of air 643 

void characteristics in hardened concrete, European Committee for Standardization. 644 

(2005). 645 

https://www.cstc.be/homepage/index.cfm?cat=services&sub=standards_regulations&pag646 

=list&art=search&id=CSTC96276 (accessed July 30, 2021). 647 

[9] J. Elsen, Automated air void analysis on hardened concrete Results of a European 648 

intercomparison testing program, Cement and Concrete Research. (2001) 5. 649 

[10] A.-S. Dequiedt, M. Coster, L. Chermant, J.-L. Chermant, Distances between air-voids 650 

in concrete by automatic methods, Cement and Concrete Composites. 23 (2001) 247–254. 651 

https://doi.org/10.1016/S0958-9465(00)00055-X. 652 

[11] J. Wawrzeńczyk, W. Kozak, Protected Paste Volume (PPV) as a parameter linking the 653 

air-pore structure in concrete with the frost resistance results, Construction and Building 654 

Materials. 112 (2016) 360–365. https://doi.org/10.1016/j.conbuildmat.2016.02.196. 655 

[12] U.H. Jakobsen, C. Pade, N. Thaulow, D. Brown, S. Sahu, O. Magnusson, S. De Buck, 656 

G. De Schutter, Automated air void analysis of hardened concrete — a Round Robin 657 

study, Cement and Concrete Research. 36 (2006) 1444–1452. 658 

https://doi.org/10.1016/j.cemconres.2006.03.005. 659 

[13] K. Peterson, J. Carlson, L. Sutter, T. Van Dam, Methods for threshold optimization for 660 

images collected from contrast enhanced concrete surfaces for air-void system 661 

characterization, Materials Characterization. 60 (2009) 710–715. 662 

https://doi.org/10/c49mwc. 663 

[14] Y. Song, R.M. Damiani, C. Shen, D.I. Castaneda, D.A. Lange, A 3D petrographic 664 

analysis for concrete freeze-thaw protection, Cement and Concrete Research. 128 (2020) 665 

105952. https://doi.org/10.1016/j.cemconres.2019.105952. 666 

[15] T. Fantous, A. Yahia, Air-void characteristics in highly flowable cement-based 667 

materials, Construction and Building Materials. 235 (2020) 117454. 668 

https://doi.org/10.1016/j.conbuildmat.2019.117454. 669 

[16] R.E. Philleo, A Method for Analyzing Void Distribution in Air-Entrained Concrete, 670 

CCA. 5 (1983) 128–130. https://doi.org/10.1520/CCA10263J. 671 

[17] I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural 672 

networks, Cement and Concrete Research. 28 (1998) 1797–1808. 673 

https://doi.org/10.1016/S0008-8846(98)00165-3. 674 

[18] M. Liang, Z. Chang, Z. Wan, Y. Gan, E. Schlangen, B. Šavija, Interpretable 675 

Ensemble-Machine-Learning models for predicting creep behavior of concrete, Cement 676 

and Concrete Composites. (2021) 104295. 677 

https://doi.org/10.1016/j.cemconcomp.2021.104295. 678 

[19] B. Hilloulin, V.Q. Tran, Using machine learning techniques for predicting autogenous 679 

shrinkage of concrete incorporating superabsorbent polymers and supplementary 680 



 

43 

 

cementitious materials, Journal of Building Engineering. 49 (2022) 104086. 681 

https://doi.org/10.1016/j.jobe.2022.104086. 682 

[20] F. Fueten, J. Mason, An artificial neural net assisted approach to editing edges in 683 

petrographic images collected with the rotating polarizer stage, Computers & 684 

Geosciences. 33 (2007) 1176–1188. https://doi.org/10/cr46mh. 685 

[21] Y.J. Cha, W. Choi, O. Büyüköztürk, Deep Learning-Based Crack Damage Detection 686 

Using Convolutional Neural Networks, Computer-Aided Civil and Infrastructure 687 

Engineering. 32 (2017) 361–378. https://doi.org/10.1111/mice.12263. 688 

[22] S. Dorafshan, R.J. Thomas, M. Maguire, Comparison of deep convolutional neural 689 

networks and edge detectors for image-based crack detection in concrete, Construction 690 

and Building Materials. 186 (2018) 1031–1045. 691 

https://doi.org/10.1016/j.conbuildmat.2018.08.011. 692 

[23] F. Guo, Y. Qian, Y. Wu, Z. Leng, H. Yu, Automatic railroad track components 693 

inspection using real‐time instance segmentation, Computer‐Aided Civil and 694 

Infrastructure Engineering. (2020) mice.12625. https://doi.org/10/ghdj6k. 695 

[24] J.D. Lau Hiu Hoong, J. Lux, P.-Y. Mahieux, P. Turcry, A. Aït-Mokhtar, 696 

Determination of the composition of recycled aggregates using a deep learning-based 697 

image analysis, Automation in Construction. 116 (2020) 103204. 698 

https://doi.org/10/ghdg8g. 699 

[25] A.H. Rubaiyat, T.T. Toma, M. Kalantari-Khandani, S.A. Rahman, L. Chen, Y. Ye, 700 

C.S. Pan, Automatic detection of helmet uses for construction safety, in: 2016 701 

IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), 702 

IEEE, 2016: pp. 135–142. https://doi.org/10/gg7wh6. 703 

[26] W. Wilson, L. Sorelli, A. Tagnit-Hamou, Automated coupling of NanoIndentation and 704 

Quantitative Energy-Dispersive Spectroscopy (NI-QEDS): A comprehensive method to 705 

disclose the micro-chemo-mechanical properties of cement pastes, Cement and Concrete 706 

Research. 103 (2018) 49–65. https://doi.org/10.1016/j.cemconres.2017.08.016. 707 

[27] B. Hilloulin, M. Robira, A. Loukili, Coupling statistical indentation and microscopy to 708 

evaluate micromechanical properties of materials: Application to viscoelastic behavior of 709 

irradiated mortars, Cement and Concrete Composites. 94 (2018) 153–165. 710 

https://doi.org/10.1016/j.cemconcomp.2018.09.008. 711 

[28] B. Hilloulin, M. Lagrange, M. Duvillard, G. Garioud, ε–greedy automated indentation 712 

of cementitious materials for phase mechanical properties determination, Cement and 713 

Concrete Composites. (2022) 104465. 714 

https://doi.org/10.1016/j.cemconcomp.2022.104465. 715 

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 716 

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las 717 

Vegas, NV, USA, 2016: pp. 770–778. https://doi.org/10/gdcfkn. 718 

[30] S. Zhou, W. Sheng, Z. Wang, W. Yao, H. Huang, Y. Wei, R. Li, Quick image analysis 719 

of concrete pore structure based on deep learning, Construction and Building Materials. 720 

208 (2019) 144–157. https://doi.org/10.1016/j.conbuildmat.2019.03.006. 721 

[31] Y. Song, Z. Huang, C. Shen, H. Shi, D.A. Lange, Deep learning-based automated 722 

image segmentation for concrete petrographic analysis, Cement and Concrete Research. 723 

135 (2020) 106118. https://doi.org/10.1016/j.cemconres.2020.106118. 724 

[32] A. Molendowska, J. Wawrze, Development of the Measuring Techniques for 725 

Estimating the Air Void System Parameters in Concrete Using 2D Analysis Method, 726 

Materials. 13 (2020) 428. https://doi.org/10.3390/ma13020428. 727 

[33] S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance 728 

Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern 729 



 

44 

 

Recognition, IEEE, Salt Lake City, UT, 2018: pp. 8759–8768. 730 

https://doi.org/10.1109/CVPR.2018.00913. 731 

[34] K. He, G. Gkioxari, P. Dollár, R.B. Girshick, Mask R-CNN, in: 2017 IEEE 732 

International Conference on Computer Vision (ICCV), Venice (Italy), 2017: pp. 2980–733 

2988. https://doi.org/10/gfghjd. 734 

[35] B. Kim, S. Cho, Image‐based concrete crack assessment using mask and region‐based 735 

convolutional neural network, Struct Control Health Monit. (2019) e2381. 736 

https://doi.org/10.1002/stc.2381. 737 

[36] N. Patel, S. Shinde, F. Poly, Automated Damage Detection in Operational Vehicles 738 

Using Mask R-CNN, in: H. Vasudevan, A. Michalas, N. Shekokar, M. Narvekar (Eds.), 739 

Advanced Computing Technologies and Applications, Springer Singapore, Singapore, 740 

2020: pp. 563–571. 741 

[37] P. Guo, W. Meng, Y. Bao, Automatic identification and quantification of dense 742 

microcracks in high-performance fiber-reinforced cementitious composites through deep 743 

learning-based computer vision, Cement and Concrete Research. 148 (2021) 106532. 744 

https://doi.org/10.1016/j.cemconres.2021.106532. 745 

[38] C.V. Dung, L.D. Anh, Autonomous concrete crack detection using deep fully 746 

convolutional neural network, Automation in Construction. 99 (2019) 52–58. 747 

https://doi.org/10.1016/j.autcon.2018.11.028. 748 

[39] Z. Liu, Y. Cao, Y. Wang, W. Wang, Computer vision-based concrete crack detection 749 

using U-net fully convolutional networks, Automation in Construction. 104 (2019) 129–750 

139. https://doi.org/10.1016/j.autcon.2019.04.005. 751 

[40] W. Tian, X. Cheng, Q. Liu, C. Yu, F. Gao, Y. Chi, Meso-structure segmentation of 752 

concrete CT image based on mask and regional convolution neural network, Materials & 753 

Design. 208 (2021) 109919. https://doi.org/10.1016/j.matdes.2021.109919. 754 

[41] S. Zhao, M. Shadabfar, D. Zhang, J. Chen, H. Huang, Deep learning‐based 755 

classification and instance segmentation of leakage‐area and scaling images of shield 756 

tunnel linings, Struct Control Health Monit. 28 (2021). https://doi.org/10.1002/stc.2732. 757 

[42] H. Zhang, R. Zhang, D. Sun, F. Yu, Z. Gao, S. Sun, Z. Zheng, Analyzing the pore 758 

structure of pervious concrete based on the deep learning framework of Mask R-CNN, 759 

Construction and Building Materials. 318 (2022) 125987. 760 

https://doi.org/10.1016/j.conbuildmat.2021.125987. 761 

[43] R.-S. Lin, Y. Han, X.-Y. Wang, Macro–meso–micro experimental studies of calcined 762 

clay limestone cement (LC3) paste subjected to elevated temperature, Cement and 763 

Concrete Composites. 116 (2021) 103871. 764 

https://doi.org/10.1016/j.cemconcomp.2020.103871. 765 

[44] C. Youssef Namnoum, B. Hilloulin, F. Grondin, A. Loukili, Determination of the 766 

origin of the strength regain after self-healing of binary and ternary cementitious materials 767 

including slag and metakaolin, Journal of Building Engineering. 41 (2021) 102739. 768 

https://doi.org/10.1016/j.jobe.2021.102739. 769 

[45] W. Abdulla, Mask R-CNN for object detection and instance segmentation on Keras 770 

and TensorFlow, GitHub Repository. (2017). https://github.com/matterport/Mask_RCNN 771 

(accessed July 30, 2021). 772 

[46] B. Hilloulin, Concrete Deep Segmentation, (2021). https://git.gem.ec-773 

nantes.fr/bhilloul/concrete-deep-segmentation (accessed March 10, 2022). 774 

[47] A. Dutta, A. Zisserman, The VIA Annotation Software for Images, Audio and Video, 775 

in: Proceedings of the 27th ACM International Conference on Multimedia, Association 776 

for Computing Machinery, New York, NY, USA, 2019: pp. 2276–2279. 777 

https://doi.org/10/ggk524. 778 



 

45 

 

[48] A.B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J. 779 

Banerjee, G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, 780 

B. Cook, I. Fernández, F.-M. De Rainville, C.-H. Weng, A. Ayala-Acevedo, R. Meudec, 781 

M. Laporte, others, ImgAug, (2021). https://github.com/aleju/imgaug (accessed July 30, 782 

2021). 783 

[49] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: A Fresh Approach to 784 

Numerical Computing, SIAM Rev. 59 (2017) 65–98. https://doi.org/10.1137/141000671. 785 

[50] B. Hilloulin, I. Bekrine, E. Schmitt, A. Loukili, Open‐source deep learning‐based air‐786 

voids detection algorithm for concrete microscopic images, Journal of Microscopy. 787 

(2022) jmi.13098. https://doi.org/10.1111/jmi.13098. 788 

 789 

 790 


