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Segmentation procedures of concrete microscopic images and standard test methods devoted to the spacing factor calculation for the freeze-thaw resistance assessment of concrete are time-consuming and skill-dependent. Moreover, manual color treatment and careful image examination are often needed. Within the past few years, Convolutional neural networks (CNN) have proved unpreceded performances in image segmentation and object detection tasks, though they often showed limited reusability and modularity. This study introduces an open-source modular deep learning segmentation algorithm of concrete microscopic images.

The algorithm is based on two CNN models dedicated to air voids and aggregates detection.

The algorithm performances have been calculated using various concrete, mortar, and cement paste samples. The Protected Paste Volume (PPV) and distance-to-air-void have been computed and agreed well with the experimental spacing factor. Moreover, a better correlation between PPV and scaling was found than between experimentally measured spacing factors and scaling, highlighting a critical spacing factor interval from 200 µm to 300 µm.

Introduction

Concrete formulations can be adapted to withstand particular exposure conditions, and formulation guidelines are most of the time given in the standards. Nonetheless, due to its heterogeneous nature, concrete is a complex material. While its macroscopic properties have been studied for a long time, its microscopic properties, governing the macroscopic ones, are historically less studied. One of the critical properties of concrete related to its durability, especially to freeze-thaw and permeability properties, is its air-void structure [START_REF] Elsena | Quality assurance and quality control of air entrained concrete[END_REF]. Air entraining agents can be employed to control the pore size distribution and the air content of concrete to increase its durability [START_REF] Powers | A working hypothesis for further studies of frost resistance of concrete[END_REF][START_REF] Powers | The air requirement of frost resistant concrete[END_REF][START_REF] Pigeon | Study of cement paste microstructure around air voids: Influence and distribution of soluble alkalies[END_REF][START_REF] Snyder | Numerical test of air void spacing equations[END_REF]. The number of pores and pore size distribution also impacts the mechanical properties of concrete. Pores are usually classified depending on their diameter: gel pores (≤ 10 nm), transition pores (10nm-100nm), capillary pores (100nm-1000nm), and air voids (≥ 1000nm). The latter two are mainly due to the evaporation of free water during concrete life and created during the mixing process, respectively.

Various techniques can be used for pore structure analysis, such as mercury intrusion porosimetry, gas absorption, nuclear magnetic resonance, and electron microscopy. However, due to sample size limitations, they are hardly applicable from an industrial point of view to get the overall properties of decimeters-large concrete samples. Therefore, generally manual or time-consuming techniques are defined in the standards such as fresh state air-void content [START_REF] Magura | Air void analyzer evaluation[END_REF] and petrographic analysis based on microscopic images. The ASTM [START_REF]Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete[END_REF] and Eurocode [START_REF]Admixtures for concrete, mortar and grout. test methods. Determination of air void characteristics in hardened concrete[END_REF] methods consist in sectioning a concrete block, the section is then polished and air voids are detected and counted visually using the help of a microscope [START_REF] Elsen | Automated air void analysis on hardened concrete Results of a European intercomparison testing program[END_REF]. Additional parameters like the protected paste volume can be calculated [START_REF] Dequiedt | Distances between air-voids in concrete by automatic methods[END_REF][START_REF] Wawrzeńczyk | Protected Paste Volume (PPV) as a parameter linking the air-pore structure in concrete with the frost resistance results[END_REF]. Several methods have been proposed to enhance the contrast between the air voids of the concrete matrix and the aggregates that is a critical issue. For example, manual color treatment (using black ink to color the surface and a white powder to fill air-voids, or a phenolphthalein-based color treatment to increase the contrast between the paste and the aggregates ) has been proved to be efficient but can be both time-consuming and skill-dependent [START_REF] Jakobsen | Automated air void analysis of hardened concrete -a Round Robin study[END_REF][START_REF] Peterson | Methods for threshold optimization for images collected from contrast enhanced concrete surfaces for air-void system characterization[END_REF][START_REF] Song | A 3D petrographic analysis for concrete freeze-thaw protection[END_REF]. Indeed, the colorant that is added to distinguish the paste and the aggregates can be trapped in some aggregate or sand particles because of their porosity or polishing defects, while the clear powder used to detect the air voids can be easily trapped in the cement paste because of bad polishing. Then, it has been shown that the image analysis process can be accelerated using automatic methods like the RapidAir 457 testing instrument [START_REF] Jakobsen | Automated air void analysis of hardened concrete -a Round Robin study[END_REF][START_REF] Fantous | Air-void characteristics in highly flowable cement-based materials[END_REF]. These methods have been well documented but mostly rely on the manual or semi-automatic distinction between air voids and the remaining concrete matrix by coloration, which depends on the operator and is a critical error-prone step. This critical coloration procedure might significantly impact on the later analysis, such as automated segmentation, and leads to the loss of a massive amount of image information, as in the case of the black and white coloration procedure, which mainly requires the use of a grey-scale version of the images. For these reasons, completely automated techniques, without any coloration step, could help improve the concrete air void analysis making it faster and more reliable.

As for criterion settlement regarding air-void system quality in terms of frost-resistance, Powers' spacing factor L ̅ [START_REF] Powers | The air requirement of frost resistant concrete[END_REF], which corresponds approximatively to the maximal distance of any point in cement paste to the edge of the nearest void, remains the most used in the normative context. It is commonly considered that concrete with a L ̅ ≤ 200 µm is freeze/thaw immune. However, several other parameters have been proposed and studied, such as the content of micropores A300 and the protected paste volume (PPV) calculated following different approaches [START_REF] Wawrzeńczyk | Protected Paste Volume (PPV) as a parameter linking the air-pore structure in concrete with the frost resistance results[END_REF][START_REF] Philleo | A Method for Analyzing Void Distribution in Air-Entrained Concrete[END_REF]. In [START_REF] Wawrzeńczyk | Protected Paste Volume (PPV) as a parameter linking the air-pore structure in concrete with the frost resistance results[END_REF], the presence of aggregates was partially taken into account in calculating PPV by subtracting the area of aggregates on protected paste calculated images. A comparison with the spacing factor of frost-resistant concretes was conducted, and the results suggested a better correlation between the frost resistance and the PPV than between the frost resistance and the spacing factor. The authors highlighted the need for further studies and the time-consuming and challenging segmentation procedure because of the manual preparation and microscopic examination.

Machine Learning (ML) based techniques have been applied to various Civil Engineering problems such as concrete properties predictions like strength [START_REF] Yeh | Modeling of strength of high-performance concrete using artificial neural networks[END_REF], creep [START_REF] Liang | Interpretable Ensemble-Machine-Learning models for predicting creep behavior of concrete[END_REF] and shrinkage [START_REF] Hilloulin | Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials[END_REF]. Image-related problems have also been addressed for some years, from edge detection [START_REF] Fueten | An artificial neural net assisted approach to editing edges in petrographic images collected with the rotating polarizer stage[END_REF] to visual crack detection and monitoring [START_REF] Cha | Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks[END_REF][START_REF] Dorafshan | Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[END_REF] to component detection and classification [START_REF] Guo | Automatic railroad track components inspection using real-time instance segmentation[END_REF][START_REF] Lau Hiu Hoong | Determination of the composition of recycled aggregates using a deep learning-based image analysis[END_REF] or industrial applications like helmet use detection for construction safety [START_REF] Rubaiyat | Automatic detection of helmet uses for construction safety[END_REF]. ML-based techniques have also been used to supplement image information by other measurements such as chemical analysis [START_REF] Wilson | Automated coupling of NanoIndentation and Quantitative Energy-Dispersive Spectroscopy (NI-QEDS): A comprehensive method to disclose the micro-chemo-mechanical properties of cement pastes[END_REF] indentation measurements [START_REF] Hilloulin | Coupling statistical indentation and microscopy to evaluate micromechanical properties of materials: Application to viscoelastic behavior of irradiated mortars[END_REF][START_REF] Hilloulin | ε-greedy automated indentation of cementitious materials for phase mechanical properties determination[END_REF].

Therefore, advanced image analysis techniques could help solve the issues related to air voids structure analysis and phase segmentation in concrete. In computer vision, deep learning image analysis has become popular for image analysis-related problems. Convolutional neural networks (CNN) have achieved unprecedented accuracy and efficiency in pattern recognition and semantic segmentation. Using training images, then comparing the model's error using validation images, and finally testing the model performance on a test set of images, complex CNN architectures made of successive convolutional and pooling layers have been built. For example, the Resnet architecture [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], introduced some years ago, has considerably improved CNN results in international competitions.

Recently, semantic segmentation CNN models have successfully addressed air voids detection problems in concrete materials petrographic analysis [START_REF] Zhou | Quick image analysis of concrete pore structure based on deep learning[END_REF] [START_REF] Song | Deep learning-based automated image segmentation for concrete petrographic analysis[END_REF]. These latter models exhibited good accuracy, but several major difficulties remain and need to be overcome before an eventual large-scale use. First, the semantic segmentation models inherently lack accuracy in distinguishing close instances, e.g., air voids in this problem, which is a major drawback because of the importance of the size distribution and location of air voids regarding concrete's durability [START_REF] Molendowska | Development of the Measuring Techniques for Estimating the Air Void System Parameters in Concrete Using 2D Analysis Method[END_REF]. This shortcoming can be addressed using other cutting-edge CNN models like deep learning instance segmentation models such as the Mask R-CNN or the PANet model [START_REF] Liu | Path Aggregation Network for Instance Segmentation[END_REF]. These models, based on backbones like Resnet can lead to better accuracy with a limited amount of resources because they create masks of the detected instances besides bounding boxes. Mask R-CNN [START_REF] He | IEEE International Conference on Computer Vision (ICCV)[END_REF] model has been successfully applied recently in Civil Engineering for crack inspection [START_REF] Kim | Image-based concrete crack assessment using mask and region-based convolutional neural network[END_REF][START_REF] Patel | Automated Damage Detection in Operational Vehicles Using Mask R-CNN[END_REF][START_REF] Guo | Automatic identification and quantification of dense microcracks in high-performance fiber-reinforced cementitious composites through deep learning-based computer vision[END_REF] after similar work done using semantic segmentation using Unet [START_REF] Dung | Autonomous concrete crack detection using deep fully convolutional neural network[END_REF][START_REF] Liu | Computer vision-based concrete crack detection using U-net fully convolutional networks[END_REF], 3D micro-tomography image analysis [START_REF] Tian | Meso-structure segmentation of concrete CT image based on mask and regional convolution neural network[END_REF]. Various studies published up-to-date make Mask R-CNN a good candidate for industrial usage as it might show a better precision than other models such as PANet [START_REF] Zhao | Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings[END_REF]. Recently, Mask R-CNN proved to be a very effective algorithm for macro-pore detection [START_REF] Zhang | Analyzing the pore structure of pervious concrete based on the deep learning framework of Mask R-CNN[END_REF].

The present manuscript addresses the challenge of fast and accurate phase segmentation of concrete with the minimum amount of sample preparation and human bias-prone preparation and interpretation. The main objective is to demonstrate the potential of the instance segmentation technique as opposed to classic pixel-based techniques for air voids and aggregate detection in concrete prior to a potential industrial deployment of a modular model for cementitious materials with various microstructures: from normal strength, eventually with lightweight aggregates, concrete to ultra-high performance concrete, with different types of aggregates and eventually mineral substitutions (calcined clay, slag) to considerably change the concrete aspect and properties [START_REF] Lin | Macro-meso-micro experimental studies of calcined clay limestone cement (LC3) paste subjected to elevated temperature[END_REF][START_REF] Youssef Namnoum | Determination of the origin of the strength regain after self-healing of binary and ternary cementitious materials including slag and metakaolin[END_REF]. To this end, an extended dataset of concrete, mortar, and cement paste microscopic images is built to train two complementary instance segmentation models based on Mask R-CNN architecture to quickly and accurately detect air voids and aggregates, respectively. The accuracy of the trained model is quantified and validated on test images, and its versatility is demonstrated. Then, an inference strategy on large-scale concrete images is defined to study the aggregates and air void structure on real petrographic concrete slices. The model performance is discussed to highlight its benefits and possible improvements. Finally, the Protected Paste Volume is calculated using the largescale segmented images using a novel multi-threaded open source algorithm, and the relation with scaling-resistance is established. compositions (8 concrete, 2 mortar, and 2 cement pastes formulations) were studied. In order to cover a wide variety of air void structures, some concrete formulations included AEA, generating an important number of air voids, while others, like self-compacting concretes (SCCs) contained a limited amount of air voids. All the concrete formulations were similar to formulations used on site, some of them to design frost-resistant concrete (XF2 or XF3 according to Eurocodes) or normal to high-strength concretes with or without commonly used supplementary cementitious materials (SCM) like slag or calcined clay, giving different colors to the cement paste. Special attention was paid to the variety of the aggregates (siliceous, calcareous, granite, basalt) and their size distribution. Figure 1 illustrates the variety of the samples studied and Table 1, resp. Table 2, gives the composition of one concrete, resp. one mortar. The other formulations are not given due to confidentiality restrictions. After at least 7 days of curing, the samples were sawn in order to obtain slices: 4 x 4 x 1 cm 3 slices for cement pastes and mortars and 10 x 10 x 2 cm 3 ones for concrete specimens. The slices were then polished with SiC paper down to SiC 4000 before image acquisition described in paragraph 2.1.3. 

Materials and methods

Mix designs, samples preparation, and experimental tests

a) b) c) d) e) f) g) h) 45 

Specimens and experiments for model testing and validation

In order to test, validate the model and calculate the protected paste volume, concretes of 15 different formulations were prepared. The compositions are reported in Table 3). AEA was added to the mix and with various contents. Air content and slump were measured after mixing according to NF EN 12350-7 and NF EN 12350-2 standards, respectively. Concrete samples were cast in 15 x 15 x15 cm 3 molds, covered with plastic foil and cured for 1 day in 20°C and 50% relative humidity room. After 24h, the cubes were unmolded and cured in water 7 days; then some of the cubes were subjected to standard spacing factors measurements (ASTM C457 / C457M-16) and freeze-thaw tests according XP P18-420 standard, others were further cured in water until testing time. Two slices were cut from the same cubic sample to measure the standard spacing factor and the air content in the solid section. Besides, scaling was measured during 56 freeze-thaw cycles on four 15 x 15 x 7 cm 3 prisms for C1 to C4, C8, C9, C10 and C12 concretes. The measured properties are summarized in Table 4. 2D maps of the sections surfaces were obtained using a Hirox RH-2000 3D microscope by 186 merging hundreds of images evenly spaced along the section. The size of the equivalent field 187 of vision was around 8-10 x 8-10 cm 2 for concrete samples and 3.5 x 3.5 cm 2 for cement paste 188 and mortar samples. Magnification of x 50 was chosen according to the standard suggestion 189 leading to final horizontal resolutions of the 2D projected image of 3.13 µm / pix. High-190 definition images of around 30000 x 30000 pix were finally obtained for concrete samples. 191 Various parts of these images of samples described in paragraph 2.1.1, referenced as 'raw 192 images' in the article, were selected to train and test the deep neural network algorithm, while 193 images from samples described in paragraph 2.1.2 were used to test the model and compare 194 its results with manual spacing factor measurements and freeze-thaw resistance of the various concrete formulations.

CNN model

CNN model architecture

A deep learning instance segmentation model was used in order to detect circular-shape voids and polygonal-shape aggregates at a multi-pixel level. Mask R-CNN was used due to its accuracy, relatively good detection speed, and the limited number of training images needed [START_REF] Abdulla | Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow[END_REF]. As illustrated in Fig. 2 Mask R-CNN model is a multi-layered convolution neural network based on Tensorflow 1.14, which uses the convolution kernels to extract features and generate masks. The image is finally restored to its original size with the associated mask using upsampling strategies. Resnet-101 backbone architecture was selected due to its sensitivity.

Two separate Mask R-CNN, detecting air voids and aggregates respectively, were combined.

Even though detection by a single model would be faster, the combination of two models enhances the model's modularity, and several other single models would be added to either the pore detection or the aggregate detection algorithm in the future. After training, which will be developed in the next section, detection could then be performed on the same concrete image with several resolutions from the original resolution to a 16 x smaller resolution, as illustrated in Fig. 3. Several detection results could be obtained using these two models and several input image resolutions: smaller instances (voids or aggregates) were detected using the high definition images, while larger instances were detected using lower resolution images. After detection, binary images of the detected instances were generated and merged in order to obtain a high resolution map of the air voids and a high-resolution map of the aggregates. The code is open-sourced at [START_REF] Hilloulin | Concrete Deep Segmentation[END_REF]. 

CNN model training

Subparts with sizes of 608 x 608 pix of the raw images with a resolution divided by 2, 8 or 16 were used to train the aggregate-detection algorithm, while 608 x 608 pix subparts of the raw images with the original resolution and a resolution divided by 4 were used to train the air voids detection algorithm. Two sample datasets, containing 1470 images and 554 images, were built for the air voids detection and the aggregate detection algorithm respectively. The training dataset composition of the air voids detection model is described in Table 5. These datasets were divided into training, validation and test sets given the following proportions: 78%, 13%, 9% for the air voids detection algorithm and 56% 22% and 22% for the aggregate detection algorithm. All the images were annotated using VGG Image Annotation software [START_REF] Dutta | The VIA Annotation Software for Images, Audio and Video[END_REF] at an approximate pace of 50 -100 instances per hour (total annotating time around 30 hours) by an experienced operator. Polygonal shapes were used to manually annotate the images used to train the model for aggregate detection. These annotations were divided into 'sand' and 'aggregate' based on the visual size of the elements, as illustrated in Fig. 4. Similar circular annotations were done to prepare training images for the air voids detection algorithm. These circular annotations can help the model detect air voids with similar shapes.

Aggregates were annotated using polygonal shapes to help the algorithm find the air void and aggregate cutting surface. In some cases, small sand particles with a diameter smaller than 30 µm have not been annotated as the model could hardly detect them due to resolution limitations. Training parameters were adjusted to allow a fast convergence. These parameters are given in Table 6. 

𝑚𝐴𝑃 = ∑ 𝐴𝑣𝑒𝑃(𝑞) 𝑄 𝑞=1 𝑄 ( 1 
)
where Q is the number of queries in the set and 𝐴𝑣𝑒𝑃(𝑞) is the average precision (AP) for a given query, q.

All the precision -recall curves can be generated for the test images but a more visual idea of the quality of the prediction can be obtained by plotting the predictions vs. the ground truth definition. mAP indicator has the advantage of being discriminative enough to classify modern models precisely. The intersection over union (IoU) parameter has also been calculated for some of the final models.

Protected Paste Volume (PPV) and distance-to-air-void calculation using segmented images

Distance-to-air-void calculation considering aggregates effect

Several algorithms were implemented in Julia language using a multi-threaded approach to analyze the high-definition pores and aggregates segmented images [START_REF] Bezanson | Julia: A Fresh Approach to Numerical Computing[END_REF]. First, the distance between any point in the cement paste to the nearest void was calculated considering the aggregate presence. The median distance-to-air-void in the entire image was then saved in order to be compared to experimentally measured spacing factor values. The algorithm can be summarized as follows:

-locate all the pixels at the periphery of the pore, -compute the distance of their neighbors if they are not aggregates and select the minimum distance for each of these pixels, -repeat the procedure using these pixels as inputs and stop when 99.5% of the distances have been found.

Several input segmented image resolution were used to find to the best compromise between precision of the calculated distances and computational time. The best results were obtained using segmented images with a resolution of 24 µm / pix and a size around 3500 x 3500 pix (raw images with a height and a width divided by 8). The distance-to-air-void calculation can be performed in approximately 100-150s using such parameters and a 10-cores commercial desktop computer.

Protected Paste Volume (PPV) calculation

The protected paste volume defined in [START_REF] Wawrzeńczyk | Protected Paste Volume (PPV) as a parameter linking the air-pore structure in concrete with the frost resistance results[END_REF] was calculated based on the segmented concrete images by the deep learning model. PPV represents the proportion of points in the paste for which the straight line distance to an air void is smaller than 200 µm. PPV was calculated using Julia and PPV values were saved to be compared to experimental spacing factors. High definition maps of the protected paste areas were finally generated for all the concrete samples. The number of air voids in the high definition images has been numerically calculated to complement PPV calculation by using ImageJ software.

Results and discussion

CNN model training results

The loss curves recorded during training are displayed in Fig. 5. A two-step decrease can be observed for both models as expected due to the first two stages during training. The loss reduction rate becomes relatively small after 300 to 400 steps (75k to 100k epochs), as the subsequent improvement could mainly be attributed to model overfitting (slow decrease of mAP calculated on the test set with increasing training). Indeed, a maximum mean average precision (mAP) (calculated on test images) of 0.5829 has been obtained after 154 steps (38.5 k epochs) for the aggregate detection model, while a maximum mAP of 0.677 has been obtained after 275 steps (68.75k epochs) for the air voids detection model. These results confirm that the Mask R-CNN model is slightly slower to train than other models [START_REF] Song | Deep learning-based automated image segmentation for concrete petrographic analysis[END_REF], but the obtained mAP values are on par with precisions of around 0.65 obtained on very large datasets in image recognition reference studies [START_REF] He | IEEE International Conference on Computer Vision (ICCV)[END_REF], highlighting the potential of the model. 

CNN model accuracy on test images

Results of the air voids detection model

Results of the model can be analyzed using the predictions on the test images in order to identify the most common shortcomings of the algorithm and its advantages compared to previously reported performances on similar algorithms. 

Loss

Step used during training. The model is also robust regarding air voids detection in aggregates, as illustrated in Fig. 6 d) though this problem is relatively common in segmentation models previously described in the literature. Finally, because of the variety of the images in the training set, the model prediction capacity is relatively good in the case of poorly prepared images with relatively rough surfaces and illumination issues as illustrated by Fig. 6 g) and h).

Last but not least, because the model is an instance-based model, it is able to distinguish very close air voids sharing some borders as exemplified by red and green air voids in Fig. 6 h).

This capacity may potentially lead to a better estimation of the air voids size distribution in samples.

a) b) c) d) e) f) g) h)

Fig. 6. Inference results of the instance segmentation model on various test images 351

The accuracy of the model can be measured using the mean average precision indicator on the test set. The general definition for the Average Precision (AP) is the area under the precisionrecall curve for a given image. All the precision -recall curves can be generated for the test images, but a more visual idea of the quality of the prediction can be obtained by plotting the predictions vs the ground truth definition as illustrated in Fig. 7 As it can be seen, the predictions closely match the ground truth manual definition of the air voids leading to a good precision even at relatively high IoU values. Computing the various precisions of the prediction for IoU values between 0.5 and 0.95, an average prediction value AP @0.50-0.95 can be calculated for each image as illustrated in Table 7.

Table 7. Average precision for different IoU values for one typical test image.

Average precision at given IoU Value

AP @0.50:

1.000 AP @0.55: 1.000 AP @0.60: 1.000 AP @0.65: 1.000 AP @0.70: 1.000 AP @0.75: 1.000 AP @0.80: 1.000 AP @0.85: 1.000 AP @0.90: 0.500 AP @0.95: 0.500 AP @0.50-0.95: 0.900

The final mean average precision of the model can then be calculated using the average precision of all the images. The cumulative distribution of the mAP values on the test set after 230 steps (eg 57.5 k epochs) is reported in Fig. 7 a. The model exhibits mAP value higher than 0.5 for 70% of the test images and only 13.5% of the images are associated with a mAP smaller than 0.4. After 230 training steps, a mAP value of 0.6452 is obtained over the entire test set which is on par with mAP values reported for other datasets [START_REF] Hilloulin | Coupling statistical indentation and microscopy to evaluate micromechanical properties of materials: Application to viscoelastic behavior of irradiated mortars[END_REF].

The mean average precision obtained on the test set can be calculated depending on the 

duration

Results of the aggregate detection model

Additionally, several predictions of the aggregate model have been displayed alongside original 'ground truth' manual annotations in Fig. 8 for eight test images with various mAP.

First, it can be observed that the model correctly find the various types of aggregates in the Median precision results are illustrated in Fig. 8 c) and d). These figures show that the aggregate model can detect the annotated aggregates very precisely from bright to dark aggregates, eventually with some local defects (here indentation imprints). In the mortar image, only a very limited amount of aggregates has not been found by the algorithm while, interestingly, the model correctly detected some aggregates in the normal strength concrete image even though they have not been manually annotated.

The aggregate model exhibited relatively good mAP of around 0.45 to 0.5 on ultra-high strength slag-based concrete and lightweight aggregate concrete as illustrated in Fig. 8 e) and f) respectively. Most of the basalt aggregates were detected in the ultra-high performance concrete image while some small quartz particles were not detected. Concerning the lightweight aggregate image, the instance-segmentation model correctly captured the aggregates, both their shape and size, without being influenced by the inner porosity leading to segmented images with a clear distinction between aggregates, air voids and cement paste as opposed to pixel-based models [START_REF] Song | Deep learning-based automated image segmentation for concrete petrographic analysis[END_REF]. Using the air voids model alone and the aforementioned strategy, the model can be applied on a wide variety of large-scale concrete petrographic slices. Fig. 9 exposes the results obtained on an unknown concrete slice from an industrial partner with a size of approximately 60 mm x 60 mm. Fig. 9 a) and b) detail the prediction results obtained in the high resolution reconstructed x 50 magnification image. As it can be seen, the model localizes various air voids of several sizes and does not predict the presence of air voids on the aggregates (even in the case of multicolored or white aggregates in the central part of the image, nor gray and brown sand particles). However, due to the split of the images in several parts, some large air voids overlapping between several images may not be accurately detected. For this reason, the model is run on a reduced-size image as illustrated in Fig. 9 c) and d) in order to associate one instance to the largest air void. The model detects these air voids with a good accuracy but, due to the image size reduction, the model applied on a reduced-size image cannot detect the small air voids. Thus, the predicted air void content drops from 7.48 % for the full-size image to 3.94 % for the reduced-size image. However, thanks to the implemented strategy associating the detection on full-size and reduced-size image, the detection of air voids with various sizes with minimal diameters of around some pixels is possible (around 10-20 μm) and a final air void content of 7.76 % is predicted which is on par with the industriallymeasured air content. Further analysis can be performed, and the algorithm's superior performance compared to manual contrast enhancement methods has been highlighted in another study [START_REF] Hilloulin | Open-source deep learning-based airvoids detection algorithm for concrete microscopic images[END_REF]. opinion [START_REF] Wawrzeńczyk | Protected Paste Volume (PPV) as a parameter linking the air-pore structure in concrete with the frost resistance results[END_REF]: PPV values calculated based on the high definition images segmented using the deep learning algorithm ranged from 28% to 73%. The model is therefore able to considerably accelerate the 2D calculation of PPV and the total computational time on a desktop computer has been measured to be around 5 to 10 minutes (including the deep learning segmentation and the multi-threaded PPV calculation). Therefore PPV can be calculated almost exclusively numerically (excepting for the polishing step of the sample) and then provide a quantitative and discriminative criteria between various concrete samples.

Numerically calculated PPV evolution regarding spacing factor has been approximated using a linear regression. Samples with spacing factors smaller than around 200 µm have been found to exhibit PPV higher than 54 % which is close to the 80% limit supposed to be freezethaw protective [START_REF] Molendowska | Development of the Measuring Techniques for Estimating the Air Void System Parameters in Concrete Using 2D Analysis Method[END_REF]. On the contrary, for samples exhibiting experimental spacing factors higher than 300 µm, calculated PPV has been found to be smaller than 43 % with some values around 30 % or less. The freeze-thaw resistance of such samples would then be relatively poor. Interestingly, a critical spacing factors range can be evidenced around 200 µm to 300 µm as the PPV abruptly drops between samples with spacing factors close to 270 µm and PPV higher than 54% and samples with spacing factors close to 290 µm with PPV smaller than 30 -40%. Therefore, a critical attention must be paid to concrete samples with spacing factors around 200 µm to 300 µm and PPV calculation would help assessing their potential freeze-thaw resistance.

A positive correlation has been evidenced between PPV and the number of air voids per unit area as illustrated in Fig. 12-b). A linear trend can be observed for PPV smaller than 65-70%, then PPV might potentially ceil as no difference could be clearly established between samples with a high number of air void. Indeed a sample with more than 1.2 void / mm² has been found to exhibit a PPV of around 70% close to samples with a smaller number of air voids of around 1.1 void / mm². This observation confirms that overlapping air void do not increase PPV and might not lead to a better freeze-thaw resistance (while decreasing the mechanical properties). 

Conclusions

The main objective of this work was to demonstrate the potential of modular deep learning for civil engineering applications. To this end, a modular deep learning-based instance segmentation algorithm of concrete microscopic images has been developed. The algorithm is based on two CNN models dedicated to air voids and aggregate detection. Secondly, these two CNN models have been combined to perform the segmentation of high-definition concrete microscopic images. Then, the model has then been applied to freeze-thaw-related air void system characterization, namely Protected Paste Volume (PPV) and distance-to-airvoid calculation. The results can be summarized as follows:

-The modular CNN model composed of two complementary Mask R-CNN architectures can be trained using distinct image sets of various magnifications.

-The model can effectively detect air voids and aggregates considering their usual -The large-scale predictions of the air voids model are in good agreement with the fresh state air void content and the ASTM 457-measured air void content due to the capacity of the model to detect both small air voids and large air voids.

-The high definition-segmented images with aggregates and air-void instances can be used to quantify 2D parameters concerning freeze-thaw resistance of concrete such as Protected Paste Volume (PPV) and distance-to-air-void. While using a modern programming language and a multi-threaded approach, these parameters can be effectively calculated on commercial computers in some minutes.

-Algorithm speed and precision facilitate the analysis of concrete sections. Based on the analysis of 20 sections, it has been shown that very good correlations can be found between the calculated 2D parameters and experimentally measured spacing factors.

-Based on the PPV calculated values, a critical spacing factor range has been evidenced around 200 µm to 300 µm. PPV can sharply decrease in this spacing factor range to around 80%, allegedly freeze-thaw protective, to around 40%, characterizing nonresistant concretes.

-Numerically calculated PPV using the modular deep learning algorithm is correlated with experimental freeze-thaw scaling resistance of moderately resistant and nonresistant concrete. 

2. 1 . 1

 11 Concrete, mortar & cement paste specimens dedicated to model training During the training stage, 30 concrete, mortar and cement paste specimens of 12 various
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 1 Fig 1: Overview of some samples photographs used in the deep learning instance

Fig. 2 .Fig. 3 .

 23 Fig. 2. Mask R-CNN architecture

Fig. 4 .

 4 Fig. 4. Training images for the aggregates detection model (sand and aggregates in light blue

Fig. 5 .

 5 Fig. 5. Loss curves obtained during training: loss value vs step number (each step corresponds

Fig 6

 6 Fig 6 illustrates the testing performance of the air voids detection model on 608 x 608 pix

Fig. 7 .

 7 Fig. 7. Calculated mean average precisions of the model: a) typical cumulative distribution of

  for relatively small mAP of around 0.3 (Fig.8a and b), proving its versatility in detecting aggregates in a wide range of cementitious materials. The aggregate model could also detect some air voids with a relatively good precision even if the air voids specific model is more precise. Based on the analysis of the precision of the model on all the test images, it has been observed that the model exhibited very good results when the contrast between the aggregates, air voids and cement paste was high, for example in the case of light grey paste and dark aggregates.

Fig 8 a

 8 Fig 8 a) and b) illustrate the major shortcomings of the aggregate model during detection that

Fig 8 .

 8 Fig 8. Typical predictions on test images with various mean average precisions (mAP): a)

Fig. 9 .

 9 Fig. 9. Inference result on a high-definition concrete slice image: a) full-size raw image and

Fig. 10 .

 10 Fig. 10. Distance-to-air-void vs measured spacing ratio (dashed line represents identity line,

Fig. 11 .

 11 Fig. 11. Evolution of air voids content regarding experimentally measured spacing factor

Fig. 12 .Fig. 13 .Fig. 14 .

 121314 Fig. 12. PPV calculation of the concrete samples: a) regarding the experimental L factor, b)

  shape and generate segmented images containing separated instances. Due to the region-based algorithm, segmented images correctly represent the various instances sizes and shapes because of the mask usage (conversely to pixel-level based segmentation algorithms).

Future

  research directions towards improving the algorithm capabilities include the very small air voids detection and the delimitation of the small aggregates and air voids boundaries. Overall, this study might open up novel research paths regarding the potential modularity enhancement of deep learning models. Moreover, the precision of such models, which allowed a precise quantification of freeze-thaw parameters in this study, might help accelerate research towards novel findings.

  

  

Table 1 .

 1 Example of one concrete formulation (kg/m 3 )

			Gravel	Gravel		
	Cement	Sand 0/4			Water	Superplasticizer
			4/10	10/20		
	385	850	289	640	169	1.925

Table 2 .

 2 Example of one mortar composition

	Cement	Calcareous Sand 0/4	Water	Paste volume
				W/C
	(kg/m 3 )	(kg/m 3 )	(kg/m 3 )	(%)
	566	1344	270	0.43

Table 3 .

 3 Concrete compositions (kg / m 3 ) (add 1 and add 2 refer to admixtures, by default in kg / m 3 , sometimes only in percentage relative to cement mass (%), C5a to C5d differ by the cement provider only, C6 and C7 include CEM II/A-LL 42.5N instead of CEM I 52.5 N for

	other concretes)									
	Name Cement Sand	Sand	Gravel	Gravel	Water Add 1 Add 2	AEA	W/C
			0/4	0/1	4/10	10/20					
	C1	385	795	-	244	701	171	3.08	0.963	0.193	0.42
	C2	385	795	-	245	701	181	3.08	0.963	0.231	0.42
	C3	350	880	-	918	-	162	2.275 0.350	0.420	0.44
	C4	385	795	-	244	701	171	3.08	0.963	0.501	0.42
	C5a-d	385	850	-	289	640	169	1.925	-	0.270	0.45
	C6	320	537	249	310	641	172	4.160 0.640	0.128	0.50
	C7	320	537	249	310	641	172	4.160 0.640	0.128	0.50
	C8	385	750	-	300	760	155	0.35% 0.2%	0.13% 0.40
	C9	385	768	-	421	610	165	1.06%	-	1.54% 0.43
	C10	420	770	-	420 *	530	170	3.4	1.58	0.75	0.40
	C12	385	811	-	355	613	162	0.45% 0.1%	0.05% 0.42
	* Gravel 4/16									

Table 4 .

 4 Slump and freeze-thaw related properties of concretes (spacing factor and air content in the solid sections are the mean values of two measurements, scaling is the mean value of

	four measurements)			
	Name	Slump	Air content	Spacing factor	Scaling
		(cm)	(%)	(µm)	(g/m²)
	C1	16.0	3.6	411	2192

Table 5 .

 5 Image dataset main characteristics

	Specimen type	Number of images	Magnifications	Resolutions
				(µm/pix)
	Cement paste 1	32	×50, ×25, ×12.5	3.13, 6.27, 12.54

Table 6 .

 6 Training parameters of the Mask R-CNN model for aggregate and air voids detection Model results on the test images were first manually checked to assess the detection quality of hardly visible instances (small or irregular air voids, aggregates with a color similar to the surrounding cement paste, or granite aggregates with very irregular color patterns). Then, after training, mean average precisions (mAP) for IoU values between 0.5 and 0.95 (mAP @0.5-0.95) of the air voids detection algorithm and the aggregates detection algorithm were computed on test images. The general definition for the Average Precision (AP) is the area under the precision-recall curve for a given image. mAP is defined as follows:

	General parameters	Aggregates	Air voids
	Batch size	4	4
	Image dimension	512 x 512	512 x 512
	Image resize mode	Crop	Crop
	Min confidence detection	0.7	0.7
	Validation steps	50	50
	Learning momentum	0.9	0.9
	Weight decay	0.0001	0.0001
	Training stage 1		
	Epochs	150	125
	Steps per epoch	250	250
	Learning rate	0.001	0.001
	Training stage 2		
	Epochs	125	500
	Steps per epoch	250	250
	Learning rate	0.0005	0.0005
	Training stage 3		
	Epochs	10	10
	Steps per epoch	250	250
	Learning rate	0.0001	0.0005
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Application of the modular deep learning model: interest of Protected Paste Volume (PPV) and distance-to-air-void calculation to assess freeze-thaw resistance

The median distance-to-air-void has been extracted from the cumulative curves as illustrated in Fig. 10. As expected based on Power's theory, a positive correlation has been found as the median distance-to-air-void gradually increases for L factor ranging from around 130 µm to more than 430 µm. The best-fitting linear regression is found close to the identity line, demonstrating the model capacity for distance-to-air-void calculation. Interestingly, the median distance-to-air-void is found to be slightly larger than the experimentally measured L factor. This could be explained by the fact that some very small air bubbles might not have been detected as some samples with L factors smaller than 200 µm have slightly higher median distance-to-air-void, but this finding could more probably be attributed to samples with larger spacing factors (top right of the figure) as the algorithm takes into account the presence of aggregates which increase the larger distances to air voids as water should turn around the aggregate before reaching an air void. Finally, although a relatively large number of samples has been observed, it is worth noting that the 95 % confidence interval is rather extended and no clear distinction can be made between samples with spacing factors smaller than 300 µm while some of them might be frost resistant while others no. Last but not least,