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In this paper we demonstrate that finite linear combinations of com positions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

Introduction

A number of diverse application areas are concerned with the representation of general functions of an n-dimensional real variable, x e IR", by finite linear combina tions of the form N L ap(yjx + 0),

(1) j=l where Yi E IR" and aj, e E IR are fixed. (yT is the transpose of y so that yT x is the inner product of y and x.) Here the univariate function <J depends heavily on the context of the application. Our major concern is with so-called sigmoidal a's: <J(t)-> {� as t-> +co, as t-> -co.

Such.functions arise naturally in neural network theory as the activation function of a neural node (or unit as is becoming the preferred term) [Ll], [RHM]. The main result of this paper is a demonstration of the fact that sums of the form (1) are dense in the space of continuous functions on the unit cube if <J is any continuous sigmoidal function. This case is discussed in the most detail, but we state general conditions on other possible u's that guarantee similar results.

The possible use of artificial neural networks in signal processing and control applications has generated considerable attention recently [BJ, [G]. Loosely speak ing, an artificial neural network is formed from compositions and superpositions of a single, simple nonlinear activation or response function. Accordingly, the output of the network is the value of the function that results from that particular composition and superposition of the nonlinearities. In particular, the simplest nontrivial class of networks are those with one internal layer and they implement the class of functions given by (1). In applications such as pattern classification [Ll] and nonlinear prediction of time series [LF], for example, the goal is to select the compositions and superpositions appropriately so that desired network responses (meant to implement a classifying function or nonlinear predictor, respectively) are achieved.

This leads to the problem of identifying the classes of functions that can be effectively realized by artificial neural networks. Similar problems are quite familiar and well studied in circuit theory and filter design where simple nonlinear devices are used to synthesize or approximate desired transfer functions. Thus, for example, a fundamental result in digital signal processing is the fact that digital filters made from unit delays and constant multipliers can approximate any continuous transfer function arbitrarily well. In this sense, the main result of this paper demonstrates that networks with only one internal layer and an arbitrary continuous sigmoidal nonlinearity enjoy the same kind of universality.

Requiring that finite linear combinations such as (1) exactly represent a given continuous function is asking for too much. In a well-known resolution of Hilbert's 13th problem, Kolmogorov showed that all continuous functions of n variables have an exact representation in terms of finite superpositions and compositions of a small number of functions of one variable [K], [L2]. However, the Kolmogorov represen tation involves different nonlinear functions. The issue of exact representability has been further explored in [DS] in the context of projection pursuit methods for statistical data analysis [H].

Our interest is in finite linear combinations involving the same univariate func tion. Moreover, we settle for approximations as opposed to exact representations. It is easy to see that in this light, (1) merely generalizes approximations by finite Fourier series. The mathematical tools for demonstrating such completeness prop erties typically fall into two categories: those that involve algebras of functions (leading to Stone-Weierstrass arguments [A]) and those that involve translation invariant subspaces (leading to Tauberian theorems [R2]). We give examples of each of these cases in this paper.

Our main result settles a long-standing question about the exact class of decision regions that continuous valued, single hidden layer neural networks can implement. Some recent discussions of this question are in [HLl], [START_REF] Huang | Neural Net and Traditional Classifiers[END_REF], [MSJ], and [WL] while [N] contains one of the early rigorous analyses. In [N] Nilsson showed that any set of M points can be partitioned into two arbitrary subsets by a network with one internal layer. There has been growing evidence through examples and special cases that such networks can implement more general decision regions but a general theory has been missing. In [MSJ] Makhoul et al. have made a detailed geometric analysis of �ome of the decisions regions that can be constructed exactly with a single layer. By contrast, our work here shows that any collection of compact, disjoint subsets of !R n can be discriminated with arbitrary precision. That result is contained in Theorem 3 and the subsequent discussion below.

A number of other current works are devoted to the same kinds of questions addressed in this paper. In [HSW] Hornik et al. show that monotonic sigmoidal functions in networks with single layers are complete in the space of continuous functions. Carroll and Dickinson [CD] show that the completeness property can be demonstrated constructively by using Radon transform ideas. Jones [J] out lines a simple constructive demonstration of completeness for arbitrary bounded sigmoidal functions. Funahashi [F] has given a demonstration involving Fourier analysis and Paley-Wiener theory. In earlier work [CJ, we gave a constructive mathematical proof of the fact that continuous neural networks with two hidden layers can approximate arbitrary continuous functions.

The main techniques that we use are drawn from standard functional analysis. The proof of the main theorem goes as follows. We start by noting that finite summations of the form (1) determine a subspace in the space of all continuous functions on the unit hypercube of !R n . Using the Hahn-Banach and Riesz Represen tation Theorems, we show that the subspace is annihilated by a finite measure. The measure must also annihilate every term in (1) and this leads to the necessary conditions ori u. All the basic functional analysis that we use can be found in [A], [R2] for example.

The organization of this paper is as follows. In Section 2 we deal with prelimi naries, state, and prove the major result of the paper. Most of the technical details of this paper are in Section 2. In Section 3 we specialize to the case of interest in neural network theory and develop the consequences. Section 4 is a discussion of other types of functions, u, that lead to similar results while Section 5 is a discussion and summary.

Main Results

Let In denote then-dimensional unit cube, [O, l] n . The space of continuous functions on In is denoted by C(ln) and we use II! II to denote the supremum (or uniform) norm of an f E C(Jn). In general we use I I • II to denote the maximum of a function on its domain. The space of finite, signed regular Borel measures on In is denoted by M(ln)• See [R2] for a presentation of these and other functional analysis construc tions that we use.

The main goal of this paper is to investigate conditions under which sums of the form C(ln) with respect to the supremum norm.

N G(x) = L a.iu(yJx + 8) j=l are dense in
Definition. We say that u is discriminatory if for a measureµ e M(Jn) r u(yT X + 0) dµ(x) = 0 Jr" for all y e IR" and 0 e IR implies that µ = 0.

Definition. We say that u is sigmoidal if u(t)--. {� as t--. +co, as t--co.

Theorem 1. Let u be any continuous discriminatory fu nction. Then fi nite sums of the fo rm

N G(x) = L ap(yJx + 0) (2)
j=l are dense in C(In). In other words, given any f e C(Jn) and e > 0, there is a sum, G(x), of the above fo rm, fo r which

I G(x) -f(x) I < e
fo r all x e In.

Proof. Let S c C(J") be the set of functions of the form G(x) as in (2). Clearly S is a linear subspace of C(J"). We claim that the closure of Sis all of C(J"). As�ume that the closure of S is not all of C(J"). Then the closure of S, say R, is a closed proper subspace of C(Jn). By the Hahn-Banach theorem, there is a bounded linear functional on C( J"), call it L, with the property that L :F 0 but L(R) = L(S) = 0.

By the Riesz Representation Theorem, this bounded linear functional, L, is of the form

L(h) = 1" h(x) dµ(x)
for someµ e M(J"), for all he C(J"). In particular, since u(yT x + 0) is in R for ally and 0, we must have that for ally and 0.

r u(yT X + 0) dµ(x) = 0
Jr"

However, we assumed that u was discriminatory so that this condition implies that µ = 0 contradicting our assumption. Hence, the subspace S must be dense in Now, we specialize this result to show that any continuous sigmoidal a of the form discussed before, namely as t-+ +co, as t-+ -co, is discriminatory. It is worth noting that, in neural network applications, continuous sigmoidal activation functions are typically taken to be monotonically increasing, but no monotonicity is required in our results.

Lemma 1. Any bounded, measurable sigmoidal function, a, is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

Proof. To demonstrate this, note that for any x, y, (}, cp we have Ji.

= r y(x) dµ(x) Ji.

= a(cp)µ(Il,,,6) + µ(H,,.6)

We now show that the measure of all half-planes being 0 implies that the measure µ itself must be 0. This would be trivial ifµ were a positive measure but here it is not.

Fix y. For a bounded measurable functon, h, define the linear functional, F, according to

F(h) = r h(yT x) dµ(x)
Ji.

and note that F is a bounded functional on L 00(1R) since µ is a finite signed measure. Leth be the indicator funcion of the interval (0, co) (that is, h(u) = 1 if u �(} and In particular, the bounded measurable functions s(u) = sin(m • u) and c(u

h(u) = 0 if u < lJ) so that F (h) = r h(y T x) dµ(x) = µ(
) = cos( m • u) give F(s + ic) = r cos(mTx) + i sin( mT x) dµ(x) = r exp(imT x) dµ(x) = 0 J� J� .
for all m. Thus, the Fourier transform ofµ is 0 and soµ must be zero as well [R2, p. 176]. Hence, q is discriminatory.

•

Application to Artificial Neural Networks

In this section we apply the previous results to the case of most interest in neural network theory. A straightforward combination of Theorem 1 and Lemma 1 shows that networks with one internal layer and an arbitrary continuous sigmoidal func tion can approximate continuous functions wtih arbitrary precision providing that no constraints are placed on the number of nodes or the size of the weights. This is Theorem 2 below. The consequences of that result for the approximation of decision functions for general decision regions is made afterwards.

Theorem 2. Let q be any continuous sigmoidal fu nction. Then finite sums of the fo rm

N G(x) = L aiq(yJx + (Ji )
J=l are dense in C(In). In other words, given any f E C(Jn) and e > 0, there is a sum, G(x), of the above fo rm, fo r which I G(x) -f(x)I < e fo r all x E In.

Proof. Combine Theorem 1 and Lemma 1, noting that continuous sigmoidals satisfy the conditions of that lemma.

•

We now demonstrate the implications of these results in the context of decision regions. Let m denote Lesbegue measure in In. Let P 1 , P2, ••• , Pk be a partition of In into k disjoint, measurable subsets of In. Define the decision function, f, according to f(x) =j if and only if x e P1•

This function f can be viewed as a decision function for classification: if f(x) = j, then we know that x E P 1 and we can classify x accordingly. The issue is whether such a decision function can be implemented by a network with a single internal layer. . We have the following fundamental result.

Theorem 3. Let u be a continuous sigmoidal fu nction. Let f be the decision f unc tion fo r any fi nite measurable partition of In. For any e > 0, there is a finite sum of the fo rm Proof. By Lusin's theorem [Rl], there is a continuous function, h, and a set D with m(D) � I -e so that h(x) = f(x) for x E D. Now his continuous and so, by Theorem 2, we can find a summation of the form of G above to satisfy I G (x) -h(x)I < e for all x E In. Then for x ED, we have

I G(x) -f( x)I = I G(x) -h(x)I < e.
• Because of continuity, we are always in the position of having to make some incorrect decisions about some points. This result states that the total measure of the incorrectly classified points can be made arbitrarily small. In light of this, Thoerem 2 appears to be the strongest possible result of its kind.

We can develop this approximation idea a bit more by considering the decision e so that f.(x) = 0 for points x farther than e away from D while J.(x) = 1 for x ED. Moreover, f.(x) is continuous in x.

By Theorem 2, find a G(x) as in (1) so that I G(x) -J.(x)I < t and use this Gas an approximate decision function: G(x) < t guesses that x E De while G(x) � t guesses that x ED. This decision procedure is correct for all x e D and for all x at a distance at least e away from D. If x is within e distance of D, its classification depends on the particular choice of G(x).

These observations say that points sufficiently far away from and points inside the closed decision region can be classified correctly. In contrast, Theorem 3 says that there is a network that makes the measure of points incorrectly classified as smatt as desired but does not guarantee their location.

Results for Other Activation Functions

In this section we discuss other classes of activation functions that have approxima tion properties similar to the ones enjoyed by continuous sigmoidals. Since these other examples are of somewhat less practical interest, we only sketch the corresponding proofs.

•

There is considerable interest in discontinuous sigmoidal functions such as hard limiters (u(x) = 1 for x � 0 and u(x) = 0 for x < 0). Discontinuous sigmoidal func tions are not used as often as continuous ones (because of the lack of good training algorithms) but they are of theoretical interest because of their close relationship to classical perceptrons and Gamba networks [MP].

Assume that u is a bounded, measurable sigmoidal function. We have an analog of Theorem 2 that goes as follows:

Theorem 4. Let u be bounded measurable sigmoidal fu nction. Then fi nite sums of the fo rm

N G(x) = L ap(yJx + 0 1 ) j= l
are dense in L1(/n). In other words, given any f e L1(Jn) and e > 0, there is a sum, G(x), of the above fo rm fo r which ll G -f llL' = f I G(x) -f(x)I dx <e .

In

The proof follows the proof of Theorems 1 and 2 with obvious changes such as replacing continuous functions by integrable functions and using the fact that L ""(Jn) is the dual .of L 1 Un). The notion of being discriminatory accordingly changes to the following: for h e L "'(Jn) the condition that

f u(yTx + O)h(x) dx =0
In for all y and 0 implies that h(x) = 0 almost everywhere. General sigmoidal functions are discriminatory in this sense as already seen in Lemma 1 because measures of the form h(x) dx belong to M(Jn).

Since convergence in L 1 implies convergence in measure [A], we have an analog of Theorem 3 that goes as follows:

Theorem 5. Let u be a general sigmoidal fu nction. Let f be the decision function fo r any fi nite measurable partition of In. For any e > 0, there is a finite sum of the form A number of other possible activation functions can be shown to have approxima tion properties similar to those in Theorem 1 by simple use of the Stone-Weierstrass theorem [A]. Those include the sine and cosine functions since linear combinations of sin(mt) and cos(mt) generate all finite trigonometric polynomials which are classically known to be complete in C(ln). Interestingly, the completeness of trigono metric polynomials was implicitly used in Lemma 1 when the Fourier transform's one-to-one mapping property (on distributions) was used. Another classical example is that of exponential functions, exp(mt), and the proof again follows from direct application of the Stone-Weierstrass theorem. Exponential activation functions were studied by Palm in [P] where their completeness was shown.

A whole other class of possible activation functions have completeness properties in L1(ln) as a result of the Wiener Tauberian theorem [R2]. For example, suppose that u is any L1(1R) function with nonzero integral. Then summations of the form

(1) are dense in L1(1R n

) as the following outline shows.

The analog of Theorem 1 carries through but we change C(ln) to L1(ln) and M(ln)

to the corresponding dual space L 00(ln). The analog of Theorem 3 holds if we can show that an integrable u with nonzero integral is discriminatory in the sense that

f u(yTx + O)h(x)dx =0
1.

(

) 3 
for all y and e implies that h = 0.

To do this we proceed as follows. As in Lemma 1, define the bounded linear functional, F, on L 1 (IR) by F(9) = r 9(y T x)h(x) dx.

Ji.

(Note that the integral exists since it is over In and h is bounded. Specifically, if 9 E L1 (IR), then 9(yT x) E L1 (Jn) for any y.)

Letting 98 •• (t) = u(st + 0), we see that F(9 e .• ) = f a ((sy) T x + O)h(x) dx = 0 1.

so that F annihilates every translation and scaling of 9o, 1 . Letf be the Fourier trans form off By standard Fourier transform arguments, 08,,(z) = exp(izO/s)O(z/s)/s.

Because of the scaling by s, the only z for which the Fourier transforms of all the 98,, can vanish is z = 0 but we are assuming that Jn u(t) dt = Oo. 1 (0) =F= 0. By the Wiener Tauberian theorem [R2], the subspace generated by the functions 98,s is dense in L 1 (IR). Since F(98,,) = 0 we must have that F = 0. Again, this implies that

F(exp(imt)) = f exp(imt)h(t) dt = 0 1.
for all m and so the Fourier transform of his 0. Thus h itself is 0. (Note that although the exponential function is not integrable over all of IR, it is integrable over bounded regions and since h has support in In, that is sufficient.) The use of the Wiener Tauberian theorem leads to some other rather curious activation functions that have the completeness property in L1(In). Consider the following activation function of n variables: a(x) = 1 if x lies inside a finite fixed rectangle with sides parallel to the axes in !R n and zero otherwise. Let U be an n x n orthogonal matrix and ye !R n

. Now a(Ux + y) is the indicator funciton of an arbitrarily oriented rectangle. Notice that no scaling of the rectangle is allowed only rigid-body motions in Euclidean space! We then have that summations of the form N L a.i a (Uix + Yi) j=l are dense in L 1 (1R"). This follows from direct application of the Wiener Tauberian theorem [R2] and the observation that the Fourier transform of a vanishes on a mesh in IR" that does not include the origin. The intersection of all possible rotations of those meshes is empty and so a together with its rotations and translations generates a space dense in L 1 (IR"). This last result is closely related to the classical Pompeiu Problem [BST] and using the results of [BST] we speculate that the rectangle in the above paragraph can be replaced by any convex set with a corner as defined in [BST].

Summary

We have demonstrated that finite superpositions of a fixed, univariate function that is discriminatory can uniformly approximate any continuous function of n real variables with support in the unit hypercube. Continuous sigmoidal functions of the type commonly used in real-valued neural network theory are discriminatory. This combination of results demonstrates that any continuous function can be uniformly approximated by a continuous neural network having only one internal, hidden layer and with an arbitrary continuous sigmoidal nonlinearity (Theorem 2). Theorem 3 and the subsequent discussion show in a precise way that arbitrary decision functions can be arbitrarily well approximated by a neural network with one internal layer and a continuous sigmoidal nonlinearity.

Table 1 summarizes the various contributions of which we are aware. This paper sigmoidal, ye IR", 9 e IR u(yTx + 9), u monotonic C(I.) [F], [HSW] sigmoidal, ye IR", 9 e IR u(yTx + 9), u C(I.) [J] sigmoidal, ye IR", 9 e IR u(yTx + 9), q E L'(IR) LI(/.) This paper J u(t) dt ,;. 0, ye IR", 9 e IR u(yT x + 9), u continuous L2(I.) [CD] sigmoidal, ye IR", 9 e IR u(Ux + y), U e IR""", L1(I.)

This paper y e IR", u indicator of a rectangle u(tx + y), t e IR, u e L1(1R") L1(1R")

Wiener Tauberian ye IR", J u(x) dx i' 0 theorem [R2] While the approximating properties we have described are quite powerful, we have focused only on existence. The important questions that remain to be answered deal with fe;isibility, namely how many terms in the summation (or equivalently, how many neural nodes) are required to yield an approximation of a given quality? What properties of the function being approximated play a role in determining the number of terms? At this point, we can only say that we suspect quite strongly that the overwhelming majority of approximation problems will require astronomical numbers of terms. This feeling is based on the curse of dimensionality that plagues multidimensional approximation theory and statistics. Some recent progress con cerned with the relationship between a function being approximated and the number of terms needed for a suitable approximation can be found in [MSJ] and [BH], [BEHW], and [VJ for related problems. Given the conciseness of the results of this paper, we believe that these avenues of research deserve more attention.
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  �i • This demonstrates that sums of the form N G(x) = L ap(yJx + 01) i"'l are dense in C(Jn) providing that u is continuous and discriminatory. The argument used was quite general and can be applied in other cases as discussed in Section 4.

  a(A.(yTx + 8) + cp) -+ 0 for yTx + (} < 0 as A.-+ +co, { -+ 1 for yTx + (} > 0 as A.-+ +co, =a(cp) for yTx+O=O for allA.. Thus, the functions aA(x) = a(A.(yT x + 0) + cp) converge pointwise and as A.-+ +co. for yT x + (} > 0, for yTx+8<0, for yTx + (} = 0 Let Il,,.6 be the hyperplane defined by {xJyTx + (} = 0} and let H,,,6 be the open half-space defined by {xJyT x + (} > O}. Then by the Lesbegue Bounded Convergence Theorem, we have that for all cp, (}, y. 0 = r <TA(x) dµ(x)

  Il,, -e> + µ( H,, -e) = 0 . Jin Similarly, F(h) = 0 if h is the indicator function of the open interval (lJ, oo). By linearity, F(h) = 0 for the indicat o r function of any interval and hence for any simple function (that is, sum of indicator functons of intervals). Since simple functons are dense in L '°(IR) (see p. 90 of [A]) F = 0.

NG

  (x) = L a. 1 u(yJx + 8) j=l and a set D c Jn, so that m(D) � 1e and I G(x) -f( x) I < e fo r xeD.

  problem for a single closed set D c In. Then f( x) = 1 if x E D and f(x) = 0 otherwise; f is the indicator function of the set D c In. Suppose we wish to find a summation of the form (1) to approximate this decision function. Let .1(x, D) = min{lx -y l , y ED} so that .1(x, D) is a continuous function of x. Now set f.( ) _ {o e -.1(x, D)} ,x -max , ----

NG

  (x) = L aiu(yJx + Oi) j=l and a set D c: In, so that m(D) � 1 -e and I G(x) -f(x) I < e fo r xeD.
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