

High energy PIXE: new K-shell ionization cross-section

Q. Mouchard¹, C. Koumeir^{1,2}, A. Guertin¹, F. Haddad^{1,2}, F. Ralite^{1,3}, N. Servagent¹ and V. Métivier¹

1 – CNRS, IMT Atlantique, Nantes Université, SUBATECH, F-44000 Nantes, France

2 - GIP ARRONAX, Saint-Herblain, France

3 – Institut Bergonié, Bordeaux, France

29/06/2022

Why new measures?

PRISMA

 \bigcirc 29/06/2022 Physics of Radiation InteractionS with Matter and Applications ARRONAX

HE-PIXE applications with medical accelerators

$\circ\,$ Radioisotope production facility:

Trace elements -> natural and artificial sodalite - protons 68 MeV D. Ragheb, J. Radioanal. Nucl. Chem. (2014) 302:895-901

See new applications at ARRONAX (A. Gillon P3-CH-28 and P3-CH-36)

○ Proton Therapy Centre:

Multi-layer -> painting « Judith with the head of Holofernes » - protons 68 MeV A. Denker et al., Nucl. Instr. Meth. in Phys. Res. A 580 (2007), 457-461

➤ Depth → Gold Egyptian scarab – protons 68 MeV
A. Denker et al., Nucl. Instr. Meth. in Phys. Res. B 213 (2004), 677-682

29/06/2022

Bazalova-Carter et al., Med. Phys. 42 (2) 2015

➔ Need to know the ionization cross-section

Experimental set-up: Arronax Cyclotron

For translational research in nuclear medicine > Time dedicated to non-destructive analysis

https://www.arronax-nantes.fr/

Beams	Accelerated particles	Energy range (MeV)	Current (µA)
Protons	H-	30 – 70	1 fA – 350 μA (x2)
	HH⁺	17,5	< 50
Deutons	D-	15 – 35	< 50
α -particles	He ²⁺	70	< 35

tagne-Pays de la Loir

Ecole Mines-Télécom

UNIVERSITÉ DE NANTES

29/06/2022

X-ray production cross-section

Experimental set-up: X-ray detectors

European Conference on X-ray Spectrometry Bruges, Belgium 26 June - 1 July EXRS-2022

M. Hazim thesis, http://www.theses.fr/2017NANT4100

29/06/2022

Experimental set-up: Measurement of the number of X-rays detected

Eliminate parasitic peaks

Background noise (area under the peaks):

Iterative method (step-approx. SNIP)

R. Shi et al., Nucl. Instr. Meth. in Phys. Res. A 885 (2018), 60-66

Number of X-ray:

Fitting with a gaussian function

29/06/2022

Ionization / X-ray production cross-section

Fluorescence yield

Average of literature data weighted by their uncertainties

$$\omega_{K} = \frac{1}{\sum_{i=1}^{N} \left(\frac{1}{\Delta \omega_{i}}\right)^{2}} \sum_{i=1}^{N} \left(\frac{\omega_{i}}{(\Delta \omega_{i})^{2}}\right)$$

EXRS-2022 Q. Mouchard

29/06/2022

*Realized at the Arronax cyclotron with an HPGe detector

9

29/06/2022

29/06/2022

*Realized at the Arronax cyclotron with an HPGe detector

11

29/06/2022

EXRS-2022 Q. Mouchard

UNIVERSITÉ DE NANTES

29/06/2022 EXRS-2

29/06/2022 EXRS-2022

Universal ionization cross-section

Titanium, chromium and Copper

Comparaison with the empirical fit

- \circ Titanium and chromium:
 - Good agreement with the experimental data
- Copper:
 - > Lack of data (around the maximum ionisation crosssection and at high energy) \rightarrow improved fit

Comparaison with the empirical fit

Fit in accordance with the experimental data

➤ Lack of data (10 – 30 MeV and high energy) → improved fit

29/06/2022

Conclusion and outlook

- new measurements at Arronax energies (15 to 68 MeV) for Ti, Cr, Cu, Mo and Ag
 - ✓ Agreement between the different detectors (SDD, CdTe and HPGe)
 - ✓ Agreement between the different targets
 - \checkmark Consistent with other available data
- Fitting using the universal ionisation cross section:
 - ✓ Validated for titanium and chromium at energies up to 70 MeV
- \Box New measures \rightarrow constrain the empirical model:
 - $\circ~$ between 10 and 30 MeV
 - o at more than 70 MeV
 - $\circ~$ for other elements

29/06/2022

