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BLOW-UP OF 2D ATTRACTIVE BOSE-EINSTEIN CONDENSATES AT THE CRITICAL ROTATIONAL SPEED

We study the ground states of a 2D focusing non-linear Schrödinger equation with rotation and harmonic trapping. When the strength of the interaction approaches a critical value from below, the system collapses to a profile obtained from the optimizer of a Gagliardo-Nirenberg interpolation inequality. This was established before in the case of fixed rotation frequency. We extend the result to rotation frequencies approaching, or even equal to, the critical frequency at which the centrifugal force compensates the trap. We prove that the blow-up scenario is to leading order unaffected by such a strong deconfinement mechanism. In particular the blow-up profile remains independent of the rotation frequency.

INTRODUCTION

Bose-Einstein condensates [START_REF] Cornell | Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments[END_REF][START_REF] Ketterle | When atoms behave as waves: Bose-Einstein condensation and the atom laser[END_REF] form a remarkable phase of matter where quantum effects can be spectacularly observed on a mesoscopic scale. Indeed, a single quantum wave-function being macroscopically occupied, its quantum coherence becomes accessible e.g. to imaging techniques. The flexibility of modern experiments with dilute atomic gases are also remarkable [START_REF] Aftalion | Vortex patterns in Bose Einstein condensates[END_REF][START_REF] Bloch | Many-body physics with ultracold gases[END_REF][START_REF] Dalibard | Artificial gauge potentials for neutral atoms[END_REF][START_REF] Cooper | Rapidly rotating atomic gases[END_REF][START_REF] Pitaevskii | -Einstein Condensation[END_REF][START_REF] Pethick | Bose-Einstein Condensation of Dilute Gases[END_REF], allowing to access reduced dimensionalities (2D or even 1D), to tune the interactions (allowing for repulsion or attraction between particles) and to mimic external magnetic fields either by rotation or by coupling internal degrees of freedom to optical fields.

In this note we consider such a combination of effects. Namely we are interested in 2D attractive BECs, where the contact interactions will destabilize the gas towards collapse if they are too strong. The resulting collapse of ground states [START_REF] Guo | Symmetry breaking and collapse in Bose-Einstein condensates with attractive interactions[END_REF] turns out to be unaffected by the addition of a moderate rotation of the gas [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF] (see also [START_REF] Eychenne | On the stability of 2D dipolar Bose-Einstein condensates[END_REF] for dipolar gases). A fast rotation may however destabilize the gas towards expansion, because the centrifugal force fights the confining potential. These two effects might compete, but we prove that the instability towards collapse always dominates, leading to a blow-up scenario independent of the rotation frequency. This answers a question raised in [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF]Remark 2.2].

We shall consider the minimization problem

𝐸 NLS Ω,𝑎 ∶= inf {  NLS Ω,𝑎 (𝜙) ∶ 𝜙 ∈ 𝑋(ℝ 2 ) ∶ ‖𝜙‖ 𝐿 2 = 1 } , ( 1.1) 
where  NLS Ω,𝑎 is the nonlinear Schrödinger (NLS) energy functional with attractive interactions

 NLS Ω,𝑎 (𝜙) = ∫ ℝ 2 |∇𝜙(𝑥)| 2 d𝑥 + ∫ ℝ 2 |𝑥| 2 |𝜙(𝑥)| 2 d𝑥 + 2Ω⟨𝜙, 𝐿𝜙⟩ - 𝑎 2 ∫ ℝ 2 |𝜙(𝑥)| 4 d𝑥 = ∫ ℝ 2 |(-𝑖∇ + Ω𝑥 ⟂ )𝜙(𝑥))| 2 d𝑥 + (1 -Ω 2 ) ∫ ℝ 2 |𝑥| 2 |𝜙(𝑥)| 2 d𝑥 - 𝑎 2 ∫ ℝ 2 |𝜙(𝑥)| 4 d𝑥.
Here 𝑎 > 0 describes the strength of interactions, Ω ≥ 0 is the rotation frequency, 𝑥 ⟂ = (-𝑥 2 , 𝑥 1 ), and

𝐿 = -𝑖𝑥 ∧ ∇ = 𝑖(𝑥 2 𝜕 1 -𝑥 1 𝜕 2 )
the angular momentum operator. The space 𝑋(ℝ 2 ) in (1.1) is a functional space in which the energy functional  NLS Ω,𝑎 is well-defined, see below.

In the case of high rotational speed Ω > 1, it was proved in [START_REF] Bao | symmetric and central vortex states in rotating Bose-Einstein condensates[END_REF] that there are no ground states for 𝐸 NLS Ω,𝑎 for all 𝑎 > 0. Indeed, when the rotational speed is larger than the trapping frequency, the centrifugal force caused by the rotation is stronger than the centripetal force created by the harmonic trap and the gas flies apart. On the other hand, the condensate remains stable when Ω < 1. In this case, one can prove the norm equivalence

‖∇𝜙‖ 2 𝐿 2 + ‖𝑥𝜙‖ 2 𝐿 2 + 2Ω⟨𝐿𝜙, 𝜙⟩ ≃ ‖∇𝜙‖ 2 𝐿 2 + ‖𝑥𝜙‖ 2 𝐿 2 . (1.2)
It is then clear that the energy functional is well-defined on the weighted Sobolev space Σ(ℝ 2 ) ∶= 𝐻 1 (ℝ 2 ) ∩ 𝐿 2 (ℝ 2 , |𝑥| 2 d𝑥), and hence one can take 𝑋(ℝ 2 ) ≡ Σ(ℝ 2 ). Using the compact embedding Σ(ℝ 2 ) ⊂ 𝐿 𝑟 (ℝ 2 ) for all 𝑟 ∈ [2, ∞), one can easily show the existence of a ground state for 𝐸 NLS Ω,𝑎 with 0 < 𝑎 < 𝑎 * (see e.g., [START_REF] Guo | Symmetry breaking and collapse in Bose-Einstein condensates with attractive interactions[END_REF] in the case Ω = 0). Here 𝑎 * = ‖𝑄‖ 2 𝐿 2 with 𝑄 the unique (up to translations) positive solution of the elliptic equation -Δ𝑄 + 𝑄 -𝑄 3 = 0 in ℝ 2 .

(1.

3)

The constant 𝑎 * also appears in the sharp Gagliardo-Nirenberg inequality

𝑎 * 2 ∫ ℝ 2 |𝜙(𝑥)| 4 d𝑥 ≤ ( ∫ ℝ 2 |∇𝜙(𝑥)| 2 d𝑥 ) ( ∫ ℝ 2 |𝜙(𝑥)| 2 d𝑥
) , ∀𝜙 ∈ 𝐻 1 (ℝ 2 ).

(1.4)

The case of critical rotational speed Ω = 1 is special. The situation becomes more subtle since the centrifugal force caused by the rotation is exactly compensated by the harmonic trap. In particular, the norm equivalence (1.2) is no longer available. Thus working on Σ(ℝ 2 ) does not help to find ground states for 𝐸 NLS 1,𝑎 . In this case, we study the minimization (1.1) on a larger functional space of magnetic Sobolev functions, namely

𝐻 1 𝑥 ⟂ (ℝ 2 ) ∶= { 𝜙 ∈ 𝐿 2 (ℝ 2 ) ∶ (-𝑖∇ + 𝑥 ⟂ )𝜙 ∈ 𝐿 2 (ℝ 2 ) } ,
hence we set 𝑋(ℝ 2 ) = 𝐻 1 𝑥 ⟂ (ℝ 2 ) when Ω = 1. Note that by the Cauchy-Schwarz inequality, we have Σ(ℝ 2 ) ⊂ 𝐻 1 𝑥 ⟂ (ℝ 2 ), but Σ(ℝ 2 ) ⊊ 𝐻 1 𝑥 ⟂ (ℝ 2 ) (for the latter see e.g., [START_REF] Dinh | Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed[END_REF]Remark 2.1]). By making use of a concentrationcompactness argument adapted to magnetic Sobolev spaces (see e.g., [START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field[END_REF]), it was proved in [START_REF] Dinh | Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed[END_REF][START_REF] Guo | Existence and asymptotic behavior of ground states for rotating bose-einstein condensates[END_REF] that 𝐸 NLS 1,𝑎 has at least one ground state provided that 0 < 𝑎 < 𝑎 * . By the standard Gagliardo-Nirenberg inequality (1.4) and the diamagnetic inequality (see e.g., [28,Theorem 7.21])

|∇|𝜙|(𝑥)| ≤ |(-𝑖∇ + 𝑥 ⟂ )𝜙(𝑥)|, a.e 𝑥 ∈ ℝ 2 , ∀𝜙 ∈ 𝐻 1 𝑥 ⟂ (ℝ 2 ) (1.5)
we also have the following magnetic Gagliardo-Nirenberg inequality

𝑎 * 2 ∫ ℝ 2 |𝜙(𝑥)| 4 d𝑥 ≤ ( ∫ ℝ 2 |(-𝑖∇ + 𝑥 ⟂ )𝜙(𝑥)| 2 d𝑥 ) ( ∫ ℝ 2 |𝜙(𝑥)| 2 d𝑥 ) , ∀𝜙 ∈ 𝐻 1 𝑥 ⟂ (ℝ 2 ). (1.6)
The main difference between (1.4) and (1.6) is that there is no optimizer for (1.6) while 𝑄 in (1.3) is the unique (up to translations and dilations) optimizer for (1.4). Thanks to (1.6), the energy 𝐸 NLS Ω,𝑎 is non-negative for all 0 < 𝑎 ≤ 𝑎 * .

1.1. Collapse in NLS theory. In the sequel we are interested in the blow-up behavior of ground states for 𝐸 NLS Ω,𝑎 when 𝑎 approaches 𝑎 * . Our first result concerns the blow-up limit with the critical rotation speed Ω = 1. Theorem 1.1 (Collapse of NLS ground states at the critical rotational speed). We have, as 𝑎 ↗ 𝑎 * ,

𝐸 NLS 1,𝑎 = (𝑎 * -𝑎) 1∕2 ( 2 ‖𝑥𝑄 0 ‖ 𝐿 2 𝑎 1∕2 *
+ 𝑜( 1)

) (1.7)
where 

𝑄 0 = ‖𝑄‖ -1 𝐿 2 𝑄.
∩ 𝐿 ∞ (ℝ 2 ): lim 𝑛→∞ (𝑎 * -𝑎 𝑛 ) 1∕4 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 𝜙 𝑛 ⎛ ⎜ ⎜ ⎝ (𝑎 * -𝑎 𝑛 ) 1∕4 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 𝑥 + 𝑥 𝑛 ⎞ ⎟ ⎟ ⎠ exp ⎛ ⎜ ⎜ ⎝ 𝑖 (𝑎 * -𝑎 𝑛 ) 1∕4 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 𝑥 ⟂ 𝑛 ⋅ 𝑥 + 𝑖𝜃 𝑛 ⎞ ⎟ ⎟ ⎠ = 𝑄 0 (𝑥). (1.8) 
As an application of this result, we have the following blow-up behavior of ground states when Ω ↗ 1 and 𝑎 ↗ 𝑎 * at the same time.

Corollary 1.2 (Collapse at subcritical rotational speed).

For any sequence {Ω 𝑛 } 𝑛 , {𝑎 𝑛 } 𝑛 satisfying Ω 𝑛 ↗ 1 and 𝑎 𝑛 ↗ 𝑎 * , and any ground state 𝜙 𝑛 for 𝐸 NLS Ω 𝑛 ,𝑎 𝑛 , there exists a sequence {𝜃 𝑛 } 𝑛 ⊂ [0, 2𝜋) such that the following convergence holds strongly in 𝐻 1 

∩ 𝐿 ∞ (ℝ 2 ): lim 𝑛→∞ (𝑎 * -𝑎 𝑛 ) 1∕4 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 𝜙 𝑛 ⎛ ⎜ ⎜ ⎝ (𝑎 * -𝑎 𝑛 ) 1∕4 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 𝑥 ⎞ ⎟ ⎟ ⎠ 𝑒 𝑖𝜃 𝑛 = 𝑄 0 (𝑥).
(1.9)

Remark 1.1.

1. The convergences of energy and of ground states were proved by Guo and Seiringer [START_REF] Guo | Symmetry breaking and collapse in Bose-Einstein condensates with attractive interactions[END_REF] when Ω = 0. These convergences were extended to the case 0 < Ω < 1 fixed by Lewin, Nam, and the third author [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF] (see also further works in [START_REF] Guo | Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials[END_REF][START_REF] Guo | Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates[END_REF][START_REF] Deng | On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions[END_REF]). In [START_REF] Guo | The nonexistence of vortices for rotating bose-einsteing condensates with attractive interactions[END_REF] it is even proved that a fixed rotation rate has no effect at any order. Theorem 1.1 shows that the energy convergence found remains valid in the case of critical rotational speed Ω = 1, at least to leading order. This is noteworthy because the trapping potential, which sets the length-scale of the blow-up behavior, is compensated by the centrifugal force. 2. The convergence of ground states however has to be stated differently from [START_REF] Guo | Symmetry breaking and collapse in Bose-Einstein condensates with attractive interactions[END_REF][START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF]. The model is translation-invariant for Ω = 1 and thus ground states converge only modulo a magnetic translation (namely, a translation decorated by the suitable phase making it commute with the magnetic Laplacian see e.g. [START_REF] Périce | Multiple landau level filling for a large magnetic field limit of 2d fermions[END_REF] and references therein). 3. The only effect of the magnetic/rotation field is to set the blow-up length-scale (see the sketch of proof below). This is comparable to the positive particle mass 𝑚 > 0 in the Hartree-type and Thomas-Fermi-type models of stars [START_REF] Guo | Ground states of pseudo-relativistic boson stars under the critical stellar mass[END_REF][START_REF] Nguyen | On blow-up profile of ground states of boson stars with external potential[END_REF][START_REF] Nguyen | Many-body blow-up profile of boson stars, with external potentials[END_REF][START_REF] Nguyen | Blow-up profile of neutron stars in the Chandrasekhar theory[END_REF][START_REF] Nguyen | Blow-up profile of neutron stars in the Hartree-Fock-Bogoliubov theory[END_REF]. 4. Our blow-up result, when Ω ↗ 1 at the same time as 𝑎 ↗ 𝑎 * , answers a question raised in [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF]Remark 2.2]. In this situation, although the centrifugal force almost compensates the trapping potential, the small residual trapping favors blow-up at the center of the trap. Hence there is no need for a magnetic translation and the ground state convergence is completely similar to the case 0 ≤ Ω < 1 fixed.

Let us briefly describe the strategy of the proof. To prove Theorem 1.1, we first show that the sequence of ground states {𝜙 𝑛 } 𝑛 for 𝐸 NLS 1,𝑎 𝑛 blows up in the sense that

𝜀 𝑛 ∶= ‖∇|𝜙 𝑛 |‖ -1 𝐿 2 → 0 as 𝑛 → ∞.
(1.10)

The blow-up length is then set by 𝜀 𝑛 (whose precise asymptotic behavior is not known at this point) and we shall show that 𝜑 𝑛 (𝑥) ∶= 𝜀 𝑛 𝜙 𝑛 (𝜀 𝑛 𝑥 + 𝑥 𝑛 )𝑒 𝑖𝜀 𝑛 𝑥 ⟂ 𝑛 ⋅𝑥+𝑖𝜃 𝑛 → 𝑄 0 (𝑥) strongly in 𝐻 1 (ℝ 2 ), i.e. there is convergence modulo a magnetic translation of vector {𝑥 𝑛 } 𝑛 ⊂ ℝ 2 and the choice of a constant phase {𝜃 𝑛 } 𝑛 ⊂ [0, 2𝜋). To prove this, we rely on a property of the Lagrange multiplier associated to 𝜙 𝑛 together with the local boundedness of sub-solutions obtained by analyzing the corresponding Euler-Lagrange equation. Thanks to the non-degeneracy of 𝑄, we then prove that the imaginary part of 𝜑 𝑛 is small in 𝐻 1 -norm. This implies that the rotation acts on 𝜑 𝑛 only as a quadratic external potential. This effectively sets a length-scale, and we next prove by matching energy lower and upper bounds that the blow-up length behaves like

(𝑎 * -𝑎 𝑛 ) 1∕4 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 .
Hence we obtain the energy convergence (1.7). Finally, the 𝐿 ∞ -convergence of ground states follows from 𝐻 1 -convergence and 𝐻 2 -boundedness deduced from the variational equation. . At this point, the conclusion follows directly from a result proved in [25, Section 3].

1.2. Collapse in the mean-field limit. The focusing NLS functional (1.1) is commonly used to predict the collapse of an attractive system, but it should be seen as an effective, mean-field model [START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF]. It is of interest to see whether the mean-field and blow-up limits can be exchanged as in [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF]. Based on Theorem 1.1 and Corollary 1.2, we give a positive answer to this question, starting from many-body quantum mechanics.

In this framework, a Bose gas with an attractive interaction is described by the 𝑁-particle Hamiltonian

𝐻 Ω,𝑎,𝑁 = 𝑁 ∑ 𝑗=1 ( -Δ 𝑥 𝑗 + |𝑥 𝑗 | 2 -2Ω𝐿 𝑥 𝑗 ) - 𝑎 𝑁 -1 ∑ 1≤𝑖<𝑗≤𝑁 𝑤 𝑁 (𝑥 𝑖 -𝑥 𝑗 ), (1.11) 
acting on ℌ 𝑁 ∶= 𝐿 2 sym ((ℝ 2 ) 𝑁 ). As is customary [START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF], the two-body interaction 𝑤 𝑁 is chosen in the form

𝑤 𝑁 (𝑥) = 𝑁 2𝛽 𝑤(𝑁 𝛽 𝑥) (1.12)
for a fixed parameter 𝛽 > 0 and a fixed function 𝑤 satisfying

𝑤(𝑥) = 𝑤(-𝑥) ≥ 0, (1 + |𝑥|)𝑤, ŵ ∈ 𝐿 1 (ℝ 2 ), ∫ ℝ 2 𝑤(𝑥)d𝑥 = 1. (1.13)
We are interested in the large-𝑁 behavior of the ground state energy per particle of 𝐻 Ω,𝑎,𝑁 , namely

𝐸 QM Ω,𝑎 (𝑁) ∶= 𝑁 -1 inf Φ 𝑁 ∈ℌ 𝑁 ,‖Φ 𝑁 ‖=1 ⟨Φ 𝑁 , 𝐻 Ω,𝑎,𝑁 Φ 𝑁 ⟩, (1.14) 
and the associated eigenstates of 𝐻 Ω,𝑎,𝑁 . When Ω = 1, the Hamiltonian 𝐻 1,𝑎,𝑁 is magnetic translation invariant so it probably has no discrete spectrum (see e.g., [START_REF] Avron | Separation of center of mass in homogeneous magnetic fields[END_REF]Proposition 5.4] or a discussion before (1.21) in [START_REF] Lieb | The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics[END_REF] for a similar model of stars). In the following, we therefore assume that 0 ≤ Ω < 1 and 0 < 𝑎 < 𝑎 * . We will consider the limit where 𝑎 = 𝑎 𝑁 ↗ 𝑎 * at the same time as Ω = Ω 𝑁 ↗ 1 when 𝑁 → ∞. In that case, the NLS ground states blow up at the origin to the function 𝑄 0 , as showed in Corollary 1.2. We will prove that the many-body ground states condense fully on 𝑄 0 . As usual, the convergence of ground states is formulated using 𝑘-particles reduced density matrices, defined for any Φ 𝑁 ∈ ℌ 𝑁 by a partial trace

𝛾 (𝑘) Φ 𝑁 ∶= Tr 𝑘+1→𝑁 |Φ 𝑁 ⟩⟨Φ 𝑁 |.
Equivalently, 𝛾 (𝑘) Φ 𝑁

is the trace class operator on ℌ 𝑘 with kernel

𝛾 (𝑘) Φ 𝑁 (𝑥 1 , ..., 𝑥 𝑘 ; 𝑦 1 , ..., 𝑦 𝑘 ) = ∫ ℝ 2(𝑁-𝑘) Φ 𝑁 (𝑥 1 , ..., 𝑥 𝑘 , 𝑍)Φ 𝑁 (𝑦 1 , ..., 𝑦 𝑘 , 𝑍)d𝑍.
Bose-Einstein condensation is properly expressed by the convergence in trace norm

lim 𝑁→∞ Tr | | | 𝛾 (𝑘) Φ 𝑁 -|𝜙 ⊗𝑘 ⟩⟨𝜙 ⊗𝑘 | | | | = 0, ∀𝑘 ∈ ℕ.
We have the following result.

Theorem 1.3 (Collapse and condensation of the many-body ground states).

Let 0 < 𝛽 < 1∕2 be fixed and

𝑎 = 𝑎 𝑁 = 𝑎 * -𝑁 -𝛼 with 0 < 𝛼 < min { 4 5 𝛽, 2(1 -2𝛽) } .
Then for every 0 ≤ Ω < 1 we have, as 𝑁 → ∞,

𝐸 QM Ω,𝑎 𝑁 (𝑁) = 𝐸 NLS Ω,𝑎 𝑁 + 𝑜 ( 𝐸 NLS Ω,𝑎 𝑁 ) = (𝑎 * -𝑎 𝑁 ) 1∕2 ( 2 ‖𝑥𝑄 0 ‖ 𝐿 2 𝑎 1∕2 * + 𝑜(1)
) .

(1.15)

Assume in addition that

Ω = Ω 𝑁 = 1 -𝑁 -𝜈 with 0 < 𝜈 < min { 1 -2𝛽 - 𝛼 2 , 𝛽 - 5𝛼 4 
} .

Let Φ 𝑁 be a ground state for 𝐸 QM Ω 𝑁 ,𝑎 𝑁 (𝑁). Then we have

lim 𝑁→∞ Tr | | | 𝛾 (𝑘) Φ 𝑁 -|𝑄 ⊗𝑘 𝑁 ⟩⟨𝑄 ⊗𝑘 𝑁 | | | | = 0 (1.16)
for all 𝑘 ∈ ℕ, where

𝑄 𝑁 (𝑥) = 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 (𝑎 * -𝑎 𝑁 ) 1∕4 𝑄 0 ⎛ ⎜ ⎜ ⎝ 𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 (𝑎 * -𝑎 𝑁 ) 1∕4 𝑥 ⎞ ⎟ ⎟ ⎠ . Remark 1.2.
This shows that a result found in [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF] remains valid when Ω ↗ 1 slower than 𝑎 ↗ 𝑎 * ( [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF] only deals with 0 ≤ Ω < 1 fixed). The method is the same as in [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF]. The energy estimates do not depend on the rotation parameter. In fact, we also obtain (1.15) for Ω = 1. Furthermore, the convergence of the manybody ground states follows from that of the approximate NLS ground states. In the case Ω 𝑁 ↗ 1, under the additional assumption on the convergence speed of Ω 𝑁 in Theorem 1. 

COLLAPSE OF THE NLS GROUND STATES

In this section we study the limiting behavior of ground states for (1.1) when 𝑎 approaches 𝑎 * from below. We first deal with the critical speed Ω = 1. The case Ω ↗ 1 will be given in the end of this section. We have

2‖𝜙‖ 2 𝐿 2 ≤ ‖∇ 𝑥 ⟂ 𝜙‖ 2 𝐿 2 , ∀𝜙 ∈ 𝐻 1 𝑥 ⟂ (ℝ 2 )
with equality achieved e.g. by

𝜙(𝑥) = √ 1 𝜋 𝑒 -|𝑥| 2 2 .
This is a consequence of Landau's well-known diagonalization of ( ∇ 𝑥 ⟂ ) 2 (see e.g., [START_REF] Rougerie | Holomorphic quantum Hall states in higher Landau levels[END_REF]).

Lemma 2.2 (Compactness modulo translations).

Let {𝜙 𝑛 } 𝑛 be a sequence of functions satisfying

inf 𝑛≥1 ‖𝜙 𝑛 ‖ 𝐿 4 ≥ 𝐶.
for some positive constant 𝐶 > 0. We have the following weak convergences:

• If sup 𝑛≥1 ‖𝜙 𝑛 ‖ 𝐻 1 < ∞, then there exist 𝜙 ∈ 𝐻 1 (ℝ 2 )∖{0} and a sequence {𝑥 𝑛 } 𝑛 ⊂ ℝ 2 such that up to a subsequence, 𝜙 𝑛 (𝑥 + 𝑥 𝑛 ) ⇀ 𝜙(𝑥) weakly in 𝐻 1 (ℝ 2
) and almost everywhere in ℝ 2 .

• If sup 𝑛≥1 ‖𝜙 𝑛 ‖ 𝐻 1 𝑥 ⟂ < ∞, then there exist φ ∈ 𝐻 1 𝑥 ⟂ (ℝ 2 )∖{0} and a sequence {𝑦 𝑛 } 𝑛 ⊂ ℝ 2 such that up to a subsequence, 𝑒 𝑖𝑦 ⟂ 𝑛 ⋅𝑥 𝜙 𝑛 (𝑥 + 𝑦 𝑛 ) ⇀ φ(𝑥) weakly in 𝐻 1 𝑥 ⟂ (ℝ 2
) and almost everywhere in ℝ 2 . Here 𝜙 𝑛 → 𝜙 weakly in 𝐻 1 𝑥 ⟂ (ℝ 2 ) means that

∫ (∇ 𝑥 ⟂ 𝜙 𝑛 -∇ 𝑥 ⟂ 𝜙) ⋅ ∇ 𝑥 ⟂ 𝜑𝑑𝑥 + ∫ (𝜙 𝑛 -𝜙)𝜑𝑑𝑥 → 0, ∀𝜑 ∈ 𝐻 1 𝑥 ⟂ (ℝ 2 ).
Proof. The proof of this Lemma can be found in [START_REF] Lieb | On the lowest eigenvalue of the Laplacian for the intersection of two domains[END_REF]Lemma 6] for the 𝐻 1 -weak convergence and [13, Lemma 2.6] for the 𝐻 1 𝑥 ⟂ -weak convergence. □

Lemma 2.3 (Energy upper bound).

Let {𝑎 𝑛 } 𝑛 be a positive sequence satisfying 𝑎 𝑛 ↗ 𝑎 * as 𝑛 → ∞. Then, for every 0 ≤ Ω ≤ 1, we have

lim 𝑛→∞ 𝐸 NLS Ω,𝑎 𝑛 = 𝐸 NLS Ω,𝑎 * = 0.
More precisely,

lim sup 𝑛→∞ 𝐸 NLS Ω,𝑎 𝑛 (𝑎 * -𝑎 𝑛 ) 1∕2 ≤ 2 ‖𝑥𝑄 0 ‖ 𝐿 2 𝑎 1∕2 * . (2.1)
Proof. It is obvious that 𝐸 NLS Ω,𝑎 𝑛 ≥ 0, by the magnetic Gagliardo-Nirenberg inequality (1.6). On the other hand, let 𝑄 be the unique positive radial solution of (1.3). By Pohozaev's identity, we have

‖∇𝑄‖ 2 𝐿 2 = 1 2 ‖𝑄‖ 4 𝐿 4 = ‖𝑄‖ 2 𝐿 2 = 𝑎 * . Denote 𝑄 0 = ‖𝑄‖ -1 𝐿 2 𝑄. Then ‖∇𝑄 0 ‖ 2 𝐿 2 = 𝑎 * 2 ‖𝑄 0 ‖ 4 𝐿 4 = ‖𝑄 0 ‖ 2 𝐿 2 = 1 By the variational principle, we have 𝐸 NLS Ω,𝑎 𝑛 ≤  NLS Ω,𝑎 𝑛 (𝜆𝑄 0 (𝜆⋅)) = 𝜆 2 ( 1 - 𝑎 𝑛 𝑎 * ) + 𝜆 -2 ‖𝑥𝑄 0 ‖ 2 𝐿 2 (2.2)
for all 𝜆 > 0. Here we have used the fact that ⟨𝐿(𝜆𝑄 0 (𝜆⋅)), 𝜆𝑄 0 (𝜆⋅)⟩ = 0 since 𝑄 0 is real-valued, where we recall that 𝐿 = 𝑖(𝑥 2 𝜕 1 -𝑥 1 𝜕 2 ). Optimizing over 𝜆, we get 

𝐸 NLS Ω,𝑎 𝑛 ≤ 2 ‖𝑥𝑄 0 ‖ 𝐿 2 𝑎 1∕2 * (𝑎 * -𝑎 𝑛 ) 1∕2 ( 
< ‖𝜙‖ 2 𝐿 2 ≤ lim inf 𝑛→∞ ‖ φ𝑛 ‖ 2 𝐿 2 = lim inf 𝑛→∞ ‖𝜙 𝑛 ‖ 2 𝐿 2 = 1. If ‖𝜙‖ 2 𝐿 2 < 1,
then by the magnetic translation invariance, we have

𝐸 NLS 1,𝑎 𝑛 =  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) =  NLS 1,𝑎 𝑛 ( φ𝑛 ) ≥  NLS 1,𝑎 * ( φ𝑛 ) =  NLS 1,𝑎 * (𝜙) +  NLS 1,𝑎 * ( φ𝑛 -𝜙) + 𝑜(1). (2.5)
Here we have used the weak convergence in 𝐻 1 𝑥 ⟂ (ℝ 2 ), the almost everywhere convergence in ℝ 2 , and the Brézis-Lieb lemma (see [START_REF] Brezis | A relation between pointwise convergence of functions and convergence of functionals[END_REF]) with the fact that ‖ φ𝑛 ‖ 𝐿 4 is bounded uniformly, by the magnetic Gagliardo-Nirenberg inequality (1.6) and (2.4). Again, (1.6) implies that . However there are no such ground states, as proven in e.g. [START_REF] Dinh | Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed[END_REF][START_REF] Guo | Existence and asymptotic behavior of ground states for rotating bose-einstein condensates[END_REF], and we deduce that (2.4) cannot hold.

lim inf 𝑛→∞  NLS 1,𝑎 * ( φ𝑛 -𝜙) ≥ 0. Furthermore,  NLS 1,𝑎 * (𝜙) = ‖𝜙‖ 2 𝐿 2  NLS 1,𝑎 * ( 𝜙 ‖𝜙‖ 𝐿 2 ) + 𝑎 * 2 ( 1 ‖𝜙‖ 2 𝐿 2 -1 ) ‖𝜙‖ 4 𝐿 4 > 0 since 0 < ‖𝜙‖ 𝐿 2 < 1.
We now conclude the proof by showing that {𝜙 𝑛 } 𝑛 blows up in 𝐻 1 (ℝ 2 ). We have

0 = 𝐸 NLS 1,𝑎 * = lim 𝑛→∞ 𝐸 NLS 1,𝑎 𝑛 = lim 𝑛→∞  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) = lim 𝑛→∞ ‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 2 𝐿 2 - 𝑎 𝑛 2 ‖𝜙 𝑛 ‖ 4 𝐿 4 .
Since

‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 𝐿 2 → ∞ as 𝑛 → ∞, we must have ‖𝜙 𝑛 ‖ 4 𝐿 4 → ∞. But then the standard Gagliardo-Nirenberg inequality (1.4) implies that ‖∇𝜙 𝑛 ‖ 𝐿 2 → ∞ and ‖∇|𝜙 𝑛 |‖ 𝐿 2 → ∞ as well.
□

We are now in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. Convergence of the modulus. We first show that there exists a sequence {𝑥 𝑛 } 𝑛 ⊂ ℝ 2 such that

𝜀 𝑛 |𝜙 𝑛 |(𝜀 𝑛 ⋅ +𝑥 𝑛 ) → 𝑄 0 strongly in 𝐻 1 (ℝ 2 ) as 𝑛 → ∞ (2.6)
where 𝜀 𝑛 is given by (1.10). Denote 𝑣 𝑛 (𝑥) ∶= 𝜀 𝑛 |𝜙 𝑛 |(𝜀 𝑛 𝑥).

We then have

‖𝑣 𝑛 ‖ 𝐿 2 = ‖𝜙 𝑛 ‖ 𝐿 2 = 1 and ‖∇𝑣 𝑛 ‖ 𝐿 2 = 𝜀 𝑛 ‖∇|𝜙 𝑛 |‖ 𝐿 2 = 1. Hence {𝑣 𝑛 } 𝑛 is a bounded sequence in 𝐻 1 (ℝ 2
). On the other hand, using the diamagnetic inequality (1.5) we have

 NLS 1,𝑎 (𝜙) ≥ ‖∇|𝜙|‖ 2 𝐿 2 - 𝑎 2 ‖𝜙‖ 4 𝐿 4 =∶  0 𝑎 (|𝜙|). But the Gagliardo-Nirenberg inequality (1.4) implies  0 𝑎 (|𝜙|) ≥ ( 1 - 𝑎 𝑎 * ) ‖∇|𝜙|‖ 2 𝐿 2 .
From this and Lemma 2.3, we obtain

0 = lim 𝑛→∞ 𝐸 NLS 1,𝑎 𝑛 = lim 𝑛→∞  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) ≥ lim inf 𝑛→∞  0 𝑎 𝑛 (|𝜙 𝑛 |) ≥ 0.
In particular, we have  0

𝑎 𝑛 (𝑣 𝑛 ) = 𝜀 2 𝑛  0 𝑎 𝑛 (|𝜙 𝑛 |) → 0 as 𝑛 → ∞.
Since by definition

‖∇𝑣 𝑛 ‖ 𝐿 2 = 1 for all 𝑛 ≥ 1, we infer that, up to a subsequence, inf 𝑛≥1 ‖𝑣 𝑛 ‖ 𝐿 4 ≥ 𝐶
for some constant 𝐶 > 0. By Lemma 2.2, there exists 𝜙 ∈ 𝐻 1 (ℝ 2 )∖{0} and {𝑦 𝑛 } 𝑛 ⊂ ℝ 2 such that up to a subsequence, ṽ𝑛 (𝑥) ∶= 𝑣 𝑛 (⋅ + 𝑦 𝑛 ) → 𝜙 weakly in 𝐻 1 (ℝ 2 ) and almost everywhere in ℝ 2 .

We next show that ‖𝜙‖ 𝐿 2 = 1. In fact, we first have

0 < ‖𝜙‖ 2 𝐿 2 ≤ lim inf 𝑛→∞ ‖ ṽ𝑛 ‖ 2 𝐿 2 = lim inf 𝑛→∞ ‖𝑣 𝑛 ‖ 2 𝐿 2 = 1,
where the first inequality comes from the strong convergence in 𝐿 2 loc (ℝ 2 ) (see again [START_REF] Lieb | On the lowest eigenvalue of the Laplacian for the intersection of two domains[END_REF]). Assume for contradiction that ‖𝜙‖ 𝐿 2 < 1. As in (2.5), we have

0 = lim 𝑛→∞  0 𝑎 𝑛 (𝑣 𝑛 ) = lim 𝑛→∞  0 𝑎 𝑛 ( ṽ𝑛 ) ≥  0 𝑎 * (𝜙) + lim inf 𝑛→∞  0 𝑎 * ( ṽ𝑛 -𝜙).
(2.7)

Again, by the Gagliardo-Nirenberg inequality (1.4), we have

lim inf 𝑛→∞  0 𝑎 * ( ṽ𝑛 -𝜙) ≥ 0 and  0 𝑎 * (𝜙) = ‖𝜙‖ 2 𝐿 2  0 𝑎 * ( 𝜙 ‖𝜙‖ 𝐿 2 ) + 𝑎 * 2 ( 1 ‖𝜙‖ 2 𝐿 2 -1 ) ‖𝜙‖ 4 𝐿 4 > 0 since 0 < ‖𝜙‖ 𝐿 2 < 1.
This is a contradiction with (2.7) and we thus must have ‖𝜙‖ 𝐿 2 = 1. Then ṽ𝑛 → 𝜙 strongly in 𝐿 2 (ℝ 2 ), up to a subsequence. In fact, ṽ𝑛 → 𝜙 strongly in 𝐿 𝑟 (ℝ 2 ) for 𝑟 ∈ [2, ∞), because of the 𝐻 1 (ℝ 2 ) boundedness. Therefore,

0 ≤  0 𝑎 * (𝜙) ≤ lim inf 𝑛→∞  0 𝑎 * ( ṽ𝑛 ) ≤ lim inf 𝑛→∞  0 𝑎 𝑛 (𝑣 𝑛 ) = 0.
This shows that lim

𝑛→∞ ‖∇ ṽ𝑛 ‖ 𝐿 2 = lim 𝑛→∞ 𝑎 𝑛 2 ‖ ṽ𝑛 ‖ 𝐿 4 = lim 𝑛→∞ 𝑎 * 2 ‖𝜙‖ 𝐿 4 = ‖∇𝜙‖ 𝐿 2 .
Hence ṽ𝑛 → 𝜙 strongly in 𝐻 1 (ℝ 2 ), up to a subsequence. Moreover, 𝜙 is an optimizer of the standard Gagliardo-Nirenberg inequality (1.4). By the uniqueness (up to translations and dilations) of optimizers for (1.4) and the fact that ṽ𝑛 is non-negative, there exist 𝜆 > 0 and 𝑥 0 ∈ ℝ 2 such that 𝜙(𝑥) = 𝜆𝑄 0 (𝜆(𝑥+𝑥 0 )). Since ‖∇𝜙‖ 𝐿 2 = 1, we must have 𝜆 = 1. Again, by uniqueness of 𝑄 0 , we conclude that passing to a subsequence is unnecessary. This leads to (2.6) after setting 𝑥 𝑛 = 𝜀 𝑛 (𝑦 𝑛 -𝑥 0 ).

Step 2. A property of Lagrange multipliers. The minimizer 𝜙 𝑛 of 𝐸 NLS 1,𝑎 𝑛 satisfies the Euler-Lagrange equation

( ∇ 𝑥 ⟂ ) 2 𝜙 𝑛 -𝑎 𝑛 |𝜙 𝑛 | 2 𝜙 𝑛 = 𝜇 𝑛 𝜙 𝑛 in ℝ 2 (2.8)
in the distributional sense, namely

∫ ℝ 2 ∇ 𝑥 ⟂ 𝜙 𝑛 ⋅ ∇ 𝑥 ⟂ 𝜒 -𝑎 𝑛 |𝜙 𝑛 | 2 𝜙 𝑛 𝜒 -𝜇 𝑛 𝜙 𝑛 𝜒d𝑥 = 0, ∀𝜒 ∈ 𝐶 ∞ 0 (ℝ 2 ),
where 𝜇 𝑛 ∈ ℝ is the Lagrange multiplier. In this step, we show that 𝜀 2 𝑛 𝜇 𝑛 → -1 as 𝑛 → ∞. Indeed, as 𝜙 𝑛 is a ground state for 𝐸 NLS 1,𝑎 𝑛 , using (2.8), we have

𝜇 𝑛 = ‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 2 𝐿 2 -𝑎 𝑛 ‖𝜙 𝑛 ‖ 4 𝐿 4 =  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) - 𝑎 𝑛 2 ‖𝜙 𝑛 ‖ 4 𝐿 4 = 𝐸 NLS 1,𝑎 𝑛 - 𝑎 𝑛 2 ‖𝜙 𝑛 ‖ 4 𝐿 4 . Denote 𝜑 𝑛 (𝑥) = 𝑒 𝑖𝜃 𝑛 𝜓 𝑛 (𝑥) (2.9) with 𝜓 𝑛 (𝑥) ∶= 𝜀 𝑛 𝜙 𝑛 (𝜀 𝑛 𝑥 + 𝑥 𝑛 )𝑒 𝑖𝜀 𝑛 𝑥 ⟂ 𝑛 ⋅𝑥
and 𝜃 𝑛 ∈ [0, 2𝜋) satisfying Using the identity

‖𝜑 𝑛 -𝑄 0 ‖ 𝐿 2 = min 𝜃∈[0,2𝜋) ‖𝑒 𝑖𝜃 𝜓 𝑛 -𝑄 0 ‖ 𝐿 2 . ( 2 
( ∇ 𝑥 ⟂ ) 2 𝜙 = -Δ𝜙 + 2𝐿𝜙 + |𝑥| 2 𝜙 with 𝐿 = 𝑖(𝑥 2 𝜕 1 -𝑥 1 𝜕 2 ) = -𝑖𝑥 ⟂ ⋅ ∇,
we see that φ𝑛 solves the elliptic equation

-Δ φ𝑛 + |𝑥| 2 φ𝑛 + 2𝐿 φ𝑛 -𝑎 𝑛 | φ𝑛 | 2 φ𝑛 -𝜇 𝑛 φ𝑛 = 0.
By the definition of 𝜑 𝑛 in (2.9), we get

-Δ𝜑 𝑛 + 𝜀 4 𝑛 |𝑥| 2 𝜑 𝑛 + 2𝜀 2 𝑛 𝐿𝜑 𝑛 -𝑎 𝑛 |𝜑 𝑛 | 2 𝜑 𝑛 -𝜀 2 𝑛 𝜇 𝑛 𝜑 𝑛 = 0. (2.11)
Observe that (2.11) can be written as

( -𝑖∇ + 𝜀 2 𝑛 𝑥 ⟂ ) 2 𝜑 𝑛 -𝑎 𝑛 |𝜑 𝑛 | 2 𝜑 𝑛 -𝜀 2 𝑛 𝜇 𝑛 𝜑 𝑛 = 0 which, by [7, Proposition 2.2], implies that 𝜑 𝑛 ∈ 𝐿 ∞ (ℝ 2 ) and lim |𝑥|→∞ |𝜑 𝑛 (𝑥)| = 0. Denote 𝑊 𝑛 ∶= |𝜑 𝑛 | 2 . Since |𝜑 𝑛 | ∈ 𝐻 1 (ℝ 2
) (using the diamagnetic inequality (1.5)) and 𝜑 𝑛 ∈ 𝐿 ∞ (ℝ 2 ), we have 𝑊 𝑛 ∈ 𝐻 1 (ℝ 2 ). Multiplying both sides of (2.11) with 𝜑 𝑛 , taking the real part, and using the following identities (in the distributional sense)

-Re(Δ𝜑 𝑛 𝜑 𝑛 ) = - 1 2 Δ𝑊 𝑛 + |∇𝜑 𝑛 | 2 , 2 Re(𝐿𝜑 𝑛 𝜑 𝑛 ) = 𝐿𝜑 𝑛 𝜑 𝑛 + 𝐿𝜑 𝑛 𝜑 𝑛 = 𝑥 ⟂ ⋅ 𝐽 (𝜑 𝑛 ), (2.12) 
with 𝐽 (𝜑) = 𝑖(𝜑∇𝜑 -𝜑∇𝜑) the superfluid current, we obtain

- 1 2 Δ𝑊 𝑛 + |∇𝜑 𝑛 | 2 + 𝜀 4 𝑛 |𝑥| 2 𝑊 𝑛 + 𝜀 2 𝑛 𝑥 ⟂ ⋅ 𝐽 (𝜑 𝑛 ) -𝑎 𝑛 𝑊 2 𝑛 -𝜀 2 𝑛 𝜇 𝑛 𝑊 𝑛 = 0. (2.13)
Using the identity

|(-𝑖∇ + 𝜀 2 𝑛 𝑥 ⟂ )𝜑 𝑛 | 2 = |∇𝜑 𝑛 | 2 + 𝜀 2 𝑛 𝑥 ⟂ ⋅ 𝐽 (𝜑 𝑛 ) + 𝜀 4 𝑛 |𝑥| 2 𝑊 𝑛 , we deduce that - 1 2 Δ𝑊 𝑛 -𝜀 2 𝑛 𝜇 𝑛 𝑊 𝑛 -𝑎 𝑛 𝑊 2 𝑛 ≤ 0 (2.14)
in the weak sense, namely

∫ ℝ 2 1 2 ∇𝑊 𝑛 ⋅ ∇𝜒 -𝜀 2 𝑛 𝜇 𝑛 𝑊 𝑛 𝜒 -𝑎 𝑛 𝑊 2 𝑛 𝜒d𝑥 ≤ 0, ∀0 ≤ 𝜒 ∈ 𝐶 ∞ 0 (ℝ 2 ).
Step 

) (2.15)
for some universal constant 𝐶 > 0. Since 𝐵 2 (𝑥 0 ) ⊂ 𝐷 𝑀 , we deduce

‖𝑊 𝑛 ‖ 𝐿 2 (𝐵 2 (𝑥 0 )) + ‖𝑊 2 𝑛 ‖ 𝐿 2 (𝐵 2 (𝑥 0 )) ≤ ‖𝑊 𝑛 ‖ 𝐿 2 (|𝑥|>𝑀) + ‖𝑊 2 𝑛 ‖ 𝐿 2 (|𝑥|>𝑀) → ‖𝑄 2 0 ‖ 𝐿 2 (|𝑥|>𝑀) + ‖𝑄 4 0 ‖ 𝐿 2 (|𝑥|>𝑀) .
Here we have used 𝜖 2 𝑛 𝜇 𝑛 → -1 and the fact that 

𝑊 𝑛 → 𝑄 2 0 in 𝐿 2 (ℝ 2 ) and 𝑊 2 𝑛 → 𝑄 4 0 in 𝐿 2 (ℝ 2 ) because ‖𝑊 𝑛 -𝑄 2 0 ‖ 𝐿 2 ≤ ‖|𝜑 𝑛 | -𝑄 0 ‖ 𝐿 4 ‖|𝜑 𝑛 | + 𝑄 0 ‖ 𝐿 4 , ‖𝑊 2 𝑛 -𝑄 4 0 ‖ 𝐿 2 ≤ ‖|𝜑 𝑛 | -𝑄 0 ‖ 𝐿 8 ‖|𝜑 𝑛 | + 𝑄 0 ‖ 𝐿 8 ‖|𝜑 𝑛 | 2 +
𝑊 𝑛 (𝑥) ≤ 𝐶 ( 𝑀 -1 𝜖 ‖𝑊 𝑛 ‖ 𝐿 2 (𝐵 2𝑀 𝜖 (0)) + 𝑀 𝜖 ‖𝑊 2 𝑛 ‖ 𝐿 2 (𝐵 2𝑀 𝜖 (0))
)

for some universal constant 𝐶 > 0. This implies

sup 𝐵 𝑀 𝜖 (0)
𝑊 𝑛 (𝑥) ≤ 𝐶(𝑀 𝜖 ) for all 𝑛 sufficiently large.

(2.17)

Collecting (2.16) and (2.17), we prove

0 ≤ sup 𝑥∈ℝ 2
𝑊 𝑛 (𝑥) ≤ 𝐶 for all 𝑛 sufficiently large, (2.18) where 𝐶 > 0 is a constant independent of 𝑛.

Step 5. Uniform exponential decay of 𝑊 𝑛 . We now prove the uniform exponential decay of 𝑊 𝑛 . Since 𝐶 ∞ 0 (ℝ 2 ) is dense in 𝐻 1 (ℝ 2 ), we can test (2.14) against non-negative functions in 𝐻 1 (ℝ 2 ). The following calculation is done formally by testing (2.14) with 𝑒 𝛼|𝑥| 𝑊 𝑛 for some constant 𝛼 > 0 to be chosen shortly. Strictly speaking, this requires a standard truncation argument. First we replace 𝑒 𝛼|𝑥| by 𝜒 𝛿 (𝑥) ∶= 𝑒 𝛼 |𝑥| 1+𝛿|𝑥| , 𝛿 > 0 and perform the usual computation. Then we let 𝛿 → 0 to obtain the desired estimate. For more details, see e.g., [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Theorem 8.1.1]. Note that 𝜒 𝛿 is bounded, Lipschitz continuous, and

|∇𝜒 𝛿 | ≤ 𝛼𝜒 𝛿 ; hence 𝜒 𝛿 𝑊 𝑛 ∈ 𝐻 1 (ℝ 2 ).
We have

- 1 2 ∫ ℝ 2 Δ𝑊 𝑛 𝑒 𝛼|𝑥| 𝑊 𝑛 d𝑥 -𝜇 𝑛 𝜀 2 𝑛 ∫ ℝ 2 𝑊 𝑛 𝑒 𝛼|𝑥| 𝑊 𝑛 d𝑥 -𝑎 𝑛 ∫ ℝ 2 𝑊 2 𝑛 𝑒 𝛼|𝑥| 𝑊 𝑛 d𝑥 ≤ 0. (2.19)
Observe that

∫ ℝ 2 Δ𝑊 𝑛 𝑒 𝛼|𝑥| 𝑊 𝑛 d𝑥 = ∫ ℝ 2 𝑒 𝛼|𝑥| ( 1 2 Δ(𝑊 2 𝑛 ) -|∇𝑊 𝑛 | 2 ) d𝑥 = 1 2 ∫ ℝ 2 𝑊 2 𝑛 Δ(𝑒 𝛼|𝑥| )d𝑥 -∫ ℝ 2 |∇𝑊 𝑛 | 2 𝑒 𝛼|𝑥| d𝑥 = 1 2 ∫ ℝ 2 𝑊 2 𝑛 ( 𝛼 2 + 𝛼 |𝑥| ) 𝑒 𝛼|𝑥| d𝑥 -∫ ℝ 2 |∇𝑊 𝑛 | 2 𝑒 𝛼|𝑥| d𝑥 and ∫ ℝ 2 |∇(𝑊 𝑛 𝑒 𝛼|𝑥|∕2 )| 2 d𝑥 = 𝛼 2 4 ∫ ℝ 2 𝑊 2 𝑛 𝑒 𝛼|𝑥| d𝑥 + ∫ ℝ 2 |∇𝑊 𝑛 | 2 𝑒 𝛼|𝑥| d𝑥 - 1 2 ∫ ℝ 2 𝑊 2 𝑛 ( 𝛼 2 + 𝛼 |𝑥| ) 𝑒 𝛼|𝑥| d𝑥.
In particular, we have

∫ ℝ 2 Δ𝑊 𝑛 𝑒 𝛼|𝑥| 𝑊 𝑛 d𝑥 = 𝛼 2 4 ∫ ℝ 2 𝑊 2 𝑛 𝑒 𝛼|𝑥| d𝑥 -∫ ℝ 2 |∇(𝑊 𝑛 𝑒 𝛼|𝑥|∕2 )| 2 d𝑥, hence (see (2.19)) 1 2 ∫ ℝ 2 |∇(𝑊 𝑛 𝑒 𝛼|𝑥|∕2 )| 2 d𝑥 - 𝛼 2 8 ∫ ℝ 2 𝑊 2 𝑛 𝑒 𝛼|𝑥| d𝑥 -𝜇 𝑛 𝜀 2 𝑛 ∫ ℝ 2 𝑊 2 𝑛 𝑒 𝛼|𝑥| d𝑥 -𝑎 𝑛 ∫ ℝ 2 𝑊 3 𝑛 𝑒 𝛼|𝑥| d𝑥 ≤ 0 so ∫ ℝ 2 ( -𝜇 𝑛 𝜀 2 𝑛 - 𝛼 2 8 -𝑎 𝑛 𝑊 𝑛 ) 𝑊 2 𝑛 𝑒 𝛼|𝑥| d𝑥 ≤ 0.
We pick 𝛼 = 1 and choose 𝑀 > 0 so large that 𝑊 𝑛 (𝑥) ≤ 

1 2 ∫ ℝ 2 ∖𝐵 𝑀 (0) 𝑊 2 𝑛 𝑒 |𝑥| d𝑥 ≤ ∫ 𝐵 𝑀 (0) | | | | -𝜇 𝑛 𝜀 2 𝑛 - 1 8 -𝑎 𝑛 𝑊 𝑛 | | | | 𝑊 2 𝑛 𝑒 |𝑥| d𝑥 ≤ 𝐶𝑒 𝑀 ‖𝑊 𝑛 ‖ 2 𝐿 2 ≤ 𝐶𝑒 𝑀
for all 𝑛 sufficiently large, where we have used (2.18) to get the second estimate. This proves that

∫ ℝ 2 𝑊 2 𝑛 𝑒 |𝑥| d𝑥 ≤ 𝐶, (2.20)
for all 𝑛 sufficiently large, where 𝐶 > 0 is independent of 𝑛. From this, we get

∫ ℝ 2 |𝜑 𝑛 | 2 𝑒 |𝑥|∕4 d𝑥 = ∫ ℝ 2 𝑊 𝑛 𝑒 |𝑥|∕2 𝑒 -|𝑥|∕4 d𝑥 ≤ ( ∫ ℝ 2 𝑊 2 𝑛 𝑒 |𝑥| d𝑥 ) 1∕2 ( ∫ ℝ 2 𝑒 -|𝑥|∕2 d𝑥 ) 1∕2 ≤ 𝐶 (2.21)
for all 𝑛 sufficiently large. A consequence of this uniform exponential decay and

|𝜑 𝑛 | → 𝑄 0 in 𝐻 1 (ℝ 2 ) is that |𝑥||𝜑 𝑛 | → |𝑥|𝑄 0 strongly in 𝐿 2 (ℝ 2 ).
Step 6. 𝐻 1 -strong convergence. By the definition of 𝜑 𝑛 (see (2.9)), we have

𝜙 𝑛 (𝑥) = 𝜀 -1 𝑛 𝜑 𝑛 (𝜀 -1 𝑛 (𝑥 -𝑥 𝑛 ))𝑒 -𝑖𝑥 ⟂ 𝑛 ⋅𝑥-𝑖𝜃 𝑛 .
Since 𝜙 𝑛 is a ground state for 𝐸 NLS 1,𝑎 𝑛 , we see that

𝐸 NLS 1,𝑎 𝑛 =  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) = ‖∇𝜙 𝑛 ‖ 2 𝐿 2 + ‖𝑥𝜙 𝑛 ‖ 2 𝐿 2 + 2⟨𝐿𝜙 𝑛 , 𝜙 𝑛 ⟩ - 𝑎 𝑛 2 ‖𝜙 𝑛 ‖ 4 𝐿 4 . (2.22)
This implies the following identity (see again (2.9))

𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛 = ‖∇𝜑 𝑛 ‖ 2 𝐿 2 + 2𝜀 2 𝑛 ⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ + 𝜀 4 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2 - 𝑎 𝑛 2 ‖𝜑 𝑛 ‖ 4 𝐿 4 . ( 2.23) 
By the Cauchy-Schwarz inequality, we have

|2𝜀 2 𝑛 ⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩| ≤ 2𝜀 2 𝑛 ‖∇𝜑 𝑛 ‖ 𝐿 2 ‖𝑥𝜑 𝑛 ‖ 𝐿 2 ≤ 1 2 ‖∇𝜑 𝑛 ‖ 2 𝐿 2 + 2𝜀 4 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2
which implies

‖∇𝜑 𝑛 ‖ 2 𝐿 2 ≤ 2 ( 𝜀 2 𝑛 𝐸 NLS 𝑎 𝑛 + 𝜀 4 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2 + 𝑎 𝑛 2 ‖𝜑 𝑛 ‖ 4 𝐿 4
) .

Since 𝐸 NLS 1,𝑎 𝑛 → 0, 𝜀 𝑛 → 0, |𝑥||𝜑 𝑛 | → |𝑥|𝑄 0 strongly in 𝐿 2 (ℝ 2 )
, and |𝜑 𝑛 | → 𝑄 0 strongly in 𝐿 4 (ℝ 2 ), we infer that {𝜑 𝑛 } 𝑛 is bounded uniformly in 𝐻 1 (ℝ 2 ). From (2.23), we also have

‖∇𝜑 𝑛 ‖ 2 𝐿 2 - 𝑎 * 2 ‖𝜑 𝑛 ‖ 4 𝐿 4 = 𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛 -2𝜀 2 𝑛 ⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ -𝜀 4 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2 - 𝑎 * -𝑎 𝑛 2 ‖𝜑 𝑛 ‖ 4 𝐿 4 .
Using the uniform boundedness of

{𝜑 𝑛 } 𝑛 in 𝐻 1 (ℝ 2 ), the strong convergence |𝑥||𝜑 𝑛 | → |𝑥|𝑄 0 in 𝐿 2 (ℝ 2 ),
and 𝑎 𝑛 ↗ 𝑎 * , we deduce that

lim 𝑛→∞ ‖∇𝜑 𝑛 ‖ 2 𝐿 2 - 𝑎 * 2 ‖𝜑 𝑛 ‖ 4 𝐿 4 = 0. Since ‖𝜑 𝑛 ‖ 𝐿 2 = 1 and |𝜑 𝑛 | → 𝑄 0 strongly in 𝐿 𝑟 (ℝ 2 ) for all 𝑟 ∈ [2, ∞), there exists {𝑧 𝑛 } 𝑛 ⊂ ℝ 2 such that 𝜑 𝑛 (𝑥 + 𝑧 𝑛 ) → 𝑒 𝑖𝜃 𝑄 0 (𝑥) (2.24) 
strongly in 𝐻 1 (ℝ 2 ), for some 𝜃 ∈ [0, 2𝜋). Using the fact that ‖𝑄 0 (⋅+𝑧 𝑛 )-𝑄 0 ‖ 𝐻 1 → 0 if and only if

|𝑧 𝑛 | → 0, we get |𝑧 𝑛 | → 0. This in turn implies that 𝜑 𝑛 → 𝑒 𝑖𝜃 𝑄 0 strongly in 𝐻 1 (ℝ 2 ) since ‖𝜑 𝑛 -𝑒 𝑖𝜃 𝑄 0 ‖ 𝐻 1 = ‖𝜑 𝑛 (⋅ + 𝑧 𝑛 ) -𝑒 𝑖𝜃 𝑄 0 (⋅ + 𝑧 𝑛 )‖ 𝐻 1 ≤ ‖𝜑 𝑛 (⋅ + 𝑧 𝑛 ) -𝑒 𝑖𝜃 𝑄 0 ‖ 𝐻 1 + ‖𝑄 0 -𝑄 0 (⋅ + 𝑧 𝑛 )‖ 𝐻 1 → 0. Now we write 𝜑 𝑛 (𝑥) = 𝑞 𝑛 (𝑥) + 𝑖𝑟 𝑛 (𝑥)
with 𝑞 𝑛 and 𝑟 𝑛 the real and imaginary parts of 𝜑 𝑛 respectively. By (2.10), we have the following orthogonality condition

∫ ℝ 2 𝑄 0 𝑟 𝑛 d𝑥 = 0. (2.25) Since ‖𝜑 𝑛 -𝑒 𝑖𝜃 𝑄 0 ‖ 2 𝐿 2 → 0, we have ∫ ℝ 2 ( Re(𝜑 -𝑒 𝑖𝜃 𝑄 0 ) ) 2 + ( Im(𝜑 𝑛 -𝑒 𝑖𝜃 𝑄 0 ) ) 2 d𝑥 → 0.
In particular, we get

∫ ℝ 2 (𝑟 𝑛 -𝑄 0 sin 𝜃) 2 d𝑥 → 0.
Using (2.25), we have

∫ ℝ 2 𝑟 2 𝑛 + 𝑄 2 0 sin 2 𝜃d𝑥 → 0. This shows that ∫ ℝ 2 𝑟 2
𝑛 d𝑥 → 0 and sin 2 𝜃 = 0 or 𝜃 = 0 or 𝜃 = 𝜋. In the following, we consider only the case 𝜃 = 0. The case 𝜃 = 𝜋 can be treated similarly by changing 𝜑 𝑛 to -𝜑 𝑛 . For 𝜃 = 0, we have 𝜑 𝑛 → 𝑄 0 strongly in 𝐻 1 (ℝ 2 ). In particular,

∫ ℝ 2 (𝑞 𝑛 -𝑄 0 ) 2 d𝑥 → 0 and ∫ ℝ 2 𝑟 2 𝑛 d𝑥 → 0. (2.26) 
This, together with the exponential decay of 𝑊 𝑛 , yields

∫ ℝ 2 |𝑥| 2 (𝑞 𝑛 -𝑄 0 ) 2 d𝑥 → 0 and ∫ ℝ 2 |𝑥| 2 𝑟 2 𝑛 d𝑥 → 0. (2.27) 
In fact, by the exponential decay of 𝑊 𝑛 (see (2.21)), we have

∫ ℝ 2 |𝑥| 2 𝑟 2 𝑛 d𝑥 ≤ ( ∫ ℝ 2 |𝑥| 4 𝑟 2 𝑛 d𝑥 ) 1∕2 ( ∫ ℝ 2 𝑟 2 𝑛 d𝑥 ) 1∕2 → 0
and similarly for 𝑞 𝑛 -𝑄 0 .

Step 7. Smallness of the imaginary part. Observe that

⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ = Re⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ = ∫ ℝ 2 𝑥 ⟂ ⋅ Im(𝜑 𝑛 ∇𝜑 𝑛 )d𝑥 = ∫ ℝ 2 𝑥 ⟂ ⋅ (𝑞 𝑛 ∇𝑟 𝑛 -𝑟 𝑛 ∇𝑞 𝑛 )d𝑥 = 2 ∫ ℝ 2 𝑥 ⟂ 𝑞 𝑛 ∇𝑟 𝑛 d𝑥 (2.28) 
which implies

|⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩| ≤ 2‖𝑥𝑞 𝑛 ‖ 𝐿 2 ‖∇𝑟 𝑛 ‖ 𝐿 2 ≤ 𝐶‖∇𝑟 𝑛 ‖ 𝐿 2 .
Here we have used the fact that |𝑥|𝑞 𝑛 is bounded uniformly in 𝐿 2 (ℝ 2 ) since |𝑥||𝜑 𝑛 | → |𝑥|𝑄 0 strongly in 𝐿 2 (ℝ 2 ). We deduce from the above and (2.23) that

𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛 ≥ ∫ ℝ 2 |∇𝑞 𝑛 | 2 + |∇𝑟 𝑛 | 2 - 𝑎 * 2 (𝑞 4 𝑛 + 𝑟 4 𝑛 + 2𝑞 2 𝑛 𝑟 2 𝑛 )d𝑥 -𝐶𝜀 2 𝑛 ‖∇𝑟 𝑛 ‖ 𝐿 2 .
We have

𝑎 * 2 ∫ ℝ 2 (𝑟 4 𝑛 + 2𝑞 2 𝑛 𝑟 2 𝑛 )d𝑥 ≤ 𝑎 * ∫ ℝ 2 |𝜑 𝑛 | 2 𝑟 2 𝑛 d𝑥 = ∫ ℝ 2 𝑄 2 𝑟 2 𝑛 d𝑥 + 𝑎 * ∫ (|𝜑 𝑛 | 2 -𝑄 2 0 )𝑟 2 𝑛 d𝑥 = ∫ ℝ 2 𝑄 2 𝑟 2 𝑛 d𝑥 + 𝑜(1)‖𝑟 𝑛 ‖ 2 𝐻 1 .
Here we have used that

| | | | ∫ ℝ 2 (|𝜑 𝑛 | 2 -𝑄 2 0 )𝑟 2 𝑛 d𝑥 | | | | ≤ ‖|𝜑 𝑛 | 2 -𝑄 2 0 ‖ 𝐿 2 ‖𝑟 𝑛 ‖ 2 𝐿 4 ≤ 𝐶‖|𝜑 𝑛 | 2 -𝑄 2 0 ‖ 𝐿 2 ‖𝑟 𝑛 ‖ 2 𝐻 1
and

‖|𝜑 𝑛 | 2 -𝑄 2 0 ‖ 𝐿 2 ≤ ‖|𝜑 𝑛 | -𝑄 0 ‖ 𝐿 4 ‖|𝜑 𝑛 | + 𝑄 0 ‖ 𝐿 4 → 0 as |𝜑 𝑛 | → 𝑄 0 strongly in 𝐻 1 (ℝ 2 ) hence in 𝐿 4 (ℝ 2
) by Sobolev embeddings. On the other hand, by the standard Gagliardo-Nirenberg inequality (1.4), we have

∫ ℝ 2 |∇𝑞 𝑛 | 2 - 𝑎 * 2 𝑞 4 𝑛 d𝑥 ≥ ‖∇𝑞 𝑛 ‖ 2 𝐿 2 (1 -‖𝑞 𝑛 ‖ 2 𝐿 2 ) = (1 + 𝑜(1))‖𝑟 𝑛 ‖ 2 𝐿 2 ,
where we have used that 𝑞 𝑛 → 𝑄 0 strongly in

𝐻 1 (ℝ 2 ), ‖𝑞 𝑛 ‖ 2 𝐿 2 +‖𝑟 𝑛 ‖ 2 𝐿 2 = 1 as ‖𝜑 𝑛 ‖ 2 𝐿 2 = 1, and ‖∇𝑄 0 ‖ 2 𝐿 2 = 1. Thus we get 𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛 ≥ ∫ ℝ 2 |∇𝑟 𝑛 | 2 -𝑄 2 𝑟 2 𝑛 + 𝑟 2 𝑛 d𝑥 + 𝑜(1)‖𝑟 𝑛 ‖ 2 𝐻 1 -𝐶𝜀 2 𝑛 ‖∇𝑟 𝑛 ‖ 𝐿 2 = ⟨𝑟 𝑛 , 𝑟 𝑛 ⟩ + 𝑜(1)‖𝑟 𝑛 ‖ 2 𝐻 1 -𝐶𝜀 2 𝑛 ‖∇𝑟 𝑛 ‖ 𝐿 2 , where  ∶= -Δ -𝑄 2 + 1.
We now use the non-degeneracy property of 𝑄. It is well-known (see [28,Theorem 11.8 and Corrollary 11.9]) that 𝑄 is the first eigenfunction of  and the corresponding eigenvalue 0 is non-degenerate. In particular, we have

⟨𝑢, 𝑢⟩ ≥ 𝜆 2 ‖𝑢‖ 2 𝐿 2
for all 𝑢 orthogonal to 𝑄, where 𝜆 2 > 0 is the second eigenvalue of . This together with the fact that

⟨𝑢, 𝑢⟩ ≥ ‖𝑢‖ 2 𝐻 1 -‖𝑄‖ 2 𝐿 ∞ ‖𝑢‖ 2 𝐿 2 yield ⟨𝑢, 𝑢⟩ ≥ 𝐶‖𝑢‖ 2 𝐻 1
for some constant 𝐶 > 0 and all 𝑢 orthogonal to 𝑄. On the other hand, from (2.3), the magnetic Gagliardo-Nirenberg inequality (1.6) and the diamagnetic inequality (1.5), we have

𝐶(𝑎 * -𝑎 𝑛 ) 1∕2 ≥ 𝐸 NLS 1,𝑎 𝑛 =  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) ≥ 𝑎 * -𝑎 𝑛 𝑎 * ‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 2 𝐿 2 ≥ 𝑎 * -𝑎 𝑛 𝑎 * ‖∇|𝜙 𝑛 |‖ 2 𝐿 2 = 𝑎 * -𝑎 𝑛 𝑎 * 𝜀 -2 𝑛 which implies 𝐸 NLS 1,𝑎 𝑛 ≤ 𝐶(𝑎 * -𝑎 𝑛 ) 1∕2 ≤ 𝐶𝜀 2 𝑛 (2.30)
for some constant 𝐶 > 0. This together with (2.29) yield

‖𝑟 𝑛 ‖ 𝐻 1 ≤ 𝐶𝜀 2 𝑛 .
(2.31)

Step 8. Identifying the blow-up limit. Coming back to (2.28), we have

⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ = 2 ∫ ℝ 2 𝑥 ⟂ ⋅ ∇𝑟 𝑛 𝑞 𝑛 d𝑥 = 2 ∫ ℝ 2 𝑥 ⟂ ⋅ ∇𝑟 𝑛 𝑄 0 d𝑥 + 2 ∫ ℝ 2 𝑥 ⟂ ⋅ ∇𝑟 𝑛 (𝑞 𝑛 -𝑄 0 )d𝑥 = 2 ∫ ℝ 2 𝑥 ⟂ ⋅ ∇𝑟 𝑛 (𝑞 𝑛 -𝑄 0 )d𝑥
where we have used the fact that 𝑥 ⟂ ⋅ ∇𝑄 0 = 0 since 𝑄 0 is radial and (2.27). This shows that and 𝛽 = 1

|⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩| ≤ ‖∇𝑟 𝑛 ‖ 𝐿 2 ‖𝑥(𝑞 𝑛 -𝑄 0 )‖ 𝐿 2 ≤ 𝑜(1)‖∇𝑟 𝑛 ‖ 𝐿 2 ≤ 𝑜(𝜀
𝑎 1∕4 * ‖𝑥𝑄 0 ‖ 1∕2 𝐿 2 .
From this and the energy upper bound (2.1), we obtain (1.7) and (1.8).

Step 9. 𝐿 ∞ convergence. We finally prove the 𝐿 ∞ -convergence. To this end, we first show the uniform exponential decay for ∇𝜑 𝑛 , namely

∫ ℝ 2 |∇𝜑 𝑛 | 2 𝑒 |𝑥|∕4 d𝑥 ≤ 𝐶 (2.33)
for all 𝑛 sufficiently large. We provide below a formal calculation and a regularizing argument is needed to justify it rigorously (see Step 5). We multiply both sides of (2. 

∫ ℝ 2 -Δ𝜑 𝑛 𝑒 𝛼|𝑥| 𝜑 𝑛 d𝑥 = ∫ ℝ 2 |∇(𝑒 𝛼|𝑥|∕2 𝜑 𝑛 )| 2 d𝑥 - 𝛼 2 2 ∫ ℝ 2 𝑒 𝛼|𝑥| |𝜑 𝑛 | 2 d𝑥.
In particular, we get

0 = ∫ ℝ 2 |∇(𝑒 𝛼|𝑥|∕2 𝜑 𝑛 )| 2 d𝑥 + 𝜀 4 𝑛 ∫ ℝ 2 |𝑥| 2 𝑒 𝛼|𝑥| |𝜑 𝑛 | 2 d𝑥 + ∫ ℝ 2 𝑒 𝛼|𝑥| ( -𝑎 𝑛 |𝜑 𝑛 | 2 -𝜀 2 𝑛 𝜇 𝑛 - 𝛼 2 4 ) |𝜑 𝑛 | 2 d𝑥 + 2𝜀 2 𝑛 ∫ ℝ 2 𝐿𝜑 𝑛 𝑒 𝛼|𝑥| 𝜑 𝑛 d𝑥. 𝑛 ‖𝑥 ⟂ 𝑒 𝛼|𝑥|∕2 𝜑 𝑛 ‖ 𝐿 2 ‖∇(𝑒 𝛼|𝑥|∕2 𝜑 𝑛 )‖ 𝐿 2 ≤ 1 2 ∫ ℝ 2 |∇(𝑒 𝛼|𝑥|∕2 𝜑 𝑛 )| 2 d𝑥 + 2𝜀 4 𝑛 ∫ ℝ 2 |𝑥| 2 𝑒 𝛼|𝑥| |𝜑 𝑛 | 2 d𝑥.
It follows that

1 2 ∫ ℝ 2 |∇(𝑒 𝛼|𝑥|∕2 𝜑 𝑛 )| 2 d𝑥 ≤ 𝜀 4 𝑛 ∫ ℝ 2 |𝑥| 2 𝑒 𝛼|𝑥| |𝜑 𝑛 | 2 d𝑥 + ∫ ℝ 2 𝑒 𝛼|𝑥| ( 𝑎 𝑛 |𝜑 𝑛 | 2 + |𝜀 2 𝑛 𝜇 𝑛 | + 𝛼 2 4 ) |𝜑 𝑛 | 2 d𝑥
By choosing 𝛼 = when both Ω ↗ 1 and 𝑎 ↗ 𝑎 * at the same time. To this end, we recall the following energy asymptotic formula when Ω = 0 (see [START_REF] Guo | Symmetry breaking and collapse in Bose-Einstein condensates with attractive interactions[END_REF]): 

𝐸 NLS 0,𝑎 = √ 𝑎 * -𝑎 ( 2 ‖𝑥𝑄 0 ‖ 𝐿 2 𝑎 1∕2 * + 𝑜(1) ) as 𝑎 ↗ 𝑎 * . ( 2 
𝐸 NLS Ω 𝑛 ,𝑎 𝑛 ≤  NLS Ω 𝑛 ,𝑎 𝑛 ( ψ𝑛 ) = Ω 𝑛  NLS 1,𝑎 𝑛 ( ψ𝑛 ) + (1 -Ω 𝑛 ) NLS 0,𝑎 𝑛 ( ψ𝑛 ) = Ω 𝑛 𝐸 NLS 1,𝑎 𝑛 + (1 -Ω 𝑛 ) NLS 0,𝑎 𝑛 ( ψ𝑛 ).
(2.37)

Here we have used the magnetic translation invariance of the energy functional  NLS ) .

This together with (2.35) show that 𝜙 𝑛 is an approximate ground state for 𝐸 NLS 0,𝑎 𝑛 . We then conclude (see e.g., [25, Step 5 in Section 3]) that there exists a sequence of phases {𝜃 𝑛 } 𝑛 ⊂ [0, 2𝜋) such that strongly in 𝐻 1 (ℝ 2 ). In fact, we obtain the strong convergence in 𝐿 ∞ (ℝ 2 ), by the same arguments as in the proof of (1.8). □

COLLAPSE OF MANY-BODY GROUND STATES

In this section, we prove the large-𝑁 behavior of ground states for (1.14) given in Theorem 1.3.

Proof of Theorem 1.3. Following arguments from [START_REF] Lewin | Blow-up profile of rotating 2d focusing Bose gases[END_REF], we have ) .

It then follows that (𝑢 𝜂 𝑁 ) and (𝑢 -𝜂 𝑁 ) are sequences of quasi-ground states for 𝐸 NLS 0,𝑎 𝑁 , under the assumption on Ω 𝑁 in Theorem 1.3. Thus both sequences satisfy (2.38). Combining with (3.3), we get, after a dilation of space variables, trace-class weak-⋆ convergence of 𝛾 (1) Φ 𝑁 to |𝑄 𝑁 ⟩⟨𝑄 𝑁 |. Since no mass is lost in the limit, this convergence must hold in trace-class norm (see e.g., [START_REF] Dell'antonio | On the limits of sequences of normal states[END_REF] or [38, Appendix H]). The limit being rank 1, this implies the convergence of higher order density matrices to tensor powers of the limiting operator by well-known arguments (recalled e.g. in [START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF]Section 2.2]). □

2. 1 .

 1 Collapse at the critical speed. Let us consider the case Ω = 1. For simplicity, we denote ∇ 𝑥 ⟂ ∶= -𝑖∇ + 𝑥 ⟂ . Let us start by recalling some useful facts.

Lemma 2 . 1 (

 21 𝐿 2 -bound).

  𝑖𝜃 𝑛 = 𝑄 0 (𝑥)(2.38) 

  In addition, for any sequence {𝑎 𝑛 } 𝑛 satisfying 𝑎 𝑛 ↗ 𝑎 * and any sequence of ground state 𝜙 𝑛 for 𝐸 NLS 1,𝑎 𝑛 , there exist a sequence {𝜃 𝑛 } 𝑛 ⊂ [0, 2𝜋) and a sequence {𝑥 𝑛 } 𝑛 ⊂ ℝ 2 such that the following convergence holds strongly in 𝐻 1

  Let {𝑎 𝑛 } 𝑛 be a positive sequence such that 𝑎 𝑛 ↗ 𝑎 * as 𝑛 → ∞ and 𝜙 𝑛 be a ground state for 𝐸 NLS 1,𝑎 𝑛 . Then {𝜙 𝑛 } 𝑛 blows up both in 𝐻 1 𝑥 ⟂ (ℝ 2 ) and in 𝐻 1 (ℝ 2 ) in the sense that lim 𝐿 2 ≥ 2, where the last inequality is due to Lemma 2.1. This, however, is not possible (see Lemma 2.3). Thus, by Lemma 2.2, there exist 𝜙 ∈ 𝐻 1 𝑥

				2.3)
	which implies (2.1) and also lim sup 𝑛→∞ 𝐸 NLS Ω,𝑎 𝑛	≤ 0.	□
	Lemma 2.4 (Blow-up).		
	𝑛→∞	𝐸 NLS 1,𝑎 𝑛	= lim

𝑛→∞ ‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 𝐿 2 = lim 𝑛→∞ ‖∇𝜙 𝑛 ‖ 𝐿 2 = lim 𝑛→∞ ‖∇|𝜙 𝑛 |‖ 𝐿 2 = +∞.

Proof. We first show that {𝜙 𝑛 } 𝑛 blows up in 𝐻

1 

𝑥 ⟂ (ℝ 2 ). Assume for contradiction that sup

𝑛≥1 ‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 2 𝐿 2 < ∞. (2.4)

In particular, {𝜙 𝑛 } 𝑛 is then a bounded sequence in 𝐻 1 𝑥 ⟂ (ℝ 2 ). Observe that there exists 𝐶 > 0 such that lim inf 𝑛→∞ ‖𝜙 𝑛 ‖ 𝐿 4 ≥ 𝐶 since otherwise, we have lim 𝑛→∞ ‖∇ 𝑥 ⟂ 𝜙 𝑛 ‖ 2 ⟂ (ℝ 2 )∖{0} and a sequence {𝑥 𝑛 } 𝑛 ⊂ ℝ 2 such that up to a subsequence, φ𝑛 (𝑥) ∶= 𝑒 𝑖𝑥 ⟂ 𝑛 ⋅𝑥 𝜙 𝑛 (𝑥 + 𝑥 𝑛 ) → 𝜙 weakly in 𝐻 1 𝑥 ⟂ (ℝ 2 ) and almost everywhere in ℝ 2 . We claim that ‖𝜙‖ 2 𝐿 2 = 1. Indeed, we have 0

  .10) By (2.6), we have |𝜑 𝑛 | ∶= 𝜀 𝑛 |𝜙 𝑛 |(𝜀 𝑛 ⋅ +𝑥 𝑛 ) → 𝑄 0 strongly in 𝐻 1 (ℝ 2 ). Therefore, 𝑎 𝑛 | φ𝑛 | 2 φ𝑛 = 𝜇 𝑛 φ𝑛 .

	with φ𝑛 (𝑥) ∶= 𝜙 𝑛 (𝑥 + 𝑥 𝑛 )𝑒 𝑖𝑥 ⟂ 𝑛 ⋅𝑥 . A direct computation gives
		( ∇ 𝑥 ⟂	) 2 φ𝑛 (𝑥) =	( (	∇ 𝑥 ⟂	) 2 𝜙 𝑛	)	(𝑥 + 𝑥 𝑛 )𝑒 𝑖𝑥 ⟂ 𝑛 ⋅𝑥
	which, by (2.8), implies					
					(	∇ 𝑥 ⟂	) 2 φ𝑛 -
		lim 𝑛→∞	𝜀 2 𝑛 ‖𝜙 𝑛 ‖ 4 𝐿 4 = lim 𝑛→∞	‖𝜑 𝑛 ‖ 4 𝐿 4 = ‖𝑄 0 ‖ 4 𝐿 4 =	2 𝑎 *	.
	Since 0 ≤ 𝐸 NLS 1,𝑎 𝑛	→ 0 (see Lemma 2.3) and 𝑎 𝑛 ↗ 𝑎 * , we get
		lim 𝑛→∞	𝜀 2 𝑛 𝜇 𝑛 = lim 𝑛→∞	𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛	-lim 𝑛→∞	𝑎 𝑛 2	𝜀 2 𝑛 ‖𝜙 𝑛 ‖ 4 𝐿 4 = -1.

Step 3. A sub-equation for |𝜑 𝑛 | 2 . We next use (2.8) to derive an equation and a sub-equation satisfied by 𝜑 𝑛 and |𝜑 𝑛 | 2 . To do so, we write 𝜓 𝑛 (𝑥) = 𝜀 𝑛 φ𝑛 (𝜀 𝑛 𝑥)

  𝑎 𝑗𝑘 = 1 2 𝛿 𝑗𝑘 , 𝑓 = 𝜀 2 𝑛 𝜇 𝑛 𝑊 𝑛 + 𝑎 𝑛 𝑊 2 𝑛 , 𝑝 = 𝑞 = 2, 𝑅 = 2, and 𝐵 2 (𝑥 0 ) ⊂ 𝐷 𝑀 , we get

	∫ 𝐷	𝑎 𝑗𝑘 𝜕 𝑗 𝑢𝜕 𝑘 𝜒d𝑥 ≤ ∫ 𝐷	𝑓 𝜒d𝑥, ∀𝜒 ∈ 𝐻 1 0 (𝐷), 𝜒 ≥ 0 in 𝐷.
	Suppose that 𝑓 ∈ 𝐿 𝑞 (𝐷) for some 𝑞 > 𝑑 2 . Then there holds for any 𝐵 𝑅 (𝑥 0 ) ⊂ 𝐷 and any 𝑝 > 0
	sup 𝐵 𝑅∕2 (𝑥 0 )	𝑢(𝑥) ≤ 𝐶	( 𝑅 -𝑑 𝑝	‖𝑢‖ 𝐿 𝑝 (𝐵 𝑅 (𝑥 0 )) + 𝑅	2-𝑑 𝑞	‖𝑓 ‖ 𝐿 𝑞 (𝐵 𝑅 (𝑥 0 ))	)	,
	where 𝐶 = 𝐶(𝑑, 𝜆, Λ, 𝑝, 𝑞) is a positive constant.	
		sup 𝐵 1 (𝑥 0 )	𝑊 𝑛 (𝑥) ≤ 𝐶	( ‖𝑊 𝑛 ‖ 𝐿 2 (𝐵 2 (𝑥 0 )) + ‖𝑊 2 𝑛 ‖ 𝐿 2 (𝐵 2 (𝑥 0 ))

4. Uniform boundedness of 𝑊 𝑛 . To prove the uniform boundedness of the sub-solution 𝑊 𝑛 = |𝜑 𝑛 | 2 to (2.14), we need its local boundedness. The following formulation is taken from [23, Theorem 4.14] (see [23, Theorem 4.1] and [16, Theorem 8.17] for the proof). Theorem 2.5 (Local boundedness). Let 𝐷 be a connected open set with smooth boundary in ℝ 𝑑 . Assume that 𝑎 𝑗𝑘 ∈ 𝐿 ∞ (𝐷) satisfies 𝜆|𝜉| 2 ≤ ∑ 𝑗,𝑘 𝑎 𝑗𝑘 (𝑥)𝜉 𝑗 𝜉 𝑘 ≤ Λ|𝜉| 2 , ∀𝑥 ∈ 𝐷, ∀𝜉 ∈ ℝ 𝑑 for some positive constants 𝜆 and Λ. Let 𝑢 ∈ 𝐻 1 (𝐷) be a non-negative sub-solution in 𝐷 in the following sense Let 𝑀 > 0 and denote 𝐷 𝑀 = {𝑥 ∈ ℝ 2 ∶ |𝑥| > 𝑀}. Applying Theorem 2.5 to (2.14) with 𝐷 = 𝐷 𝑀 ,

  𝑄 2 0 ‖ 𝐿 4 , and |𝜑 𝑛 | → 𝑄 0 strongly in 𝐿 𝑟 (ℝ 2 ) for all 𝑟 ∈ [2, ∞). The later follows from the strong convergence |𝜑 𝑛 | → 𝑄 0 in 𝐻 1 (ℝ 2 ) and Sobolev embedding. In particular, for 𝜖 > 0, there exist 𝑛 𝜖 ∈ ℕ and 𝑀 𝜖 sufficiently large such that for all 𝑛 ≥ 𝑛 𝜖 and all 𝑀 ≥ 𝑀 𝜖 ,‖𝑊 𝑛 ‖ 𝐿 2 (𝐵 2 (𝑥 0 )) + ‖𝑊 2 𝑛 ‖ 𝐿 2 (𝐵 2 (𝑥 0 )) ≤ 𝑊 𝑛 (𝑥) ≤ 𝜖 for all 𝐵 1 (𝑥 0 ) ⊂ 𝐷 𝑀 𝜖 .As 𝐵 1 (𝑥 0 ) is arbitrarily in 𝐷 𝑀 𝜖 , we get (by possibly increasing 𝑀 𝜖 )𝑊 𝑛 (𝑥) ≤ 𝜖 for all |𝑥| > 𝑀 𝜖 and all 𝑛 sufficiently large.

	𝜖
	𝐶
	which together with (2.15) yield
	sup
	𝐵 1 (𝑥 0 )
	(2.16)
	Applying again Theorem 2.5 to (2.14) with 𝐷 = ℝ 2 , 𝑎 𝑗𝑘 = 1 2 𝛿 𝑗𝑘 , 𝑓 = 𝜇 𝑛 𝜀 2 𝑛 𝑊 𝑛 + 𝑎 𝑛 𝑊 2 𝑛 , 𝑝 = 𝑞 = 2, and 𝑅 = 2𝑀 𝜖 , we get
	sup
	𝐵 𝑀 𝜖 (0)

  𝑀 and all 𝑛 sufficiently large. Thus we obtain

	(2.16)). As 𝜇 𝑛 𝜀 2 𝑛 → -1 (by Step 1), we get		1 4𝑎 *	for all |𝑥| ≥ 𝑀 and all 𝑛 sufficiently large (see
	-𝜇 𝑛 𝜀 2 𝑛 -	1 8	-𝑎 𝑛 𝑊 𝑛 (𝑥) ≥	1 2
	for all |𝑥| ≥			

  ‖𝑟 𝑛 ‖ 2 𝐻 1 -𝐶 2 𝜀 2𝑛 ‖∇𝑟 𝑛 ‖ 𝐿 2 for some positive constants 𝐶 1 and 𝐶 2 . This implies that

	Thanks to this estimate and the orthogonality condition
	(2.25), we get		
	𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛 ≥ 𝐶 1 ‖𝑟 𝑛 ‖ 2 𝐻 1 ≤ 𝐶(𝜀 2 𝑛 𝐸 NLS 1,𝑎 𝑛	+ 𝜀 4 𝑛 ).	(2.29)

  𝑎 𝑛 ) 1∕2 ⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ + 𝛽 2 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2 .Thanks to (2.32) and the fact that|𝑥||𝜑 𝑛 | → |𝑥|𝑄 0 strongly in 𝐿 2 (ℝ 2 ), we deduce 𝐶 ≥ 𝛽 2 𝑛 (‖𝑥𝑄 0 ‖ 2 𝐿 2 + 𝑜(1)). In particular, we deduce that {𝛽 𝑛 } 𝑛 is bounded above and below away from zero. Passing to subsequence, we have𝛽 𝑛 → 𝛽 > 0 as 𝑛 → ∞. 𝐿 4 + 2⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ + (𝑎 * -𝑎 𝑛 ) 1∕2 𝛽 2 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2 .Since 𝜑 𝑛 → 𝑄 0 strongly in 𝐻 1 (ℝ 2 ), |𝑥||𝜑 𝑛 | → |𝑥|𝑄 0 strongly in 𝐿 2 (ℝ 2 ), and (2.32), we infer that

	Here we have used (2.27) in the second inequality and (2.31) in the last one.
	From (2.22) and the Gagliardo-Nirenberg inequality (1.4), we have
	𝐸 NLS 1,𝑎 𝑛	≥ 2⟨𝐿𝜙 𝑛 , 𝜙 𝑛 ⟩ + ‖𝑥𝜙 𝑛 ‖ 2 𝐿 2 = 2⟨𝐿𝜑 𝑛 , 𝜑 𝑛 ⟩ + 𝜀 2 𝑛 ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2 .
	Denote					𝛽 𝑛 ∶=	𝜀 𝑛 (𝑎 * -𝑎 𝑛 ) 1∕4	.
	From (2.30), we have				
						𝛽 2 𝑛 ≥ 𝐶 > 0.
	Moreover, using (2.3), we also have	
	𝐶 ≥ (𝑎 * -By (2.23), we have 𝐸 NLS 1,𝑎 𝑛 (𝑎 * -𝑎 𝑛 ) 1∕2 2 ≥
	𝐸 NLS 1,𝑎 𝑛	≥	𝑎 * -𝑎 𝑛 2	‖𝜙 𝑛 ‖ 4 𝐿 4 + 2⟨𝐿𝜙 𝑛 , 𝜙 𝑛 ⟩ + ‖𝑥𝜑 𝑛 ‖ 2 𝐿 2
		=	(𝑎 * -𝑎 𝑛 ) 1∕2 𝑛 2𝛽 2	‖𝜑 𝑛 ‖ 4
				𝐸 NLS 1,𝑎 𝑛 (𝑎 * -𝑎 𝑛 ) 1∕2	≥	1 2𝛽 2	‖𝑄 0 ‖ 4 𝐿 4 + 𝛽 2	‖𝑥𝑄 0 ‖ 2 𝐿 2 + 𝑜(1).
	Optimizing over 𝛽 > 0 and noticing that ‖𝑄 0 ‖ 4 𝐿 4 = 2 𝑎 *	we get
	lim inf 𝑛→∞	𝐸 NLS 1,𝑎 𝑛 (𝑎 * -𝑎 𝑛 ) 1∕2	≥ 2	‖𝑥𝑄 0 ‖ 𝐿 2 1∕2 𝑎 *
						2 𝑛 ).	(2.32)

  11) with 𝑒 𝛼|𝑥| 𝜑 𝑛 , integrate over ℝ 2 , and take the real part to get Re ∫ ℝ 2 -Δ𝜑 𝑛 𝑒 𝛼|𝑥| 𝜑 𝑛 + 𝜀 4 𝑛 |𝑥| 2 𝑒 𝛼|𝑥| |𝜑 𝑛 | 2 + 2𝜀 2 𝑛 𝐿𝜑 𝑛 𝑒 𝛼|𝑥| 𝜑 𝑛 -𝑎 𝑛 |𝜑 𝑛 | 4 𝑒 𝛼|𝑥| -𝜀 2 𝑛 𝜇 𝑛 |𝜑 𝑛 | 2 𝑒 𝛼|𝑥| d𝑥 = 0.

Arguing as in [25, Lemma 3.2], we have Re

  1 4 , using (2.20),(2.21) and the fact that 𝜀2 𝑛 𝜇 𝑛 → -1, we obtain Then the claim (2.33) follows directly from (2.34) and (2.21). We next show that {𝜑 𝑛 } 𝑛 is bounded uniformly in 𝐻 2 (ℝ 2 ). To see this, we rewrite (2.11) as-Δ𝜑 𝑛 + 𝜑 𝑛 = (1 + 𝜀 2 𝑛 𝜇 𝑛 )𝜑 𝑛 -𝜀 4 𝑛 |𝑥| 2 𝜑 𝑛 -2𝜀 2 𝑛 𝐿𝜑 𝑛 + 𝑎 𝑛 |𝜑 𝑛 | 2 𝜑 𝑛 .Since {𝜑 𝑛 } 𝑛 is bounded uniformly in 𝐻 1 (ℝ 2 ), the uniform exponential decay in (2.21) and (2.33) imply that the right hand side is bounded uniformly in 𝐿 2 (ℝ 2 ). This shows that {𝜑 𝑛 } 𝑛 is bounded uniformly in 𝐻 2 (ℝ 2 ). By the Sobolev embedding 𝐻 3∕2 (ℝ 2 ) ⊂ 𝐿 ∞ (ℝ 2 ), the strong convergence 𝜑 𝑛 → 𝑄 0 in 𝐻 1 (ℝ 2 ), and the uniformly boundedness of (𝜑 𝑛 ) 𝑛 in 𝐻 2 (ℝ 2 ), we have that 𝜑 𝑛 converges strongly to 𝑄 0 in 𝐿 ∞ (ℝ 2 ) and hence (1.8). □2.2.Collapse with an almost critical speed. We now study the blow-up behavior of minimizers for 𝐸 Ω,𝑎

			∫ ℝ 2	|∇(𝑒 |𝑥|∕8 𝜑 𝑛 )| 2 d𝑥 ≤ 𝐶		(2.34)
	for all 𝑛 sufficiently large. Note that, by the triangle inequality,		
	‖∇(𝑒 |𝑥|∕8 𝜑 𝑛 )‖ 𝐿 2 =	‖ ‖ ‖ ‖	𝑒 |𝑥|∕8 ∇𝜑 𝑛 +	𝑥 8|𝑥|	𝑒 |𝑥|∕8 𝜑 𝑛	‖ ‖ ‖ ‖𝐿 2	≥ ‖𝑒 |𝑥|∕8 ∇𝜑 𝑛 ‖ 𝐿 2 -	1 8	‖𝑒 |𝑥|∕8 𝜑 𝑛 ‖ 𝐿 2 .

  𝑛 ⊂ ℝ 2 and (𝜗 𝑛 ) 𝑛 ⊂ [0, 2𝜋) such that 𝜑 𝑛 (𝑥) ∶= 𝜀 𝑛 𝜓 𝑛 (𝜀 𝑛 𝑥 + 𝑥 𝑛 )𝑒 𝑖𝜀 𝑛 𝑥 ⟂ 𝑛 ⋅𝑥+𝑖𝜗 𝑛 → 𝑄 0 (𝑥) strongly in 𝐻 1 ∩ 𝐿 ∞ (ℝ 2 )as 𝑛 → ∞. We choose ψ𝑛 (𝑥) ∶= 𝜓 𝑛 (𝑥 + 𝑥 𝑛 )𝑒 𝑖𝑥 ⟂ 𝑛 ⋅𝑥+𝑖𝜗 𝑛 as a trial state for 𝐸 NLS

	where we have used that  NLS 1,𝑎 𝑛 asymptotic formula (see (1.7) and (2.35)), we obtain (𝜙 𝑛 ) ≥ 𝐸 NLS 1,𝑎 𝑛 and  NLS 0,𝑎 𝑛	(𝜙 𝑛 ) ≥ 𝐸 NLS 0,𝑎 𝑛	. Since both 𝐸 NLS 1,𝑎 𝑛	and 𝐸 NLS 0,𝑎 𝑛	have the same
			(				)
	𝐸 NLS Ω 𝑛 ,𝑎 𝑛	= (𝑎 * -𝑎 𝑛 ) 1∕2	2	‖𝑥𝑄 0 ‖ 𝐿 2 * 𝑎 1∕2	+ 𝑜(1)	,
	where the upper bound follows from (2.3). Let 𝜓 𝑛 be a ground state for 𝐸 NLS 1,𝑎 𝑛	. By Theorem 1.1, there exist
	sequences {𝑥 𝑛 } Ω 𝑛 ,𝑎 𝑛 obtain	and
							NLS 0,𝑎 𝑛	,	(2.36)

.35)

Proof of Corollary 1.2. Let Ω 𝑛 ↗ 1, 𝑎 𝑛 ↗ 𝑎 * as 𝑛 → ∞, and 𝜙 𝑛 be a minimizer for 𝐸 Ω 𝑛 ,𝑎 𝑛 . We rewrite the energy functional as follows

𝐸 NLS Ω 𝑛 ,𝑎 𝑛 =  NLS Ω 𝑛 ,𝑎 𝑛 (𝜙 𝑛 ) = Ω 𝑛  NLS 1,𝑎 𝑛 (𝜙 𝑛 ) + (1 -Ω 𝑛 ) NLS 0,𝑎 𝑛 (𝜙 𝑛 ) ≥ Ω 𝑛 𝐸 NLS 1,𝑎 𝑛 + (1 -Ω 𝑛 )𝐸

  By(2.3) and the arguments in the proof of Theorem 1.1 (especially of (2.32) and 𝜀 𝑛 ≃ (𝑎 * -𝑎 𝑛 ) 1∕4 ), we have

	and (2.37), we obtain	1,𝑎 𝑛	. Putting together (2.36)
		 NLS 0,𝑎 𝑛			
			(		
	 NLS 0,𝑎 𝑛	( ψ𝑛 ) =  NLS 1,𝑎 𝑛	2	‖𝑥𝑄 0 ‖ 𝐿 2 * 𝑎 1∕2	+ 𝑜(1)

(𝜙 𝑛 ) ≤  NLS 0,𝑎 𝑛 ( ψ𝑛 ). ( ψ𝑛 ) -2⟨ ψ𝑛 , 𝐿 ψ𝑛 ⟩ = 𝐸 NLS 1,𝑎 𝑛 -2⟨𝜑 𝑛 , 𝐿𝜑 𝑛 ⟩ ≤ (𝑎 * -𝑎 𝑛 ) 1∕2

  𝐶𝑁 -𝛽‖∇𝑄 𝑁 ‖ 𝐿 2 ‖𝑄 𝑁 ‖ 3 𝐿 6 + 𝐸 NLS Ω,𝑎 𝑁 𝑄 𝑁 is given in Theorem 1.3. Note that the above energy estimates as well as the asymptotic formula of 𝐸 NLS Ω,𝑎 𝑁 are independent of Ω. Therefore, we obtain (1.15) for every 0 ≤ Ω ≤ 1.To prove convergence of ground states as Ω = Ω 𝑁 ↗ 1 we consider the perturbed Hamiltonian 𝐻 Ω 𝑁 ,𝑎 𝑁 ,𝑁,𝜂 𝑁 = 𝐻 Ω 𝑁 ,𝑎 𝑁 ,𝑁 + 𝜂 𝑁 Denote by 𝐸 NLS Ω 𝑁 ,𝑎 𝑁 ,𝜂 𝑁 the corresponding ground-state energy and 𝑢 𝜂 𝑁 its ground state. Let Φ 𝑁 be a ground state for 𝐻 Ω 𝑁 ,𝑎 𝑁 ,𝑁 = 𝐻 Ω 𝑁 ,𝑎 𝑁 ,𝑁,0 and 𝛾(1) Again the above estimate is independent of Ω 𝑁 . Under the assumption that 𝑎 * -𝑎 𝑁 = 𝑁 -𝛼 with Then dividing (3.2) by 𝜂 𝑁 and repeating the argument with 𝐴 changed to -𝐴 yields On the other hand, with the above choice of 𝜂 𝑁 , we have NLS Ω 𝑁 ,𝑎 𝑁 (𝑢 𝜂 𝑁 ) =  NLS Ω 𝑁 ,𝑎 𝑁 ,𝜂 𝑁 (𝑢 𝜂 𝑁 ) + 𝑂(𝜂 𝑁 ‖𝐴‖) ≤  NLS Ω 𝑁 ,𝑎 𝑁 (𝑢 0 ) + 𝑂(𝜂 𝑁 ‖𝐴‖) = 𝐸 NLS Ω 𝑁 ,𝑎 𝑁 + 𝑂(𝜂 𝑁 ‖𝐴‖).

	we obtain					Φ 𝑁	its one-body reduced density matrix. As in [25, Step 2 in Section 4]
	𝜂 𝑁 Tr	[	𝐴𝛾 (1) Φ 𝑁	]	≥ 𝜂 𝑁	⟨ 𝑢 𝜂 𝑁 |𝐴|𝑢 𝜂 𝑁	⟩	+ 𝑂(𝑁 2𝛽-1 ) + 𝑂(𝑁 3𝛼∕4-𝛽 ).	(3.2)
					0 < 𝛼 < min	{	5 4𝛽	, 2(1 -2𝛽)	}
	one can chose 𝜂 𝑁 = 𝑁 -𝛼∕2-𝜎 with									
				0 < 𝜎 < min	{	1 -2𝛽 -	𝛼 2	, 𝛽 -	4 5𝛼	}
	in such a way that											
		𝜂 𝑁 = 𝑜	(	𝐸 NLS 0,𝑎 𝑁	)	= 𝑜	( (𝑎 * -𝑎 𝑁 ) 1∕2 )	= 𝑜 (	𝑁 -𝛼∕2 )
	and also											
				𝜂 -1 𝑁 𝑁 2𝛽-1 + 𝜂 -1 𝑁 𝑁 3𝛼∕4-𝛽 ⟶
	⟨ 𝑢 𝜂 𝑁 |𝐴|𝑢 𝜂 𝑁	⟩	+ 𝑜(1) ≤ Tr	[	𝐴𝛾 (1) Φ 𝑁	]	≤	⟨	𝑢 -𝜂 𝑁 |𝐴|𝑢 -𝜂 𝑁	⟩	+ 𝑜(1).	(3.3)
	By the argument in the proof of (1.9), the above implies that
	 NLS 0,𝑎 𝑁								(	2	‖𝑥𝑄 0 ‖ 𝐿 2 𝑎 1∕2 *	+ 𝑜 𝑁 (1) )	+ 𝑂	(	𝜂 𝑁 1 -Ω 𝑁	‖𝐴‖
													≥ 𝐸 QM Ω,𝑎 𝑁	(𝑁) ≥ 𝐸 NLS Ω,𝑎 𝑁	-𝐶𝑁 2𝛽-1 .
													𝑁
													∑	𝐴 𝑗	(3.1)
													𝑗=1

where with ground-state energy per particle denoted 𝐸 QM Ω 𝑁 ,𝑎 𝑁 ,𝜂 𝑁 (𝑁). Here 𝜂 𝑁 > 0 is a small parameter to be chosen later and 𝐴 is a bounded self-adjoint operator on 𝐿 2 (ℝ 2 ). The associated NLS energy functional is

 NLS Ω 𝑁 ,𝑎 𝑁 ,𝜂 𝑁 (𝑢) =  NLS Ω 𝑁 ,𝑎 𝑁 (𝑢) + 𝜂 𝑁 ⟨𝐴𝑢, 𝑢⟩. 𝑁→∞ 0.

(𝑢 𝜂 𝑁 ) ≤ (𝑎 * -𝑎 𝑛 ) 1∕2