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BLOW-UP OF 2D ATTRACTIVE BOSE–EINSTEIN CONDENSATES
AT THE CRITICAL ROTATIONAL SPEED

VAN DUONG DINH, DINH-THI NGUYEN, AND NICOLAS ROUGERIE

ABSTRACT. We study the ground states of a 2D focusing non-linear Schrödinger equation with rotation and har-
monic trapping. When the strength of the interaction approaches a critical value from below, the system collapses
to a profile obtained from the optimizer of a Gagliardo–Nirenberg interpolation inequality. This was established
before in the case of fixed rotation frequency. We extend the result to rotation frequencies approaching, or even
equal to, the critical frequency at which the centrifugal force compensates the trap. We prove that the blow-up sce-
nario is to leading order unaffected by such a strong deconfinement mechanism. In particular the blow-up profile
remains independent of the rotation frequency.
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1. INTRODUCTION

Bose–Einstein condensates [5, 19] form a remarkable phase of matter where quantum effects can be spec-
tacularly observed on a mesoscopic scale. Indeed, a single quantum wave-function being macroscopically
occupied, its’ quantum coherence becomes accessible e.g. to imaging techniques. The flexibility of modern
experiments with dilute atomic gases are also remarkable [1, 3, 6, 4, 29, 28], allowing to access reduced di-
mensionalities (2D or even 1D), to tune the interactions (allowing for repulsion or attraction between particles)
and to mimic external magnetic fields either by rotation or by coupling internal degrees of freedom to optical
fields.

In this note we consider such a combination of effects. Namely we are interested in 2D attractive BECs,
where the contact interactions will destabilize the gas towards collapse if they are too strong. The resulting
collapse of ground states [15] turns out to be unaffected by the addition of a moderate rotation of the gas [20]
(see also [10] for dipolar gases). A fast rotation may however destabilize the gas towards expansion, be-
cause the centrifugal force fights the confining potential. These two effects might compete, but we prove that
the instability towards collapse always dominates, leading to a blow-up scenario independent of the rotation
frequency. This answers a question raised in [20, Remark 2.2].
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We shall consider the minimization problem

ENLSΩ,a ∶= inf
{

NLSΩ,a (�) ∶ � ∈ X(ℝ
2) ∶ ‖�‖L2 = 1

}

, (1.1)

where NLSΩ,a is the nonlinear Schrödinger (NLS) energy functional with attractive interactions

NLSΩ,a (�) = ∫ℝ2
|∇�(x)|2dx + ∫ℝ2

|x|2|�(x)|2dx + 2Ω ⟨L�, �⟩ − a
2 ∫ℝ2

|�(x)|4dx

= ∫ℝ2
|(−i∇ + Ωx⟂)�(x))|2dx + (1 − Ω2)∫ℝ2

|x|2|�(x|2dx − a
2 ∫ℝ2

|�(x)|4dx.

Here a > 0 describes the strength of interactions, Ω ≥ 0 is the rotation frequency and L = −ix ∧ ∇ =
i(x2)1 − x1)2) the angular momentum operator. The space X(ℝ2) in (1.1) is a functional space in which the
energy functional NLSΩ,a is well-defined, see below.

In the case of high rotational speed Ω > 1, it was proved in [2] that there are no ground states for ENLSΩ,a for
all a > 0. Indeed, when the rotational speed is larger than the trapping frequency, the centrifugal force caused
by the rotation is stronger than the centripetal force created by the harmonic trap and the gas flies apart. On
the other hand, the condensate remains stable when Ω < 1. In this case, one can prove the norm equivalence

‖∇�‖2L2 + ‖x�‖2L2 + 2Ω ⟨L�, �⟩ ≃ ‖∇�‖2L2 + ‖x�‖2L2 . (1.2)

It is then clear that the energy functional is well-defined on the weighted Sobolev space

Σ(ℝ2) ∶= H1(ℝ2) ∩ L2(ℝ2, |x|2dx),

and hence one can take X(ℝ2) ≡ Σ(ℝ2). Using the compact embedding Σ(ℝ2) ⊂ Lr(ℝ2) for all r ∈ [2,∞),
one can easily show the existence of a ground state for ENLSΩ,a with 0 < a < a∗ (see e.g., [15] in the case
Ω = 0). Here a∗ = ‖Q‖2

L2
with Q the unique (up to translations) positive solution of the elliptic equation

−ΔQ +Q −Q3 = 0 in ℝ2. (1.3)

The constant a∗ also appears in the sharp Gagliardo–Nirenberg inequality

a∗
2 ∫ℝ2

|�(x)|4dx ≤
(

∫ℝ2
|∇�(x)|2dx

)(

∫ℝ2
|�(x)|2dx

)

, ∀� ∈ H1(ℝ2). (1.4)

The case of critical rotational speedΩ = 1 is special. The situation becomes more subtle since the centrifugal
force caused by the rotation is exactly compensated by the harmonic trap. In particular, the norm equivalence
(1.2) is no longer available. Thus working on Σ(ℝ2) does not help to find ground states for ENLS1,a . In this case,
we study the minimization (1.1) on a larger functional space of magnetic Sobolev functions, namely

H1
x⟂ (ℝ

2) ∶=
{

� ∈ L2(ℝ2) ∶ (−i∇ + x⟂)� ∈ L2(ℝ2)
}

,

hence we set X(ℝ2) = H1
x⟂
(ℝ2) when Ω = 1. By making use of the concentration-compactness argument

adapted to magnetic Sobolev spaces (see e.g., [9]), it was proved in [8, 13] that ENLS1,a has at least one ground
state provided that 0 < a < a∗. By (1.4) and the diamagnetic inequality (see e.g., [22, Theorem 7.21])

|∇|�|(x)| ≤ |(−i∇ + x⟂)�(x)|, a.e x ∈ ℝ2, ∀� ∈ H1
x⟂ (ℝ

2) (1.5)

we also have the following magnetic Gagliardo–Nirenberg inequality
a∗
2 ∫ℝ2

|�(x)|4dx ≤
(

∫ℝ2
|(−i∇ + x⟂)�(x)|2dx

)(

∫ℝ2
|�(x)|2dx

)

, ∀� ∈ H1
x⟂ (ℝ

2). (1.6)

The main difference between (1.4) and (1.6) is that there is no optimizer for (1.6) whileQ in (1.3) is the unique
(up to translations and dilations) optimizer for (1.4).
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1.1. Collapse in NLS theory. In the sequel we are interested in the blow-up behavior of ground states for
ENLSΩ,a when a approaches a∗. Our first result concerns the blow-up limit with the critical rotation speedΩ = 1.

Theorem 1.1 (Collapse of NLS ground states at critical rotational speed).
We have, as a ↗ a∗,

ENLS1,a = (a∗ − a)1∕2
(

2
‖xQ0‖L2

a1∕2∗
+ o(1)

)

(1.7)

where Q0 = ‖Q‖−1
L2
Q. In addition, for any sequence {an}n satisfying an ↗ a∗ and any sequence of ground

state �n for ENLS1,an
, there exist a sequence {�n}n ⊂ [0, 2�) and a sequence {xn}n ⊂ ℝ2 such that the following

convergence holds strongly inH1 ∩ L∞(ℝ2):

lim
n→∞

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

�n
⎛

⎜

⎜

⎝

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

x + xn
⎞

⎟

⎟

⎠

exp
⎛

⎜

⎜

⎝

i
(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

x⟂n ⋅ x + i�n
⎞

⎟

⎟

⎠

= Q0(x). (1.8)

As an application of this result, we have the following blow-up behavior of ground states when Ω↗ 1 and
a↗ a∗ at the same time.

Corollary 1.2 (Collapse at subcritical rotational speed).
For any sequence {Ωn}n, {an}n satisfying Ωn ↗ 1 and an ↗ a∗, and any ground state �n for ENLSΩn,an

, there
exists a sequence {�n}n ⊂ [0, 2�) such that the following convergence holds strongly inH1 ∩ L∞(ℝ2):

lim
n→∞

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

�n
⎛

⎜

⎜

⎝

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

x
⎞

⎟

⎟

⎠

ei�n = Q0(x). (1.9)

Remark 1.1.

1. The convergences of energy and of ground states were proved by Guo and Seiringer [15] whenΩ = 0.
These convergences were extended to the case 0 < Ω < 1 fixed by Lewin, Nam, and the third author
[20] (see also further work in [17, 12, 7]). In [14] it is even proved that a fixed rotation rate has no
effect at any order. Theorem 1.1 shows that the energy convergence found remains valid in the case
of critical rotational speed Ω = 1, at least at leading order. This is noteworthy because the trapping
potential, which sets the length-scale of the blow-up behavior, is compensated by the centrifugal force.

2. The convergence of ground states however has to be stated differently from [15, 20]. The model is
translation-invariant for Ω = 1 and thus ground states converge only modulo a magnetic translation
(namely, a translation decorated by the suitable phasemaking it commute with themagnetic Laplacian
see e.g. [27] and references therein).

3. The only effect of the magnetic/rotation field is to set the blow-up length-scale (see the sketch of proof
below). This is comparable to the positive particle mass m > 0 in the Hartree-type and Thomas–
Fermi-type models of stars [16, 23, 26, 24, 25].

4. Our blow-up result, whenΩ↗ 1 at the same time as a↗ a∗, answers a question raised in [20, Remark
2.2]. In this situation, although the centrifugal force almost compensates the trapping potential, the
small residual trapping favors blow-up at the center of the trap. Hence there is no need for a magnetic
translation and the ground state convergence is completely similar to the case 0 ≤ Ω < 1 fixed.

Let us briefly describe the strategy of the proof. To prove Theorem 1.1, we first show, by contraction, that
the sequence of ground states {�n}n for ENLS1,an

blows up in the sense that

"n ∶= ‖∇|�n|‖−1L2 → 0 as n→ ∞. (1.10)
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The blow-up length is then set by "n (whose precise asymptotic behavior is not known at this point) and we
shall show that

'n(x) ∶= "n�n("nx + xn)ei"nx
⟂
n ⋅x+i�n → Q0(x)

strongly in H1(ℝ2), i.e. there is convergence modulo a magnetic translation of vector {xn}n ⊂ ℝ2 and the
choice of a constant phase {�n}n ⊂ [0, 2�). To prove this, we rely on a property of the Lagrange multiplier
associated to�n together with the local boundedness of sub-solutions obtained by analyzing the corresponding
Euler–Lagrange equation. Thanks to the non-degeneracy of Q, we then prove that the imaginary part of 'n
is small in H1-norm. This implies that the rotation acts on 'n only as a quadratic external potential. This
effectively sets a length-scale, and we next prove by matching energy lower and upper bounds that the blow-up
length behaves like

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

.

Hence we obtain the energy convergence (1.7). Finally, the L∞-convergence of ground states follows from
H1-convergence andH2-boundedness deduced from the variational equation.

To prove Corollary 1.2, we first use an energy argument to show that ENLSΩn,an
has the same asymptotic

behavior as for Ω = 0, 1. By taking a sequence of ground states for ENLS1,an
and choosing a suitable trial state

for ENLSΩn,an
, we prove that a ground state for ENLSΩn,an

is an approximate ground state for ENLS0,an
. At this point, the

conclusion follows directly from a result proved in [20, Section 3].

1.2. Collapse in the mean-field limit. The focusing NLS functional (1.1) is commonly used to predict the
collapse of an attractive system, but it should be seen as an effective, mean-field model [30]. It is of interest
to see whether the mean-fied and blow-up limits can be commuted as in [20]. Based on Theorem 1.1 and
Corollary 1.2, we give a positive answer to this question, starting from many-body quantum mechanics.

In many-body quantum mechanics, a Bose gas with an attractive interaction is described by theN-particle
Hamiltonian

Ha,N =
N
∑

j=1

(

−Δxj + |xj|
2 − 2ΩLxj

)

− a
N − 1

∑

1≤i<j≤N
wN (xi − xj), (1.11)

acting on ℌN ∶= L2sym((ℝ
2)N ). As is customary [30], the two-body interaction wN is chosen in the form

wN (x) = N2�w(N�x) (1.12)

for a fixed parameter � > 0 and a fixed function w satisfying

w(x) = w(−x) ≥ 0, (1 + |x|)w, ŵ ∈ L1(ℝ2), ∫ℝ2
w(x)dx = 1. (1.13)

We are interested in the large-N behavior of the ground state energy per particle ofHa,N , namely

EQMΩ,a (N) ∶= N
−1 inf

ΦN∈ℌN ,‖ΦN‖=1

⟨

ΦN ,Ha,NΦN
⟩

, (1.14)

and the associated eigenstates of Ha,N . When Ω = 1, the Hamiltonian HN is magnetic translation invariant
so it has actually no L2-eigenfunction. In the following, we therefore assume that 0 ≤ Ω < 1 and 0 < a < a∗.
We will consider the limit where a = aN ↗ a∗ at the same time as Ω = ΩN ↗ 1 when N → ∞. In that
case, the NLS ground states blow up at the origin to the function Q0, as showed in Corollary 1.2. We will
prove that the many-body ground states condense fully on Q0. As usual, the convergence of ground states is
formulated using k-particles reduced density matrices, defined for any ΦN ∈ ℌN by a partial trace


 (k)ΦN ∶= Tr
k+1→N

|ΦN⟩⟨ΦN |.



BLOW-UP 2D RBEC 5

Equivalently, 
 (k)ΦN is the trace class operator on ℌk with kernel


 (k)ΦN (x1, ..., xk; y1, ..., yk) = ∫ℝ2(N−k)
ΦN (x1, ..., xk, Z)ΦN (y1, ..., yk, Z)dZ.

Bose–Einstein condensation is properly expressed by the convergence in trace norm

lim
N→∞

Tr ||
|


 (k)ΦN − |�⊗k⟩⟨�⊗k|||
|

= 0, ∀k ∈ ℕ.

We have the following result.

Theorem 1.3 (Collapse and condensation of the many-body ground states).
Let 0 < � < 1∕2 be fixed and a = aN = a∗ −N−� with

0 < � < min
{4
5
�, 2(1 − 2�)

}

.

Then for every 0 ≤ Ω < 1 we have, asN → ∞,

EQMΩ,aN (N) = E
NLS
Ω,aN

+ o
(

ENLSΩ,aN

)

= (a∗ − aN )1∕2
(

2
‖xQ0‖L2

a1∕2∗
+ o(1)

)

. (1.15)

Assume in addition that Ω = ΩN = 1 −N−� with

0 < � < min
{

1 − 2� − �
2
, � − 5�

4

}

.

Let ΦN be a ground state for EQMΩ,aN (N). Then we have

lim
N→∞

Tr ||
|


 (k)ΦN − |Q⊗kN ⟩⟨Q⊗kN |

|

|

|

= 0 (1.16)

for all k ∈ ℕ, where

QN (x) =
a1∕4∗ ‖xQ0‖

1∕2
L2

(a∗ − aN )1∕4
Q0

⎛

⎜

⎜

⎝

a1∕4∗ ‖xQ0‖
1∕2
L2

(a∗ − aN )1∕4
x
⎞

⎟

⎟

⎠

.

Remark 1.2. This shows that a result found in [20] remains valid when Ω ↗ 1 slower than a ↗ a∗. The
method is the same as in [20]. The energy estimates do not depend on the rotation parameter. In fact, we also
obtain (1.15) for Ω = 1. Furthermore, the convergence of the many-body ground states follows from that of
the approximate NLS ground states. In the caseΩN ↗ 1, under the additional assumption on the convergence
speed of ΩN in Theorem 1.3, we check that the approximate NLS ground states for ENLSΩN ,aN

is still one for
ENLS0,aN

.

2. COLLAPSE OF THE NLS GROUND STATES

In this section we study the limiting behavior of ground states for (1.1) when a approaches a∗ from below.
We first deal with the critical speed Ω = 1. The case Ω↗ 1 will be given in the end of this section.

2.1. Collapse with a critical speed. Let us consider the case Ω = 1. For simplicity, we denote ∇x⟂ ∶=
−i∇ + x⟂. Let us start by recalling some useful facts.

Lemma 2.1 (L2-bound).
We have

2‖�‖2L2 ≤ ‖∇x⟂ �‖2L2 , ∀� ∈ H1
x⟂ (ℝ

2)

with equality achieved e.g. by �(x) =
√

1
� e
− |x|2

2 .

This is a consquence of Landau’s well-known diagonalization of ∇x⟂2.
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Lemma 2.2 (Compactness modulo translations).
Let {�n}n be a sequence of functions satisfying

inf
n≥1

‖�n‖L4 ≥ C.

for some positive constant C > 0. We have the following weak convergences:
∙ If supn≥1 ‖�n‖H1 < ∞, then there exist � ∈ H1(ℝ2)∖{0} and a sequence {xn}n ⊂ ℝ2 such that up
to a subsequence,

�n(x + xn)⇀ �(x) weakly inH1(ℝ2).
∙ If supn≥1 ‖�n‖H1

x⟂
< ∞, then there exist �̃ ∈ H1

x⟂
(ℝ2)∖{0} and a sequence {yn}n ⊂ ℝ2 such that

up to a subsequence,

eiy
⟂
n ⋅x�n(x + yn)⇀ �̃(x) weakly inH1

x⟂ (ℝ
2).

Proof. The proof of this Lemma can be found in [21] and [8]. �

Lemma 2.3 (Energy upper bound).
Let {an}n be a positive sequence satisfying an ↗ a∗ as n→ ∞. Then, for every 0 ≤ Ω ≤ 1, we have

lim
n→∞

ENLSΩ,an
= ENLSΩ,a∗

= 0.

More precisely,

lim sup
n→∞

ENLS1,an

(a∗ − an)1∕2
≤ 2

‖xQ0‖L2

a1∕2∗
. (2.1)

Proof. It is obvious thatENLSΩ,an
≥ 0, by the magnetic Gagliardo–Nirenberg inequality (1.6). On the other hand,

let Q be the unique positive radial solution of (1.3). By Pohozaev’s identity, we have

‖∇Q‖2L2 =
1
2
‖Q‖4L4 = ‖Q‖2L2 = a∗.

Denote Q0 = ‖Q‖−1
L2
Q. Then

‖∇Q0‖2L2 =
a∗
2
‖Q0‖

4
L4 = ‖Q0‖

2
L2 = 1

By the variational principle, we have

ENLSΩ,an
≤ NLSΩ,an

(�Q0(�⋅)) = �2
(

1 −
an
a∗

)

+ �−2‖xQ0‖2L2 (2.2)

for all � > 0. Here we have used the fact that ⟨L(�Q0(�⋅)), �Q0(�⋅)⟩ = 0 since Q0 is real-valued. Optimizing
over �, we get

ENLSΩ,an
≤ 2

‖xQ0‖L2

a1∕2∗
(a∗ − an)1∕2 (2.3)

which implies (2.1) and also lim supn→∞ ENLSΩ,an
≤ 0. �

Lemma 2.4 (Blow-up).
Let {an}n be a positive sequence such that an ↗ a∗ as n→∞ and �n be a ground state forENLS1,an

. Then {�n}n
blows up both inH1

x⟂
(ℝ2) and inH1(ℝ2) in the sense that

lim
n→∞

‖∇x⟂ �n‖L2 = lim
n→∞

‖∇�n‖L2 = lim
n→∞

‖∇|�n|‖L2 = +∞.
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Proof. We first show that {�n}n blows up inH1
x⟂
(ℝ2). Assume for contradiction that

sup
n≥1

‖∇x⟂ �n‖2L2 < ∞. (2.4)

In particular, {�n}n is then a bounded sequence inH1
x⟂
(ℝ2). Observe that there exists C > 0 such that

lim inf
n→∞

‖�n‖L4 ≥ C

since otherwise, we have
lim
n→∞

ENLS1,an
≥ lim
n→∞

‖∇x⟂ �n‖2L2 ≥ 2,

where the last inequality is due to Lemma 2.1. This, however, is not possible (see Lemma 2.3). Thus, by
Lemma 2.2, there exist � ∈ H1

x⟂
(ℝ2)∖{0} and a sequence {xn}n ⊂ ℝ2 such that

�̃n(x) ∶= eix
⟂
n ⋅x�n(x + xn)⇀ � weakly inH1

x⟂ (ℝ
2).

We claim that ‖�‖2
L2
= 1. Indeed, we have

0 < ‖�‖2L2 ≤ lim infn→∞
‖�̃n‖

2
L2 = lim infn→∞

‖�n‖
2
L2 = 1.

If ‖�‖2
L2
< 1, then by the magnetic translation invariance, we have

ENLS1,an
= NLS1,an

(�n) = NLS1,an
(�̃n) ≥ NLS1,a∗

(�̃n) = NLS1,a∗
(�) + NLS1,a∗

(�̃n − �) + o(1). (2.5)

Here we have used the weak convergence �̃n(x)⇀ � and the fact that ‖�̃n‖L4 is bounded uniformly, by (1.6)
and (2.4). Again, (1.6) implies that

NLS1,a∗
(�̃n − �) ≥ 0.

Furthermore,

NLS1,a∗
(�) = ‖�‖2L2

NLS
1,a∗

(

�
‖�‖L2

)

+
a∗
2

(

1
‖�‖2

L2
− 1

)

‖�‖4L4 > 0

since 0 < ‖�‖L2 < 1. This contradicts the fact that ENLS1,an
→ 0 as n → ∞, by Lemma 2.3. Therefore, we

must have ‖�‖L2 = 1, hence �̃n → � strongly in L2(ℝ2). In fact, �̃n → � strongly in Lr(ℝ2) for r ∈ [2,∞),
because of theH1

x⟂
(ℝ2) boundedness. Thus we have

ENLS1,a∗
≤ NLS1,a∗

(�) ≤ lim inf
n→∞

NLS1,an
(�n) = lim infn→∞

ENLS1,an
= ENLS1,a∗

.

This shows that� is a ground state forENLS1,a∗
. However there are no such ground states, as proven in e.g. [8, 13],

and we deduce that (2.4) cannot hold.
We now conclude the proof by showing that {�n}n blows up inH1(ℝ2). We have

0 = ENLS1,a∗
= lim
n→∞

ENLS1,an
= lim
n→∞

NLS1,an
(�n) = lim

n→∞
‖∇x⟂ �n‖2L2 −

an
2
‖�n‖

4
L4 .

Since ‖∇x⟂ �n‖L2 → ∞ as n → ∞, we must have ‖�n‖4L4 → ∞. But then (1.4) implies that ‖∇�n‖L2 → ∞
and ‖∇|�n|‖L2 → ∞ as well. �

We are now in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. Convergence of the modulus. We first show that there exists a sequence {xn}n ⊂ ℝ2 such that

"n|�n|("n ⋅ +xn)→ Q0 strongly inH1(ℝ2) as n→ ∞ (2.6)
where "n is given by (1.10). Denote

vn(x) ∶= "n|�n|("nx).
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We then have
‖vn‖L2 = ‖�n‖L2 = 1 and ‖∇vn‖L2 = "n‖∇|�n|‖L2 = 1.

Hence {vn}n is a bounded sequence inH1(ℝ2). On the other hand, using (1.5) we have

NLS1,a (�) ≥ ‖∇|�|‖2L2 −
a
2
‖�‖4L2 =∶ 

0
a (|�|).

But (1.4) implies

0a (|�|) ≥
(

1 − a
a∗

)

‖∇|�|‖2L2 .

From this and Lemma 2.3, we obtain

0 = lim
n→∞

ENLS1,an
= lim
n→∞

NLS1,an
(�n) ≥ lim infn→∞

0an (|�n|) ≥ 0.

In particular, we have 0an (vn) = "
2
n

0
an
(|�n|)→ 0 as n→ ∞. Since by definition

‖∇vn‖L2 = 1

for all n ≥ 1, we infer that, up to a subsequence,

inf
n≥1

‖vn‖L4 ≥ C

for some constant C > 0. By Lemma 2.2, there exists � ∈ H1(ℝ2)∖{0} and {yn}n ⊂ ℝ2 such that up to a
subsequence,

ṽn(x) ∶= vn(⋅ + yn)⇀ � weakly inH1(ℝ2).
We next show that ‖�‖L2 = 1. In fact, we first have

0 < ‖�‖2L2 ≤ lim infn→∞
‖ṽn‖

2
L2 = lim

n→∞
‖vn‖L2 = 1.

Assume for contradiction that ‖�‖L2 < 1. Then by the weak convergence inH1, we have as in (2.5) that

0 = lim
n→∞

0an (vn) = lim
n→∞

0an (ṽn) ≥ 0a∗ (�) + lim
n→∞

0a∗ (ṽn − �). (2.7)

Again, by (1.4), we have
0a∗ (ṽn − �) ≥ 0

and

0a∗ (�) = ‖�‖2L2
0
a∗

(

�
‖�‖L2

)

+
a∗
2

(

1
‖�‖2

L2
− 1

)

‖�‖4L4 > 0

since 0 < ‖�‖L2 < 1. This is contradiction with (2.7) and we thus must have ‖�‖L2 = 1. Then ṽn → �
strongly in L2(ℝ2), up to a subsequence. In fact, ṽn → � strongly in Lr(ℝ2) for r ∈ [2,∞), because of the
H1(ℝ2) boundedness. Therefore,

0 ≤ 0a∗ (�) ≤ lim infn→∞
0a∗ (ṽn) = lim infn→∞

0an (vn) = 0.

This shows that
lim
n→∞

‖∇ṽn‖L2 = lim
n→∞

an
2
‖ṽn‖L2 = lim

n→∞

a∗
2
‖�‖L2 = ‖∇�‖L2 .

Hence ṽn → � strongly in H1(ℝ2), up to a subsequence. Moreover, � is an optimizer of (1.4). By the
uniqueness (up to translations and dilations) of optimizers for (1.4) and the fact that ṽn is non-negative, there
exist � > 0 and x0 ∈ ℝ2 such that �(x) = �Q0(�(x+x0)). Since ‖∇�‖L2 = 1, we must have � = 1. Again, by
uniqueness of Q0, we conclude that passing to a subsequence is unnecessary. This leads to (2.6) after setting
xn = "n(yn − x0).
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Step 2. A property of Lagrange multipliers. The minimizer �n of ENLS1,an
satisfies the Euler–Lagrange

equation
(

∇x⟂
)2 �n − an|�n|2�n = �n�n in ℝ2 (2.8)

in the weak sense1, where �n ∈ ℝ is the Lagrange multiplier. In this step, we show that "2n�n → −1 as n→ ∞.
Indeed, as �n is a ground state for ENLS1,an

, using (2.8), we have

�n = ‖∇x⟂ �n‖2L2 − an‖�n‖
4
L4 = NLS1,an

(�n) −
an
2
‖�n‖

4
L4 = E

NLS
1,an

−
an
2
‖�n‖

4
L4 .

Denote

'n(x) = ei�n n(x) (2.9)

with
 n(x) ∶= "n�n("nx + xn)ei"nx

⟂
n ⋅x

and �n ∈ [0, 2�) satisfying

‖'n −Q0‖L2 = min
�∈[0,2�)

‖ei� n −Q0‖L2 . (2.10)

By (2.6), we have |'n| ∶= "n|�n|("n ⋅ +xn)→ Q0 strongly inH1(ℝ2). Therefore,

lim
n→∞

"2n‖�n‖
4
L4 = lim

n→∞
‖'n‖

4
L4 = ‖Q0‖

4
L4 =

2
a∗
.

Since 0 ≤ ENLS1,an
→ 0 (see Lemma 2.3) and an ↗ a∗, we get

lim
n→∞

"2n�n = lim
n→∞

"2nE
NLS
1,an

− lim
n→∞

an
2
"2n‖�n‖

4
L4 = −1.

Step 3. A sub-equation for |'n|2. We next use (2.8) to derive an equation and a sub-equation satisfied by 'n
and |'n|2. To do so, we write

 n(x) = "n�̃n("nx)

with �̃n(x) ∶= �n(x + xn)eix
⟂
n ⋅x. A direct computation gives

(

∇x⟂
)2 �̃n(x) =

(

∇x⟂
)2 �n(x + xn)eix

⟂
n ⋅x

which, by (2.8), implies
(

∇x⟂
)2 �̃n − an|�̃n|2�̃n = �n�̃n.

Using the identity
(

∇x⟂
)2 � = −Δ� + 2L� + |x|2�

with L = i(x2)1 − x1)2) = −ix⟂ ⋅ ∇, we see that �̃n solves the elliptic equation

−Δ�̃n + |x|2�̃n + 2L�̃n − an|�̃n|2�̃n − �n�̃n = 0

in the weak sense. By the definition of 'n in (2.9), we get

−Δ'n + "4n|x|
2'n + 2"2nL'n − an|'n|

2'n − "2n�n'n = 0. (2.11)

1Meaning

∫ℝ2
∇x⟂ �n ⋅ ∇x⟂ � − an|�n|

2�n� − �n�n�dx = 0, ∀� ∈ H1
x⟂ (ℝ

2).
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DenoteWn ∶= |'n|2. Multiplying both sides of (2.11) with 'n, taking the real part, and using the following
identities

−Re(Δ'n'n) = −
1
2
ΔWn + |∇'n|2,

2Re(L'n'n) = L'n'n + L'n'n = x⟂ ⋅ J ('n),
(2.12)

with J (') = i('∇' − '∇') the superfluid current, we obtain

−1
2
ΔWn + |∇'n|2 + "4n|x|

2Wn + "2nx
⟂ ⋅ J ('n) − anW 2

n − "
2
n�nWn = 0. (2.13)

Using the identity

|(−i∇ + "2nx
⟂)'n|2 = |∇'n|2 + "2nx

⟂ ⋅ J ('n) + "4n|x|
2Wn,

we deduce that

−1
2
ΔWn − "2n�nWn − anW 2

n ≤ 0 (2.14)

in the weak sense, i.e.,

∫ℝ2
1
2
∇Wn ⋅ ∇� − "2n�nWn� − anW 2

n �dx ≤ 0, ∀0 ≤ � ∈ H1
x⟂ (ℝ

2).

Step 4. Uniform boundedness ofWn. To prove the uniform boundedness of the sub-solutionWn = |'n|2 to
(2.14), we need its local boundedness. The following formulation is taken from [18, Theorem 4.14] (see [18,
Theorem 4.1] and [11, Theorem 8.17] for the proof).

Theorem 2.5 (Local boundedness).
Let Ω be a domain in ℝd . Assume that ajk ∈ L∞(Ω) satisfies

�|�|2 ≤
∑

j,k
ajk(x)�j�k ≤ Λ|�|2, ∀x ∈ Ω, ∀� ∈ ℝd

for some positive constants � and Λ. Let u ∈ H1(Ω) be a non-negative sub-solution in Ω in the following
sense

∫Ω
ajk)ju)k�dx ≤ ∫Ω

f�dx, ∀� ∈ H1
0 (Ω), � ≥ 0 in Ω.

Suppose that f ∈ Lq(Ω) for some q > d
2 . Then there holds for any BR(x0) ⊂ Ω and any p > 0

sup
BR∕2(x0)

u(x) ≤ C
(

R−
d
p
‖u‖Lp(BR(x0)) + R

2− d
q
‖f‖Lq(BR(x0))

)

,

where C = C(d, �,Λ, p, q) is a positive constant.

Let M > 0 and denote ΩM = {x ∈ ℝ2 ∶ |x| ≥ M}. Applying Theorem 2.5 to (2.14) with Ω = ΩM ,
ajk =

1
2�jk, f = "

2
n�nWn + anW 2

n , p = q = 2, R = 2, and B2(x0) ⊂ ΩM , we get

sup
B1(x0)

Wn(x) ≤ C
(

‖Wn‖L2(B2(x0)) + ‖W 2
n ‖L2(B2(x0))

)

(2.15)

for some universal constant C > 0. Since B2(x0) ⊂ ΩM , we deduce

‖Wn‖L2(B2(x0)) + ‖W 2
n ‖L2(B2(x0)) ≤ ‖Wn‖L2(|x|≥M) + ‖W 2

n ‖L2(|x|≥M)

→ ‖Q20‖L2(|x|≥M) + ‖Q40‖L2(|x|≥M).
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Here we have used �2n�n → −1 and the fact thatWn → Q20 in L
2(ℝ2) andW 2

n → Q40 in L
2(ℝ2) because

‖Wn −Q20‖L2 ≤ ‖|'n| −Q0‖L4‖|'n| +Q0‖L4 ,

‖W 2
n −Q

4
0‖L2 ≤ ‖|'n| −Q0‖L8‖|'n| +Q0‖L8‖|'n|

2 +Q20‖L4 ,

and |'n| → Q0 strongly inLr(ℝ2) for all r ∈ [2,∞). The later follows from the strong convergence |'n| → Q0
inH1(ℝ2) and Sobolev embedding. In particular, for � > 0, there exist n� ∈ ℕ andM� sufficiently large such
that for all n ≥ n� and allM ≥M� ,

‖Wn‖L2(B2(x0)) + ‖W 2
n ‖L2(B2(x0)) ≤

�
C

which together with (2.15) yield
sup
B1(x0)

Wn(x) ≤ �

for all B1(x0) ⊂ ΩM�
. As B1(x0) is arbitrarily in ΩM�

, we get (by possibly increasingM�)

Wn(x) ≤ � for all |x| ≥M� and all n sufficiently large. (2.16)

Applying again Theorem 2.5 to (2.14) with Ω = ℝ2, ajk =
1
2�jk, f = �n"2nWn + anW 2

n , p = q = 2, and
R = 2M� , we get

sup
BM� (0)

Wn(x) ≤ C
(

M−1
� ‖Wn‖L2(B2M� (0))

+M�‖W
2
n ‖L2(B2M� (0))

)

for some universal constant C > 0. This implies
sup

BM� (0)
Wn(x) ≤ C(M�) for all n sufficiently large. (2.17)

Collecting (2.16) and (2.17), we prove
0 ≤ sup

x∈ℝ2
Wn(x) ≤ C for all n sufficiently large, (2.18)

where C > 0 is a constant independent of n.

Step 5. Uniform exponential decay of Wn. We now prove the uniform exponential decay of Wn. To this
end, we test (2.14) with e�|x|Wn for some constant � to be chosen shortly. We have

−1
2 ∫ℝ2

ΔWne
�|x|Wndx − �n"2n ∫ℝ2

Wne
�|x|Wndx − an ∫ℝ2

W 2
n e

�|x|Wndx ≤ 0.

Observe that

∫ℝ2
ΔWne

�|x|Wndx = ∫ℝ2
e�|x|

(1
2
Δ(W 2

n ) − |∇Wn|
2
)

dx

= 1
2 ∫ℝ2

W 2
n Δ(e

�|x|)dx − ∫ℝ2
|∇Wn|

2e�|x|dx

= 1
2 ∫ℝ2

W 2
n

(

�2 + �
|x|

)

e�|x|dx − ∫ℝ2
|∇Wn|

2e�|x|dx

and

∫ℝ2
|∇(Wne

�|x|∕2)|2dx = �2

4 ∫ℝ2
W 2
n e

�|x|dx + ∫ℝ2
|∇Wn|

2e�|x|dx − 1
2 ∫ℝ2

W 2
n

(

�2 + �
|x|

)

e�|x|dx.

In particular, we have

∫ℝ2
ΔWne

�|x|Wndx =
�2

4 ∫ℝ2
W 2
n e

�|x|dx − ∫ℝ2
|∇(Wne

�|x|∕2)|2dx,



12 V. D. DINH, D.-T. NGUYEN, AND N. ROUGERIE

hence
1
2 ∫ℝ2

|∇(Wne
�|x|∕2)|2dx − �2

8 ∫ℝ2
W 2
n e

�|x|dx − �n"2n ∫ℝ2
W 2
n e

�|x|dx − an ∫ℝ2
W 3
n e

�|x|dx ≤ 0

so

∫ℝ2

(

−�n"2n −
�2

8
− anWn

)

W 2
n e

�|x|dx ≤ 0.

We pick � = 1 and chooseM > 0 so large thatWn(x) ≤
1
4a∗

for all |x| ≥ M and all n sufficiently large (see
(2.16)). As �n"2n → −1 (by Step 1), we get

−�n"2n −
1
8
− anWn(x) ≥

1
2

for all |x| ≥M and all n sufficiently large. Thus we obtain

1
2 ∫ℝ2∖BM (0)

W 2
n e

|x|dx ≤ ∫BM (0)

|

|

|

|

−�n"2n −
1
8
− anWn

|

|

|

|

W 2
n e

|x|dx ≤ CeM‖Wn‖
2
L2 ≤ CeM

for all n sufficiently large, where we have used (2.18) to get the second estimate. This proves that

∫ℝ2
W 2
n e

|x|dx ≤ C, (2.19)

for all n sufficiently large, where C > 0 is independent of n. From this, we get

∫ℝ2
|'n|

2e|x|∕4dx = ∫ℝ2
Wne

|x|∕2e−|x|∕4dx ≤
(

∫ℝ2
W 2
n e

|x|dx
)1∕2(

∫ℝ2
e−|x|∕2dx

)1∕2
≤ C (2.20)

for all n sufficiently large. An immediate consequence of this uniform exponential decay is that |x||'n| →
|x|Q0 strongly in L2(ℝ2).

Step 6. H1-strong convergence. By the definition of 'n (see (2.9)), we have

�n(x) = "−1n 'n("
−1
n (x − xn))e

−ix⟂n ⋅x−i�n .

Since �n is a ground state for ENLS1,an
, we see that

ENLS1,an
= NLS1,an

(�n) = ‖∇�n‖2L2 + ‖x�n‖
2
L2 + 2 ⟨L�n, �n⟩ −

an
2
‖�n‖

4
L4 . (2.21)

This implies the following identity

"2nE
NLS
1,an

= ‖∇'n‖2L2 + 2"
2
n ⟨L'n, 'n⟩ + "

4
n‖x'n‖

2
L2 −

an
2
‖'n‖

4
L4 . (2.22)

By the Cauchy–Schwarz inequality, we have

|2"2n ⟨L'n, 'n⟩ | ≤ 2"
2
n‖∇'n‖L2‖x'n‖L2 ≤

1
2
‖∇'n‖2L2 + 2"

4
n‖x'n‖

2
L2

which implies
‖∇'n‖2L2 ≤ 2

(

"2nE
NLS
an

+ "4n‖x'n‖
2
L2 +

an
2
‖'n‖

4
L4

)

.

Since ENLS1,an
→ 0, "n → 0, |x||'n| → |x|Q0 strongly in L2(ℝ2), and |'n| → Q0 strongly in L4(ℝ2), we infer

that {'n}n is bounded uniformly inH1(ℝ2).
From (2.22), we also have

‖∇'n‖2L2 −
a∗
2
‖'n‖

4
L4 = "

2
nE

NLS
1,an

− 2"2n ⟨L'n, 'n⟩ − "
4
n‖x'n‖

2
L2 −

a∗ − an
2

‖'n‖
4
L4 .
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Using the uniform boundedness of {'n}n in H1(ℝ2), the strong convergence |x||'n| → |x|Q0 in L2(ℝ2),
and an ↗ a∗, we deduce that

lim
n→∞

‖∇'n‖2L2 −
a∗
2
‖'n‖

4
L4 = 0.

Since ‖'n‖L2 = 1 and |'n| → Q0 strongly in Lr(ℝ2) for all r ∈ [2,∞), there exists {zn}n ⊂ ℝ2 such that

'n(x + zn)→ ei�Q0(x) (2.23)

strongly in H1(ℝ2), for some � ∈ ℝ. Using the fact that ‖Q0(⋅ + zn) − Q0‖H1 → 0 if and only if |zn| → 0,
we get |zn| → 0. This in turn implies that 'n → ei�Q0 strongly inH1(ℝ2) since

‖'n − ei�Q0‖H1 = ‖'n(⋅ + zn) − ei�Q0(⋅ + zn)‖H1

≤ ‖'n(⋅ + zn) − ei�Q0‖H1 + ‖Q0 −Q0(⋅ + zn)‖H1 → 0.

Now we write
'n(x) = qn(x) + irn(x)

with qn and rn the real and imaginary parts of 'n respectively. By (2.10), we have the following orthogonality
condition

∫ℝ2
Q0rndx = 0. (2.24)

Since ‖'n − ei�Q0‖2L2 → 0, we have

∫ℝ2
(

Re(' − ei�Q0)
)2 +

(

Im('n − ei�Q0)
)2 dx→ 0.

In particular, we get

∫ℝ2
(rn −Q0 sin �)2dx→ 0.

Using (2.24), we have

∫ℝ2
r2n +Q

2
0 sin

2 �dx→ 0.

This shows that

∫ℝ2
r2ndx→ 0 and sin2 � = 0.

Hence � = 0 and 'n → Q0 strongly inH1(ℝ2). In particular, we have

∫ℝ2
(qn −Q0)2dx→ 0 and ∫ℝ2

r2ndx→ 0. (2.25)

This, together with the exponential decay ofWn, yields

∫ℝ2
|x|2(qn −Q0)2dx→ 0 and ∫ℝ2

|x|2r2ndx→ 0. (2.26)

In fact, by the exponential decay ofWn (see (2.20)), we have

∫ℝ2
|x|2r2ndx ≤

(

∫ℝ2
|x|4r2ndx

)1∕2(

∫ℝ2
r2ndx

)1∕2
→ 0

and similarly for qn −Q0.
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Step 7. Smallness of the imaginary part. Observe that

⟨L'n, 'n⟩ = Re ⟨L'n, 'n⟩ = ∫ℝ2
x⟂ ⋅ Im('n∇'n)dx

= ∫ℝ2
x⟂ ⋅ (qn∇rn − rn∇qn)dx = 2∫ℝ2

x⟂qn∇rndx
(2.27)

which implies
| ⟨L'n, 'n⟩ | ≤ 2‖xqn‖L2‖∇rn‖L2 ≤ C‖∇rn‖L2 .

Here we have used the fact that |x|qn is bounded uniformly in L2(ℝ2) since |x||'n| → |x|Q0 strongly in
L2(ℝ2). We deduce from the above and (2.22) that

"2nE
NLS
1,an

≥ ∫ℝ2
|∇qn|2 + |∇rn|2 −

a∗
2
(q4n + r

4
n + 2q

2
nr
2
n)dx − C"

2
n‖∇rn‖L2 .

We have
a∗
2 ∫ℝ2

(r4n + 2q
2
nr
2
n)dx ≤ a∗ ∫ℝ2

|'n|
2r2ndx = ∫ℝ2

Q2r2ndx + a∗ ∫ (|'n|2 −Q20)r
2
ndx

= ∫ℝ2
Q2r2ndx + o(1)‖rn‖

2
H1 .

Here we have used that
|

|

|

|

∫ℝ2
(|'n|2 −Q20)r

2
ndx

|

|

|

|

≤ ‖|'n|
2 −Q20‖L2‖rn‖

2
L4 ≤ C‖|'n|

2 −Q20‖L2‖rn‖
2
H1

and
‖|'n|

2 −Q20‖L2 ≤ ‖|'n| −Q0‖L4‖|'n| +Q0‖L4 → 0

as |'n| → Q0 strongly in H1(ℝ2) hence in L4(ℝ2) by Sobolev embedding. On the other hand, by (1.4), we
have

∫ℝ2
|∇qn|2 −

a∗
2
q4ndx ≥ ‖∇qn‖2L2 (1 − ‖qn‖

2
L2 ) = (1 + o(1))‖rn‖

2
L2 ,

wherewe have used that qn → Q0 strongly inH1(ℝ2), ‖qn‖2L2+‖rn‖
2
L2
= 1 as ‖'n‖2L2 = 1, and ‖∇Q0‖

2
L2
= 1.

Thus we get

"2nE
NLS
1,an

≥ ∫ℝ2
|∇rn|2 −Q2r2n + r

2
ndx + o(1)‖rn‖

2
H1 − C"

2
n‖∇rn‖L2

= ⟨rn, rn⟩ + o(1)‖rn‖2H1 − C"
2
n‖∇rn‖L2 ,

where  ∶= −Δ −Q2 + 1.
We now use the non-degeneracy property of Q. It is well-known (see [22, Theorem 11.8 and Corrollary

11.9]) thatQ is the first eigenfunction of and the corresponding eigenvalue 0 is non-degenerate. In particular,
we have

⟨u, u⟩ ≥ �2‖u‖
2
L2

for all u orthogonal to Q, where �2 > 0 is the second eigenvalue of . This together with the fact that

⟨u, u⟩ ≥ ‖u‖2H1 − ‖Q‖2L∞‖u‖
2
L2

yield
⟨u, u⟩ ≥ C‖u‖2H1

for some constant C > 0 and all u orthogonal to Q. Thanks to this estimate and the orthogonality condition
(2.24), we get

"2nE
NLS
1,an

≥ C1‖rn‖
2
H1 − C2"

2
n‖∇rn‖L2
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for some positive constants C1 and C2. This implies that

‖rn‖
2
H1 ≤ C("2nE

NLS
1,an

+ "4n). (2.28)

On the other hand, from (2.3), (1.6) and (1.5), we have

C(a∗ − an)1∕2 ≥ ENLS1,an
= NLS1,an

(�n) ≥
a∗ − an
a∗

‖∇x⟂ �n‖2L2 ≥
a∗ − an
a∗

‖∇|�n|‖2L2 =
a∗ − an
a∗

"−2n

which implies
ENLS1,an

≤ C(a∗ − an)1∕2 ≤ C"2n (2.29)

for some constant C > 0. This together with (2.28) yield
‖rn‖H1 ≤ C"2n. (2.30)

Step 8. Identifying the blow-up limit. Coming back to (2.27), we have

⟨L'n, 'n⟩ = 2∫ℝ2
x⟂ ⋅ ∇rnqndx = 2∫ℝ2

x⟂ ⋅ ∇rnQ0dx + 2∫ℝ2
x⟂ ⋅ ∇rn(qn −Q0)dx

= 2∫ℝ2
x⟂ ⋅ ∇rn(qn −Q0)dx

where we have used the fact that x⟂ ⋅ ∇Q0 = 0 since Q0 is radial and (2.26). This shows that

| ⟨L'n, 'n⟩ | ≤ ‖∇rn‖L2‖x(qn −Q0)‖L2 ≤ o(1)‖∇rn‖L2 ≤ o(1)"2n. (2.31)
Here we have used (2.30) in the last inequality.

From (2.21) and (1.4), we have
ENLS1,an

≥ 2 ⟨L�n, �n⟩ + ‖x�n‖
2
L2 = 2 ⟨L'n, 'n⟩ + "

2
n‖x'n‖

2
L2 .

Denote
�n ∶=

"n
(a∗ − an)1∕4

.

From (2.29), we have
�2n ≥ C > 0.

Moreover, using (2.3), we also have

C ≥
ENLS1,an

(a∗ − an)1∕2
≥ 2
(a∗ − an)1∕2

⟨L'n, 'n⟩ + �2n‖x'n‖
2
L2 .

Thanks to (2.31) and the fact that |x||'n| → |x|Q0 strongly in L2(ℝ2), we deduce

C ≥ �2n (‖xQ0‖
2
L2 + o(1)).

In particular, we deduce that {�n}n is bounded away from zero. Passing to subsequence, we have �n → � > 0
as n→ ∞.

By (2.22), we have

ENLS1,an
≥
a∗ − an
2

‖�n‖
4
L4 + 2 ⟨L�n, �n⟩ + ‖x'n‖

2
L2

=
(a∗ − an)1∕2

2�2n
‖'n‖

4
L4 + 2 ⟨L'n, 'n⟩ + (a∗ − an)

1∕2�2n‖x'n‖
2
L2 .

Since 'n → Q0 strongly inH1(ℝ2), |x||'n| → |x|Q0 strongly in L2(ℝ2), and (2.31), we infer that
ENLS1,an

(a∗ − an)1∕2
≥ 1
2�2

‖Q0‖
4
L4 + �

2
‖xQ0‖

2
L2 + o(1).
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Optimizing over � > 0 and noticing that ‖Q0‖4L4 =
2
a∗

we get

lim inf
n→∞

ENLS1,an

(a∗ − an)1∕2
≥ 2

‖xQ0‖L2

a1∕2∗
and � = 1

a1∕4∗ ‖xQ0‖
1∕2
L2

. (2.32)

From (2.1) and (2.32), we obtain (1.7) and (1.8).

Step 9. L∞ convergence. We finally upgrade theH1-convergence of {'n}n toL∞-convergence. To this end,
we first show the uniform exponential decay for ∇'n, namely

∫ℝ2
|∇'n|2e|x|∕4dx ≤ C (2.33)

for all n sufficiently large. We multiply both sides of (2.11) with e�|x|'n, integrate over ℝ2, and take the real
part to get

Re∫ℝ2
−Δ'ne�|x|'n + "4n|x|

2e�|x||'n|
2 + 2"2nL'ne

�|x|'n − an|'n|4e�|x| − "2n�n|'n|
2e�|x|dx = 0.

Arguing as in [20, Lemma 3.2], we have

Re∫ℝ2
−Δ'ne�|x|'ndx = ∫ℝ2

|∇(e�|x|∕2'n)|2dx −
�2

2 ∫ℝ2
e�|x||'n|

2dx.

In particular, we get

0 = ∫ℝ2
|∇(e�|x|∕2'n)|2dx + "4n ∫ℝ2

|x|2e�|x||'n|
2dx + ∫ℝ2

e�|x|
(

− an|'n|2 − "2n�n −
�2

4

)

|'n|
2dx

+ 2"2n ∫ℝ2
L'ne

�|x|'ndx.

Since L(e�|x|∕2) = 0, we have
|

|

|

|

2"2n ∫ℝ2
L'ne

�|x|'ndx
|

|

|

|

=
|

|

|

|

2"2n ∫ℝ2
e�|x|∕2'nL(e�|x|∕2'n)dx

|

|

|

|

≤ 2"2n‖x
⟂e�|x|∕2'n‖L2‖∇(e

�|x|∕2'n)‖L2

≤ 1
2 ∫ℝ2

|∇(e�|x|∕2'n)|2dx + 2"4n ∫ℝ2
|x|2e�|x||'n|

2dx.

It follows that
1
2 ∫ℝ2

|∇(e�|x|∕2'n)|2dx ≤ "4n ∫ℝ2
|x|2e�|x||'n|

2dx + ∫ℝ2
e�|x|

(

an|'n|
2 + |"2n�n| +

�2

4

)

|'n|
2dx

By choosing � = 1
4 , using (2.19), (2.20) and the fact that "2n�n → −1, we obtain

∫ℝ2
|∇(e|x|∕8'n)|2dx ≤ C (2.34)

for all n sufficiently large. Note that, by the triangle inequality,

‖∇(e|x|∕8'n)‖L2 =
‖

‖

‖

‖

e|x|∕8∇'n +
x
8|x|

e|x|∕8'n
‖

‖

‖

‖L2
≥ ‖e|x|∕8∇'n‖L2 −

1
8
‖e|x|∕8'n‖L2 .

Then the claim (2.33) follows directly from (2.34) and (2.20).
We next show that {'n}n is bounded uniformly inH2(ℝ2). To see this, we rewrite (2.11) as

−Δ'n + 'n = (1 + "2n�n)'n − "
4
n|x|

2'n − 2"2nL'n + an|'n|
2'n.

Since {'n}n is bounded uniformly inH1(ℝ2), the uniform exponential decay in (2.20) and (2.33) imply that
the right hand side is bounded uniformly in L2(ℝ2). This shows that {'n}n is bounded uniformly inH2(ℝ2).
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By the Sobolev embedding H2(ℝ2) ⊂ L∞(ℝ2) and the strong convergence 'n → Q0 in H1(ℝ2), we have
that 'n converges strongly to Q0 in L∞(ℝ2) and hence (1.8). �

2.2. Collapse with an almost critical speed. We now study the blow-up behavior of minimizers for EΩ,a
when both Ω ↗ 1 and a ↗ a∗ at the same time. To this end, we recall the following energy asymptotic
formula when Ω = 0 (see [15]):

ENLS0,a =
√

a∗ − a

(

2
‖xQ0‖L2

a1∕2∗
+ o(1)

)

as a↗ a∗. (2.35)

Proof of Corollary 1.2. Let Ωn ↗ 1, an ↗ a∗ as n → ∞, and �n be a minimizer for EΩn,an . We rewrite the
energy functional as follows

ENLSΩn,an
= NLSΩn,an

(�n) = ΩnNLS1,an
(�n) + (1 − Ωn)NLS0,an

(�n)

≥ ΩnENLS1,an
+ (1 − Ωn)NLS0,an

(�n) (2.36)

≥ ΩnENLS1,an
+ (1 − Ωn)ENLS0,an

,

where we have used that NLS1,an
(�n) ≥ ENLS1,an

and NLS0,an
(�n) ≥ ENLS0,an

. Since bothENLS1,an
andENLS0,an

have the same
asymptotic formula (see (1.7) and (2.35)), we obtain

ENLSΩn,an
= (a∗ − an)1∕2

(

2
‖xQ0‖L2

a1∕2∗
+ o(1)

)

.

Let  n be a ground state for ENLS1,an
. By Theorem 1.1, there exist sequences {xn}n ⊂ ℝ2 and (#n)n ⊂ [0, 2�)

such that
'n(x) ∶= "n n("nx + xn)ei"nx

⟂
n ⋅x+i#n → Q0(x)

strongly inH1 ∩L∞(ℝ2) as n→∞. We choose  ̃n(x) ∶=  n(x+ xn)eix
⟂
n ⋅x+i#n as a trial state for ENLSΩn,an

and
obtain

ENLSΩn,an
≤ NLSΩn,an

( ̃n) = ΩnNLS1,an
( ̃n) + (1 − Ωn)NLS0,an

( ̃n)

= ΩnENLS1,an
+ (1 − Ωn)NLS0,an

( ̃n). (2.37)

Here we have used the magnetic translation invariance of the energy functional NLS1,an
. Putting together (2.36)

and (2.37), we obtain
NLS0,an

(�n) ≤ NLS0,an
( ̃n).

By (2.3) and the arguments in the proof of Theorem 1.1 (especially (2.31)), we have

NLS0,an
( ̃n) = NLS1,an

( ̃n) − 2 ⟨ ̃n, L ̃n⟩ = ENLS1,an
− 2 ⟨'n, L'n⟩ ≤ (a∗ − an)1∕2

(

2
‖xQ0‖L2

a1∕2∗
+ o(1)

)

.

This together with (2.35) show that �n is an approximate ground state for ENLS0,an
. We then conclude (see e.g.,

[20, Step 5 in Section 3]) that there exists a sequence of phases {�n}n ⊂ [0, 2�) such that

lim
n→∞

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

�n
⎛

⎜

⎜

⎝

(a∗ − an)1∕4

a1∕4∗ ‖xQ0‖
1∕2
L2

x
⎞

⎟

⎟

⎠

ei�n = Q0(x) (2.38)

strongly in H1(ℝ2). In fact, we obtain the strong convergence in L∞(ℝ2), by the same arguments as in the
proof of (1.8). �
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3. COLLAPSE OF MANY-BODY GROUND STATES

In this section, we prove the large-N behavior of ground states for (1.14) given in Theorem 1.3.

Proof of Theorem 1.3. Following arguments from [20], we have

CN−�
‖∇QN‖L2‖QN‖

3
L6
+ ENLSΩ,aN

≥ EQMΩ,aN (N) ≥ ENLSΩ,aN
− CN2�−1.

where QN is given in Theorem 1.3. Note that the above energy estimates as well as the asymptotic formula
of ENLSΩ,aN

are independent of Ω. Therefore, we obtain (1.15) for every 0 ≤ Ω ≤ 1.
To prove convergence of ground states as Ω = ΩN ↗ 1 we consider the perturbed Hamiltonian

HaN ,N,�N = HaN ,N + �N
N
∑

j=1
Aj (3.1)

with ground-state energy per particle denoted EQMΩN ,aN ,�N (N). Here �N > 0 is a small parameter to be chosen
later and A is a bounded self-adjoint operator on L2(ℝ2). The associated NLS energy functional is

NLSΩN ,aN ,�N
(u) = NLSΩN ,aN

(u) + �N ⟨Au, u⟩ .

Denote by ENLSΩN ,aN ,�N
the corresponding ground-state energy and u�N its ground state. Let ΦN be a ground

state forHN = HN,0 and 

(1)
ΦN

its one-body reduced density matrix. As in [20, Step 2 in Section 4] we obtain

�N Tr
[

A
 (1)ΦN

]

≥ �N
⟨

u�N |A|u�N
⟩

+ O(N2�−1) + O(N3�∕4−�). (3.2)

Again the above estimate is independent of ΩN . Under the assumption that a∗ − aN = N−� with

0 < � < min
{

4�
5
, 2(1 − 2�)

}

one can chose �N = N−�∕2−� with

0 < � < min
{

1 − 2� − �
2
, � − 5�

4

}

in such a way that
�N = o

(

ENLS0,aN

)

= o
(

(a∗ − aN )1∕2
)

= o
(

N−�∕2)

and also
�−1N N2�−1 + �−1N N3�∕4−� ⟶

N→∞
0.

Then dividing (3.2) by �N and repeating the argument with A changed to −A yield
⟨

u�N |A|u�N
⟩

+ o(1) ≤ Tr
[

A
 (1)ΦN

]

≤
⟨

u−�N |A|u−�N
⟩

+ o(1). (3.3)

On the other hand, with the above choice of �N , we have

NLSΩN ,aN
(u�N ) = NLSΩN ,aN ,�N

(u�N ) + O(�N‖A‖) ≤ NLSΩN ,aN
(u0) + O(�N‖A‖) = ENLSΩN ,aN

+ O(�N‖A‖).

By the argument in the proof of (1.9), the above implies that

NLS0,aN
(u�N ) ≤ (a∗ − an)

1∕2

(

2
‖xQ0‖L2

a1∕2∗
+ oN (1)

)

+ O
(

�N
1 − ΩN

‖A‖
)

.

It then follows that (u�N ) and (u−�N ) are sequences of quasi-ground states for E
NLS
0,aN

, under the assumption on
ΩN in Theorem 1.3. Thus both sequences satisfy (2.38). Combining with (3.3), we get, after a dilation of
space variables, trace-class weak-⋆ convergence of 
 (1)ΦN to |QN⟩⟨QN |. Since no mass is lost in the limit, this
convergence must hold in trace-class norm. The limit being rank 1, this implies the convergence of higher
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order density matrices to tensor powers of the limiting operator by well-known arguments (recalled e.g. in [30,
Section 2.2]). �
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