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BLOW-UP OF 2D ATTRACTIVE BOSE–EINSTEIN CONDENSATES
AT THE CRITICAL ROTATIONAL SPEED

VAN DUONG DINH, DINH-THI NGUYEN, AND NICOLAS ROUGERIE

ABSTRACT. We study the ground states of a 2D focusing non-linear Schrödinger equation with rotation and har-
monic trapping. When the strength of the interaction approaches a critical value from below, the system collapses
to a profile obtained from the optimizer of a Gagliardo–Nirenberg interpolation inequality. This was established
before in the case of fixed rotation frequency. We extend the result to rotation frequencies approaching, or even
equal to, the critical frequency at which the centrifugal force compensates the trap. We prove that the blow-up sce-
nario is to leading order unaffected by such a strong deconfinement mechanism. In particular the blow-up profile
remains independent of the rotation frequency.
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1. INTRODUCTION

Bose–Einstein condensates [9, 24] form a remarkable phase of matter where quantum effects can be spec-
tacularly observed on a mesoscopic scale. Indeed, a single quantum wave-function being macroscopically
occupied, its quantum coherence becomes accessible e.g. to imaging techniques. The flexibility of modern
experiments with dilute atomic gases are also remarkable [1, 4, 10, 8, 35, 34], allowing to access reduced
dimensionalities (2D or even 1D), to tune the interactions (allowing for repulsion or attraction between par-
ticles) and to mimic external magnetic fields either by rotation or by coupling internal degrees of freedom to
optical fields.

In this note we consider such a combination of effects. Namely we are interested in 2D attractive BECs,
where the contact interactions will destabilize the gas towards collapse if they are too strong. The resulting
collapse of ground states [20] turns out to be unaffected by the addition of a moderate rotation of the gas [25]
(see also [15] for dipolar gases). A fast rotation may however destabilize the gas towards expansion, be-
cause the centrifugal force fights the confining potential. These two effects might compete, but we prove that
the instability towards collapse always dominates, leading to a blow-up scenario independent of the rotation
frequency. This answers a question raised in [25, Remark 2.2].
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We shall consider the minimization problem

𝐸NLS
Ω,𝑎 ∶= inf

{

NLS
Ω,𝑎 (𝜙) ∶ 𝜙 ∈ 𝑋(ℝ2) ∶ ‖𝜙‖𝐿2 = 1

}

, (1.1)

where NLS
Ω,𝑎 is the nonlinear Schrödinger (NLS) energy functional with attractive interactions

NLS
Ω,𝑎 (𝜙) = ∫ℝ2

|∇𝜙(𝑥)|2d𝑥 + ∫ℝ2
|𝑥|2|𝜙(𝑥)|2d𝑥 + 2Ω⟨𝜙,𝐿𝜙⟩ − 𝑎

2 ∫ℝ2
|𝜙(𝑥)|4d𝑥

= ∫ℝ2
|(−𝑖∇ + Ω𝑥⟂)𝜙(𝑥))|2d𝑥 + (1 − Ω2)∫ℝ2

|𝑥|2|𝜙(𝑥)|2d𝑥 − 𝑎
2 ∫ℝ2

|𝜙(𝑥)|4d𝑥.

Here 𝑎 > 0 describes the strength of interactions, Ω ≥ 0 is the rotation frequency, 𝑥⟂ = (−𝑥2, 𝑥1), and
𝐿 = −𝑖𝑥 ∧ ∇ = 𝑖(𝑥2𝜕1 − 𝑥1𝜕2)

the angular momentum operator. The space𝑋(ℝ2) in (1.1) is a functional space in which the energy functional
NLS
Ω,𝑎 is well-defined, see below.

In the case of high rotational speed Ω > 1, it was proved in [3] that there are no ground states for 𝐸NLS
Ω,𝑎 for

all 𝑎 > 0. Indeed, when the rotational speed is larger than the trapping frequency, the centrifugal force caused
by the rotation is stronger than the centripetal force created by the harmonic trap and the gas flies apart. On
the other hand, the condensate remains stable when Ω < 1. In this case, one can prove the norm equivalence

‖∇𝜙‖2𝐿2 + ‖𝑥𝜙‖2𝐿2 + 2Ω⟨𝐿𝜙, 𝜙⟩ ≃ ‖∇𝜙‖2𝐿2 + ‖𝑥𝜙‖2𝐿2 . (1.2)

It is then clear that the energy functional is well-defined on the weighted Sobolev space

Σ(ℝ2) ∶= 𝐻1(ℝ2) ∩ 𝐿2(ℝ2, |𝑥|2d𝑥),

and hence one can take 𝑋(ℝ2) ≡ Σ(ℝ2). Using the compact embedding Σ(ℝ2) ⊂ 𝐿𝑟(ℝ2) for all 𝑟 ∈ [2,∞),
one can easily show the existence of a ground state for 𝐸NLS

Ω,𝑎 with 0 < 𝑎 < 𝑎∗ (see e.g., [20] in the case
Ω = 0). Here 𝑎∗ = ‖𝑄‖2

𝐿2 with 𝑄 the unique (up to translations) positive solution of the elliptic equation

−Δ𝑄 +𝑄 −𝑄3 = 0 in ℝ2. (1.3)
The constant 𝑎∗ also appears in the sharp Gagliardo–Nirenberg inequality

𝑎∗
2 ∫ℝ2

|𝜙(𝑥)|4d𝑥 ≤
(

∫ℝ2
|∇𝜙(𝑥)|2d𝑥

)(

∫ℝ2
|𝜙(𝑥)|2d𝑥

)

, ∀𝜙 ∈ 𝐻1(ℝ2). (1.4)

The case of critical rotational speed Ω = 1 is special. The situation becomes more subtle since the centrifugal
force caused by the rotation is exactly compensated by the harmonic trap. In particular, the norm equivalence
(1.2) is no longer available. Thus working on Σ(ℝ2) does not help to find ground states for 𝐸NLS

1,𝑎 . In this case,
we study the minimization (1.1) on a larger functional space of magnetic Sobolev functions, namely

𝐻1
𝑥⟂ (ℝ

2) ∶=
{

𝜙 ∈ 𝐿2(ℝ2) ∶ (−𝑖∇ + 𝑥⟂)𝜙 ∈ 𝐿2(ℝ2)
}

,

hence we set𝑋(ℝ2) = 𝐻1
𝑥⟂
(ℝ2) when Ω = 1. Note that by the Cauchy–Schwarz inequality, we have Σ(ℝ2) ⊂

𝐻1
𝑥⟂
(ℝ2), but Σ(ℝ2) ⊊ 𝐻1

𝑥⟂
(ℝ2) (for the latter see e.g., [13, Remark 2.1]). By making use of a concentration-

compactness argument adapted to magnetic Sobolev spaces (see e.g., [14]), it was proved in [13, 18] that𝐸NLS
1,𝑎

has at least one ground state provided that 0 < 𝑎 < 𝑎∗. By the standard Gagliardo–Nirenberg inequality (1.4)
and the diamagnetic inequality (see e.g., [28, Theorem 7.21])

|∇|𝜙|(𝑥)| ≤ |(−𝑖∇ + 𝑥⟂)𝜙(𝑥)|, a.e 𝑥 ∈ ℝ2, ∀𝜙 ∈ 𝐻1
𝑥⟂ (ℝ

2) (1.5)

we also have the following magnetic Gagliardo–Nirenberg inequality
𝑎∗
2 ∫ℝ2

|𝜙(𝑥)|4d𝑥 ≤
(

∫ℝ2
|(−𝑖∇ + 𝑥⟂)𝜙(𝑥)|2d𝑥

)(

∫ℝ2
|𝜙(𝑥)|2d𝑥

)

, ∀𝜙 ∈ 𝐻1
𝑥⟂ (ℝ

2). (1.6)
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The main difference between (1.4) and (1.6) is that there is no optimizer for (1.6) while𝑄 in (1.3) is the unique
(up to translations and dilations) optimizer for (1.4). Thanks to (1.6), the energy 𝐸NLS

Ω,𝑎 is non-negative for all
0 < 𝑎 ≤ 𝑎∗.

1.1. Collapse in NLS theory. In the sequel we are interested in the blow-up behavior of ground states for
𝐸NLS
Ω,𝑎 when 𝑎 approaches 𝑎∗. Our first result concerns the blow-up limit with the critical rotation speed Ω = 1.

Theorem 1.1 (Collapse of NLS ground states at the critical rotational speed).
We have, as 𝑎↗ 𝑎∗,

𝐸NLS
1,𝑎 = (𝑎∗ − 𝑎)1∕2

(

2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

+ 𝑜(1)

)

(1.7)

where 𝑄0 = ‖𝑄‖−1
𝐿2𝑄. In addition, for any sequence {𝑎𝑛}𝑛 satisfying 𝑎𝑛 ↗ 𝑎∗ and any sequence of ground

state 𝜙𝑛 for 𝐸NLS
1,𝑎𝑛

, there exist a sequence {𝜃𝑛}𝑛 ⊂ [0, 2𝜋) and a sequence {𝑥𝑛}𝑛 ⊂ ℝ2 such that the following
convergence holds strongly in 𝐻1 ∩ 𝐿∞(ℝ2):

lim
𝑛→∞

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝜙𝑛
⎛

⎜

⎜

⎝

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝑥 + 𝑥𝑛
⎞

⎟

⎟

⎠

exp
⎛

⎜

⎜

⎝

𝑖
(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝑥⟂𝑛 ⋅ 𝑥 + 𝑖𝜃𝑛
⎞

⎟

⎟

⎠

= 𝑄0(𝑥). (1.8)

As an application of this result, we have the following blow-up behavior of ground states when Ω ↗ 1 and
𝑎↗ 𝑎∗ at the same time.

Corollary 1.2 (Collapse at subcritical rotational speed).
For any sequence {Ω𝑛}𝑛, {𝑎𝑛}𝑛 satisfying Ω𝑛 ↗ 1 and 𝑎𝑛 ↗ 𝑎∗, and any ground state 𝜙𝑛 for 𝐸NLS

Ω𝑛,𝑎𝑛
, there

exists a sequence {𝜃𝑛}𝑛 ⊂ [0, 2𝜋) such that the following convergence holds strongly in 𝐻1 ∩ 𝐿∞(ℝ2):

lim
𝑛→∞

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝜙𝑛
⎛

⎜

⎜

⎝

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝑥
⎞

⎟

⎟

⎠

𝑒𝑖𝜃𝑛 = 𝑄0(𝑥). (1.9)

Remark 1.1.

1. The convergences of energy and of ground states were proved by Guo and Seiringer [20] when Ω = 0.
These convergences were extended to the case 0 < Ω < 1 fixed by Lewin, Nam, and the third author
[25] (see also further works in [22, 17, 12]). In [19] it is even proved that a fixed rotation rate has no
effect at any order. Theorem 1.1 shows that the energy convergence found remains valid in the case
of critical rotational speed Ω = 1, at least to leading order. This is noteworthy because the trapping
potential, which sets the length-scale of the blow-up behavior, is compensated by the centrifugal force.

2. The convergence of ground states however has to be stated differently from [20, 25]. The model is
translation-invariant for Ω = 1 and thus ground states converge only modulo a magnetic translation
(namely, a translation decorated by the suitable phase making it commute with the magnetic Laplacian
see e.g. [33] and references therein).

3. The only effect of the magnetic/rotation field is to set the blow-up length-scale (see the sketch of proof
below). This is comparable to the positive particle mass 𝑚 > 0 in the Hartree-type and Thomas–
Fermi-type models of stars [21, 29, 32, 30, 31].

4. Our blow-up result, whenΩ ↗ 1 at the same time as 𝑎↗ 𝑎∗, answers a question raised in [25, Remark
2.2]. In this situation, although the centrifugal force almost compensates the trapping potential, the
small residual trapping favors blow-up at the center of the trap. Hence there is no need for a magnetic
translation and the ground state convergence is completely similar to the case 0 ≤ Ω < 1 fixed.
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Let us briefly describe the strategy of the proof. To prove Theorem 1.1, we first show that the sequence of
ground states {𝜙𝑛}𝑛 for 𝐸NLS

1,𝑎𝑛
blows up in the sense that

𝜀𝑛 ∶= ‖∇|𝜙𝑛|‖−1𝐿2 → 0 as 𝑛→ ∞. (1.10)

The blow-up length is then set by 𝜀𝑛 (whose precise asymptotic behavior is not known at this point) and we
shall show that

𝜑𝑛(𝑥) ∶= 𝜀𝑛𝜙𝑛(𝜀𝑛𝑥 + 𝑥𝑛)𝑒𝑖𝜀𝑛𝑥
⟂
𝑛 ⋅𝑥+𝑖𝜃𝑛 → 𝑄0(𝑥)

strongly in 𝐻1(ℝ2), i.e. there is convergence modulo a magnetic translation of vector {𝑥𝑛}𝑛 ⊂ ℝ2 and the
choice of a constant phase {𝜃𝑛}𝑛 ⊂ [0, 2𝜋). To prove this, we rely on a property of the Lagrange multiplier
associated to𝜙𝑛 together with the local boundedness of sub-solutions obtained by analyzing the corresponding
Euler–Lagrange equation. Thanks to the non-degeneracy of 𝑄, we then prove that the imaginary part of 𝜑𝑛
is small in 𝐻1-norm. This implies that the rotation acts on 𝜑𝑛 only as a quadratic external potential. This
effectively sets a length-scale, and we next prove by matching energy lower and upper bounds that the blow-up
length behaves like

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

.

Hence we obtain the energy convergence (1.7). Finally, the 𝐿∞-convergence of ground states follows from
𝐻1-convergence and 𝐻2-boundedness deduced from the variational equation.

To prove Corollary 1.2, we first use an energy argument to show that 𝐸NLS
Ω𝑛,𝑎𝑛

has the same asymptotic
behavior as for Ω = 0, 1. By taking a sequence of ground states for 𝐸NLS

1,𝑎𝑛
and choosing a suitable trial state

for 𝐸NLS
Ω𝑛,𝑎𝑛

, we prove that a ground state for 𝐸NLS
Ω𝑛,𝑎𝑛

is an approximate ground state for 𝐸NLS
0,𝑎𝑛

. At this point, the
conclusion follows directly from a result proved in [25, Section 3].

1.2. Collapse in the mean-field limit. The focusing NLS functional (1.1) is commonly used to predict the
collapse of an attractive system, but it should be seen as an effective, mean-field model [36]. It is of interest
to see whether the mean-field and blow-up limits can be exchanged as in [25]. Based on Theorem 1.1 and
Corollary 1.2, we give a positive answer to this question, starting from many-body quantum mechanics.

In this framework, a Bose gas with an attractive interaction is described by the 𝑁-particle Hamiltonian

𝐻Ω,𝑎,𝑁 =
𝑁
∑

𝑗=1

(

−Δ𝑥𝑗 + |𝑥𝑗|
2 − 2Ω𝐿𝑥𝑗

)

− 𝑎
𝑁 − 1

∑

1≤𝑖<𝑗≤𝑁
𝑤𝑁 (𝑥𝑖 − 𝑥𝑗), (1.11)

acting on ℌ𝑁 ∶= 𝐿2
sym((ℝ

2)𝑁 ). As is customary [36], the two-body interaction 𝑤𝑁 is chosen in the form

𝑤𝑁 (𝑥) = 𝑁2𝛽𝑤(𝑁𝛽𝑥) (1.12)

for a fixed parameter 𝛽 > 0 and a fixed function 𝑤 satisfying

𝑤(𝑥) = 𝑤(−𝑥) ≥ 0, (1 + |𝑥|)𝑤, �̂� ∈ 𝐿1(ℝ2), ∫ℝ2
𝑤(𝑥)d𝑥 = 1. (1.13)

We are interested in the large-𝑁 behavior of the ground state energy per particle of 𝐻Ω,𝑎,𝑁 , namely

𝐸QM
Ω,𝑎 (𝑁) ∶= 𝑁−1 inf

Φ𝑁∈ℌ𝑁 ,‖Φ𝑁‖=1
⟨Φ𝑁 ,𝐻Ω,𝑎,𝑁Φ𝑁⟩, (1.14)

and the associated eigenstates of 𝐻Ω,𝑎,𝑁 . When Ω = 1, the Hamiltonian 𝐻1,𝑎,𝑁 is magnetic translation
invariant so it probably has no discrete spectrum (see e.g., [2, Proposition 5.4] or a discussion before (1.21) in
[27] for a similar model of stars). In the following, we therefore assume that 0 ≤ Ω < 1 and 0 < 𝑎 < 𝑎∗. We
will consider the limit where 𝑎 = 𝑎𝑁 ↗ 𝑎∗ at the same time as Ω = Ω𝑁 ↗ 1 when 𝑁 → ∞. In that case, the
NLS ground states blow up at the origin to the function 𝑄0, as showed in Corollary 1.2. We will prove that
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the many-body ground states condense fully on 𝑄0. As usual, the convergence of ground states is formulated
using 𝑘-particles reduced density matrices, defined for any Φ𝑁 ∈ ℌ𝑁 by a partial trace

𝛾 (𝑘)Φ𝑁
∶= Tr

𝑘+1→𝑁
|Φ𝑁⟩⟨Φ𝑁 |.

Equivalently, 𝛾 (𝑘)Φ𝑁
is the trace class operator on ℌ𝑘 with kernel

𝛾 (𝑘)Φ𝑁
(𝑥1, ..., 𝑥𝑘; 𝑦1, ..., 𝑦𝑘) = ∫ℝ2(𝑁−𝑘)

Φ𝑁 (𝑥1, ..., 𝑥𝑘, 𝑍)Φ𝑁 (𝑦1, ..., 𝑦𝑘, 𝑍)d𝑍.

Bose–Einstein condensation is properly expressed by the convergence in trace norm

lim
𝑁→∞

Tr ||
|

𝛾 (𝑘)Φ𝑁
− |𝜙⊗𝑘⟩⟨𝜙⊗𝑘|||

|

= 0, ∀𝑘 ∈ ℕ.

We have the following result.

Theorem 1.3 (Collapse and condensation of the many-body ground states).
Let 0 < 𝛽 < 1∕2 be fixed and 𝑎 = 𝑎𝑁 = 𝑎∗ −𝑁−𝛼 with

0 < 𝛼 < min
{4
5
𝛽, 2(1 − 2𝛽)

}

.

Then for every 0 ≤ Ω < 1 we have, as 𝑁 → ∞,

𝐸QM
Ω,𝑎𝑁

(𝑁) = 𝐸NLS
Ω,𝑎𝑁

+ 𝑜
(

𝐸NLS
Ω,𝑎𝑁

)

= (𝑎∗ − 𝑎𝑁 )1∕2
(

2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

+ 𝑜(1)

)

. (1.15)

Assume in addition that Ω = Ω𝑁 = 1 −𝑁−𝜈 with

0 < 𝜈 < min
{

1 − 2𝛽 − 𝛼
2
, 𝛽 − 5𝛼

4

}

.

Let Φ𝑁 be a ground state for 𝐸QM
Ω𝑁 ,𝑎𝑁

(𝑁). Then we have

lim
𝑁→∞

Tr ||
|

𝛾 (𝑘)Φ𝑁
− |𝑄⊗𝑘𝑁 ⟩⟨𝑄⊗𝑘𝑁 |

|

|

|

= 0 (1.16)

for all 𝑘 ∈ ℕ, where

𝑄𝑁 (𝑥) =
𝑎1∕4∗ ‖𝑥𝑄0‖

1∕2
𝐿2

(𝑎∗ − 𝑎𝑁 )1∕4
𝑄0

⎛

⎜

⎜

⎝

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

(𝑎∗ − 𝑎𝑁 )1∕4
𝑥
⎞

⎟

⎟

⎠

.

Remark 1.2. This shows that a result found in [25] remains valid when Ω ↗ 1 slower than 𝑎↗ 𝑎∗ ([25] only
deals with 0 ≤ Ω < 1 fixed). The method is the same as in [25]. The energy estimates do not depend on
the rotation parameter. In fact, we also obtain (1.15) for Ω = 1. Furthermore, the convergence of the many-
body ground states follows from that of the approximate NLS ground states. In the case Ω𝑁 ↗ 1, under the
additional assumption on the convergence speed of Ω𝑁 in Theorem 1.3, we check that the approximate NLS
ground state for 𝐸NLS

Ω𝑁 ,𝑎𝑁
is still the one for 𝐸NLS

0,𝑎𝑁
.

Acknowledgments. This work was supported by the European Union’s Horizon 2020 Research and Innova-
tion Programme (Grant agreement CORFRONMAT No. 758620).

2. COLLAPSE OF THE NLS GROUND STATES

In this section we study the limiting behavior of ground states for (1.1) when 𝑎 approaches 𝑎∗ from below.
We first deal with the critical speed Ω = 1. The case Ω ↗ 1 will be given in the end of this section.
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2.1. Collapse at the critical speed. Let us consider the case Ω = 1. For simplicity, we denote ∇𝑥⟂ ∶=
−𝑖∇ + 𝑥⟂. Let us start by recalling some useful facts.

Lemma 2.1 (𝐿2-bound).
We have

2‖𝜙‖2𝐿2 ≤ ‖∇𝑥⟂𝜙‖2𝐿2 , ∀𝜙 ∈ 𝐻1
𝑥⟂ (ℝ

2)

with equality achieved e.g. by 𝜙(𝑥) =
√

1
𝜋 𝑒

− |𝑥|2
2 .

This is a consequence of Landau’s well-known diagonalization of
(

∇𝑥⟂
)2 (see e.g., [37]).

Lemma 2.2 (Compactness modulo translations).
Let {𝜙𝑛}𝑛 be a sequence of functions satisfying

inf
𝑛≥1

‖𝜙𝑛‖𝐿4 ≥ 𝐶.

for some positive constant 𝐶 > 0. We have the following weak convergences:
∙ If sup𝑛≥1 ‖𝜙𝑛‖𝐻1 < ∞, then there exist 𝜙 ∈ 𝐻1(ℝ2)∖{0} and a sequence {𝑥𝑛}𝑛 ⊂ ℝ2 such that up

to a subsequence,

𝜙𝑛(𝑥 + 𝑥𝑛) ⇀ 𝜙(𝑥) weakly in 𝐻1(ℝ2) and almost everywhere in ℝ2.

∙ If sup𝑛≥1 ‖𝜙𝑛‖𝐻1
𝑥⟂
< ∞, then there exist �̃� ∈ 𝐻1

𝑥⟂
(ℝ2)∖{0} and a sequence {𝑦𝑛}𝑛 ⊂ ℝ2 such that

up to a subsequence,

𝑒𝑖𝑦
⟂
𝑛 ⋅𝑥𝜙𝑛(𝑥 + 𝑦𝑛) ⇀ �̃�(𝑥) weakly in 𝐻1

𝑥⟂ (ℝ
2) and almost everywhere in ℝ2.

Here 𝜙𝑛 → 𝜙 weakly in 𝐻1
𝑥⟂
(ℝ2) means that

∫ (∇𝑥⟂𝜙𝑛 − ∇𝑥⟂𝜙) ⋅ ∇𝑥⟂𝜑𝑑𝑥 + ∫ (𝜙𝑛 − 𝜙)𝜑𝑑𝑥→ 0, ∀𝜑 ∈ 𝐻1
𝑥⟂ (ℝ

2).

Proof. The proof of this Lemma can be found in [26, Lemma 6] for the𝐻1-weak convergence and [13, Lemma
2.6] for the 𝐻1

𝑥⟂
-weak convergence. □

Lemma 2.3 (Energy upper bound).
Let {𝑎𝑛}𝑛 be a positive sequence satisfying 𝑎𝑛 ↗ 𝑎∗ as 𝑛→ ∞. Then, for every 0 ≤ Ω ≤ 1, we have

lim
𝑛→∞

𝐸NLS
Ω,𝑎𝑛

= 𝐸NLS
Ω,𝑎∗

= 0.

More precisely,

lim sup
𝑛→∞

𝐸NLS
Ω,𝑎𝑛

(𝑎∗ − 𝑎𝑛)1∕2
≤ 2

‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

. (2.1)

Proof. It is obvious that𝐸NLS
Ω,𝑎𝑛

≥ 0, by the magnetic Gagliardo–Nirenberg inequality (1.6). On the other hand,
let 𝑄 be the unique positive radial solution of (1.3). By Pohozaev’s identity, we have

‖∇𝑄‖2𝐿2 =
1
2
‖𝑄‖4𝐿4 = ‖𝑄‖2𝐿2 = 𝑎∗.

Denote 𝑄0 = ‖𝑄‖−1
𝐿2𝑄. Then

‖∇𝑄0‖
2
𝐿2 =

𝑎∗
2
‖𝑄0‖

4
𝐿4 = ‖𝑄0‖

2
𝐿2 = 1

By the variational principle, we have

𝐸NLS
Ω,𝑎𝑛

≤ NLS
Ω,𝑎𝑛

(𝜆𝑄0(𝜆⋅)) = 𝜆2
(

1 −
𝑎𝑛
𝑎∗

)

+ 𝜆−2‖𝑥𝑄0‖
2
𝐿2 (2.2)
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for all 𝜆 > 0. Here we have used the fact that ⟨𝐿(𝜆𝑄0(𝜆⋅)), 𝜆𝑄0(𝜆⋅)⟩ = 0 since 𝑄0 is real-valued, where we
recall that 𝐿 = 𝑖(𝑥2𝜕1 − 𝑥1𝜕2). Optimizing over 𝜆, we get

𝐸NLS
Ω,𝑎𝑛

≤ 2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

(𝑎∗ − 𝑎𝑛)1∕2 (2.3)

which implies (2.1) and also lim sup𝑛→∞ 𝐸NLS
Ω,𝑎𝑛

≤ 0. □

Lemma 2.4 (Blow-up).
Let {𝑎𝑛}𝑛 be a positive sequence such that 𝑎𝑛 ↗ 𝑎∗ as 𝑛→ ∞ and 𝜙𝑛 be a ground state for𝐸NLS

1,𝑎𝑛
. Then {𝜙𝑛}𝑛

blows up both in 𝐻1
𝑥⟂
(ℝ2) and in 𝐻1(ℝ2) in the sense that

lim
𝑛→∞

‖∇𝑥⟂𝜙𝑛‖𝐿2 = lim
𝑛→∞

‖∇𝜙𝑛‖𝐿2 = lim
𝑛→∞

‖∇|𝜙𝑛|‖𝐿2 = +∞.

Proof. We first show that {𝜙𝑛}𝑛 blows up in 𝐻1
𝑥⟂
(ℝ2). Assume for contradiction that

sup
𝑛≥1

‖∇𝑥⟂𝜙𝑛‖2𝐿2 < ∞. (2.4)

In particular, {𝜙𝑛}𝑛 is then a bounded sequence in 𝐻1
𝑥⟂
(ℝ2). Observe that there exists 𝐶 > 0 such that

lim inf
𝑛→∞

‖𝜙𝑛‖𝐿4 ≥ 𝐶

since otherwise, we have
lim
𝑛→∞

𝐸NLS
1,𝑎𝑛

= lim
𝑛→∞

‖∇𝑥⟂𝜙𝑛‖2𝐿2 ≥ 2,

where the last inequality is due to Lemma 2.1. This, however, is not possible (see Lemma 2.3). Thus, by
Lemma 2.2, there exist 𝜙 ∈ 𝐻1

𝑥⟂
(ℝ2)∖{0} and a sequence {𝑥𝑛}𝑛 ⊂ ℝ2 such that up to a subsequence,

�̃�𝑛(𝑥) ∶= 𝑒𝑖𝑥
⟂
𝑛 ⋅𝑥𝜙𝑛(𝑥 + 𝑥𝑛) → 𝜙 weakly in 𝐻1

𝑥⟂ (ℝ
2) and almost everywhere in ℝ2.

We claim that ‖𝜙‖2
𝐿2 = 1. Indeed, we have

0 < ‖𝜙‖2𝐿2 ≤ lim inf
𝑛→∞

‖�̃�𝑛‖
2
𝐿2 = lim inf

𝑛→∞
‖𝜙𝑛‖

2
𝐿2 = 1.

If ‖𝜙‖2
𝐿2 < 1, then by the magnetic translation invariance, we have

𝐸NLS
1,𝑎𝑛

= NLS
1,𝑎𝑛

(𝜙𝑛) = NLS
1,𝑎𝑛

(�̃�𝑛) ≥ NLS
1,𝑎∗

(�̃�𝑛) = NLS
1,𝑎∗

(𝜙) + NLS
1,𝑎∗

(�̃�𝑛 − 𝜙) + 𝑜(1). (2.5)

Here we have used the weak convergence in 𝐻1
𝑥⟂
(ℝ2), the almost everywhere convergence in ℝ2, and the

Brézis-Lieb lemma (see [5]) with the fact that ‖�̃�𝑛‖𝐿4 is bounded uniformly, by the magnetic Gagliardo–
Nirenberg inequality (1.6) and (2.4). Again, (1.6) implies that

lim inf
𝑛→∞

NLS
1,𝑎∗

(�̃�𝑛 − 𝜙) ≥ 0.

Furthermore,

NLS
1,𝑎∗

(𝜙) = ‖𝜙‖2𝐿2
NLS
1,𝑎∗

(

𝜙
‖𝜙‖𝐿2

)

+
𝑎∗
2

(

1
‖𝜙‖2

𝐿2

− 1

)

‖𝜙‖4𝐿4 > 0

since 0 < ‖𝜙‖𝐿2 < 1. This contradicts the fact that 𝐸NLS
1,𝑎𝑛

→ 0 as 𝑛 → ∞, by Lemma 2.3. Therefore, we
must have ‖𝜙‖𝐿2 = 1, hence �̃�𝑛 → 𝜙 strongly in 𝐿2(ℝ2). In fact, �̃�𝑛 → 𝜙 strongly in 𝐿𝑟(ℝ2) for 𝑟 ∈ [2,∞),
because of the 𝐻1

𝑥⟂
(ℝ2) boundedness. Since 𝑎𝑛 ↗ 𝑎∗, we have from (2.5) that

𝐸NLS
1,𝑎∗

≤ NLS
1,𝑎∗

(𝜙) ≤ lim inf
𝑛→∞

NLS
1,𝑎𝑛

(𝜙𝑛) = lim inf
𝑛→∞

𝐸NLS
1,𝑎𝑛

= 𝐸NLS
1,𝑎∗

.

In particular, 𝜙 is a ground state for𝐸NLS
1,𝑎∗

. However there are no such ground states, as proven in e.g. [13, 18],
and we deduce that (2.4) cannot hold.
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We now conclude the proof by showing that {𝜙𝑛}𝑛 blows up in 𝐻1(ℝ2). We have

0 = 𝐸NLS
1,𝑎∗

= lim
𝑛→∞

𝐸NLS
1,𝑎𝑛

= lim
𝑛→∞

NLS
1,𝑎𝑛

(𝜙𝑛) = lim
𝑛→∞

‖∇𝑥⟂𝜙𝑛‖2𝐿2 −
𝑎𝑛
2
‖𝜙𝑛‖

4
𝐿4 .

Since ‖∇𝑥⟂𝜙𝑛‖𝐿2 → ∞ as 𝑛 → ∞, we must have ‖𝜙𝑛‖4𝐿4 → ∞. But then the standard Gagliardo–Nirenberg
inequality (1.4) implies that ‖∇𝜙𝑛‖𝐿2 → ∞ and ‖∇|𝜙𝑛|‖𝐿2 → ∞ as well. □

We are now in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. Convergence of the modulus. We first show that there exists a sequence {𝑥𝑛}𝑛 ⊂ ℝ2 such that

𝜀𝑛|𝜙𝑛|(𝜀𝑛 ⋅ +𝑥𝑛) → 𝑄0 strongly in 𝐻1(ℝ2) as 𝑛→ ∞ (2.6)

where 𝜀𝑛 is given by (1.10). Denote
𝑣𝑛(𝑥) ∶= 𝜀𝑛|𝜙𝑛|(𝜀𝑛𝑥).

We then have
‖𝑣𝑛‖𝐿2 = ‖𝜙𝑛‖𝐿2 = 1 and ‖∇𝑣𝑛‖𝐿2 = 𝜀𝑛‖∇|𝜙𝑛|‖𝐿2 = 1.

Hence {𝑣𝑛}𝑛 is a bounded sequence in 𝐻1(ℝ2). On the other hand, using the diamagnetic inequality (1.5) we
have

NLS
1,𝑎 (𝜙) ≥ ‖∇|𝜙|‖2𝐿2 −

𝑎
2
‖𝜙‖4𝐿4 =∶ 0

𝑎 (|𝜙|).

But the Gagliardo–Nirenberg inequality (1.4) implies

0
𝑎 (|𝜙|) ≥

(

1 − 𝑎
𝑎∗

)

‖∇|𝜙|‖2𝐿2 .

From this and Lemma 2.3, we obtain

0 = lim
𝑛→∞

𝐸NLS
1,𝑎𝑛

= lim
𝑛→∞

NLS
1,𝑎𝑛

(𝜙𝑛) ≥ lim inf
𝑛→∞

0
𝑎𝑛
(|𝜙𝑛|) ≥ 0.

In particular, we have 0
𝑎𝑛
(𝑣𝑛) = 𝜀2𝑛

0
𝑎𝑛
(|𝜙𝑛|) → 0 as 𝑛→ ∞. Since by definition

‖∇𝑣𝑛‖𝐿2 = 1

for all 𝑛 ≥ 1, we infer that, up to a subsequence,

inf
𝑛≥1

‖𝑣𝑛‖𝐿4 ≥ 𝐶

for some constant 𝐶 > 0. By Lemma 2.2, there exists 𝜙 ∈ 𝐻1(ℝ2)∖{0} and {𝑦𝑛}𝑛 ⊂ ℝ2 such that up to a
subsequence,

�̃�𝑛(𝑥) ∶= 𝑣𝑛(⋅ + 𝑦𝑛) → 𝜙 weakly in 𝐻1(ℝ2) and almost everywhere in ℝ2.

We next show that ‖𝜙‖𝐿2 = 1. In fact, we first have

0 < ‖𝜙‖2𝐿2 ≤ lim inf
𝑛→∞

‖�̃�𝑛‖
2
𝐿2 = lim inf

𝑛→∞
‖𝑣𝑛‖

2
𝐿2 = 1,

where the first inequality comes from the strong convergence in 𝐿2
loc(ℝ

2) (see again [26]). Assume for con-
tradiction that ‖𝜙‖𝐿2 < 1. As in (2.5), we have

0 = lim
𝑛→∞

0
𝑎𝑛
(𝑣𝑛) = lim

𝑛→∞
0
𝑎𝑛
(�̃�𝑛) ≥ 0

𝑎∗
(𝜙) + lim inf

𝑛→∞
0
𝑎∗
(�̃�𝑛 − 𝜙). (2.7)

Again, by the Gagliardo–Nirenberg inequality (1.4), we have

lim inf
𝑛→∞

0
𝑎∗
(�̃�𝑛 − 𝜙) ≥ 0
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and

0
𝑎∗
(𝜙) = ‖𝜙‖2𝐿2

0
𝑎∗

(

𝜙
‖𝜙‖𝐿2

)

+
𝑎∗
2

(

1
‖𝜙‖2

𝐿2

− 1

)

‖𝜙‖4𝐿4 > 0

since 0 < ‖𝜙‖𝐿2 < 1. This is a contradiction with (2.7) and we thus must have ‖𝜙‖𝐿2 = 1. Then �̃�𝑛 → 𝜙
strongly in 𝐿2(ℝ2), up to a subsequence. In fact, �̃�𝑛 → 𝜙 strongly in 𝐿𝑟(ℝ2) for 𝑟 ∈ [2,∞), because of the
𝐻1(ℝ2) boundedness. Therefore,

0 ≤ 0
𝑎∗
(𝜙) ≤ lim inf

𝑛→∞
0
𝑎∗
(�̃�𝑛) ≤ lim inf

𝑛→∞
0
𝑎𝑛
(𝑣𝑛) = 0.

This shows that
lim
𝑛→∞

‖∇�̃�𝑛‖𝐿2 = lim
𝑛→∞

𝑎𝑛
2
‖�̃�𝑛‖𝐿4 = lim

𝑛→∞

𝑎∗
2
‖𝜙‖𝐿4 = ‖∇𝜙‖𝐿2 .

Hence �̃�𝑛 → 𝜙 strongly in 𝐻1(ℝ2), up to a subsequence. Moreover, 𝜙 is an optimizer of the standard
Gagliardo–Nirenberg inequality (1.4). By the uniqueness (up to translations and dilations) of optimizers for
(1.4) and the fact that �̃�𝑛 is non-negative, there exist 𝜆 > 0 and 𝑥0 ∈ ℝ2 such that𝜙(𝑥) = 𝜆𝑄0(𝜆(𝑥+𝑥0)). Since
‖∇𝜙‖𝐿2 = 1, we must have 𝜆 = 1. Again, by uniqueness of 𝑄0, we conclude that passing to a subsequence
is unnecessary. This leads to (2.6) after setting 𝑥𝑛 = 𝜀𝑛(𝑦𝑛 − 𝑥0).

Step 2. A property of Lagrange multipliers. The minimizer 𝜙𝑛 of 𝐸NLS
1,𝑎𝑛

satisfies the Euler–Lagrange
equation

(

∇𝑥⟂
)2 𝜙𝑛 − 𝑎𝑛|𝜙𝑛|2𝜙𝑛 = 𝜇𝑛𝜙𝑛 in ℝ2 (2.8)

in the distributional sense, namely

∫ℝ2
∇𝑥⟂𝜙𝑛 ⋅ ∇𝑥⟂𝜒 − 𝑎𝑛|𝜙𝑛|2𝜙𝑛𝜒 − 𝜇𝑛𝜙𝑛𝜒d𝑥 = 0, ∀𝜒 ∈ 𝐶∞

0 (ℝ2),

where 𝜇𝑛 ∈ ℝ is the Lagrange multiplier. In this step, we show that 𝜀2𝑛𝜇𝑛 → −1 as 𝑛→ ∞. Indeed, as 𝜙𝑛 is a
ground state for 𝐸NLS

1,𝑎𝑛
, using (2.8), we have

𝜇𝑛 = ‖∇𝑥⟂𝜙𝑛‖2𝐿2 − 𝑎𝑛‖𝜙𝑛‖
4
𝐿4 = NLS

1,𝑎𝑛
(𝜙𝑛) −

𝑎𝑛
2
‖𝜙𝑛‖

4
𝐿4 = 𝐸NLS

1,𝑎𝑛
−
𝑎𝑛
2
‖𝜙𝑛‖

4
𝐿4 .

Denote
𝜑𝑛(𝑥) = 𝑒𝑖𝜃𝑛𝜓𝑛(𝑥) (2.9)

with
𝜓𝑛(𝑥) ∶= 𝜀𝑛𝜙𝑛(𝜀𝑛𝑥 + 𝑥𝑛)𝑒𝑖𝜀𝑛𝑥

⟂
𝑛 ⋅𝑥

and 𝜃𝑛 ∈ [0, 2𝜋) satisfying

‖𝜑𝑛 −𝑄0‖𝐿2 = min
𝜃∈[0,2𝜋)

‖𝑒𝑖𝜃𝜓𝑛 −𝑄0‖𝐿2 . (2.10)

By (2.6), we have |𝜑𝑛| ∶= 𝜀𝑛|𝜙𝑛|(𝜀𝑛 ⋅ +𝑥𝑛) → 𝑄0 strongly in 𝐻1(ℝ2). Therefore,

lim
𝑛→∞

𝜀2𝑛‖𝜙𝑛‖
4
𝐿4 = lim

𝑛→∞
‖𝜑𝑛‖

4
𝐿4 = ‖𝑄0‖

4
𝐿4 =

2
𝑎∗
.

Since 0 ≤ 𝐸NLS
1,𝑎𝑛

→ 0 (see Lemma 2.3) and 𝑎𝑛 ↗ 𝑎∗, we get

lim
𝑛→∞

𝜀2𝑛𝜇𝑛 = lim
𝑛→∞

𝜀2𝑛𝐸
NLS
1,𝑎𝑛

− lim
𝑛→∞

𝑎𝑛
2
𝜀2𝑛‖𝜙𝑛‖

4
𝐿4 = −1.

Step 3. A sub-equation for |𝜑𝑛|2. We next use (2.8) to derive an equation and a sub-equation satisfied by 𝜑𝑛
and |𝜑𝑛|2. To do so, we write

𝜓𝑛(𝑥) = 𝜀𝑛�̃�𝑛(𝜀𝑛𝑥)
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with �̃�𝑛(𝑥) ∶= 𝜙𝑛(𝑥 + 𝑥𝑛)𝑒𝑖𝑥
⟂
𝑛 ⋅𝑥. A direct computation gives

(

∇𝑥⟂
)2 �̃�𝑛(𝑥) =

(

(

∇𝑥⟂
)2 𝜙𝑛

)

(𝑥 + 𝑥𝑛)𝑒𝑖𝑥
⟂
𝑛 ⋅𝑥

which, by (2.8), implies
(

∇𝑥⟂
)2 �̃�𝑛 − 𝑎𝑛|�̃�𝑛|2�̃�𝑛 = 𝜇𝑛�̃�𝑛.

Using the identity
(

∇𝑥⟂
)2 𝜙 = −Δ𝜙 + 2𝐿𝜙 + |𝑥|2𝜙

with 𝐿 = 𝑖(𝑥2𝜕1 − 𝑥1𝜕2) = −𝑖𝑥⟂ ⋅ ∇, we see that �̃�𝑛 solves the elliptic equation

−Δ�̃�𝑛 + |𝑥|2�̃�𝑛 + 2𝐿�̃�𝑛 − 𝑎𝑛|�̃�𝑛|2�̃�𝑛 − 𝜇𝑛�̃�𝑛 = 0.

By the definition of 𝜑𝑛 in (2.9), we get

−Δ𝜑𝑛 + 𝜀4𝑛|𝑥|
2𝜑𝑛 + 2𝜀2𝑛𝐿𝜑𝑛 − 𝑎𝑛|𝜑𝑛|

2𝜑𝑛 − 𝜀2𝑛𝜇𝑛𝜑𝑛 = 0. (2.11)

Observe that (2.11) can be written as
(

−𝑖∇ + 𝜀2𝑛𝑥
⟂)2 𝜑𝑛 − 𝑎𝑛|𝜑𝑛|2𝜑𝑛 − 𝜀2𝑛𝜇𝑛𝜑𝑛 = 0

which, by [7, Proposition 2.2], implies that 𝜑𝑛 ∈ 𝐿∞(ℝ2) and lim
|𝑥|→∞ |𝜑𝑛(𝑥)| = 0.

Denote 𝑊𝑛 ∶= |𝜑𝑛|2. Since |𝜑𝑛| ∈ 𝐻1(ℝ2) (using the diamagnetic inequality (1.5)) and 𝜑𝑛 ∈ 𝐿∞(ℝ2),
we have𝑊𝑛 ∈ 𝐻1(ℝ2). Multiplying both sides of (2.11) with 𝜑𝑛, taking the real part, and using the following
identities (in the distributional sense)

−Re(Δ𝜑𝑛𝜑𝑛) = −1
2
Δ𝑊𝑛 + |∇𝜑𝑛|2,

2Re(𝐿𝜑𝑛𝜑𝑛) = 𝐿𝜑𝑛𝜑𝑛 + 𝐿𝜑𝑛𝜑𝑛 = 𝑥⟂ ⋅ 𝐽 (𝜑𝑛),
(2.12)

with 𝐽 (𝜑) = 𝑖(𝜑∇𝜑 − 𝜑∇𝜑) the superfluid current, we obtain

−1
2
Δ𝑊𝑛 + |∇𝜑𝑛|2 + 𝜀4𝑛|𝑥|

2𝑊𝑛 + 𝜀2𝑛𝑥
⟂ ⋅ 𝐽 (𝜑𝑛) − 𝑎𝑛𝑊 2

𝑛 − 𝜀2𝑛𝜇𝑛𝑊𝑛 = 0. (2.13)

Using the identity

|(−𝑖∇ + 𝜀2𝑛𝑥
⟂)𝜑𝑛|2 = |∇𝜑𝑛|2 + 𝜀2𝑛𝑥

⟂ ⋅ 𝐽 (𝜑𝑛) + 𝜀4𝑛|𝑥|
2𝑊𝑛,

we deduce that

−1
2
Δ𝑊𝑛 − 𝜀2𝑛𝜇𝑛𝑊𝑛 − 𝑎𝑛𝑊 2

𝑛 ≤ 0 (2.14)

in the weak sense, namely

∫ℝ2

1
2
∇𝑊𝑛 ⋅ ∇𝜒 − 𝜀2𝑛𝜇𝑛𝑊𝑛𝜒 − 𝑎𝑛𝑊 2

𝑛 𝜒d𝑥 ≤ 0, ∀0 ≤ 𝜒 ∈ 𝐶∞
0 (ℝ2).

Step 4. Uniform boundedness of 𝑊𝑛. To prove the uniform boundedness of the sub-solution 𝑊𝑛 = |𝜑𝑛|2 to
(2.14), we need its local boundedness. The following formulation is taken from [23, Theorem 4.14] (see [23,
Theorem 4.1] and [16, Theorem 8.17] for the proof).

Theorem 2.5 (Local boundedness).
Let 𝐷 be a connected open set with smooth boundary in ℝ𝑑 . Assume that 𝑎𝑗𝑘 ∈ 𝐿∞(𝐷) satisfies

𝜆|𝜉|2 ≤
∑

𝑗,𝑘
𝑎𝑗𝑘(𝑥)𝜉𝑗𝜉𝑘 ≤ Λ|𝜉|2, ∀𝑥 ∈ 𝐷, ∀𝜉 ∈ ℝ𝑑
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for some positive constants 𝜆 and Λ. Let 𝑢 ∈ 𝐻1(𝐷) be a non-negative sub-solution in 𝐷 in the following
sense

∫𝐷
𝑎𝑗𝑘𝜕𝑗𝑢𝜕𝑘𝜒d𝑥 ≤ ∫𝐷

𝑓𝜒d𝑥, ∀𝜒 ∈ 𝐻1
0 (𝐷), 𝜒 ≥ 0 in 𝐷.

Suppose that 𝑓 ∈ 𝐿𝑞(𝐷) for some 𝑞 > 𝑑
2 . Then there holds for any 𝐵𝑅(𝑥0) ⊂ 𝐷 and any 𝑝 > 0

sup
𝐵𝑅∕2(𝑥0)

𝑢(𝑥) ≤ 𝐶
(

𝑅− 𝑑
𝑝
‖𝑢‖𝐿𝑝(𝐵𝑅(𝑥0)) + 𝑅

2− 𝑑
𝑞
‖𝑓‖𝐿𝑞(𝐵𝑅(𝑥0))

)

,

where 𝐶 = 𝐶(𝑑, 𝜆,Λ, 𝑝, 𝑞) is a positive constant.

Let 𝑀 > 0 and denote 𝐷𝑀 = {𝑥 ∈ ℝ2 ∶ |𝑥| > 𝑀}. Applying Theorem 2.5 to (2.14) with 𝐷 = 𝐷𝑀 ,
𝑎𝑗𝑘 =

1
2𝛿𝑗𝑘, 𝑓 = 𝜀2𝑛𝜇𝑛𝑊𝑛 + 𝑎𝑛𝑊 2

𝑛 , 𝑝 = 𝑞 = 2, 𝑅 = 2, and 𝐵2(𝑥0) ⊂ 𝐷𝑀 , we get

sup
𝐵1(𝑥0)

𝑊𝑛(𝑥) ≤ 𝐶
(

‖𝑊𝑛‖𝐿2(𝐵2(𝑥0)) + ‖𝑊 2
𝑛 ‖𝐿2(𝐵2(𝑥0))

)

(2.15)

for some universal constant 𝐶 > 0. Since 𝐵2(𝑥0) ⊂ 𝐷𝑀 , we deduce

‖𝑊𝑛‖𝐿2(𝐵2(𝑥0)) + ‖𝑊 2
𝑛 ‖𝐿2(𝐵2(𝑥0)) ≤ ‖𝑊𝑛‖𝐿2(|𝑥|>𝑀) + ‖𝑊 2

𝑛 ‖𝐿2(|𝑥|>𝑀)

→ ‖𝑄2
0‖𝐿2(|𝑥|>𝑀) + ‖𝑄4

0‖𝐿2(|𝑥|>𝑀).

Here we have used 𝜖2𝑛𝜇𝑛 → −1 and the fact that 𝑊𝑛 → 𝑄2
0 in 𝐿2(ℝ2) and 𝑊 2

𝑛 → 𝑄4
0 in 𝐿2(ℝ2) because

‖𝑊𝑛 −𝑄2
0‖𝐿2 ≤ ‖|𝜑𝑛| −𝑄0‖𝐿4‖|𝜑𝑛| +𝑄0‖𝐿4 ,

‖𝑊 2
𝑛 −𝑄4

0‖𝐿2 ≤ ‖|𝜑𝑛| −𝑄0‖𝐿8‖|𝜑𝑛| +𝑄0‖𝐿8‖|𝜑𝑛|
2 +𝑄2

0‖𝐿4 ,

and |𝜑𝑛| → 𝑄0 strongly in𝐿𝑟(ℝ2) for all 𝑟 ∈ [2,∞). The later follows from the strong convergence |𝜑𝑛| → 𝑄0
in𝐻1(ℝ2) and Sobolev embedding. In particular, for 𝜖 > 0, there exist 𝑛𝜖 ∈ ℕ and𝑀𝜖 sufficiently large such
that for all 𝑛 ≥ 𝑛𝜖 and all 𝑀 ≥𝑀𝜖 ,

‖𝑊𝑛‖𝐿2(𝐵2(𝑥0)) + ‖𝑊 2
𝑛 ‖𝐿2(𝐵2(𝑥0)) ≤

𝜖
𝐶

which together with (2.15) yield

sup
𝐵1(𝑥0)

𝑊𝑛(𝑥) ≤ 𝜖

for all 𝐵1(𝑥0) ⊂ 𝐷𝑀𝜖
. As 𝐵1(𝑥0) is arbitrarily in 𝐷𝑀𝜖

, we get (by possibly increasing 𝑀𝜖)

𝑊𝑛(𝑥) ≤ 𝜖 for all |𝑥| > 𝑀𝜖 and all 𝑛 sufficiently large. (2.16)

Applying again Theorem 2.5 to (2.14) with 𝐷 = ℝ2, 𝑎𝑗𝑘 = 1
2𝛿𝑗𝑘, 𝑓 = 𝜇𝑛𝜀2𝑛𝑊𝑛 + 𝑎𝑛𝑊 2

𝑛 , 𝑝 = 𝑞 = 2, and
𝑅 = 2𝑀𝜖 , we get

sup
𝐵𝑀𝜖 (0)

𝑊𝑛(𝑥) ≤ 𝐶
(

𝑀−1
𝜖 ‖𝑊𝑛‖𝐿2(𝐵2𝑀𝜖 (0))

+𝑀𝜖‖𝑊
2
𝑛 ‖𝐿2(𝐵2𝑀𝜖 (0))

)

for some universal constant 𝐶 > 0. This implies

sup
𝐵𝑀𝜖 (0)

𝑊𝑛(𝑥) ≤ 𝐶(𝑀𝜖) for all 𝑛 sufficiently large. (2.17)

Collecting (2.16) and (2.17), we prove

0 ≤ sup
𝑥∈ℝ2

𝑊𝑛(𝑥) ≤ 𝐶 for all 𝑛 sufficiently large, (2.18)

where 𝐶 > 0 is a constant independent of 𝑛.
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Step 5. Uniform exponential decay of 𝑊𝑛. We now prove the uniform exponential decay of 𝑊𝑛. Since
𝐶∞
0 (ℝ2) is dense in 𝐻1(ℝ2), we can test (2.14) against non-negative functions in 𝐻1(ℝ2). The following

calculation is done formally by testing (2.14) with 𝑒𝛼|𝑥|𝑊𝑛 for some constant 𝛼 > 0 to be chosen shortly.
Strictly speaking, this requires a standard truncation argument. First we replace 𝑒𝛼|𝑥| by

𝜒𝛿(𝑥) ∶= 𝑒𝛼
|𝑥|

1+𝛿|𝑥| , 𝛿 > 0

and perform the usual computation. Then we let 𝛿 → 0 to obtain the desired estimate. For more details, see
e.g., [6, Theorem 8.1.1]. Note that 𝜒𝛿 is bounded, Lipschitz continuous, and |∇𝜒𝛿| ≤ 𝛼𝜒𝛿; hence 𝜒𝛿𝑊𝑛 ∈
𝐻1(ℝ2).

We have

−1
2 ∫ℝ2

Δ𝑊𝑛𝑒
𝛼|𝑥|𝑊𝑛d𝑥 − 𝜇𝑛𝜀2𝑛 ∫ℝ2

𝑊𝑛𝑒
𝛼|𝑥|𝑊𝑛d𝑥 − 𝑎𝑛 ∫ℝ2

𝑊 2
𝑛 𝑒

𝛼|𝑥|𝑊𝑛d𝑥 ≤ 0. (2.19)

Observe that

∫ℝ2
Δ𝑊𝑛𝑒

𝛼|𝑥|𝑊𝑛d𝑥 = ∫ℝ2
𝑒𝛼|𝑥|

(1
2
Δ(𝑊 2

𝑛 ) − |∇𝑊𝑛|
2
)

d𝑥

= 1
2 ∫ℝ2

𝑊 2
𝑛 Δ(𝑒

𝛼|𝑥|)d𝑥 − ∫ℝ2
|∇𝑊𝑛|

2𝑒𝛼|𝑥|d𝑥

= 1
2 ∫ℝ2

𝑊 2
𝑛

(

𝛼2 + 𝛼
|𝑥|

)

𝑒𝛼|𝑥|d𝑥 − ∫ℝ2
|∇𝑊𝑛|

2𝑒𝛼|𝑥|d𝑥

and

∫ℝ2
|∇(𝑊𝑛𝑒

𝛼|𝑥|∕2)|2d𝑥 = 𝛼2

4 ∫ℝ2
𝑊 2
𝑛 𝑒

𝛼|𝑥|d𝑥 + ∫ℝ2
|∇𝑊𝑛|

2𝑒𝛼|𝑥|d𝑥 − 1
2 ∫ℝ2

𝑊 2
𝑛

(

𝛼2 + 𝛼
|𝑥|

)

𝑒𝛼|𝑥|d𝑥.

In particular, we have

∫ℝ2
Δ𝑊𝑛𝑒

𝛼|𝑥|𝑊𝑛d𝑥 = 𝛼2

4 ∫ℝ2
𝑊 2
𝑛 𝑒

𝛼|𝑥|d𝑥 − ∫ℝ2
|∇(𝑊𝑛𝑒

𝛼|𝑥|∕2)|2d𝑥,

hence (see (2.19))

1
2 ∫ℝ2

|∇(𝑊𝑛𝑒
𝛼|𝑥|∕2)|2d𝑥 − 𝛼2

8 ∫ℝ2
𝑊 2
𝑛 𝑒

𝛼|𝑥|d𝑥 − 𝜇𝑛𝜀2𝑛 ∫ℝ2
𝑊 2
𝑛 𝑒

𝛼|𝑥|d𝑥 − 𝑎𝑛 ∫ℝ2
𝑊 3
𝑛 𝑒

𝛼|𝑥|d𝑥 ≤ 0

so

∫ℝ2

(

−𝜇𝑛𝜀2𝑛 −
𝛼2

8
− 𝑎𝑛𝑊𝑛

)

𝑊 2
𝑛 𝑒

𝛼|𝑥|d𝑥 ≤ 0.

We pick 𝛼 = 1 and choose 𝑀 > 0 so large that 𝑊𝑛(𝑥) ≤
1
4𝑎∗

for all |𝑥| ≥ 𝑀 and all 𝑛 sufficiently large (see
(2.16)). As 𝜇𝑛𝜀2𝑛 → −1 (by Step 1), we get

−𝜇𝑛𝜀2𝑛 −
1
8
− 𝑎𝑛𝑊𝑛(𝑥) ≥

1
2

for all |𝑥| ≥𝑀 and all 𝑛 sufficiently large. Thus we obtain

1
2 ∫ℝ2∖𝐵𝑀 (0)

𝑊 2
𝑛 𝑒

|𝑥|d𝑥 ≤ ∫𝐵𝑀 (0)

|

|

|

|

−𝜇𝑛𝜀2𝑛 −
1
8
− 𝑎𝑛𝑊𝑛

|

|

|

|

𝑊 2
𝑛 𝑒

|𝑥|d𝑥 ≤ 𝐶𝑒𝑀‖𝑊𝑛‖
2
𝐿2 ≤ 𝐶𝑒𝑀

for all 𝑛 sufficiently large, where we have used (2.18) to get the second estimate. This proves that

∫ℝ2
𝑊 2
𝑛 𝑒

|𝑥|d𝑥 ≤ 𝐶, (2.20)
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for all 𝑛 sufficiently large, where 𝐶 > 0 is independent of 𝑛. From this, we get

∫ℝ2
|𝜑𝑛|

2𝑒|𝑥|∕4d𝑥 = ∫ℝ2
𝑊𝑛𝑒

|𝑥|∕2𝑒−|𝑥|∕4d𝑥 ≤
(

∫ℝ2
𝑊 2
𝑛 𝑒

|𝑥|d𝑥
)1∕2(

∫ℝ2
𝑒−|𝑥|∕2d𝑥

)1∕2
≤ 𝐶 (2.21)

for all 𝑛 sufficiently large. A consequence of this uniform exponential decay and |𝜑𝑛| → 𝑄0 in𝐻1(ℝ2) is that
|𝑥||𝜑𝑛| → |𝑥|𝑄0 strongly in 𝐿2(ℝ2).

Step 6. 𝐻1-strong convergence. By the definition of 𝜑𝑛 (see (2.9)), we have

𝜙𝑛(𝑥) = 𝜀−1𝑛 𝜑𝑛(𝜀
−1
𝑛 (𝑥 − 𝑥𝑛))𝑒−𝑖𝑥

⟂
𝑛 ⋅𝑥−𝑖𝜃𝑛 .

Since 𝜙𝑛 is a ground state for 𝐸NLS
1,𝑎𝑛

, we see that

𝐸NLS
1,𝑎𝑛

= NLS
1,𝑎𝑛

(𝜙𝑛) = ‖∇𝜙𝑛‖2𝐿2 + ‖𝑥𝜙𝑛‖
2
𝐿2 + 2⟨𝐿𝜙𝑛, 𝜙𝑛⟩ −

𝑎𝑛
2
‖𝜙𝑛‖

4
𝐿4 . (2.22)

This implies the following identity (see again (2.9))

𝜀2𝑛𝐸
NLS
1,𝑎𝑛

= ‖∇𝜑𝑛‖2𝐿2 + 2𝜀2𝑛⟨𝐿𝜑𝑛, 𝜑𝑛⟩ + 𝜀
4
𝑛‖𝑥𝜑𝑛‖

2
𝐿2 −

𝑎𝑛
2
‖𝜑𝑛‖

4
𝐿4 . (2.23)

By the Cauchy–Schwarz inequality, we have

|2𝜀2𝑛⟨𝐿𝜑𝑛, 𝜑𝑛⟩| ≤ 2𝜀2𝑛‖∇𝜑𝑛‖𝐿2‖𝑥𝜑𝑛‖𝐿2 ≤ 1
2
‖∇𝜑𝑛‖2𝐿2 + 2𝜀4𝑛‖𝑥𝜑𝑛‖

2
𝐿2

which implies
‖∇𝜑𝑛‖2𝐿2 ≤ 2

(

𝜀2𝑛𝐸
NLS
𝑎𝑛

+ 𝜀4𝑛‖𝑥𝜑𝑛‖
2
𝐿2 +

𝑎𝑛
2
‖𝜑𝑛‖

4
𝐿4

)

.

Since 𝐸NLS
1,𝑎𝑛

→ 0, 𝜀𝑛 → 0, |𝑥||𝜑𝑛| → |𝑥|𝑄0 strongly in 𝐿2(ℝ2), and |𝜑𝑛| → 𝑄0 strongly in 𝐿4(ℝ2), we infer
that {𝜑𝑛}𝑛 is bounded uniformly in 𝐻1(ℝ2).

From (2.23), we also have

‖∇𝜑𝑛‖2𝐿2 −
𝑎∗
2
‖𝜑𝑛‖

4
𝐿4 = 𝜀2𝑛𝐸

NLS
1,𝑎𝑛

− 2𝜀2𝑛⟨𝐿𝜑𝑛, 𝜑𝑛⟩ − 𝜀
4
𝑛‖𝑥𝜑𝑛‖

2
𝐿2 −

𝑎∗ − 𝑎𝑛
2

‖𝜑𝑛‖
4
𝐿4 .

Using the uniform boundedness of {𝜑𝑛}𝑛 in 𝐻1(ℝ2), the strong convergence |𝑥||𝜑𝑛| → |𝑥|𝑄0 in 𝐿2(ℝ2),
and 𝑎𝑛 ↗ 𝑎∗, we deduce that

lim
𝑛→∞

‖∇𝜑𝑛‖2𝐿2 −
𝑎∗
2
‖𝜑𝑛‖

4
𝐿4 = 0.

Since ‖𝜑𝑛‖𝐿2 = 1 and |𝜑𝑛| → 𝑄0 strongly in 𝐿𝑟(ℝ2) for all 𝑟 ∈ [2,∞), there exists {𝑧𝑛}𝑛 ⊂ ℝ2 such that

𝜑𝑛(𝑥 + 𝑧𝑛) → 𝑒𝑖𝜃𝑄0(𝑥) (2.24)

strongly in𝐻1(ℝ2), for some 𝜃 ∈ [0, 2𝜋). Using the fact that ‖𝑄0(⋅+𝑧𝑛)−𝑄0‖𝐻1 → 0 if and only if |𝑧𝑛| → 0,
we get |𝑧𝑛| → 0. This in turn implies that 𝜑𝑛 → 𝑒𝑖𝜃𝑄0 strongly in 𝐻1(ℝ2) since

‖𝜑𝑛 − 𝑒𝑖𝜃𝑄0‖𝐻1 = ‖𝜑𝑛(⋅ + 𝑧𝑛) − 𝑒𝑖𝜃𝑄0(⋅ + 𝑧𝑛)‖𝐻1

≤ ‖𝜑𝑛(⋅ + 𝑧𝑛) − 𝑒𝑖𝜃𝑄0‖𝐻1 + ‖𝑄0 −𝑄0(⋅ + 𝑧𝑛)‖𝐻1 → 0.

Now we write
𝜑𝑛(𝑥) = 𝑞𝑛(𝑥) + 𝑖𝑟𝑛(𝑥)

with 𝑞𝑛 and 𝑟𝑛 the real and imaginary parts of 𝜑𝑛 respectively. By (2.10), we have the following orthogonality
condition

∫ℝ2
𝑄0𝑟𝑛d𝑥 = 0. (2.25)
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Since ‖𝜑𝑛 − 𝑒𝑖𝜃𝑄0‖
2
𝐿2 → 0, we have

∫ℝ2

(

Re(𝜑 − 𝑒𝑖𝜃𝑄0)
)2 +

(

Im(𝜑𝑛 − 𝑒𝑖𝜃𝑄0)
)2 d𝑥→ 0.

In particular, we get

∫ℝ2
(𝑟𝑛 −𝑄0 sin 𝜃)2d𝑥→ 0.

Using (2.25), we have

∫ℝ2
𝑟2𝑛 +𝑄

2
0 sin

2 𝜃d𝑥→ 0.

This shows that

∫ℝ2
𝑟2𝑛d𝑥→ 0 and sin2 𝜃 = 0

or 𝜃 = 0 or 𝜃 = 𝜋. In the following, we consider only the case 𝜃 = 0. The case 𝜃 = 𝜋 can be treated similarly
by changing 𝜑𝑛 to −𝜑𝑛. For 𝜃 = 0, we have 𝜑𝑛 → 𝑄0 strongly in 𝐻1(ℝ2). In particular,

∫ℝ2
(𝑞𝑛 −𝑄0)2d𝑥→ 0 and ∫ℝ2

𝑟2𝑛d𝑥→ 0. (2.26)

This, together with the exponential decay of 𝑊𝑛, yields

∫ℝ2
|𝑥|2(𝑞𝑛 −𝑄0)2d𝑥→ 0 and ∫ℝ2

|𝑥|2𝑟2𝑛d𝑥→ 0. (2.27)

In fact, by the exponential decay of 𝑊𝑛 (see (2.21)), we have

∫ℝ2
|𝑥|2𝑟2𝑛d𝑥 ≤

(

∫ℝ2
|𝑥|4𝑟2𝑛d𝑥

)1∕2(

∫ℝ2
𝑟2𝑛d𝑥

)1∕2
→ 0

and similarly for 𝑞𝑛 −𝑄0.

Step 7. Smallness of the imaginary part. Observe that

⟨𝐿𝜑𝑛, 𝜑𝑛⟩ = Re⟨𝐿𝜑𝑛, 𝜑𝑛⟩ = ∫ℝ2
𝑥⟂ ⋅ Im(𝜑𝑛∇𝜑𝑛)d𝑥

= ∫ℝ2
𝑥⟂ ⋅ (𝑞𝑛∇𝑟𝑛 − 𝑟𝑛∇𝑞𝑛)d𝑥 = 2∫ℝ2

𝑥⟂𝑞𝑛∇𝑟𝑛d𝑥
(2.28)

which implies
|⟨𝐿𝜑𝑛, 𝜑𝑛⟩| ≤ 2‖𝑥𝑞𝑛‖𝐿2‖∇𝑟𝑛‖𝐿2 ≤ 𝐶‖∇𝑟𝑛‖𝐿2 .

Here we have used the fact that |𝑥|𝑞𝑛 is bounded uniformly in 𝐿2(ℝ2) since |𝑥||𝜑𝑛| → |𝑥|𝑄0 strongly in
𝐿2(ℝ2). We deduce from the above and (2.23) that

𝜀2𝑛𝐸
NLS
1,𝑎𝑛

≥ ∫ℝ2
|∇𝑞𝑛|2 + |∇𝑟𝑛|2 −

𝑎∗
2
(𝑞4𝑛 + 𝑟

4
𝑛 + 2𝑞2𝑛𝑟

2
𝑛)d𝑥 − 𝐶𝜀

2
𝑛‖∇𝑟𝑛‖𝐿2 .

We have
𝑎∗
2 ∫ℝ2

(𝑟4𝑛 + 2𝑞2𝑛𝑟
2
𝑛)d𝑥 ≤ 𝑎∗ ∫ℝ2

|𝜑𝑛|
2𝑟2𝑛d𝑥 = ∫ℝ2

𝑄2𝑟2𝑛d𝑥 + 𝑎∗ ∫ (|𝜑𝑛|2 −𝑄2
0)𝑟

2
𝑛d𝑥

= ∫ℝ2
𝑄2𝑟2𝑛d𝑥 + 𝑜(1)‖𝑟𝑛‖

2
𝐻1 .

Here we have used that
|

|

|

|

∫ℝ2
(|𝜑𝑛|2 −𝑄2

0)𝑟
2
𝑛d𝑥

|

|

|

|

≤ ‖|𝜑𝑛|
2 −𝑄2

0‖𝐿2‖𝑟𝑛‖
2
𝐿4 ≤ 𝐶‖|𝜑𝑛|

2 −𝑄2
0‖𝐿2‖𝑟𝑛‖

2
𝐻1
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and
‖|𝜑𝑛|

2 −𝑄2
0‖𝐿2 ≤ ‖|𝜑𝑛| −𝑄0‖𝐿4‖|𝜑𝑛| +𝑄0‖𝐿4 → 0

as |𝜑𝑛| → 𝑄0 strongly in𝐻1(ℝ2) hence in𝐿4(ℝ2) by Sobolev embeddings. On the other hand, by the standard
Gagliardo–Nirenberg inequality (1.4), we have

∫ℝ2
|∇𝑞𝑛|2 −

𝑎∗
2
𝑞4𝑛d𝑥 ≥ ‖∇𝑞𝑛‖2𝐿2 (1 − ‖𝑞𝑛‖

2
𝐿2 ) = (1 + 𝑜(1))‖𝑟𝑛‖2𝐿2 ,

where we have used that 𝑞𝑛 → 𝑄0 strongly in𝐻1(ℝ2), ‖𝑞𝑛‖2𝐿2+‖𝑟𝑛‖
2
𝐿2 = 1 as ‖𝜑𝑛‖2𝐿2 = 1, and ‖∇𝑄0‖

2
𝐿2 = 1.

Thus we get

𝜀2𝑛𝐸
NLS
1,𝑎𝑛

≥ ∫ℝ2
|∇𝑟𝑛|2 −𝑄2𝑟2𝑛 + 𝑟

2
𝑛d𝑥 + 𝑜(1)‖𝑟𝑛‖

2
𝐻1 − 𝐶𝜀

2
𝑛‖∇𝑟𝑛‖𝐿2

= ⟨𝑟𝑛, 𝑟𝑛⟩ + 𝑜(1)‖𝑟𝑛‖2𝐻1 − 𝐶𝜀
2
𝑛‖∇𝑟𝑛‖𝐿2 ,

where  ∶= −Δ −𝑄2 + 1.
We now use the non-degeneracy property of 𝑄. It is well-known (see [28, Theorem 11.8 and Corrollary

11.9]) that𝑄 is the first eigenfunction of and the corresponding eigenvalue 0 is non-degenerate. In particular,
we have

⟨𝑢, 𝑢⟩ ≥ 𝜆2‖𝑢‖
2
𝐿2

for all 𝑢 orthogonal to 𝑄, where 𝜆2 > 0 is the second eigenvalue of . This together with the fact that

⟨𝑢, 𝑢⟩ ≥ ‖𝑢‖2𝐻1 − ‖𝑄‖2𝐿∞‖𝑢‖2𝐿2

yield
⟨𝑢, 𝑢⟩ ≥ 𝐶‖𝑢‖2𝐻1

for some constant 𝐶 > 0 and all 𝑢 orthogonal to 𝑄. Thanks to this estimate and the orthogonality condition
(2.25), we get

𝜀2𝑛𝐸
NLS
1,𝑎𝑛

≥ 𝐶1‖𝑟𝑛‖
2
𝐻1 − 𝐶2𝜀

2
𝑛‖∇𝑟𝑛‖𝐿2

for some positive constants 𝐶1 and 𝐶2. This implies that

‖𝑟𝑛‖
2
𝐻1 ≤ 𝐶(𝜀2𝑛𝐸

NLS
1,𝑎𝑛

+ 𝜀4𝑛). (2.29)

On the other hand, from (2.3), the magnetic Gagliardo–Nirenberg inequality (1.6) and the diamagnetic in-
equality (1.5), we have

𝐶(𝑎∗ − 𝑎𝑛)1∕2 ≥ 𝐸NLS
1,𝑎𝑛

= NLS
1,𝑎𝑛

(𝜙𝑛) ≥
𝑎∗ − 𝑎𝑛
𝑎∗

‖∇𝑥⟂𝜙𝑛‖2𝐿2 ≥
𝑎∗ − 𝑎𝑛
𝑎∗

‖∇|𝜙𝑛|‖2𝐿2 =
𝑎∗ − 𝑎𝑛
𝑎∗

𝜀−2𝑛

which implies
𝐸NLS
1,𝑎𝑛

≤ 𝐶(𝑎∗ − 𝑎𝑛)1∕2 ≤ 𝐶𝜀2𝑛 (2.30)

for some constant 𝐶 > 0. This together with (2.29) yield
‖𝑟𝑛‖𝐻1 ≤ 𝐶𝜀2𝑛. (2.31)

Step 8. Identifying the blow-up limit. Coming back to (2.28), we have

⟨𝐿𝜑𝑛, 𝜑𝑛⟩ = 2∫ℝ2
𝑥⟂ ⋅ ∇𝑟𝑛𝑞𝑛d𝑥 = 2∫ℝ2

𝑥⟂ ⋅ ∇𝑟𝑛𝑄0d𝑥 + 2∫ℝ2
𝑥⟂ ⋅ ∇𝑟𝑛(𝑞𝑛 −𝑄0)d𝑥

= 2∫ℝ2
𝑥⟂ ⋅ ∇𝑟𝑛(𝑞𝑛 −𝑄0)d𝑥

where we have used the fact that 𝑥⟂ ⋅ ∇𝑄0 = 0 since 𝑄0 is radial and (2.27). This shows that

|⟨𝐿𝜑𝑛, 𝜑𝑛⟩| ≤ ‖∇𝑟𝑛‖𝐿2‖𝑥(𝑞𝑛 −𝑄0)‖𝐿2 ≤ 𝑜(1)‖∇𝑟𝑛‖𝐿2 ≤ 𝑜(𝜀2𝑛). (2.32)
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Here we have used (2.27) in the second inequality and (2.31) in the last one.
From (2.22) and the Gagliardo–Nirenberg inequality (1.4), we have

𝐸NLS
1,𝑎𝑛

≥ 2⟨𝐿𝜙𝑛, 𝜙𝑛⟩ + ‖𝑥𝜙𝑛‖
2
𝐿2 = 2⟨𝐿𝜑𝑛, 𝜑𝑛⟩ + 𝜀2𝑛‖𝑥𝜑𝑛‖

2
𝐿2 .

Denote
𝛽𝑛 ∶=

𝜀𝑛
(𝑎∗ − 𝑎𝑛)1∕4

.

From (2.30), we have
𝛽2𝑛 ≥ 𝐶 > 0.

Moreover, using (2.3), we also have

𝐶 ≥
𝐸NLS
1,𝑎𝑛

(𝑎∗ − 𝑎𝑛)1∕2
≥ 2

(𝑎∗ − 𝑎𝑛)1∕2
⟨𝐿𝜑𝑛, 𝜑𝑛⟩ + 𝛽2𝑛‖𝑥𝜑𝑛‖

2
𝐿2 .

Thanks to (2.32) and the fact that |𝑥||𝜑𝑛| → |𝑥|𝑄0 strongly in 𝐿2(ℝ2), we deduce

𝐶 ≥ 𝛽2𝑛 (‖𝑥𝑄0‖
2
𝐿2 + 𝑜(1)).

In particular, we deduce that {𝛽𝑛}𝑛 is bounded above and below away from zero. Passing to subsequence, we
have 𝛽𝑛 → 𝛽 > 0 as 𝑛→ ∞.

By (2.23), we have

𝐸NLS
1,𝑎𝑛

≥
𝑎∗ − 𝑎𝑛

2
‖𝜙𝑛‖

4
𝐿4 + 2⟨𝐿𝜙𝑛, 𝜙𝑛⟩ + ‖𝑥𝜑𝑛‖

2
𝐿2

=
(𝑎∗ − 𝑎𝑛)1∕2

2𝛽2𝑛
‖𝜑𝑛‖

4
𝐿4 + 2⟨𝐿𝜑𝑛, 𝜑𝑛⟩ + (𝑎∗ − 𝑎𝑛)1∕2𝛽2𝑛‖𝑥𝜑𝑛‖

2
𝐿2 .

Since 𝜑𝑛 → 𝑄0 strongly in 𝐻1(ℝ2), |𝑥||𝜑𝑛| → |𝑥|𝑄0 strongly in 𝐿2(ℝ2), and (2.32), we infer that

𝐸NLS
1,𝑎𝑛

(𝑎∗ − 𝑎𝑛)1∕2
≥ 1

2𝛽2
‖𝑄0‖

4
𝐿4 + 𝛽

2
‖𝑥𝑄0‖

2
𝐿2 + 𝑜(1).

Optimizing over 𝛽 > 0 and noticing that ‖𝑄0‖
4
𝐿4 =

2
𝑎∗

we get

lim inf
𝑛→∞

𝐸NLS
1,𝑎𝑛

(𝑎∗ − 𝑎𝑛)1∕2
≥ 2

‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

and 𝛽 = 1
𝑎1∕4∗ ‖𝑥𝑄0‖

1∕2
𝐿2

.

From this and the energy upper bound (2.1), we obtain (1.7) and (1.8).

Step 9. 𝐿∞ convergence. We finally prove the 𝐿∞-convergence. To this end, we first show the uniform
exponential decay for ∇𝜑𝑛, namely

∫ℝ2
|∇𝜑𝑛|2𝑒|𝑥|∕4d𝑥 ≤ 𝐶 (2.33)

for all 𝑛 sufficiently large. We provide below a formal calculation and a regularizing argument is needed to
justify it rigorously (see Step 5). We multiply both sides of (2.11) with 𝑒𝛼|𝑥|𝜑𝑛, integrate over ℝ2, and take
the real part to get

Re∫ℝ2
−Δ𝜑𝑛𝑒𝛼|𝑥|𝜑𝑛 + 𝜀4𝑛|𝑥|

2𝑒𝛼|𝑥||𝜑𝑛|
2 + 2𝜀2𝑛𝐿𝜑𝑛𝑒

𝛼|𝑥|𝜑𝑛 − 𝑎𝑛|𝜑𝑛|4𝑒𝛼|𝑥| − 𝜀2𝑛𝜇𝑛|𝜑𝑛|
2𝑒𝛼|𝑥|d𝑥 = 0.

Arguing as in [25, Lemma 3.2], we have

Re∫ℝ2
−Δ𝜑𝑛𝑒𝛼|𝑥|𝜑𝑛d𝑥 = ∫ℝ2

|∇(𝑒𝛼|𝑥|∕2𝜑𝑛)|2d𝑥 −
𝛼2

2 ∫ℝ2
𝑒𝛼|𝑥||𝜑𝑛|

2d𝑥.
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In particular, we get

0 = ∫ℝ2
|∇(𝑒𝛼|𝑥|∕2𝜑𝑛)|2d𝑥 + 𝜀4𝑛 ∫ℝ2

|𝑥|2𝑒𝛼|𝑥||𝜑𝑛|
2d𝑥 + ∫ℝ2

𝑒𝛼|𝑥|
(

− 𝑎𝑛|𝜑𝑛|2 − 𝜀2𝑛𝜇𝑛 −
𝛼2

4

)

|𝜑𝑛|
2d𝑥

+ 2𝜀2𝑛 ∫ℝ2
𝐿𝜑𝑛𝑒

𝛼|𝑥|𝜑𝑛d𝑥.

Since 𝐿(𝑒𝛼|𝑥|∕2) = 0, we have
|

|

|

|

2𝜀2𝑛 ∫ℝ2
𝐿𝜑𝑛𝑒

𝛼|𝑥|𝜑𝑛d𝑥
|

|

|

|

=
|

|

|

|

2𝜀2𝑛 ∫ℝ2
𝑒𝛼|𝑥|∕2𝜑𝑛𝐿(𝑒𝛼|𝑥|∕2𝜑𝑛)d𝑥

|

|

|

|

≤ 2𝜀2𝑛‖𝑥
⟂𝑒𝛼|𝑥|∕2𝜑𝑛‖𝐿2‖∇(𝑒𝛼|𝑥|∕2𝜑𝑛)‖𝐿2

≤ 1
2 ∫ℝ2

|∇(𝑒𝛼|𝑥|∕2𝜑𝑛)|2d𝑥 + 2𝜀4𝑛 ∫ℝ2
|𝑥|2𝑒𝛼|𝑥||𝜑𝑛|

2d𝑥.

It follows that

1
2 ∫ℝ2

|∇(𝑒𝛼|𝑥|∕2𝜑𝑛)|2d𝑥 ≤ 𝜀4𝑛 ∫ℝ2
|𝑥|2𝑒𝛼|𝑥||𝜑𝑛|

2d𝑥 + ∫ℝ2
𝑒𝛼|𝑥|

(

𝑎𝑛|𝜑𝑛|
2 + |𝜀2𝑛𝜇𝑛| +

𝛼2

4

)

|𝜑𝑛|
2d𝑥

By choosing 𝛼 = 1
4 , using (2.20), (2.21) and the fact that 𝜀2𝑛𝜇𝑛 → −1, we obtain

∫ℝ2
|∇(𝑒|𝑥|∕8𝜑𝑛)|2d𝑥 ≤ 𝐶 (2.34)

for all 𝑛 sufficiently large. Note that, by the triangle inequality,

‖∇(𝑒|𝑥|∕8𝜑𝑛)‖𝐿2 =
‖

‖

‖

‖

𝑒|𝑥|∕8∇𝜑𝑛 +
𝑥

8|𝑥|
𝑒|𝑥|∕8𝜑𝑛

‖

‖

‖

‖𝐿2
≥ ‖𝑒|𝑥|∕8∇𝜑𝑛‖𝐿2 − 1

8
‖𝑒|𝑥|∕8𝜑𝑛‖𝐿2 .

Then the claim (2.33) follows directly from (2.34) and (2.21).
We next show that {𝜑𝑛}𝑛 is bounded uniformly in 𝐻2(ℝ2). To see this, we rewrite (2.11) as

−Δ𝜑𝑛 + 𝜑𝑛 = (1 + 𝜀2𝑛𝜇𝑛)𝜑𝑛 − 𝜀
4
𝑛|𝑥|

2𝜑𝑛 − 2𝜀2𝑛𝐿𝜑𝑛 + 𝑎𝑛|𝜑𝑛|
2𝜑𝑛.

Since {𝜑𝑛}𝑛 is bounded uniformly in 𝐻1(ℝ2), the uniform exponential decay in (2.21) and (2.33) imply that
the right hand side is bounded uniformly in 𝐿2(ℝ2). This shows that {𝜑𝑛}𝑛 is bounded uniformly in 𝐻2(ℝ2).
By the Sobolev embedding 𝐻3∕2(ℝ2) ⊂ 𝐿∞(ℝ2), the strong convergence 𝜑𝑛 → 𝑄0 in 𝐻1(ℝ2), and the
uniformly boundedness of (𝜑𝑛)𝑛 in 𝐻2(ℝ2), we have that 𝜑𝑛 converges strongly to 𝑄0 in 𝐿∞(ℝ2) and hence
(1.8). □

2.2. Collapse with an almost critical speed. We now study the blow-up behavior of minimizers for 𝐸Ω,𝑎
when both Ω ↗ 1 and 𝑎 ↗ 𝑎∗ at the same time. To this end, we recall the following energy asymptotic
formula when Ω = 0 (see [20]):

𝐸NLS
0,𝑎 =

√

𝑎∗ − 𝑎

(

2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

+ 𝑜(1)

)

as 𝑎↗ 𝑎∗. (2.35)

Proof of Corollary 1.2. Let Ω𝑛 ↗ 1, 𝑎𝑛 ↗ 𝑎∗ as 𝑛 → ∞, and 𝜙𝑛 be a minimizer for 𝐸Ω𝑛,𝑎𝑛 . We rewrite the
energy functional as follows

𝐸NLS
Ω𝑛,𝑎𝑛

= NLS
Ω𝑛,𝑎𝑛

(𝜙𝑛) = Ω𝑛NLS
1,𝑎𝑛

(𝜙𝑛) + (1 − Ω𝑛)NLS
0,𝑎𝑛

(𝜙𝑛)

≥ Ω𝑛𝐸NLS
1,𝑎𝑛

+ (1 − Ω𝑛)𝐸NLS
0,𝑎𝑛

, (2.36)
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where we have used that NLS
1,𝑎𝑛

(𝜙𝑛) ≥ 𝐸NLS
1,𝑎𝑛

and NLS
0,𝑎𝑛

(𝜙𝑛) ≥ 𝐸NLS
0,𝑎𝑛

. Since both𝐸NLS
1,𝑎𝑛

and𝐸NLS
0,𝑎𝑛

have the same
asymptotic formula (see (1.7) and (2.35)), we obtain

𝐸NLS
Ω𝑛,𝑎𝑛

= (𝑎∗ − 𝑎𝑛)1∕2
(

2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

+ 𝑜(1)

)

,

where the upper bound follows from (2.3). Let 𝜓𝑛 be a ground state for 𝐸NLS
1,𝑎𝑛

. By Theorem 1.1, there exist
sequences {𝑥𝑛}𝑛 ⊂ ℝ2 and (𝜗𝑛)𝑛 ⊂ [0, 2𝜋) such that

𝜑𝑛(𝑥) ∶= 𝜀𝑛𝜓𝑛(𝜀𝑛𝑥 + 𝑥𝑛)𝑒𝑖𝜀𝑛𝑥
⟂
𝑛 ⋅𝑥+𝑖𝜗𝑛 → 𝑄0(𝑥)

strongly in 𝐻1 ∩𝐿∞(ℝ2) as 𝑛→ ∞. We choose �̃�𝑛(𝑥) ∶= 𝜓𝑛(𝑥+ 𝑥𝑛)𝑒𝑖𝑥
⟂
𝑛 ⋅𝑥+𝑖𝜗𝑛 as a trial state for 𝐸NLS

Ω𝑛,𝑎𝑛
and

obtain
𝐸NLS
Ω𝑛,𝑎𝑛

≤ NLS
Ω𝑛,𝑎𝑛

(�̃�𝑛) = Ω𝑛NLS
1,𝑎𝑛

(�̃�𝑛) + (1 − Ω𝑛)NLS
0,𝑎𝑛

(�̃�𝑛)

= Ω𝑛𝐸NLS
1,𝑎𝑛

+ (1 − Ω𝑛)NLS
0,𝑎𝑛

(�̃�𝑛). (2.37)

Here we have used the magnetic translation invariance of the energy functional NLS
1,𝑎𝑛

. Putting together (2.36)
and (2.37), we obtain

NLS
0,𝑎𝑛

(𝜙𝑛) ≤ NLS
0,𝑎𝑛

(�̃�𝑛).

By (2.3) and the arguments in the proof of Theorem 1.1 (especially of (2.32) and 𝜀𝑛 ≃ (𝑎∗ − 𝑎𝑛)1∕4), we have

NLS
0,𝑎𝑛

(�̃�𝑛) = NLS
1,𝑎𝑛

(�̃�𝑛) − 2⟨�̃�𝑛, 𝐿�̃�𝑛⟩ = 𝐸NLS
1,𝑎𝑛

− 2⟨𝜑𝑛, 𝐿𝜑𝑛⟩ ≤ (𝑎∗ − 𝑎𝑛)1∕2
(

2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

+ 𝑜(1)

)

.

This together with (2.35) show that 𝜙𝑛 is an approximate ground state for 𝐸NLS
0,𝑎𝑛

. We then conclude (see e.g.,
[25, Step 5 in Section 3]) that there exists a sequence of phases {𝜃𝑛}𝑛 ⊂ [0, 2𝜋) such that

lim
𝑛→∞

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝜙𝑛
⎛

⎜

⎜

⎝

(𝑎∗ − 𝑎𝑛)1∕4

𝑎1∕4∗ ‖𝑥𝑄0‖
1∕2
𝐿2

𝑥
⎞

⎟

⎟

⎠

𝑒𝑖𝜃𝑛 = 𝑄0(𝑥) (2.38)

strongly in 𝐻1(ℝ2). In fact, we obtain the strong convergence in 𝐿∞(ℝ2), by the same arguments as in the
proof of (1.8). □

3. COLLAPSE OF MANY-BODY GROUND STATES

In this section, we prove the large-𝑁 behavior of ground states for (1.14) given in Theorem 1.3.

Proof of Theorem 1.3. Following arguments from [25], we have

𝐶𝑁−𝛽
‖∇𝑄𝑁‖𝐿2‖𝑄𝑁‖

3
𝐿6 + 𝐸

NLS
Ω,𝑎𝑁

≥ 𝐸QM
Ω,𝑎𝑁

(𝑁) ≥ 𝐸NLS
Ω,𝑎𝑁

− 𝐶𝑁2𝛽−1.

where 𝑄𝑁 is given in Theorem 1.3. Note that the above energy estimates as well as the asymptotic formula
of 𝐸NLS

Ω,𝑎𝑁
are independent of Ω. Therefore, we obtain (1.15) for every 0 ≤ Ω ≤ 1.

To prove convergence of ground states as Ω = Ω𝑁 ↗ 1 we consider the perturbed Hamiltonian

𝐻Ω𝑁 ,𝑎𝑁 ,𝑁,𝜂𝑁 = 𝐻Ω𝑁 ,𝑎𝑁 ,𝑁 + 𝜂𝑁
𝑁
∑

𝑗=1
𝐴𝑗 (3.1)

with ground-state energy per particle denoted 𝐸QM
Ω𝑁 ,𝑎𝑁 ,𝜂𝑁

(𝑁). Here 𝜂𝑁 > 0 is a small parameter to be chosen
later and 𝐴 is a bounded self-adjoint operator on 𝐿2(ℝ2). The associated NLS energy functional is

NLS
Ω𝑁 ,𝑎𝑁 ,𝜂𝑁

(𝑢) = NLS
Ω𝑁 ,𝑎𝑁

(𝑢) + 𝜂𝑁⟨𝐴𝑢, 𝑢⟩.
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Denote by 𝐸NLS
Ω𝑁 ,𝑎𝑁 ,𝜂𝑁

the corresponding ground-state energy and 𝑢𝜂𝑁 its ground state. Let Φ𝑁 be a ground

state for𝐻Ω𝑁 ,𝑎𝑁 ,𝑁 = 𝐻Ω𝑁 ,𝑎𝑁 ,𝑁,0 and 𝛾 (1)Φ𝑁
its one-body reduced density matrix. As in [25, Step 2 in Section 4]

we obtain
𝜂𝑁 Tr

[

𝐴𝛾 (1)Φ𝑁

]

≥ 𝜂𝑁
⟨

𝑢𝜂𝑁 |𝐴|𝑢𝜂𝑁
⟩

+ 𝑂(𝑁2𝛽−1) + 𝑂(𝑁3𝛼∕4−𝛽). (3.2)

Again the above estimate is independent of Ω𝑁 . Under the assumption that 𝑎∗ − 𝑎𝑁 = 𝑁−𝛼 with

0 < 𝛼 < min
{

4𝛽
5
, 2(1 − 2𝛽)

}

one can chose 𝜂𝑁 = 𝑁−𝛼∕2−𝜎 with

0 < 𝜎 < min
{

1 − 2𝛽 − 𝛼
2
, 𝛽 − 5𝛼

4

}

in such a way that
𝜂𝑁 = 𝑜

(

𝐸NLS
0,𝑎𝑁

)

= 𝑜
(

(𝑎∗ − 𝑎𝑁 )1∕2
)

= 𝑜
(

𝑁−𝛼∕2)

and also
𝜂−1𝑁 𝑁2𝛽−1 + 𝜂−1𝑁 𝑁3𝛼∕4−𝛽 ⟶

𝑁→∞
0.

Then dividing (3.2) by 𝜂𝑁 and repeating the argument with 𝐴 changed to −𝐴 yields
⟨

𝑢𝜂𝑁 |𝐴|𝑢𝜂𝑁
⟩

+ 𝑜(1) ≤ Tr
[

𝐴𝛾 (1)Φ𝑁

]

≤
⟨

𝑢−𝜂𝑁 |𝐴|𝑢−𝜂𝑁
⟩

+ 𝑜(1). (3.3)

On the other hand, with the above choice of 𝜂𝑁 , we have

NLS
Ω𝑁 ,𝑎𝑁

(𝑢𝜂𝑁 ) = NLS
Ω𝑁 ,𝑎𝑁 ,𝜂𝑁

(𝑢𝜂𝑁 ) + 𝑂(𝜂𝑁‖𝐴‖) ≤ NLS
Ω𝑁 ,𝑎𝑁

(𝑢0) + 𝑂(𝜂𝑁‖𝐴‖) = 𝐸NLS
Ω𝑁 ,𝑎𝑁

+ 𝑂(𝜂𝑁‖𝐴‖).

By the argument in the proof of (1.9), the above implies that

NLS
0,𝑎𝑁

(𝑢𝜂𝑁 ) ≤ (𝑎∗ − 𝑎𝑛)1∕2
(

2
‖𝑥𝑄0‖𝐿2

𝑎1∕2∗

+ 𝑜𝑁 (1)

)

+ 𝑂
(

𝜂𝑁
1 − Ω𝑁

‖𝐴‖
)

.

It then follows that (𝑢𝜂𝑁 ) and (𝑢−𝜂𝑁 ) are sequences of quasi-ground states for 𝐸NLS
0,𝑎𝑁

, under the assumption
on Ω𝑁 in Theorem 1.3. Thus both sequences satisfy (2.38). Combining with (3.3), we get, after a dilation
of space variables, trace-class weak-⋆ convergence of 𝛾 (1)Φ𝑁

to |𝑄𝑁⟩⟨𝑄𝑁 |. Since no mass is lost in the limit,
this convergence must hold in trace-class norm (see e.g., [11] or [38, Appendix H]). The limit being rank
1, this implies the convergence of higher order density matrices to tensor powers of the limiting operator by
well-known arguments (recalled e.g. in [36, Section 2.2]). □
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