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† DEMR, ONERA, Université Paris-Saclay, 91120 Palaiseau, France

ABSTRACT

In the context of a growing popularity of Complex-Valued
Neural Network (CVNN) for Polarimetric Synthetic Aperture
Radar (PolSAR) applications, the input features often play a
central role in classification and segmentation tasks. The so-
called coherency matrix, widely used in the radar commu-
nity, might limit the full potential of CVNNs. Particularly,
complex-valued Pauli representation contains richer informa-
tion than the coherency matrix. And the spatial coherent/local
summation can also be performed by the first convolutional
layers of CVNN. Letting this network learn itself the filters
weights will further enhance its performance.

In this paper, we propose a Complex-Valued Fully Con-
volutional Neural Network (CV-FCNN) which directly infers
on the Pauli vector representation rather than on the co-
herency matrix to perform PolSAR image segmentation. The
performance of CV-FCNN is then statistically evaluated on
Bretigny PolSAR dataset and compared against an equivalent
real-valued model.

Index Terms— Polarimetric Synthetic Aperture Radar,
Complex-Valued Neural Network, Complex-Valued Fully
Convolutional Neural Network, Pauli representation.

1. INTRODUCTION
Deep learning techniques are becoming widely popular and
have extended into Polarimetric Synthetic Aperture Radar
(PolSAR) image classification [1, 2]. In particular, numer-
ous publications using Complex-Valued Neural Network
(CVNN) as an alternative to conventional Real-Valued Neu-
ral Network (RVNN) for radar applications [3, 4].

One of the first works on classifying PolSAR images us-
ing deep learning was implemented by reference [5] who used
a Complex-Valued MultiLayer Perceptron (CV-MLP) as well
as [6]. Numerous articles thereafter proposed a Complex-
Valued Convolutional Neural Network (CV-CNN) for per-
forming PolSAR classification [7–10]. However, PolSAR
applications are better suited for semantic segmentation anal-
ysis as multiple class are present in a single SAR acquisition.
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This makes networks such as Complex-Valued Fully Con-
volutional Neural Network (CV-FCNN) better suited for the
task at hand. Indeed [11] and [12] obtained a state-of-the-art
performing utilizing such networks.

Most works mentioned above use at least one of the
three well-known open-source datasets of San Francisco,
USA [13]; Flevoland, Netherlands and Oberpfaffenhofen,
Germany, provided by the European Space Agency (ESA).
These datasets are presented in the form of the Hermitian
coherency matrix. Even though the coherency matrix is a
well-known and popular representation of data for PolSAR
applications, it might not be well suited for complex pixel-
wise segmentation tasks as explained on section 2.

Using another PolSAR dataset, we propose to train the
CVNN network using Pauli representation as input, which
has, so far, not been used for CVNN. We qualitatively analyze
the pros of this format. For this work, we split the dataset into
train, validation and test sets that prevents the overlapping of
labels and makes training and test pixels farther apart. We
then compare the performance of CVNN against an equiva-
lent RVNN for this given input format.

Section 2 presents the dataset and its pre-processing. Sec-
tion 3 shows the model architectures used for the experiments.
Finally, section 4 analyzes and compares the performance of
the proposed neural network.

2. DATASET AND INPUT FEATURES
PolSAR makes use of signal coherence (or equivalently
phase and local phase variance) existing on any single
look complex data channels S measured in the horizontal
(H) and vertical (V) transmit/receive polarimetric channels
S =

[
SHH ,

√
2SHV , SV V

]T
.

For each pixel of the Synthetic Aperture Radar (SAR) im-
age, this backscattering vectors are usually expressed in the
Pauli basis and are vectorized onto one single complex vector
k = 2−1/2

[
SHH + SV V , SHH − SV V , 2SHV

]T ∈ C3 [14].
The Hermitian coherency matrix is formally built according

to T =
1

n

∑n

j
kj k

H
j where the operator H stands for com-

plex conjugate operation and where n is the number of pixels
chosen in a boxcar located in each local area.

Open-source PolSAR datasets are usually presented in the
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coherency matrix form T [13]. This representation may not
be the optimal representation for CVNN applications for sev-
eral reasons. First, the diagonal elements of this matrix are
real-valued, that although being a valuable property for many
applications, it is not desirable for CVNN. Second, the aver-
aging operation, whose main objective is to reduce noise at
the expense of losing information or resolution, mixes values
of adjacent pixels rendering it difficult for pixel-wise clas-
sification. Additionally, the averaging algorithm is a non-
trainable convolution operation with a constant kernel. Let-
ting these kernels be trainable generally enhances the per-
formance of classification and segmentation. Therefore, the
Pauli vector k is chosen as input for our CV-FCNN which im-
plies that each pixel of the PolSAR image will be represented
by three complex values.

Unfortunately, extracting the Pauli vector from the co-
herency matrix is impossible, making not exploitable the
open-source datasets from ESA mentioned previously. We,
therefore, use an ONERA’s proprietary PolSAR image of
Bretigny, France [15] whose area is shown in Figure 1. The
image has a spatial resolution of 2m, incidence angle of 30◦

and a band X frequency.

Fig. 1: Bretigny, France. Obtained from Google Earth 2003

Four classes, which are Open Area, Wood Land, Built-up
Area and Runway, were manually labeled.

Most existing works obtain different image patches
through sliding window operation [16]. This method gen-
erates smaller images patches by sliding a window through
the image with a given stride. In particular, if the stride is
smaller than the window size, which is usually the case, the
generated image patches will share pixels and ground truth.
Several of the mentioned articles divide training and test sets
randomly from the generated images. The major drawback
is that this overlap will be present between the train and test
set. To prevent this issue, we first divide the image vertically
into three sub-images as shown in Figure 2. 70% of the im-
age was used as a training set, and 15% was used for both
validation and test set. Note that the four classes are present
in each sub-image as shown in image 2. The sliding window
operation is then applied to each sub-image to generate train,
validation, and test set separately. We used a stride of 25 for
the sliding window and an input image size of 128× 128.

(a) train (b) val (c) test

Fig. 2: Split of Bretigny dataset; 70% as training set, 15% as
validation set and 15% as test set. A Built-up Area;
B Wood Land; C Open Area; D Runway

3. COMPLEX-VALUED NETWORK MODEL

To run our experiments, we implemented the CV-FCNN (Fig-
ure 3) described on [12] since it is, to our best knowledge,
the higher claimed performance for PolSAR classification
tasks using CVNN techniques. We also implemented an
equivalent Real-Valued Fully Convolutional Neural Network
(RV-FCNN) to make comparisons against a real-valued net-
work. All implementations were done using the software
library [17] published on reference [18]. The code that con-
tains the exact model used for these paper simulations can be
found in [19].
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Fig. 3: Complex-Valued Fully Convolutional Neural Network
digram.

The models can be divided into three parts, a bottleneck,
a down-sampling, and an up-sampling part. These last two
sections present an alternation of the main block (shown in
green on Figure 3) and the respective down-sampling or up-
sampling block. The bottleneck, however, consists of a single
main block represented as B6. The main block is a combi-
nation of complex-convolution, complex-BN and CReLU, all
explained in reference [20]. Max-pooling (pink) and max-
unpooling [21] (orange) are used for the down-sampling and
up-sampling parts respectively. The output of the complex
network is a complex image with as many channels as classes
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presented on the dataset (4 in our case). Softmax (yellow) is
applied to both the real and imaginary parts separately. The
loss is computed twice, using first the real part and then the
imaginary part as the prediction result. An average of the two
error values is then calculated to be optimized. It is worth
noticing that pixels without labels (black parts on Figure 2)
are not taken into account for loss computation and neither
for the accuracy metric.

4. EXPERIMENTAL RESULTS
Five Monte Carlo trials of complex and real models were per-
formed for the following results, each involving 150 epochs
and a batch size of 30.

In Figure 4, we can see the accuracy and loss curves for
both the training and validation set. A solid line represents
the mean value, whereas the colored area is the inter-quartile
range. In this figure it is possible to appreciate that CV-FCNN
generalized better during the ensemble of the training.

Validation loss was used to select the best model check-
point for each iteration. The final performance was then com-
puted using the test set whose results are displayed on Table
1 with their associated confidence interval. The median error
was computed as in [22] who claims that if median intervals
do not overlap, there is a 95% confidence that their values
differ. The confidence interval of the mean is calculated for a
confidence level of 95%.

CV-FCNN RV-FCNN

median 92.76± 0.36 89.86± 0.96
mean 92.77± 0.46 89.92± 1.23

full range 93.17− 92.37 91.02− 88.89

Table 1: Test Accuracy results (%)

Figure 5 shows the predicted image of a randomly cho-
sen CV-FCNN (5a) and RV-FCNN (5b) models. The Figure
allows appreciating the effect of the dataset split method de-
tailed in Section 2 as we see how both models achieve a bet-
ter representation on the left of the image (training set) and
lower performance on the right (validation and test set). On
the other hand, it is possible to appreciate that CV-FCNN does
a better work predicting the ground truth.

5. CONCLUSIONS
We performed a statistical comparison of a CVNN against an
equivalent RVNN on a new PolSAR dataset. We proposed
using a new data representation and pre-processing technique
that may be more fit for this particular application. Results
show a clear out-performance of CVNN over RVNN with
both higher accuracy and lower variance. Confidence inter-
vals of the achieved results do not overlap, allowing to assert
that CVNN merits over RVNN are statistically justified.
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