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INTRODUCTION

Deep learning techniques are becoming widely popular and have extended into Polarimetric Synthetic Aperture Radar (PolSAR) image classification [START_REF] Parikh | Classification of SAR and PolSAR images using deep learning: A review[END_REF][START_REF] Konishi | Complex-valued reservoir computing for interferometric SAR applications with low computational cost and high resolution[END_REF]. In particular, numerous publications using Complex-Valued Neural Network (CVNN) as an alternative to conventional Real-Valued Neural Network (RVNN) for radar applications [START_REF] Hirose | Complex-valued neural networks: Advances and applications[END_REF][START_REF] Bassey | A survey of complex-valued neural networks[END_REF].

One of the first works on classifying PolSAR images using deep learning was implemented by reference [START_REF] Hänsch | Classification of polarimetric SAR data by complex valued neural networks[END_REF] who used a Complex-Valued MultiLayer Perceptron (CV-MLP) as well as [START_REF] Barrachina | About the equivalence between complex-valued and real-valued fully connected neural networks -application to PolInSAR images[END_REF]. Numerous articles thereafter proposed a Complex-Valued Convolutional Neural Network (CV-CNN) for performing PolSAR classification [START_REF] Hänsch | Complex-valued convolutional neural networks for object detection in PolSAR data[END_REF][START_REF] Zhou | Polarimetric SAR image classification using deep convolutional neural networks[END_REF][START_REF] Zhang | Complex-valued convolutional neural network and its application in polarimetric SAR image classification[END_REF][START_REF] Zhao | Contrastive-regulated CNN in the complex domain: A method to learn physical scattering signatures from flexible PolSAR images[END_REF]. However, PolSAR applications are better suited for semantic segmentation analysis as multiple class are present in a single SAR acquisition.
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This makes networks such as Complex-Valued Fully Convolutional Neural Network (CV-FCNN) better suited for the task at hand. Indeed [START_REF] Li | A novel deep fully convolutional network for PolSAR image classification[END_REF] and [START_REF] Cao | Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network[END_REF] obtained a state-of-the-art performing utilizing such networks.

Most works mentioned above use at least one of the three well-known open-source datasets of San Francisco, USA [START_REF] Liu | PolSF: PolSAR image dataset on San Francisco[END_REF]; Flevoland, Netherlands and Oberpfaffenhofen, Germany, provided by the European Space Agency (ESA). These datasets are presented in the form of the Hermitian coherency matrix. Even though the coherency matrix is a well-known and popular representation of data for PolSAR applications, it might not be well suited for complex pixelwise segmentation tasks as explained on section 2.

Using another PolSAR dataset, we propose to train the CVNN network using Pauli representation as input, which has, so far, not been used for CVNN. We qualitatively analyze the pros of this format. For this work, we split the dataset into train, validation and test sets that prevents the overlapping of labels and makes training and test pixels farther apart. We then compare the performance of CVNN against an equivalent RVNN for this given input format.

Section 2 presents the dataset and its pre-processing. Section 3 shows the model architectures used for the experiments. Finally, section 4 analyzes and compares the performance of the proposed neural network.

DATASET AND INPUT FEATURES

PolSAR makes use of signal coherence (or equivalently phase and local phase variance) existing on any single look complex data channels S measured in the horizontal (H) and vertical (V) transmit/receive polarimetric channels

S = S HH , √ 2 S HV , S V V T .
For each pixel of the Synthetic Aperture Radar (SAR) image, this backscattering vectors are usually expressed in the Pauli basis and are vectorized onto one single complex vector

k = 2 -1/2 S HH + S V V , S HH -S V V , 2 S HV T ∈ C 3 [14].
The Hermitian coherency matrix is formally built according to T = 1 n n j k j k H j where the operator H stands for complex conjugate operation and where n is the number of pixels chosen in a boxcar located in each local area.

Open-source PolSAR datasets are usually presented in the coherency matrix form T [START_REF] Liu | PolSF: PolSAR image dataset on San Francisco[END_REF]. This representation may not be the optimal representation for CVNN applications for several reasons. First, the diagonal elements of this matrix are real-valued, that although being a valuable property for many applications, it is not desirable for CVNN. Second, the averaging operation, whose main objective is to reduce noise at the expense of losing information or resolution, mixes values of adjacent pixels rendering it difficult for pixel-wise classification. Additionally, the averaging algorithm is a nontrainable convolution operation with a constant kernel. Letting these kernels be trainable generally enhances the performance of classification and segmentation. Therefore, the Pauli vector k is chosen as input for our CV-FCNN which implies that each pixel of the PolSAR image will be represented by three complex values.

Unfortunately, extracting the Pauli vector from the coherency matrix is impossible, making not exploitable the open-source datasets from ESA mentioned previously. We, therefore, use an ONERA's proprietary PolSAR image of Bretigny, France [15] whose area is shown in Figure 1. The image has a spatial resolution of 2m, incidence angle of 30 • and a band X frequency. Most existing works obtain different image patches through sliding window operation [START_REF] Li | A novel deep fully convolutional network for PolSAR image classification[END_REF]. This method generates smaller images patches by sliding a window through the image with a given stride. In particular, if the stride is smaller than the window size, which is usually the case, the generated image patches will share pixels and ground truth. Several of the mentioned articles divide training and test sets randomly from the generated images. The major drawback is that this overlap will be present between the train and test set. To prevent this issue, we first divide the image vertically into three sub-images as shown in Figure 2. 70% of the image was used as a training set, and 15% was used for both validation and test set. Note that the four classes are present in each sub-image as shown in image 2. The sliding window operation is then applied to each sub-image to generate train, validation, and test set separately. We used a stride of 25 for the sliding window and an input image size of 128 × 128. 

COMPLEX-VALUED NETWORK MODEL

To run our experiments, we implemented the CV-FCNN (Figure 3) described on [START_REF] Cao | Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network[END_REF] since it is, to our best knowledge, the higher claimed performance for PolSAR classification tasks using CVNN techniques. We also implemented an equivalent Real-Valued Fully Convolutional Neural Network (RV-FCNN) to make comparisons against a real-valued network. All implementations were done using the software library [START_REF] Barrachina | Complex valued neural networks (cvnn)[END_REF] published on reference [START_REF] Barrachina | Complex-valued vs. real-valued neural networks for classification perspectives: An example on non-circular data[END_REF]. The code that contains the exact model used for these paper simulations can be found in [START_REF] Barrachina | NEGU93/polsar cvnn: Antology of CVNN for PolSAR applications[END_REF]. The models can be divided into three parts, a bottleneck, a down-sampling, and an up-sampling part. These last two sections present an alternation of the main block (shown in green on Figure 3) and the respective down-sampling or upsampling block. The bottleneck, however, consists of a single main block represented as B6. The main block is a combination of complex-convolution, complex-BN and CReLU, all explained in reference [START_REF] Trabelsi | Deep complex networks[END_REF]. Max-pooling (pink) and maxunpooling [START_REF] Zafar | Hands-on convolutional neural networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python[END_REF] (orange) are used for the down-sampling and up-sampling parts respectively. The output of the complex network is a complex image with as many channels as classes presented on the dataset (4 in our case). Softmax (yellow) is applied to both the real and imaginary parts separately. The loss is computed twice, using first the real part and then the imaginary part as the prediction result. An average of the two error values is then calculated to be optimized. It is worth noticing that pixels without labels (black parts on Figure 2) are not taken into account for loss computation and neither for the accuracy metric.

EXPERIMENTAL RESULTS

Five Monte Carlo trials of complex and real models were performed for the following results, each involving 150 epochs and a batch size of 30.

In Figure 4, we can see the accuracy and loss curves for both the training and validation set. A solid line represents the mean value, whereas the colored area is the inter-quartile range. In this figure it is possible to appreciate that CV-FCNN generalized better during the ensemble of the training.

Validation loss was used to select the best model checkpoint for each iteration. The final performance was then computed using the test set whose results are displayed on Table 1 with their associated confidence interval. The median error was computed as in [START_REF] Chambers | Graphical methods for data analysis[END_REF] who claims that if median intervals do not overlap, there is a 95% confidence that their values differ. The confidence interval of the mean is calculated for a confidence level of 95%. Figure 5 shows the predicted image of a randomly chosen CV-FCNN (5a) and RV-FCNN (5b) models. The Figure allows appreciating the effect of the dataset split method detailed in Section 2 as we see how both models achieve a better representation on the left of the image (training set) and lower performance on the right (validation and test set). On the other hand, it is possible to appreciate that CV-FCNN does a better work predicting the ground truth.

CV-FCNN

CONCLUSIONS

We performed a statistical comparison of a CVNN against an equivalent RVNN on a new PolSAR dataset. We proposed using a new data representation and pre-processing technique that may be more fit for this particular application. Results show a clear out-performance of CVNN over RVNN with both higher accuracy and lower variance. Confidence intervals of the achieved results do not overlap, allowing to assert that CVNN merits over RVNN are statistically justified. 

Fig. 1 :

 1 Fig. 1: Bretigny, France. Obtained from Google Earth 2003 Four classes, which are Open Area, Wood Land, Built-up Area and Runway, were manually labeled.

Fig. 2 :

 2 Fig. 2: Split of Bretigny dataset; 70% as training set, 15% as validation set and 15% as test set. A Built-up Area; B Wood Land; C Open Area; D Runway

Fig. 3 :

 3 Fig. 3: Complex-Valued Fully Convolutional Neural Network digram.The models can be divided into three parts, a bottleneck, a down-sampling, and an up-sampling part. These last two sections present an alternation of the main block (shown in green on Figure3) and the respective down-sampling or upsampling block. The bottleneck, however, consists of a single main block represented as B6. The main block is a combination of complex-convolution, complex-BN and CReLU, all explained in reference[START_REF] Trabelsi | Deep complex networks[END_REF]. Max-pooling (pink) and maxunpooling[START_REF] Zafar | Hands-on convolutional neural networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python[END_REF] (orange) are used for the down-sampling and up-sampling parts respectively. The output of the complex network is a complex image with as many channels as classes

Fig. 4 :

 4 Fig. 4: CV-FCNN vs RV-FCNN accuracy and loss per epoch

Fig. 5 :

 5 Fig. 5: CVNN vs RVNN predicted image

Table 1 :

 1 Test Accuracy results (%)

		RV-FCNN
	median 92.76 ± 0.36	89.86 ± 0.96
	mean 92.77 ± 0.46	89.92 ± 1.23
	full range 93.17 -92.37 91.02 -88.89
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