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This paper presents a new classification framework for both first and second order statistics, i.e. mean/location and covariance matrix. In the last decade, several covariance matrix classification algorithms have been proposed. They often leverage the Riemannian geometry of symmetric positive definite matrices (SPD) with its affine invariant metric and have shown strong performance in many applications. However, their underlying statistical model assumes a zero mean hypothesis. In practice, it is often estimated and then removed in a preprocessing step. This is of course damaging for applications where the mean is a discriminative feature. Unfortunately, the distance associated to the affine invariant metric for both mean and covariance matrix remains unknown. Leveraging previous works on geodesic triangles, we propose two affine invariant divergences that use both statistics. Then, we derive an algorithm to compute the associated Riemannian centers of mass. Finally, a divergence based Nearest centroid, applied on the crop classification dataset Breizhcrops, shows the interest of the proposed framework.

INTRODUCTION

Classically, many signal processing applications make use of the second order statistic. Indeed, when the multivariate signals are assumed to be Gaussian, the covariance matrix is an interesting feature to discriminate data.

Recently, the Riemannian geometry associated to the Fisher information metric (FIM) of the centered Gaussian distribution [START_REF] Skovgaard | A Riemannian geometry of the multivariate Normal model[END_REF] has been used with great successes on classification problems, e.g. on EEG data [START_REF] Barachant | Multiclass brain-computer interface classification by riemannian geometry[END_REF], in detection of pedestrians [START_REF] Tuzel | Human detection via classification on riemannian manifolds[END_REF] or in Diffusion tensor imaging [START_REF] Pennec | A Riemannian framework for tensor computing[END_REF]. The squared distance of the geodesic between two covariance matrices Σ 1 , Σ 2 ∈ S ++ p (set of p × p PSD matrices) benefits from a simple closed form formula,

d 2 S ++ p (Σ 1 , Σ 2 ) = log Σ -1 2 1 Σ 2 Σ -1 2 1 2 2 , ( 1 
)
where log is the matrix logarithm and . 2 is the Frobenius norm. Notably, this distance is affine invariant, i.e ∀A ∈ Gl p (set of p × p invertible matrices),

d S ++ p (AΣ 1 A T , AΣ 2 A T ) = d S ++ p (Σ 1 , Σ 2 ). (2) 
This invariance property is of particular interest for applications based on mixing models [START_REF] Shimabukuro | The least-squares mixing models to generate fraction images derived from remote sensing multispectral data[END_REF][START_REF] Cardoso | Blind signal separation: statistical principles[END_REF], i.e the measured signal is assumed to be a linear combination of a non-measurable source signal. In this case, the distances in the source space are equal to those in the measured signal space. Then, many classification/clustering algorithms, e.g Nearest centroid or K-means, need to compute centers of mass. Here, centers of mass are computed on sets of covariance matrices {Σ 1 , • • • , Σ M }. Since, these matrices lie on a Riemannian manifold, the classical arithmetic mean is extended to the Riemannian case. Indeed, the Riemannian center of mass of {Σ 1 , • • • , Σ M }, denoted Σ , associated to the distance (1), is defined as the minimizer of the variance [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF][START_REF] Moakher | A differential geometric approach to the geometric mean of symmetric positive-definite matrices[END_REF],

Σ = arg min Σ∈S ++ p 1 2M M i=1 d 2 S ++ p (Σ, Σ i ). (3) 
A gradient descent achieves this minimization [START_REF] Pennec | A Riemannian framework for tensor computing[END_REF].

As mentioned earlier, this geometry assumes that the signals are centered. Therefore, it does not use the mean/location whereas it can be a discriminative feature, e.g. on multispectral images where signals are non-centered [START_REF] Manolakis | Statistics of hyperspectral imaging data[END_REF]. To preserve invariances by affine transformations, the FIM is extended to the case of non centered signals. Unfortunately, the associated Riemannian geometry is not fully known. Especially, its distance is unknown. In the remainder of this paper, we propose to address this issue by using geodesic triangles from [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF][START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF]. Affine invariant divergences are obtained in Section 3 and a computation of centers of mass is proposed in Section 4. This framework is tested on real data in Section 5.

INFORMATION GEOMETRY OF THE MULTIVARIATE GAUSSIAN DISTRIBUTION

Let a set of n data points x i ∈ R p sampled from a random variable x following a Gaussian distribution

x ∼ N (µ, Σ). (4) 
The parameters µ ∈ R p and Σ ∈ S ++ p (set of symmetric positive definite matrices) are the location and covariance matrix respectively. The negative log-likelihood is defined on the set N p = R p × S ++ p and given υ = (µ, Σ) writes

L(υ) = n 2 log |Σ| + 1 2 n i=1 (x i -µ) T Σ -1 (x i -µ). (5) 
The maximum likelihood estimators of the Gaussian distribution are the well known sample mean and SCM,

μ = 1 n n i=1 x i , Σ = 1 n n i=1 (x i -μ)(x i -μ) T . (6) 
Then, N p is turned into a Riemannian manifold. The tangent space T υ N p of N p at υ is identified to the product space R p × S p with S p the set of symmetric matrices. Moreover, N p is equipped with the FIM associated to the negative loglikelihood [START_REF] Shimabukuro | The least-squares mixing models to generate fraction images derived from remote sensing multispectral data[END_REF]

. Let ξ = ξ µ , ξ Σ , η = η µ , η Σ ∈ T υ N p , this metric writes [1] ξ, η N p υ = ξ T µ Σ -1 η µ + 1 2 Tr(Σ -1 ξ Σ Σ -1 η Σ ). (7) 
Remarkably, the FIM ( 7) is invariant under affine transformations. Given A ∈ Gl p and µ 0 ∈ R p we verify that

D φ(υ)[ξ], D φ(υ)[η] N p φ(υ) = ξ, η N p υ , (8) 
where the affine transformation writes,

φ(υ) = (Aµ + µ 0 , AΣA T ), (9) 
and D φ(υ)[ξ] is the directional derivative of φ at υ in the direction ξ (see e.g [12, Ch. 3]).

A geodesic γ(t) = (µ(t), Σ(t)) : R → N p associated to the FIM [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] must have a zero acceleration [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF] 

μ(t) -Σ(t)Σ(t) -1 μ(t) = 0 Σ(t) + μ(t) μ(t) T -Σ(t)Σ(t) -1 Σ(t) = 0. ( 10 
)
An explicit expression of the geodesic on N p with initial position γ(0) = υ and initial velocity γ(0) = ξ is derived in [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF],

γ(t) = (µ(t), Σ(t)) = 2Σ 1 2 R(t) sinh t 2 G G -Σ -1 2 ξ µ + µ, Σ 1 2 R(t)R(t) T Σ 1 2 (11) 
where

G 2 = Σ -1 2 ξ Σ Σ -1 2 2 + 2Σ -1 2 ξ µ ξ T µ Σ -1 2 and R(t)= cosh t 2 G -Σ -1 2 ξ Σ Σ -1 2 G -sinh t 2 G -T
.

However [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF] only gives an expression of a geodesic with initial position and velocity. Unfortunately, in the general case, a closed form expression of a geodesic between two points υ 1 = (µ 1 , Σ 1 ) and υ 2 = (µ 2 , Σ 2 ) remains unknown. Hence, the distance between υ 1 and υ 2 associated to the FIM ( 7) is also unknown. Using other metrics than the FIM could give closed form distances but they would not necessarily have the affine transformation invariance property. Instead, we propose to use geodesic triangles derived from [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF].

DIVERGENCES

Geodesic triangles between υ 1 and υ 2 using the expression ( 11) can be derived. Indeed, by carefully choosing intermediate points υ, geodesics are obtained between υ 1 and υ and then between υ and υ 2 . Hence, we get geodesic triangles

υ 1 → υ → υ 2 .
The squared arc-length of one of these geodesic triangles is then measured to get a divergence denoted δ 2 N p . By construction, these divergences δ 2 N p are invariant by affine transformation,

δ 2 N p (φ(υ 1 ), φ(υ 2 )) = δ 2 N p (υ 1 , υ 2 ). (12) 
To construct those triangles, we recall that the manifold with a fixed location vector N p µ = {(µ, Σ) : Σ ∈ S ++ p } endowed with metric ( 7) is a geodesic submanifold of N p . Hence, in the case µ 1 = µ 2 , the squared distance on N p is

d 2 N p (υ 1 , υ 2 ) = 1 2 d 2 S ++ p (Σ 1 , Σ 2 ) (13) 
Thus, to create a triangle between υ 1 and υ 2 , it suffices to find an intermediate point υ = (µ 2 , Σ), where Σ is determined such that a geodesic [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF] is known between υ 1 and υ.

Based on this scheme, [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF] proposed to use a rescaling of the initial covariance matrix as an intermediate point, i.e.

υ c = (µ 2 , cΣ 1 ), (14) 
with c = Σ -1 1 Σ 2 1 p = arg min c∈R + * d 2 N p (υ c , υ 2 ).
Using this point, a first separable and invariant under affine transformation (9) divergence on N p is proposed in Corollary 1.

Corollary 1 (Divergence δ 2 c,N p ). A separable and invariant under affine transformations (9), divergence on

N p is δ 2 c,N p (υ 1 , υ 2 ) = 2 acosh c -1 2 2 c + 1 + 1 2 ∆µ T Σ -1 1 ∆µ 2 + (p -1) 2 log (c) 2 + 1 2 log cΣ -1 2 2 Σ 1 Σ -1 2 2 2 2
.

where ∆µ = µ 2 -µ 1 and c = Σ -1 1 Σ 2 1 p .
Proof. Using the intermediate point υ c = (µ 2 , cΣ 1 ), and applying the construction of triangles explained earlier, we get

δ 2 c,N p (υ 1 , υ 2 ) = ρ 2 (υ 1 , υ c ) + d 2 N p (υ c , υ 2 )
, where ρ is the arc length of a geodesic [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF] computed in Equation (18) of [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF]. Then, ρ is simplified. By denoting µ = Σ -1 2 1 ∆µ, we get

1 2 ρ 2 (υ 1 , υc) = acosh c -1 2 2 (Ip + cIp + 1 2 µ µ T ) 2 2 = acosh c -1 2 2 (c + 1 + 1 2 µ T µ) 2 +(p-1) acosh c -1 2 + c 1 2 2 2 Using acosh c -1 2 +c 1 2 2 2 = log(c 1 
2 ) 2 = 1 4 log(c) 2 and Equation [START_REF] Maclaurin | Autograd: Effortless gradients in pure numpy[END_REF], we get the divergence δ 2 c,N p .

In [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF], the authors proved that the orthogonal projection of υ 1 onto N p µ 2 is

υ ⊥ = µ 2 , Σ 1 + 1 2 ∆µ∆µ T . ( 15 
)
The squared arc length of the geodesic between υ 1 and υ ⊥ is also computed in [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF],

δ 2 ⊥ (υ 1 , υ ⊥ ) = 1 2 acosh 1 + ∆µ T Σ -1 1 ∆µ 2 . (16) 
Hence, using the intermediate point υ ⊥ and summing Equation [START_REF] Townsend | Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation[END_REF] with Equation ( 13) we get a second separable, and invariant under affine transformation (9) divergence on N p . This divergence is proposed in Corollary 2.

Corollary 2 (Divergence δ 2 ⊥,N p ). A separable, and invariant under affine transformations (9), divergence on N p is

δ 2 ⊥,N p (υ 1 , υ 2 ) = 1 2 acosh 1 + ∆µ T Σ -1 1 ∆µ 2 + log Σ -1 2 2 Σ 1 + 1 2 ∆µ∆µ T Σ -1 2 2 2 2 .

RIEMANNIAN OPTIMIZATION AND ESTIMATION OF CENTERS OF MASS

In machine learning, some important clustering algorithms / classifiers, e.g. K-means or Nearest centroïd, require a proximity measure and an algorithm to compute centers of mass. Since the divergences proposed in Corollaries 1 and 2 can be used as a proximity measure, it only remains to explicit an algorithm to compute centers of mass. Such an algorithm is described in Section 4.2. It relies on optimization on the Riemannian manifold N p . Hence, we begin by presenting tools to perform gradient based optimization on N p .

Riemannian optimization on N p

In this subsection we consider a function f : N p → R. The objective is to find the parameter υ minimizing f on N p , υ = arg min

υ∈N p f (υ). (17) 
Since N p is a Riemannian manifold, we leverage the framework of optimization on Riemannian manifolds [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] to compute [START_REF] Boumal | Manopt, a Matlab toolbox for optimization on manifolds[END_REF]. Thus, we provide two important tools for Riemannian optimization, both associated to the metric ( 7) : (i) the Riemannian gradient in Proposition 1, (ii) a second order retraction in Proposition 2 (approximation of the geodesic [START_REF] Tang | Information geometric approach to multisensor estimation fusion[END_REF] with lower calculation cost and better numerical stability).

With these tools, we can apply gradient based algorithms on N p to minimize f . The corresponding Riemannian gradient descent is given in Algorithm 1.

Proposition 1 (Riemannian gradient). Let υ ∈ N p , the Riemannian gradient of f at υ is

grad N p f (υ) = P N p υ (ΣG µ , 2ΣG Σ Σ)
where ∀ξ ∈ R p × R p×p , P N p υ (ξ) = (ξ µ , sym(ξ Σ )), with sym(ξ) = 1 2 (ξ + ξ T ), is the orthogonal projection according to the FIM (7) onto T υ N p and grad

f (υ) = (G µ , G Σ ) is the Euclidean gradient of f in R p × R p×p .
Proof. Using the definition of the gradient associated to the Euclidean metric [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 3

], we get ∀ξ ∈ T υ N p D f (υ)[ξ] = G T µ ξ µ + Tr G T Σ ξ Σ = (ΣG µ ) T Σ -1 ξ µ + 1 2 Tr Σ -1 2ΣG T Σ Σ Σ -1 ξ Σ = (ΣG µ ) T Σ -1 ξ µ + 1 2 Tr Σ -1 sym(2ΣG T Σ Σ)Σ -1 ξ Σ = P N p υ (ΣG µ , 2ΣG Σ Σ) , ξ N p υ .
Using Proposition 2 (Second order retraction). A second order retraction at υ ∈ N p of ξ ∈ T υ N p is,

R N p υ (ξ) = µ + ξ µ + 1 2 ξ Σ Σ -1 ξ µ , Σ + ξ Σ + 1 2 ξ Σ Σ -1 ξ Σ -ξ µ ξ T µ .
Proof. ∀υ ∈ N p , R N p υ is a smooth mapping from T υ N p onto N p . To be a second order retraction, it remains to check the three following properties [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 4 and 5]:

∀ξ ∈ T υ N p R N p υ (0) = υ, D R N p υ (0 υ )[ξ] = ξ, D 2 dt 2 R N p υ (tξ) t=0 = 0
where 0 υ denotes the zero element of T υ N p and D 2 dt 2 γ denotes the acceleration of the curve t → γ(t) on N p (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 5]). The first two properties are easily verified. By denoting R N p υ (tξ) = (µ(t), Σ(t)), and using Equation [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF], the third property is equivalent to

μ(0) -Σ(0)Σ(0) -1 μ(0) = 0 Σ(0) + μ(0) μ(0) T -Σ(0)Σ(0) -1 Σ(0) = 0,
which is also verified.

Algorithm 1: Riemannian gradient descent [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] Input : Initial iterate υ 1 ∈ N p . Output: Sequence of iterates {υ k }. k := 1; while no convergence do Compute a step size α (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 4]) and set

υ k+1 := R N p υ k (-α grad N p f (υ k )); k := k + 1; end 4.2.

Estimation of Riemannian centers of mass

Some important algorithms in machine learning require the computation the center of mass of a set of points S = {υ i } M i=1 ⊂ N p . This center is associated to a proximity measure which in our case is one of the divergences, δ 2 N p , defined in Section 3. Similarly to (3), the Riemannian center of mass υ is defined as the minimizer of the variance of S υ = arg min

υ∈N p 1 2M M i=1 δ 2 N p (υ, υ i ). (18) 
Using tools from the previous subsection, we can perform optimization on N p . Hence, gradient based algorithms can be applied to achieve (18) (e.g using Algorithm 1). Using Proposition 1, computing the Riemannian gradient of the variance defined in (18) amounts to computing its Euclidean gradient. The latter is easily numerically computed using automatic differentiation libraries like Autograd [START_REF] Maclaurin | Autograd: Effortless gradients in pure numpy[END_REF] or JAX [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF].

APPLICATION

In this section, we provide an application of the theoretical framework presented earlier on the large-scale satellite image time series dataset for crop type mapping called Breizhcrops [START_REF] Rußwurm | Breizhcrops: A time series dataset for crop type mapping[END_REF].

More specifically, for each crop n = 45 observations x i ∈ R p are measured over time. Each x i contains measurements of reflectance of p = 13 spectral bands. Then, these measurements are concatenated into one batch

X j = [x 1 , • • • , x n ] ∈ R p×n .
Hence, we get one matrix X j per crop and each one belongs to an unknown class y ∈ 1, K . These K = 9 classes represent crop types such as nuts, barley or wheat and are heavily imbalanced, i.e some classes are much more represented than others. The data are divided into two sets: a training set and a test set with 485 649 and 122 614 batches respectively. We apply a single preprocessing step: all data are centered using the global mean. For simplicity, the matrix X j is simply noted X in the following.

To classify these crops, we apply a Nearest centroid algorithm on descriptors. Indeed, the use of statistical descriptors is a classical procedure in machine learning as they are often more discriminative than raw data (see e.g [START_REF] Barachant | Multiclass brain-computer interface classification by riemannian geometry[END_REF][START_REF] Tuzel | Human detection via classification on riemannian manifolds[END_REF]). Hence, this classification algorithm works in three steps: (i) For each batch X, a descriptor is computed (e.g the sample mean or the The different descriptors used in the application are the following. The first two descriptors are the batches themselves X and their sample means μ (6). Their associated geometry is the Euclidean one with the Frobenius distance. Thus, the center of mass is the classical element-wise arithmetic mean. Then, the next two estimators are the SCMs Σ (6) with location assumed to be known or not. In the case of known location, the SCM is simply estimated as

Σ = 1 n n i=1 x i x i T .
The associated geometry is S ++ p as presented in Equations ( 1) and (3). Finally, the last two descriptors use both sample mean and SCM, ( μ, Σ) from ( 6). These estimators are used with the geometry N p and the two divergences δ 2 c,N p and δ 2 ⊥,N p presented in Corollaries 1 and 2 respectively. Riemannian centers of mass are computed using Algorithm 1, implemented using Pymanopt [START_REF] Townsend | Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation[END_REF] (the python version of Manopt [START_REF] Boumal | Manopt, a Matlab toolbox for optimization on manifolds[END_REF]).

Table 1 presents the Overall Accuracy and Average Accuracy of the different descriptors and geometries used in the Nearest centroid. Estimators using Σ along with the FIM clearly outperform the others. Also, the three estimators assuming µ is unknown perform better than the others. This shows the interest of not considering µ = 0 for such applications, even if the global mean has been subtracted in a preprocessing step. Finally, using the divergences proposed in Corollaries 1 and 2 with their Riemannian centers of mass greatly improves both Overall Accuracy and Average Accuracy. These results confirm the interest of considering geodesic triangles when the distance associated to the FIM is not available in closed form.

CONCLUSIONS

This paper has proposed two affine invariant divergences that handle both first and second order statistics of the Gaussian distribution. The Riemannian geometry associated to the FIM has been studied and an algorithm to compute Riemannian centers of mass associated to these divergences has been proposed. Finally, these tools have been applied on a classification problem to show the interest of the proposed method.
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	Estimator of X	Geometry	OA (%) AA (%)
	X	R p×n	10.1	18.5
	μ	R p	13.2	14.8
	Σ, (µ known)	S ++ p	43.9	28.1
	Σ, (µ unknown)	S ++ p	46.7	30.1
	( μ, Σ)	N p with δ 2 c,N p	54.3	37.0
	( μ, Σ)	N p with δ 2 ⊥,N p	53.3	35.7