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A theory of inertial wave focusing generated by a vertically oscillating slender torus immersed in a uniformly rotating
fluid is presented. The analytical solution of the velocity field shows that, under an axisymmetric annular forcing in
inviscid rotating fluid, the wave rays form a double cone symmetric about the plane on which the torus is located. At the
two vertices of the double cone, the waves are in a shock-like manner focused causing localized surges of energy. After
focusing, the waves continue their propagation and form a new inverted cone with the same cone angle, such that both
cones are symmetric about the focal point. These results are in good agreement with the experimental and numerical
study by M. Duran-Matute et al. [Phys. Rev. E 87, 041001(R) (2013)]. When friction effects occur, the wave pattern
changes substantially and the wave away from the focal point is significantly attenuated so that the symmetry about the
focal point is broken. As a consequence, the wave beam widens and the focusing effect becomes weaker with increasing
Ekman number (Ek), which indicates the ratio of the viscous force to the Coriolis force. Furthermore, for the same
Ek, the focusing effect tends to disappear when the forcing frequency is close to zero or twice the angular velocity of
rotating flow. For forcing frequency close to the angular velocity of rotating fluid, the amplitude of the vertical velocity
at the focal point reaches its maximum, which corresponds to a wave propagation angle of 60 degrees.

I. INTRODUCTION

Inertial waves can be generated in rotating flows as a result
of the restoring action of the Coriolis force1. Purely inertial
waves are relevant to industrial systems, such as fuel tanks
in spacecraft or rotating turbines2. Clearly, one expects the
presence of inertial waves in power-producing turbines, due to
their size and their not too large rotation rates, unlike propul-
sion turbines with rotation rates much too large for inertial
waves to have time to be present, even if there are no other dis-
turbing phenomena (complex geometry, shocks, etc). Inertial
waves are also of fundamental interest in geo- and astrophys-
ical flows, for instance, in liquid planet cores3, in the deep
ocean or in the equatorial atmosphere4; in these cases they are
often coupled with internal waves duo to density stratification
effects5. A review of the known theories and properties of iner-
tial and internal waves shows that they have great similarities in
terms of physical phenomenon and mathematical treatment6,7.
Both waves can be investigated individually but the results can
be adopted almost identically. For instance, the propagation
direction of their energy is determined only by the ratio be-
tween the wave frequency and the rotation rate of the fluid or
the buoyancy frequency. As a consequence, their group and
phase velocities are perpendicular to each other. Since only
the orientation of the wave propagation is prescribed by the
dispersion relation, the characteristics of the wave (wavelength
and wave beam width) are independent of its frequency and
are governed by boundary conditions, viscous dissipation8,9

and eventually nonlinearities10,11. These properties lead to a
wide variety of wave structures and wave phenomena. An
important phenomenon concerns the conversion of wave en-
ergy into turbulent energy12, which can be triggered by several
mechanisms. In this paper, we are particularly interested in
the wave focusing mechanism because it concentrates the wave

energy in a small region of space and facilitates the conversion
into turbulent energy. Triggering mixing at the focal point
could be a way for new industrial processes in the chemical
industry, or to make new materials or particles in suspension
that cancel out the effect of gravity. In the case of geophysical
flows, inertial waves may concentrate energy by focusing it in
a particular region and possibly cascade energy locally into
dissipative scales by nonlinear mechanisms. However, this is
all speculative. Clarifying this issue requires further research.
The aim of this article is to characterize this focusing of wave
energies as a function of wave properties (frequency, phase
shift and amplitude) and viscous properties of the fluid.
The focusing of conical waves was first noticed by Appleby
and Crighton for the internal waves generated by an oscillating
sphere in an inviscid stratified fluid13. The wave rays form a
biconical structure on which the wave amplitude was singular,
a phenomenon called caustic or focusing singularity. Simakov
remarked that only the critical circles at which the wave rays
are tangent to the sphere play a role in the formation of these
singularities14. He replaced the sphere by a distribution of
monopoles of a horizontal circle, and still observed focusing
singularities. Then, he extended his conclusions to distribu-
tions of monopoles on curves and surfaces15. Independently,
Tilgner considered the inertial waves generated by monopoles
of oscillating strength distributed on disks and rings in a ro-
tating fluid of low viscosity16. Wave beams formed along the
rays, replacing the inviscid singularities there. Focusing took
place at the points of convergence of the rays but went unno-
ticed. The same can be said for the vertical oscillations of a
horizontal disk in a stratified fluid of low viscosity, consid-
ered by Bardakov et al.17. The next step came from Bühler
and Muller12, who looked at the horizontal oscillations of a
stratified fluid over ring-shaped bottom topography of Gaus-
sian cross-section. The nonzero size of the section allowed the
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determination of the amplification rate of the waves owing to
focusing, namely the ratio between the wave amplitudes at the
focus and at the topography. This rate was found proportional
to the square root of the aspect ratio between the radius of the
torus and the radius of the tube. Non-axisymmetric rings were
also investigated, either elliptic12 or horseshoe-shaped18. For
inertial waves, Le Dizès and Le Bars considered the libration
of a circular disk and also observed focusing, associated with
the waves emanating from the rim of the disk, which forms an
effective Dirac ring source19,20. They proposed a description
of the focal region by matched asymptotic expansions, obtain-
ing both waves and a mean flow generated by the nonlinear
interaction of the waves with themselves.
The first experimental and numerical demonstration of coni-
cal wave focusing was given by Duran-Matute et al.21, using
the vertical oscillations of a horizontal torus in a uniformly
rotating fluid. Ermanyuk et al. and Shmakova & Flór per-
formed the same in a stratified fluid11,22, using the horizontal
oscillations of a horizontal torus. They paid more attention
to the linear and nonlinear regimes, respectively. The cross-
section of the torus was small enough for the wave beams to be
dominated by viscosity, having unimodal profiles with a sin-
gle peak of the amplitude at their centre, corresponding to the
wave ray through the centre of the cross-section. Shmakova
et al. used a bigger torus to reach the parameter range where
the wave profile is bimodal, with two peaks of the amplitude
at the sides, corresponding to the wave rays tangential to the
cross-section on either side23.
Ermanyuk et al. also proposed a quasi-two-dimensional the-
ory of focusing, considering the interference of the two cross-
sections in the same azimuthal plane and driving the result
by the inverse square root of the horizontal distance to the
axis, in order to conserve the wave energy in the cylindrical
geometry22. The theory failed close to the axis, hence could
not be used to calculate the waves in the focal region. Voisin24

proposed a full three-dimensional theory for large aspect ratio,
corrected later by Shmakova et al.23 and yielding reasonable
agreement with their experiments.
Inertial waves can also be generated by global forcing in the
form of precession and libration of rotating systems25,26. Par-
ticularly, in a precession-driven flow in a cylindrical cavity,
the wave beams arise locally in the corners of the finite cylin-
der, similar to the effect produced by an annular forcing. Al-
though these wave beams are non-axisymmetric due to the non-
axisymmetric forcing, focusing and amplification phenomena
have been observed as well and an impact on the dynamics of
the flow has been suspected27,28.
The aim of the present investigation is to develop a theory for
the "shock-like" focusing of inertial waves observed by Duran-
Matute et al.21. A schematic drawing is shown in Fig. 1.
Different wave generators can be used. In contrast to the mod-
els established by Machicoane et al.29, Voisin24 and Shmakova
et al.23, in which the wave generator is presented as a source
of mass releasing fluid, we currently consider the vertically
vibrating torus as an annular line force. The corresponding
inertial wave equations are first derived from the linearized
Navier-Stokes equations including the force from the torus ex-
erted on the fluid. With the help of the Fourier transform

FIG. 1. Schematic drawing of the oscillating torus and the focusing
effect of the resulting inertial waves, where a is the radius of the tube
and b the major radius of the torus with a ≪ b, Ω is the constant
angular velocity of the rotating flow. cg denotes the group velocity,
at which the wave energy propagates, and θ is the propagation angle.

in cylindrical coordinate system, the particular solutions of
the velocity field are obtained for the inviscid and the viscous
case, respectively. The analytical results in the inviscid case
describe the generation, propagation and focusing of inertial
waves, which show good agreement with the experimental and
numerical results of Duran-Matute et al.21. The annular forc-
ing generates inertial waves that propagate along a double cone
that is symmetrical about the torus and has two focal points,
where inertial waves focus around the apex of the cone. At
the focal zone, the amplitude of the waves may no longer be
small, i.e. non-linearity may become to be important in, and a
net transfer of energy between two waves may occur. In turn,
a patch of turbulence may develop locally. Additionally, a the-
oretical model for a viscous fluid has been developed to study
the effect of viscous attenuation on the focusing phenomenon.
Our analysis shows that as the Ekman number increases, the
wave beam becomes wider and and the focusing effect be-
comes weaker. For the non-dimensional oscillation frequency
σ, i.e. the ratio between the oscillation frequency of the torus
and the angular velocity of the rotating fluid, close to 0 and
2, the focusing effect tends to disappear, while the maximum
appears for σ close to 1, which corresponds to a wave angle of
θ = 60◦. A similar focusing effect was discussed for internal
waves in stratified fluid by Shmakova & Flór11, but has never
been analysed in detail for inertial waves.
In this article, the linear theory of inertial waves focusing in
a rotating fluid of uniform density will be first presented in
Sec. II. Then, the predictions of this theory on the charac-
teristics of the focusing zone in terms of viscous spreading
and maximum amplification are shown in Sec. III and various
results aided by MATLAB. Finally, conclusions are drawn in
Sec. IV.
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II. LINEAR ANALYSIS OF FOCUSING WAVES

A. Wave-like equations

We consider a uniformly rotating fluid with angular veloc-
ity Ω, density ρ and kinematic viscosity ν. The dynamics of
the flow can be described by the Navier-Stokes equations in-
cluding the Coriolis force1. For low-amplitude disturbances,
the departures of pressure p and velocity u from the undis-
turbed rotating flow are governed by the linearized equations
of motion

∂u

∂t
+2Ω×u = − 1

ρ
∇p+ ν∇2u+f, (1)

∇ ·u = 0. (2)

Here p represents the reduced pressure, which includes the
hydrodynamic pressure and the centrifugal force. The annular
forcing is modelled as a body force f per unit mass. Further,
let L, Ω−1, U characterize the typical length, time and relative
fluid velocity to the rotating flow. The replacement of the
variables x, t, u, Ω, p, f by their scaled counterparts Lx,
Ω

−1t, Uu, Ωn, ρΩULp, ΩUf allows the reduction of the
linearized equation system to a dimensionless form

∂u

∂t
+2n×u = −∇p+Ek∇2u+f, (3)

∇ ·u = 0, (4)

where n is a unit vector indicating the direction of the rotation
axis. The Ekman number Ek = ν

ΩL2 is a gross measure of the
viscous force compared to the Coriolis force.
Applying the operator ( ∂

∂t
∇×∇×) to Eq. (3) and taking the

continuity condition in Eq. (4) into account lead to a single
wave-like equation for the velocity u in the form

(
∂

∂t
−Ek∇2

)2

∇2u+ (2n · ∇)2u

= −2(n · ∇)(∇×f ) −
(
∂

∂t
−Ek∇2

)
[∇× (∇×f )].

(5)

Analogously, we can also eliminate the velocity u by applying

the operator ( ∂
2

∂t2 ∇·) to Eq. (3) and reducing the result with
the continuity equation (4). This yields a single wave-like
equation for the pressure, i.e.

(
∂

∂t
−Ek∇2

)2

∇2p+ (2n · ∇)2p = 4n · (n · ∇)f

+2n ·
(
∂

∂t
−Ek∇2

)
(∇×f )+

(
∂

∂t
−Ek∇2

)2

(∇ ·f ).
(6)

The homogeneous parts of the wave-like equations (5) and
(6) support plane wave solutions which are known as inertial
waves1. The focusing phenomenon caused by the forcing f

is contained in the particular solutions, which is the key topic
of the present analysis. For this, we consider an infinite fluid
domain and mainly investigate the properties of the forced
inertial waves emitted from a monochromatic oscillating torus,
as shown in Fig. 1.

B. Modeling the forcing condition

It is assumed that the oscillation of the torus is monochro-
matic, axisymmetric and only in the vertical direction. In
addition, the radius of the tube a is much smaller than the
major radius of the torus b, so that the force of the torus to
the fluid can be considered as a line force. We choose b as
the characteristic length L for nondimensionalization of the
system, then the Ekman number is represented as

Ek =
ν

Ωb2
. (7)

We define the cylindrical coordinate system (®er , ®eϕ, ®ez) with ®ez
parallel to the axis of the rotation. The forcing f has only
one component in z-direction, i.e. f = (0,0, fz), which can be
described using the Dirac function as follows

fz(r,ϕ,z,t) = Λ(ϕ)δ(r −1)δ(z)e−iσt . (8)

Here σ is the ratio between the oscillation frequency of the
torus and the rotation rate Ω of the fluid. Λ(ϕ) denotes a line
density of the force along the torus, which may be expanded
in a Fourier series as

Λ(ϕ) =
+∞∑

m=−∞
Λmeimϕ, (9)

where m denotes the azimuthal wave number and Λm the cor-
responding forcing amplitude (or weight). The superposition
of appropriate combinations of m and Λm can approximate
an arbitrary function and be used to describe any form of
distribution of the force density along the torus, such as non-
axisymmetric forcing on an elastic ring. For the rigid torus
used in the study by Duran-Matute et al.21, the force distri-
bution is axisymmetric and only the case m = 0 needs to be
considered.
In the following, we shall investigate the distribution of the ve-
locity field exclusively under the forcing condition described
in Eq. (8) by solving the wave-like equations (5) and (6) for an
inviscid and viscous fluid, respectively.

C. Inviscid case

A convenient starting point to analyse the properties of the
inertial waves excited by an annular force is firstly to ignore the
effect of viscosity, i.e. Ek = 0. The left sides of the equations
(5) and (6) have a comparable structure. Their difference is
only in the inhomogeneous terms. Especially, in the Carte-
sian coordinate system, the analysis of these two equations is
also similar. For this case, we can obtain both velocity u and
pressure p directly from their corresponding wave-like equa-
tions (5) and (6). Alternatively, we can also solve one of the
wave-like equations firstly and then bring the result back to the
momentum equation (3) to solve for the other variable. In the
context of the annular forcing described in (8), the cylindrical
coordinate system is the most convenient choice. However, in
the cylindrical coordinate system the components of the vector
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equation (5) are coupled to each other, the solving this vec-
tor equation is much more complex than the scalar equation
(6). For this reason, we prefer to start by solving the wave-like
equation (6) for the pressure p, and then bring its solution back
to the momentum equation (3) to analyse the velocity field in-
stead of solving the wave-like equation (5) directly.
Under the forcing condition (8) and the assumption of an in-
viscid fluid, the wave-like equation (6) yields

∂2

∂t2
∇2p+4

∂2p

∂z2
=

(
4−σ2

)
δ(r −1)δ′(z)

+∞∑

m=−∞
Λmei(mϕ−σt).

(10)
Generally, the homogeneous part of this equation supports
plane wave solution1 of the form

p = P(k)ei(k·x−σt), (11)

where x describes the position and k the wave vector. Fur-
thermore, the substitution of the expression (11) into the ho-
mogeneous part of (10) leads to the dispersion relation

σ2k2 −4k2
z = 0, (12)

where k denotes the modulus of k. In any azimuthal plane in
cylindrical coordinate system,the wave vector can be described
as k = (kr ,ϕk,kz) and its modulus as k = (k2

r + k2
z )1/2. The re-

lation (12) describes a wavenumber surface for frequency σ
in the (kr ,kz) plane in the shape of a St. Andrew’s cross. In
addition, the group velocity cg, at which the wave energy prop-
agates, can be derived from (12) according to the definition

cg =

(
∂σ

∂kr
,
∂σ

∂kz

)
= sign(kz)

2kr

k3
(−kz,kr ). (13)

As a consequence, in any azimuthal plane the group velocity
cg is perpendicular to the wave vector k = (kr ,kz) and forms
another axisymmetric St. Andrew’s cross in the physical plane
by an angle

θ = cos−1(σ/2) (14)

with respect to the horizontal, as shown in Fig. 1.
To analyse the inhomogeneous solution of the wave-like equa-
tion (6), we introduce the Fourier transform of an arbitrary
function χ(r,ϕ,z) and its inverse in the cylindrical coordinate
system defined as

χ̂(kr ,ϕk,kz) =
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
χ(r,ϕ,z)

× e−i[krr cos(ϕ−ϕk )+kz z]rdrdϕdz,

(15)

χ(r,ϕ,z) = 1

(2π)3
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
χ̂(kr ,ϕk,kz)

× ei[kr r cos(ϕ−ϕk )+kz z]kr dkrdϕkdkz .

(16)

According to (15), the transformation of the wave-like equation
(10) for the pressure p(r,ϕ,z,t) into Fourier space results in the

following equation

k2 ∂
2

∂t2
p̂+4k2

z p̂

= −2π
(
4−σ2

)
kz

+∞∑

m=−∞
i1−mΛmJm(kr )ei(mϕk−σt),

(17)

and its solution for the inhomogeneous part reads as follows

p̂ =
2π

(
4−σ2

)
kz

σ2k2 −4k2
z

+∞∑

m=−∞
i1−mΛmJm(kr )ei(mϕk−σt). (18)

where Jm(kr ) is the Bessel function of the first kind.
Replacing k2 with k2

r + k2
z and applying the inverse Fourier

transform in the cylindrical coordinate system, as defined in
(16), we obtain the solution of the pressure p in physical space

p =− i(4−σ2)
2π

+∞∑

m=−∞
Λmei(mϕ−σt)

×
∫ ∞

−∞

∫ ∞

0

kz Jm(kr )Jm(krr)
(4−σ2)k2

z −σ2k2
r

eikz zkr dkrdkz,

(19)

Depending on whether the forcing frequency exceeds twice the
rotational frequency, i.e. |σ | < 2 or |σ | > 2, two very different
modes of responses are distinguished in the linear problem.
For the case |σ | < 2, the integral over kz in Eq. (19) is mathe-
matically ambiguous, which corresponds to a genuine physical
ambiguity. The energy of the forced waves might be moving
radially inwards towards the source region, having been gen-
erated at infinity. Therefore, the mathematical problem fails to
represent completely the physical problem of finding the waves
generated by the source itself. The physical issues discussed
in this study must be subject to the radiation conditions5, that
is, no wave energy is being generated at infinity. This require-
ment is met by replacing σ by σ+ iǫ with ǫ > 0. Here, ǫ is
small and will be ultimately allowed to tend to zero. Applying
the residue theorem30, the integral in (19) with respect to kz
for the case |σ | < 2 can be evaluated unambiguously along the
real kz-axis, which leads to the result

p =sign(z)
+∞∑

m=−∞

Λm

2
ei(mϕ−σt)

×
∫ ∞

0
kr Jm(kr )Jm(rkr )eiα |z |kr dkr ,

(20)

where

α =

√
σ2

4−σ2
. (21)

For the case of relatively rapidly oscillating forcing. i.e. |σ | >
2, the integral in (19) with respect to kz yields31

p =sign(z)
+∞∑

m=−∞

Λm

2
ei(mϕ−σt)

×
∫ ∞

0
kr Jm(kr )Jm(rkr )e−γ |z |kr dkr

(22)
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with γ =
√

σ2

σ2−4
.

The solutions (20) and (22) show mathematically that iner-
tial waves can only be excited when the forcing frequency is
smaller than twice the angular velocity of basic rotation, i.e.
|σ | < 2. For |σ | > 2 there are no wave phenomena observed.
However, the method breaks down if |σ | = 2. For this case, the
inhomogeneous part of the wave-like equation (10) vanishes,
the forcing effect disappears and the boundaryconditions dom-
inate the wave phenomenon. This must be treated as a limiting
case and will not be discussed in this investigation. Physi-
cally, inertial waves are related to inertia and are based on the
response of fluid parcels to the Coriolis force in a rotating sys-
tem, so that the inertial timescale limits the frequency at which
they can be pushed by it. Furthermore, inertial waves are as-
sociated to circling motion of the fluid particles in planes that
form an angle with the rotation axis32. These special mecha-
nisms make it impossible to form and propagate inertial waves
with frequencies higher than twice the rotating frequency of
the fluid, and thus there is no focusing of the waves.
In the following analysis, we will restrict the non-dimensional
frequency to |σ | < 2 and further analyze the distribution of
the velocity field. The associated velocity components in the
radial direction ur , in the azimuthal direction uϕ and in the ver-
tical direction uz can be determined directly by substituting the
solution of the pressure (20) into the momentum equation (3).
As a result we obtain the following solutions for the velocity
components (details in appendix A):

ur =− sign(z) iα2

2σ2

+∞∑

m=−∞
Λmei(mϕ−σt)

∫ ∞

0
eiα |z |kr k2

r Jm(kr )

×
[(

1− σ

2

)
Jm−1(rkr )+

(
1+

σ

2

)
Jm+1(rkr )

]
dkr ,

(23)

uϕ =sign(z) α
2

2σ2

+∞∑

m=−∞
Λmei(mϕ−σt)

∫ ∞

0
eiα |z |kr k2

r Jm(kr )

×
[(

1− σ
2

)
Jm−1(rkr ) −

(
1+

σ

2

)
Jm+1(rkr )

]
dkr ,

(24)

uz =
α

2σ

+∞∑

m=−∞
Λmei(mϕ−σt)

×
∫ ∞

0
k2
r Jm(kr )Jm(krr)ei |z |αkr dkr .

(25)

In the above solutions of the velocity components, we have
not been able to further calculate the integrals with respect to
kr analytically. To proceed further, we evaluated the integrals
numerically and plotted the solutions. To compare our ana-
lytical results with the experimental and numerical study by
Duran-Matute et al.21, we focus our analysis on the axisym-
metric case, i.e. m = 0.
Fig. 2 shows the isosurface of the vertical velocity component
uz according to the solution (25) for the case σ =

√
2. The

cone-shaped wave beam of inertial waves excited by the os-
cillating torus can be clearly observed. The distribution of

FIG. 2. Cone of inertial waves excited by the oscillating torus depicted
by the isosurface of the amplitude of |uz | = 12 according to the
analytical solution (25) for m = 0, Λ0 = 0.01 and σ =

√
2.

the velocity field is axisymmetric about the z-axis due to the
axisymmetric forcing. Therefore, we only need to observe the
wave beam in one quadrant for the following analysis.
Fig. 3 shows the distribution of the velocity components ac-
cording to the solutions in (23), (24) and (25) only in the
vertical plane (r,z) for σ = 1 and σ =

√
2, respectively. To

avoid divergence at the focal point (see the discussion below
the Eq. 26), a cut-off at k̄r = 300 was introduced. From Fig. 3,
we can intuitively see that all three velocity components are
mainly distributed in the wave beam around an angle of θ = 45◦

to the horizontal for σ =
√

2 and at θ = 60◦ for σ = 1, which
represents the direction of energy propagation of the inertial
waves. This result agrees exactly with the dispersion relation
determined by Eq. (14). Due to the axisymmetric propagation
direction, the waves are focused in a small region on the z-axis.
After focusing, the rays form a new inverted cone-shaped wave
beam with the same angle to the horizontal.
According to the dispersion relation determined by the fre-
quency σ, we can expect that the focusing of the waves occurs
at r = 0,z = 1/α with α defined in equation (21). At this point,
the velocity components ur and uϕ are both zero according to
(23) and (24), and the vertical velocity (25) reduces to

uz =
Λ0α

2σ
e−iσt

∫ ∞

0
k2
r J0(kr )eikr dkr . (26)

This integral may be written in terms of hypergeometric func-
tions. However, it diverges if there are no other conditions to
restrict the upper limit of kr . A reason for this infinity is that
in the region around the focal point, the assumption of small
amplitudes is no longer suitable, non-linearities may become
important and an energy transfer between the waves can take
place. The other reason for the appearance of this singularity
is closely related to the neglect of viscosity. In the follow-
ing, we will analyze the effect of viscosity on the focusing
phenomenon of inertial waves stimulated by an axisymmetric
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FIG. 3. Amplitude of the velocity components ur , uϕ and uz in the vertical plane for m = 0 with a cut-off at k̄r = 300 for (a) σ =
√

2 (θ = 45◦)
and (b) σ = 1 (θ = 60◦).

forcing.

D. Viscous case

The viscous spreading of the wave beam results from the
combination of the energy propagation in the direction of the
group velocity and its diffusion in the lateral direction29,33.
Due to the similar distributions of all velocity components ob-
served from the results of the previous part, we will analyze
the effect of viscosity on the energy propagation and the phe-
nomenon of inertial wave focusing in a viscous fluid by only
studying the vertical velocity component uz under an axisym-
metric forcing.
Considering the forcing condition (8) with m = 0, the wave-
like equation for the pressure (6) in a viscous fluid is given
by

(
∂

∂t
−Ek∇2

)2

∇2p+4
∂2p

∂z2

=Λ0

[
4−

(
σ− iEk∇2

)2
]
δ(r −1)δ′(z)e−iσt .

(27)

For the analysis below we need to understand that the disper-
sion relation (12), which has been derived for the inviscid case,
is also valid for the viscous case. This can be easily demon-
strated by extending the solution in (11) to the following form

p = P(k)ei(k·x−σt)e−Ek |k |2 t, (28)

as introduced by Greenspan1 in chapter 4. The substitution
of (28) into the homogeneous part of (27) leads to the same
dispersion relation as described in (12).
Analogous to the analysis in inviscid case, by using the Fourier
transform in cylindrical coordinate system, we obtain the in-
homogeneous solution for the pressure in Fourier space

p̂(kr ,kz,t) = i2πΛ0e−iσt

[
4− (

σ+ iEk k2
)2]

kz J0(kr )
(
σ+ iEk k2

)2
k2 −4k2

z

. (29)

Additionally, the transformation of the momentum equation
(3) in z-direction into Fourier space results in the following
scalar equation

(
∂

∂t
+Ek k2

)
ûz = −ikz p̂+ f̂z, (30)
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where f̂z = 2πΛ0J0(kr )e−iσt . Substituting (29) into (30), the
inhomogeneous solution of uz in Fourier space follows as

ûz = i2πΛ0e−iσt
J0(kr )k2

r

(
σ+ iEk k2

)

(
σ+ iEk k2

)2
k2 −4k2

z

. (31)

According to the inverse Fourier transform in Eq. (16) and
applying the residue theorem for the integral with respect to
kz , we eventually obtain the solution of uz in physical space
(details in appendix B)

uz = e−iσt Λ0

2

∫ ∞

0
k3
r J0(kr )J0(rkr )

[σ(4−σ2) f1 +4Ekk2
r f2]+ i[4Ekk2

r f1 −σ(4−σ2) f2]
σ(4−σ2)3/2( f 2

1 + f 2
2 )

ei |z |α f1 e−|z |α f2 dkr , (32)

where we recall α = σ√
4−σ2

, and

f1,2 =
kr√
2

√√√√[
1− 64Ek2k4

r

σ2(4−σ2)3
]2

+

1024Ek2k4
r

σ2(4−σ2)4 ±
[
1− 64Ek2k4

r

σ2(4−σ2)3
]
. (33)

III. CHARACTERISTIC OF THE FOCUSING ZONE

A. Viscous effect on the wave focusing

The result (32) is plotted in Fig. 4 for σ = 1 and the Ekman
number Ek= 10−5, 10−4 and 10−3, respectively. Obviously,
the solution (32) can describe the viscous spreading, i.e. in a
viscous fluid. Since the oscillating torus with a dimensionless
radius r = 1 is in the plane z = 0, see Sec. II B, the velocity
distribution in this region around z = 0 and r = 1 describes
the direct response of the fluid duo to the forcing. The wave
beam becomes wider the further away it is from the oscillating
source. This effect of viscous spreading was also observed
in the laboratory experiment33. In addition, as the value of
the Ekman number increases, the effect of viscous attenuation
becomes stronger, which leads to a rapid dissipation of energy
during the propagation. As a result, with increasing viscosity
the focal zone becomes increasingly blurred and the amplitude
of the waves is greatly reduced compared to the case in an in-
viscid fluid. The observed phenomenon, especially also the
elongated axisymmetric structure near the focal point in figure
4(c), is strongly reminiscent of the Direct Numerical Simula-
tion and experimental results by Duran-Matute et al.21. In fact,
the value of the Ekman number used in Fig. 4(c), Ek= 10−3,
corresponds to a viscosity much larger than its molecular value.
Therefore, this case can be interpreted as a phenomenon of the
mean velocity in a turbulent case in which a large constant eddy
viscosity was used instead of the molecular viscosity. Next, we
will use the analytical solution to further qualitatively analyze
the effect of viscosity on the focusing phenomenon of inertial
waves.
In order to be able to analyze the viscous effect described in
(32) more intuitively, we further simplify it by introducing the
assumption of small Ekman number, i.e. Ek ≪ 1. Using Tay-
lor expansion and neglecting all terms with O(Ek2), f1 and f2

in (33) can be simplified to the following approximations

f1 ≈ kr , (34a)

f2 ≈
16Ek k3

r

σ(4−σ2)2 . (34b)

Correspondingly, the solution of uz in (32) can be simply
expressed as

uz ≈e−iσt Λ0

2

∫ ∞

0

(4−σ2)2 − i4σEk k2
r

(4−σ2)5/2 k2
r J0(kr )J0(rkr )

× ei |z |αkr e−|z |αβk
3
r dkr .

(35)

Using Euler’s formula and considering small-Ek assumption,
this result can be further simplified to

uz ≈ e−iσt

∫ k̄r

0
Aei( |z |αkr −ψ)e−|z |αβk

3
r dkr (36)

with

A =
Λ0α

2σ
k2
r J0(kr )J0(rkr ), (37a)

ψ = arctan
4σEk k2

r

(4−σ2)2 , (37b)

β =
16Ek

σ(4−σ2)2 . (37c)

Here A denotes the amplitude as in the inviscid fluid, ψ rep-
resents the phase shift and β is a factor that describes the
attenuation due to viscosity. It is to be noted that both ψ and
β are affected not only by the viscosity but also by the forcing
frequency. The larger ψ and β are, the wider is the wave beam
and weaker is the focusing effect.
At the focal point, where r = 0 and |z| = 1/α, the effect of
viscous attenuation is actually dominated by the factor e−βk

3
r ,

which decays rapidly as kr increases. Fig. 5 shows, the expo-
nential function e−βk

3
r converges to zero at a smaller wavenum-

ber kr with increasing value of Ek as well asσ→ 0 andσ→ 2.
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FIG. 4. Amplitude of the vertical velocity in the vertical plane for σ = 1 in a viscous fluid with the Ekman number (a) Ek = 10−5, (b) Ek = 10−4

and (c) Ek = 10−3, respectively.

FIG. 5. Plot of the function e−βk
3
r with the change of σ and kr for the Ekman number (a) Ek = 10−5, (b) Ek = 10−4 and (c) Ek = 10−3,

respectively.

For this we postulate the existence of a cutoff wavenumber
k̄r so that viscous attenuation eliminates all waves with the
wavenumbers that are significantly greater than k̄r . In numer-
ical evaluation, an attenuation factor e−c can be predefined,
where the constant c is used to control the precision of the
integration result. As an example, the choice of c = 10 corre-
sponds to an attenuation factor e−c ≈ 4.5× 10−5, which may
be sufficiently small for applications. The value of cutoff
wavenumber k̄r of the function e−βk

3
r corresponding to the

chosen attenuation factor e−c can be reasonably estimated by

k̄r =

(
c

β

)1/3
=

[
cσ(4−σ2)2

16Ek

]1/3
. (38)

Eq. (38) shows that for the same non-dimensional forcing fre-
quency σ, the cutoff wavenumber k̄r decreases with a scaling

proportional to Ek−1/3. Furthermore, for the same value of
Ek, the cutoff wavenumber k̄r also tends to zero as the σ→ 0
and σ → 2, where the focusing effect vanishes. It is easy to
understand that the focusing phenomenon disappears when σ
tends to 0, because in this case the waves propagate in vertical
direction along the cylindrical surface on which the oscillating
torus is located according to Eq. (14) and thus do not focus
on the z-axis. However, the disappearance of wave focusing at
σ→ 2 is limited to the case where the external force is present
only in the z direction. Furthermore, σ→ 2 corresponds also
to the case with an infinitely large viscous effect as described in
(37c), so that the energy is rapidly dissipated during propaga-
tion and cannot be focused effectively. This prediction remains
to be verified by experiments and numerical simulations.
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FIG. 6. Amplitude of the vertical velocity at the focal point in a vis-
cous fluid with a slight lowering compared its position in an inviscid
fluid (r = 0, z = 1/α) as a function of the dimensionless frequency σ
from 0 to 2 and the Ekman number Ek from 10−5 to 10−3.

B. Maximum amplification

Returning to the analytical solution, this allows further prop-
erties of inertial wave focusing be analyzed. For example,
Fig. 6 shows the change of the amplitude of the vertical ve-
locity at the focal point with the Ekman numbers Ek and the
dimensionless forcing frequency σ. For σ → 2 and σ → 0,
corresponding to θ → 0 and θ → 90◦, respectively, the focus-
ing effect tends to vanish, and its maximum value appears for
σ → 1, where the oscillating frequency of the torus is close
to the angular velocity of the rotating fluid, corresponding to
a resonance excitation with an angle of 60 degrees. A similar
property has been mentioned by Shmakova and Flór in their
investigation11 for internal waves, but not yet in any study of
inertial waves. Furthermore, as the value of the Ekman number
increases, the wave beams are no longer straight, but severely
distorted near the intersection point, as shown in Fig. 4. In or-
der to understand more precisely the distribution of velocities
in the focal zone, we plotted the real part, the imaginary part
and the envelope of the wave in (32) along the z-axis for σ = 1
and the Ekman numbers Ek = 10−5, 10−4 and 10−3, respec-
tively, see Fig. 7. It shows that with increasing value of Ek, the
phase shift increases and accordingly the wavelength becomes
longer as well. This phenomenon can be well explained by
Eq. (37b), which denotes the phase shift of the waves. For the
same σ, the phase shift ψ increases as the Ekman number Ek
increases, and the corresponding wave beam becomes wider.
At the same time, the position of the wave packet maximum
shifts in the negative direction of the z-axis and the wave packet
becomes obviously asymmetric. The shift of the peak affected
by viscosity compared with the case in the inviscid fluid is
also noted in Fig. 7 as the distance between the green line and
the black line. The asymmetry is mainly caused by the term
e−|z |αβk

3
r in the simplified solution in (35). The peaks of the

real and imaginary parts of the wave at the focal zone are sym-

metrically located on both sides of the focal point, but have
different amplitudes due to the attenuation factor e−|z |αβk

3
r .

Mathematically, the smaller the |z|-value at the crest of the
wave beam, the larger the corresponding amplitude. The final
position of the maximum after superposition of the two wave
beams is biased towards the peak with higher amplitude thus
making the envelope asymmetric. Physically we can interpret
this phenomenon as an asymmetric distribution of effective
viscosity on both sides of the focal point.
In addition, the analytical solution (32) describes also a multi-
tude of structural details of the wave beam. For example, Fig. 8
shows the structure of the wave beam along the radial direc-
tion with different values of z before and after wave focusing,
respectively. As the wave packet moves away from the torus,
the amplitude of the vertical velocity along the direction of the
energy propagation first decreases due to viscous attenuation,
and then increases due to focusing. After focusing, as the
wave moves away from the focal point, the energy of the wave
decreases monotonically again due to viscosity. This result
is consistent with the study by Ermanyuk et al.22 for internal
waves.

IV. CONCLUSIONS

In this work, we have developed a linear analysis of the
focusing of inertial waves due to a uniformly rotating fluid.
The force exerted by the torus on the fluid particles is con-
sidered as an annular line force using Dirac function. The
analytical solutions of the velocity field are obtained based
on the linear theory for both the inviscid and viscous cases,
respectively. The results show that under an axisymmetric
forcing, the wave rays form a double cone symmetric about
the torus with two focal points, where the wave amplitude has
a maximum due to wave focusing. This phenomenon is in
good agreement with the experimental and numerical study
by Duran-Matute21. However, a quantitative comparison with
previous experimental and numerical results is still not pos-
sible due to the idealization of the model, i.e. neglecting the
wave reflection at the container boundary and simplifying the
three dimensional structure of the torus. We have also in-
vestigated the effect of viscous spreading on the focusing of
inertial waves. Our analysis shows that as the Ekman number
increases, the wave beam becomes wider, the focusing effect
becomes weaker, and the location of the maximal velocity
amplitude shifts towards the torus compared with the case in
inviscid fluid. Moreover, for the same Ekman number, the
focusing effect tends to disappear when the dimensionless os-
cillation frequency σ is close to 0 and 2, and it is maximal
for σ close to 1. This conclusion was not mentioned in the
study of Duran-Matute et al. and we expect its verification by
experiments. Based on the results obtained in this work, we
will further analyze the focusing of inertial waves in weakly
nonlinear regime and finally explore the localized generation
of turbulence around the focal point.
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FIG. 7. Envelope (- - -), real part (—–) and the imaginary part (—–) of the vertical velocity along the z-axis for σ = 1 in a viscous fluid with
the Ekman number (a) Ek = 10−5, (b) Ek = 10−4 and (c) Ek = 10−3, respectively. The green line represents the position of the focal point in an
inviscid fluid while the black line shows the lowering of the position of the focal point due to viscosity.

FIG. 8. Structure of the wave beam along the radial direction at different values of z before the wave focusing in (a) and after wave focusing in
(b) with σ = 1 and Ek = 10−4. The focus point is at z ≈ 1.73.

ACKNOWLEDGMENTS

This work was developed from a German-French joint
project and funded by the German Research Foundation (DFG)
with Project No. 407316090 and by the Agence Nationale de
la Recherche (ANR, French National Research Agency) with
Project No. ANR-18-CE92-0034. The authors acknowledge
A. Mohamed for fruitful discussions.

Appendix A: Velocity components in the inviscid case

We write the solution of pressure p in (20) for |σ | < 2 and
the forcing f in (8) in the forms

p(x,t) = P(x)e−iσt, f = F (x)e−iσt, (A1)

with

P(x) =sign(z)
+∞∑

m=−∞

Λm

2
eimϕ

×
∫ ∞

0
kr Jm(kr )Jm(rkr )eiα |z |kr dkr ,

(A2)

and

Fr = 0, Fϕ = 0, Fz =

+∞∑

m=−∞
Λmeimϕδ(r −1)δ(z). (A3)

Corresponding to this, the velocity u takes the form

u(x,t) =U (x)e−iσt . (A4)
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The Navier-Stokes equation (3) can be projected onto the three
directions in cylindrical coordinates

− iσUr −2Uϕ = −
∂P

∂r
, (A5a)

− iσUϕ +2Ur = −
∂P

∂ϕ
, (A5b)

− iσUz = −
∂P

∂z
+Fz . (A5c)

We can readily manipulate the three equations to express the
velocity components in terms of the pressure P and the vertical
forcing Fz as following

Ur =
1

4−σ2

(
iσ
∂P

∂r
− 2

r

∂P

∂ϕ

)

=sign(z) iα2

2σ2

+∞∑

m=−∞
Λmeimϕ

∫ ∞

0
eiα |z |kr k2

r Jm(kr )

×
[(σ

2
−1

)
Jm−1(rkr ) −

(σ
2
+1

)
Jm+1(rkr )

]
dkr ,

(A6)

Uϕ =
1

4−σ2

(
iσ

r

∂P

∂ϕ
+2

∂P

∂r

)

=sign(z) α
2

2σ

+∞∑

m=−∞
Λmeimϕ

∫ ∞

0
eiα |z |kr k2

r Jm(kr )

×
[(

1

σ
− 1

2

)
Jm−1(rkr ) −

(
1

σ
+

1

2

)
Jm+1(rkr )

]
dkr ,

(A7)

Uz =−
i

σ

∂P

∂z
+

i

σ
Fz

=

α

2σ

+∞∑

m=−∞
Λmeimϕ

∫ ∞

0
k2
r Jm(kr )Jm(kr r)ei |z |αkr dkr ,

(A8)

where α =
√

σ2

4−σ2 .

Appendix B: Vertical velocity in the viscous case

According to the solution in Eq. (31) for ûz in Fourier space
and the inverse Fourier transform defined in Eq. (16), the
solution for uz in the physical space is given as

uz =
iΛ0

2π
e−iσt

∫ ∞

0
k3
r J0(kr )J0(rkr )

×
∫ ∞

−∞

σ+ iEk k2

(
σ+ iEk k2

)2
k2 −4k2

z

eikz zdkzdkr .

(B1)

If we directly replace k2 with k2
r + k2

z , there are six singularities
to consider when using the residue theorem to calculate the
integral with respect to kz . By additional considering the
dispersion relation (12), i.e. σ2k2 − 4k2

z = 0, k2 contained

in all viscous terms can be replaced with 4k2
r

4−σ2 and then the
integral with respect to kz can be further rewritten as

Ikz =

∫ ∞

−∞

σ+ iEk k2

(
σ+ iEk k2

)2
k2 −4k2

z

eizkz dkz

= −σ(4−σ
2)+ i4Ek k2

r

(4−σ2)2

×
∫ ∞

−∞

ei |z |kz

k2
z − σ2

4−σ2 k2
r

[
1− 64Ek2 k4

r

σ2(4−σ2)3 + i
32Ekk2

r

σ(4−σ2)2
] dkz .

(B2)

It is to be noticed that the calculation so far does not require
low-Ek approximation. The dispersion relation (12) is the
same in viscous and inviscid fluid. In the complex kz-plane, the
denominator of the integrand has now only two singularities,
which are

kz1,2 = ±α( f1+ i f2) (B3)

with α = σ√
4−σ2

and

f1 =
kr√
2





√[
1− 64Ek2k4

r

σ2(4−σ2)3
]2

+

1024Ek2k4
r

σ2(4−σ2)4

+

[
1− 64Ek2k4

r

σ2(4−σ2)3
]}1/2

, (B4a)

f2 =
kr√
2





√[
1− 64Ek2k4

r

σ2(4−σ2)3
]2

+

1024Ek2k4
r

σ2(4−σ2)4

−
[
1− 64Ek2k4

r

σ2(4−σ2)3
]}1/2

. (B4b)

Applying the residue theorem30 (chapter 11.7), the integral
(B2) results in

Ikz = −
σ(4−σ2)+ i4Ekk2

r

(4−σ2)2 · iπ ei |z |α f1 e−|z |α f2

α( f1+ i f2)

= −iπ
[σ(4−σ2) f1+4Ek k2

r f2]+ i[4Ekk2
r f1 −σ(4−σ2) f2]

σ(4−σ2)3/2( f 2
1 + f 2

2 )
× ei |z |α f1 e−|z |α f2 .

(B5)
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