N

N

On the interaction between the design and operation
under uncertainties of a simple distributed energy
system

Hugo Radet, Bruno Sareni, Xavier Roboam

» To cite this version:

Hugo Radet, Bruno Sareni, Xavier Roboam. On the interaction between the design and operation
under uncertainties of a simple distributed energy system. COMPEL: The International Journal for
Computation and Mathematics in Electrical and Electronic Engineering, 2022, 10.1108/COMPEL-
10-2021-0377 . hal-03752827

HAL Id: hal-03752827
https://hal.science/hal-03752827
Submitted on 17 Aug 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03752827
https://hal.archives-ouvertes.fr

J_ID: COMPEL ART NO: 10.1108/COMPEL-10-2021-0377 Date: 20-May-22 Page: 1 Total Pages: 12 4/Color Figure(s) ARTTYPE="Resear

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/0332-1649.htm

On the interaction between the feample

design and operation under energy system
uncertainties of a simple

distributed energy system

AQ:1 Hugo Radet Received 15 October 2021
AQ:2 Department of, LAPLACE, Toulouse, France, and fii‘;ffdlg}ﬁj;l s
Bruno Sareni and Xavier Roboam
AQ: 3 LAPLACE, Université de Toulouse, Toulouse, France
Abstract

AQ: 4 Purpose — The contribution of this work is toward a better understanding of the interplay between the
design and the operation under uncertainties of a simple distributed energy system (DES), by analyzing the
AQ; 5 sensitivity of the operation strategy over the size of the assets.

Design/methodology/approach — A two-step framework is developed in this work: first, the equipment
sizes are obtained solving an integrated design approach where an operation strategy F* is embedded in a
design loop; then, once the sizes have been fixed, the DES is evaluated with an operation strategy * (which
can be the same as /%). The operation strategies F* and /% are not necessarily the same, so the objective of the
paper is to study the interplay between the design and the operation by varying the optimality level of the
operation strategies in both phases.

Findings — The results show that the design of DES cannot be approached without considering its
close relationship with the operation strategy. Indeed, the design method needs to be chosen according to the
performance of the operation policy finally used in real life: no matter if the operation strategies are the same
in both phases but they must lead to a similar level of optimality in terms of operating performance.

Originality/value — The originality of this work is to shed light on the importance of the operation
strategy in the design procedure as it seems rarely addressed, to the best of the authors’ knowledge, in the
literature. Indeed, most of the paper dealing with stochastic design of DES solves single large two-stage
problems without discussing the way power flows are finally controlled in real life. The optimal design and
operation of DES is rarely addressed conjointly, this study aims at bridging the gap between these two
isolated scientific communities.

Keywords Microgrids, Distributed energy system, Integrated optimal design, Energy planning,
Energy management, Stochastic programming, Uncertainties, Optimal control, Optimal design,
Design optimization methodology, Robust design

Paper type Research paper

1. Introduction

The integrated design and operation under uncertainties of distributed energy systems

(DES) remain challenging as the problem complexity rapidly grows with the number of

scenarios (i.e. sequence of possible realizations of the uncertain parameters over the horizon)

(Mavromatidis et al., 2018a). To address this latter issue, stochastic programming techniques COMPEL - The intenational

. . R . . A ! journal fgr C(_)mputat_ion and
are oftentimes implemented in the literature where the design problem is formulated in a athentics in lctical and
two-stage fashion over a reduced set of scenario (Birge and Louveaux, 2011; Micheli ef al., © Emersd Publsting Linied

; Fazou ian aghi am, . In this wa , the opera 1on (1.e. the way power flows are por 101108COMPEL10.2021.0377
2020; Pazouki and Haghifam, 2016). In th y, the operat the way p fl
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COMPEL controlled over the horizon) is derived over multiple scenarios and nested in a design loop, as
the size of the assets depends on the way the systems are operated over time. However,
solving such integrated design problem is difficult and inevitable simplifications are made
to tackle long computation times. Among those simplifications, the real-time operation
strategy is usually simplified, to end up with a single large stochastic optimization problem
where operation decisions are indirectly made by assuming perfect foresight of the
uncertain parameters over the horizon for each scenario. However, this simplification in the
sizing procedure is a modeling approximation to facilitate the resolution of the design
problem but the implementation of such operation policy in real life is impossible. Indeed,
realistic operation strategies only have access to past and current information. As a result,
the performance of the operation strategy used in real life might be lower than the one used
to design the system (in the latter case, the future is assumed to be perfectly known for each
scenario). Therefore, how to be sure that the required performances will be met with a realistic
operation strategy? Is the perfect foresight hypothesis (attached to the operation in the design
method) appropriate for the design of DES? Should the operation strategies used for the design
and in real life be the same? How sensitive are the design values to the operation policy?
Despite their great importance for real-world applications, these design issues are, to the
authors’ knowledge, rarely addressed in conjunction with realistic operation strategies.

This paper addresses the aforementioned shortcoming by challenging this stochastic
design approximation regarding realistic operation strategies which only have access to
past and current information. More generally, the contribution of this work is toward a
better understanding of the interplay between the design and the operation by analyzing the
sensitivity of the operation strategy performance over the size of the assets. To this end,
numerical experiments are run on a simple DES (depicted in Figure 1) where the objective is F1
to determine the size of the solar panels (PV) and the Li-ion battery to supply both energy
demands with a given share of solar production, at a minimum cost. A two-step framework
is developed in this work:

(1) First, the equipment sizes are obtained by solving an integrated design approach
where an operation strategy ®“ is embedded in a design loop.

(2) Then, once the sizes have been fixed, the DES is evaluated with an operation
strategy ®“ (which can be the same as ®9).

The operation strategies ®¢ and ® are not necessarily the same, so the objective of the
paper is to study the interplay between the design and the operation by varying the

optimality level of the operation strategies in both phases (see Figure 2 for a schematic view F2
of the problem).
HEAT phth -

ELECTRICITY p*¥ p8 p® phte

f -0
Figure 1. < -' N
Schematic view of the i | ) U
DES SOLAR GRID LI-ION HEATER ELEC HEAT
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Notes: 1) first, the equipment sizes are obtained by solving an integrated design approach
where an operation strategy ®*is embedded in a design loop. A set of annual hourly energy Figure 2.
demands and production scenarios Q? is available to solve the optimization problem; 2) then,
once the sizes have been fixed, the DES is assessed over a different set of scenarios Q° with an
operation strategy ®* (which can be the same as ®°). The operation strategies @ and ®*

are not necessarily the same, so the objective of the paper is to study the interplay between the
design and the operation by varying the optimality level of the operation strategies in both
phases

Schematic
representation of the
two steps framework
developed in this
work

The paper is organized as follows: first, the mathematical formulation is depicted in Section
2 and the scenario generation method developed in this work is shown in Section 3. Next, the
resolution approaches for both the integrated design and the operation are described in
Section 4. Finally, results are provided in Section 5, while the discussion and conclusions are
drawn in Section 6.

2. Mathematical formulation

In the following, the determunistic equivalent problem is formulated over a finite set of
scenario Q as in (Mavromatidis ef al,, 2018a). The problem is modeled at a hourly time step
and operation variables are both indexed by s e Qand 2 € {1,. . ., H} where H is the horizon
of the study (i.e. one year — 8,760 h).

2.1 Decision variables
Decision variables are given as follows:

o The decision variables for the design are the size of the solar panels (»**”"**) in kWp
and the Li-on battery capacity (E””*) in kWh gathered in the vector #? € €%. A
heater is assumed to be already installed so that its size is not considered as a
decision variable in this work.

e The decision variables for the operation are the power flows controlled in the
system at each time step and for each scenario. They correspond to the charging

(pz“;) and discharging (p,bq‘;) powers for the battery. The electrical power (pZt ) for
the heater and the curtailment power (pzvs) for solar panels. They are given in

kilowatt and gathered in the vector «j . € Uy, .

2.2 Uncertainties
The electrical (p)¢) and thermal (p)") demands, the normalized solar production (4" and

the electricity tariff (cﬁ:s’ ) are the uncertainties of the problem as their future values cannot
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COMPEL be predicted with perfect accuracy over the system lifetime. For the sake of simplicity, the
electricity feed-in tariff (¢}, ) is fixed to zero in the rest of the study. They are gathered in the
vector wy,s € Q. '

In this work, a scenario is a sequence of realizations over one year at a hourly time step
ws = (W1, - - ., Wys) With a given probability .

2.3 Constraints
2.3.1 Energy balances. Both electrical and thermal energy balance constraint must be
fulfilled at each time step and for each scenario. they are given by equations (1) and (2):

max v b+ g+ _ Llde It.e b,— g,—
ppumm_ h,s+ph.s + p?z,s - ph,s + ph,s + ph,s + sz + hs )
ht,h Id )
Dys = h,; @)

The electrical grid powers ,1’: =gand pﬁ; =g are recourse variables for the operation,

computed at the end of each time step to mitigate the uncertainties in the system. They
are not decision variables of the problem. These latter quantities are limited by the
maximum power allowed by the external network g. Note that no recourse variable
exists for the thermal demand in our model: a lack of supply would result in a
temperature discomfort.

2.3.2 Energy system model. The physical models of the assets remain voluntarily simple
as the objective of the study is to focus on the design and control methodologies rather than
the physical model complexity. Nonetheless, the model granularity is consistent with most
of the planning studies encountered in the literature (Mavromatidis ef al., 2019).

Li-ion battery. A generic storage model is implemented and the state of charge dynamic is

given by equation (3):
Pt
o5 B
B =B (=g A+ | -pp, - o)A 3
e- Eb,max sE}lz9 =z- Eb,m(zx (4)
where E};S is the state of charge expressed in kWh, %~ and n™ are, respectively, the

charging and discharging efficiencies, 5™ is the self-discharge coefficient and A

the operation time step (in hours). The state of charge is bounded by a percentage of the
maximum storage capacity E””“* (4). The charging and discharging powers are limited by
equations (5) and (6) as the maximum amount of energy that could be exchanged during a
time step is limited:

0=pl =p . B 6)

S

Ospb,Jr S‘E .Eb‘max (6)

h.s

ID: prasann.muknak Time: 11:13 | Path: /mumnasprod/home$/prasann.muknak$/EM-COMP220069



J_ID: COMPEL ART NO: 10.1108/COMPEL-10-2021-0377 Date: 20-May-22 Page: 5  Total Pages: 12  4/Color Figure(s) ARTTYPE="Resear

Heater. It converts electricity into heat through a given efficiency 1°~". The conversion Simple
equation is given by (7). The heater electrical power is positive and limited by the size of the distributed
asset (8). energy system
pZt;h _ neﬁh . p;zz‘se (7)
0= pZt;e = pht,max 8)

2.3.3 Share of solar production. The share of solar production 7% € [0,1] represents the

proportion of the total consumption supplied by the local solar production: a ratio equal
to 1 means that all the electricity is provided on-site. Its value is computed based on the
amount of energy imported from the utility grid along with the baseline total
consumption which includes the electrical and thermal demands through the heater
efficiency (9).

H pld‘h
IR A N VR | T 9
N h=1

where 7, is the probability of scenario s as the share of solar production is considered as a
“soft” constraint in the following work. It only means that it has to be fulfilled according to
the expectation risk measure.

2.4 Optimization problem statement
The integrated design objective is to determine the sizing and operation decisions
to minimize the sum of both the annualized investment and operating expenditures
as it is commonly done in the literature (Gabrielli ef al., 2018; Mavromatidis et al.,
2018a).

2.4.1 Annualized investment cost. It depends on the size of the equipment and capital
cost for both solar panels (*” in €/kWp) and the Li-ion battery (¢ in €/kWh) (10):

]d(ud) _ ,yb 'Cb . Ebmax + ,ypv o .ppv,max (10)

where 7 is the annuity factor computed based on the expected lifetime of each equipment
with an interest rate of 4.5%.

2.4.2 Operating cost. It depends on the energy exchanged with the utility grid at each
time step and for each scenario (11):

0 d 0 o + -+ g,— —
hs (M ) uh‘s’wh»3> - ( hs Phs T Cz,s p‘ic) A 11)

where ¢ is the tariff of electricity (€/kWh) and o ' the feed-in tariff (€/kWh), set to zero in

h.s
the following work.
2.4.3 Problem statement. As previously said in the Introduction, the integrated design
problem is a nested optimization problem where the optimal operation problem is integrated
in the design loop (12):
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COMPEL min S0+ Y o, ) 12

. . st ulel? .. . e
where U is the set of admissible solution for the dle]s1gn decisions and 7, is the probability
to account for the expectation risk measure. The optimal operation problem /? for each
scenario s is then given by (13):

H

70 (,,d _ : E 7o d 0
]so (% ) wS) - H}tlun s (M ’ uh,s?whes)

h=1

13)
_ d
s.t. Xhils —f(xh,s: u, M]OHa wh,s)

d
Mz.s € Uho‘s(u y Xns Wh,s)

where f is defined by the battery state-of-charge equation 3). U}, is the set of admissible
solution for the operation which is related to the technical constramts and energy balances
defined in section 2.

The operation Strategy b Xps x Wy — U}; , gives at each time step the
operation decisions #  as a function of the current state and available information. Several
operation policies with different levels of optimality are further introduced in Section 4.

3. Scenario generation

The DES is designed for a five houses district where the supplied energy demand is the
aggregation of all house consumptions. The first required step in every stochastic problem
is to build a method to generate a large number of plausible scenarios for the uncertain
parameters. These scenarios will be used to solve the design optimization problem (12).

The approach implemented in this paper is based on a Markov model as in Patidar et al.
(2016), over historical measured residential energy demands and production time series,
made freely available by the Australian distributor of electricity (Ausgrid, 2020). To match
the paper limitation size, the method is not fully detailed in this paper but readers can refer
to Figure 3 and the references for more information about the generation approach. F3

Concerning the tariff of electricity, a simple statistical model is built upon historical
observations of the “flat rate” price of electricity in France over the past 10 years (Eurostat,
2021), by following the methodology developed in (Mavromatidis et al., 2018b). Then, 1,000

Data o Scenarioo
o ® o
Year ) 0 Jan 0 Dec J m Year /‘

Notes: (0) from historical data; (1) days are classified into representatives week and week-end
Figure 3. days for each month; (2) for each hour, a given number of states is selected using the k-
medoids algorithm. States are aggregated (to keep the synchronicity) and normalized vactors

Description of the - , : :

Scenarli)o generation of energy demands (i.e., electrical and thermal consumption) and production; (3) then the
method based on transition matrices based on the probabilities of going from one state to another between two
Markov chains consecutive hours are computed; (4) and finally, synthetic scenarios are generated by giving an

initial state, a timestamp and the length of the horizon
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annual scenarios at hourly time step of both energy demands, production and electricity Simple
tariff are generated and randomly combined to fairly represent the stochastic processes. The distributed
final set is split into two distinct parts: odd scenarios (Q% will be used for the design phase

and even scenarios (Q%) will be used for the assessment phase, to avoid any bias in the energy system
F4 evaluation procedure (see Figure 2). Figure 4 shows the annual energy demands variability
for both the design and assessment scenario sets.
4. Resolution methods
To study the interplay between the design and the operation, the two-step framework presented
in the Introduction, is depicted in Figure 2. Both the operation strategies, with the different
levels of optimality, and the integrated design methods are introduced in what follows.
4.1 Operation strategies
4.1.1 Anticipative policy. For each design, the most efficient operation strategy is obtained
by finding the exact solution of problem (13), which implies that all the information (i.e.
realizations of the uncertain parameters) is available over the entire horizon for each
scenario. The implementation of such “anticipative” (as the future is assumed to be perfectly
known) policy is, of course, unfeasible in real life as uncertainties unfold progressively over
time. However, its computation gives a lower bound to the operating cost which is a
valuable information to measure the performance of any other realistic operation strategy.
4.1.2 Rule-based policy. The previous unrealistic operation policy will be compared to
heuristic strategies based on a set of rules with decreasing performances. The first rule-
based (RB) strategy is defined as follows: first, the heater is used to supply the thermal
demand. Then, the solar production is directly consumed to supply both the electrical
demand and the heater consumption. Finally, the battery is charged whenever there is
surplus of energy or discharged otherwise. Then, four other RB policies are built upon the
previous strategy by adding an increasing white noise perturbation to the final battery
power flow decision. Therefore, the operation strategies range from the most efficient but
20 25
= «  Design
Z s
€101 =
§ 54 éls -
& £ . N Svee s
o Fuof L0 ATl
20 1 | -ae RS
< 151 §° .70, o X H .
Z & L Figure 4.
;5 1o A—L M s 20 25 30 35 40 45 (2) 10 scenarios of
£ 5 Ak Annual electricity demand (MWh) energy demands and
0 LA A ST AN (b) production over one
1 week generated using
the Markov model (in
= gray). The colored
;‘1 lines are mean values.
A (b) Annual energy
g N AW AN AL demands variability
0 24 48 72 96 120 144 168 for both the design
I({;)“rs and assessment sets
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COMPEL unrealistic anticipative policy to the last RB strategy with poor performances due to the
added perturbation. For the sake of simplicity, only the battery power flow decisions are
degraded but more sophisticated perturbation could be added to the controller. The only
objective is to end up with a range of strategies that perform differently.

4.2 Integrated design methods

4.2.1 Metaheuristic algovithm with a bi-level architecture. The first method is widely
implemented in the literature (Rigo-Mariani ef al, 2020) and based on a metaheuristic
algorithm with a bi-level architecture: the DES is simulated over a large set of scenario using
one of the operation policy previously introduced, and nested in a design loop. The size of
the assets is computed through successive iterations until the objective reach a plateau. A
homemade algorithm based on niching methods (Petrowski, 1996) is implemented to solve
the problem.

4.2.2 Single large lnear optimization problem. When the anticipative strategy is
embedded in the design procedure, a single large linear optimization (LP) problem is
formulated and solved by calling an external solver (for instance, see Cuisinier et al., 2021,
for more details). The solver not only computes the optimal sizes but also the optimal power
flow decisions at each time step and for each scenario.

4.2.3 Scenario reduction. Solving such design problem directly over the 500 scenarios Q¢
would result in intractable computational times. Therefore, a scenario reduction method
based on clustering is implemented to reduce the sample space as it is commonly done in the
literature for stochastic problems (Birge and Louveaux, 2011). The number of optimization
scenario is fixed using stability tests. In our case study, 40 scenarios are needed with each
probability equal to the number of cluster assignments.

5. Numerical experiments

5.1 Input parameters

Input technical and economic parameters are mainly based on (Petkov and Gabrielli, 2020)
and listed below:

e The cost of solar panels is set to 1,300€/kWp with an expected lifetime of 25 years.
* A 30 kW heater is assumed to be already installed to supply the thermal demand.
* The Li-ion battery parameters are given in Table 1. T1

The problem is modeled using Julia and run on a standard Intel(R) Core(TM) 15-7200U CPU
@ 25GHz 2.7GHz computer. The design problem with the anticipative controller is
formulated using the JuMP package and solved with the IBM CPLEX 12.9 solver.

5.2 Sensttivity of the operation strategy performance over the design

The objective of this section is to successively run the design algorithm with each operation
strategy previously defined in Section 4.1 and to compare the resulting equipment sizes.
Two special cases are further studied in the following: a first case without any share

Table 1 n+ n- s e e P p Lifetime Cost

avle L. [0-11  [o-1] ('] 01 [ [ [ [vears] [€/kWh]

Li-Ion battery input

parameters Li-ion 0.9 0.9 0.0005 0.8 0.2 15 15 12 300 AQ:7
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constraint (ie. 7% = () where the benefit from installing solar panels and storage systems

is purely economic; and a second case with a strong renewable share (arbitrarily set to 80%).

Figure 5 shows the sizing as a function of the operation policies. Without any share
constraint, the size of the battery decreases to zero along with the performance of the
operation policy as it makes no sense to install a battery if it is misused. The LP and RB1
policies give approximately the same design results. On the other hand, when 80% of solar
production (in expectation) is required, the optimizer has to oversize the assets to
compensate poor energy management performances: the difference goes up to +70% for
solar panels and +40% for the battery between the best and the worst strategy. However, in
this second case, design values are less sensitive to the operation policy as the results are
nearly the same for the first three strategies.

Therefore, the operation policy embedded in the design phase (i.e. ® in Figure 1) and the
one used in real-life (i.e. ®“) do not have to be the same, but their levels of optimality must be
similar. In practice, it only means that the mathematical programming method can be used
instead of the metaheuristic procedure, only if the system is finally operated in real life with
the RB1 or RB2 policies (depending on the renewable share constraint).

5.3 Sensitivity of the operation strategy over the out-of-sample cost
Once the system has been designed, the objective of this section is to assess each sizing
solution with the different operation strategies. The assessment results over the 500
scenarios Q“ are given in Figure 6. For each table, a row is associated to one design obtained
with the corresponding operation strategy. Then, each design is evaluated with all the
operation strategies (one for each column) and the resulting total annual cost expected value
is printed in the table. When the renewable share expected value is not met, the cell is left
blank [Figure 6(b)].

Without any constraint, the worst total annual costs (about +10% compared to the
lowest cost) are obtained when the DES is designed with high-performance policies (LP or

Renewable share - 0%

Renewable share - 80%
30 80

25 2701
20
15

10

PV peak power (kWp)

w
3
o

80 200

180
60
160
404
140 A
%  J

20 7 120 % %

Battery capacity (kWh)
Battery capacity (kWh)
®

0 T T T . am 100 == T T T T T
LP RB1 RB2 RB3 RB4 RB5 LP RB1 RB2 RB3 RB4 RB5

(@) (b)

Simple
distributed
energy system

Figure 5.

Design results for
both assets as a
function of the
operation policy

(a) without the share
constraint; (b) with a
renewable share
equal to 80%
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Expected total annual
cost for each design
value evaluated with
each operation policy
(a) without the share
constraint; (b) with a
renewable share
equal to 80%. When
the renewable share
expected value is not
met, the cell is left
blank

RB1) and then operated with the low performance RB5 policy (upper right corner). Note that
the cost remains constant when the DES is designed with both RB4 and RB5 (whatever the
assessment strategy) as the size of the battery is null [see Figure 5(a)]. Concerning the
constrained case, the renewable share might not be met if the operation strategy used
to design the DES performs better than the one used for the assessment [blank cells in
Figure 6(b)]. In every case, the total annual cost is lower when the system is finally operated
with a more effective policy than the one used in the design phase (lower matrix triangle).
Therefore, an important remark from these observations is that it is safer to use a poor
energy management strategy to design the system and then use an operation strategy that
performs well in real-time, than the opposite. Otherwise, techno-economic requirements
might not be met, with a higher total annual cost than expected.

6. Discussion and conclusions

The interaction between the design and the operation under uncertainty was studied in this
work. First, the mathematical formulation was described, where the integrated design
problem includes both the investment and operating cost. Then, the two-step framework
along with the different design and operation strategies (with decreasing levels of
optimality) were introduced. The results show that the design of DES cannot be approached
without considering its close relationship with the operation strategy. Indeed, the design
method needs to be chosen according to the performance of the operation policy finally used
in real life: no matter if the operation strategies are the same in both phases but they must
lead to a similar level of optimality in terms of operating performance.

The modeling framework introduced in this work (i.e. the optimization and assessment
phases are clearly divided into two parts) provides a way to ensure that the performance are
met in real life using realistic operation strategies regardless the approximations made in
the design phase. Indeed, design optimization models are usually simplified to come up with
a solution in a reasonable time, but the resulting sizing values must be evaluated in a
realistic manner to guarantee that the requirements will be met in the real life.

Finally, quantitative results of this work are obviously case study dependent and their
values might be strongly criticized. However, this work provided a modeling framework to
rigorously study such issue and a way to visualize the results through design/operation
interaction matrices. This study could be considered as a first step to anyone interested in
thorough investigations over this topic which might be highly relevant in the future as the
operation of DES tends to be more and more sophisticated.

EXPECT. COST (k€/y) - EXPECT. CONSTRAINT > 80%

EXPECT. COST (k€/y) - WITHOUT CONSTRAINT
D 8. .99 9.18  9.38 D
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