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Participation in our digital society requires the continuous sharing of sensitive information,
enabling the implementation of sophisticated machine learning algorithms. Along with techno-
logical benefits, these societal transformations come with undesired effects, namely the erosion
of individual privacy. So far, policy-makers have failed to account for the potential harms of
extensive data collection and processing. The adoption of the EU General Data Protection Reg-
ulation (GDPR)1 partially addressed this issue, granting individuals the right to erase their data
held by firms. However, GDPR also allows firms to retain aggregate statistics, provided that
they are sufficiently “anonymized”, following Recital 26. Such “anonymization” is addressed
with various techniques, ranging from heuristics, such as pseudonymization (Article 4), to more
rigorous approaches, such as differential privacy 2;3 and k-anonymity 4. A recent line of research
consists in translating in mathematical terms the prescriptions of the GDPR and comparing
them with existing privacy-preserving tools. In particular, the mathematical notion of PSO
security formalizes the concept of “singling out”, introduced in Recital 265. This connects the
GDPR with the techniques mentioned above: differential privacy provides PSO security, while
k-anonymity and pseudonymization do not. However, the implementation of differential pri-
vacy involves several caveats and subtleties. A DP algorithm comes equipped with a parameter
ε, which measures the “level” of privacy. Low values of ε are necessary to ensure meaningful
privacy guarantees, but they usually lead to a loss of accuracy. This drawback is something
referred to as the privacy-utility trade-off 6;7 and it is particularly concerning for the analysis
of microdata records8. For this reason, many practitioners set the value of ε excessively large,
leading to a form of privacy-washing 9.

The inherent indeterminacy of GDPR, along with the lack of scientific consensus about pri-
vacy, poses several open questions for researchers and policy-makers10;11. On the one hand, it is
still unclear which privacy-preserving techniques meet the existing legal standards, thus we com-
plement the previous investigation5 by comparing the right to erasure (Article 17) with the novel
algorithmic framework of machine unlearning 12. Moreover, we examine possible approaches to
incorporate the capabilities and limitations of modern techniques into the current legislation.
On the other hand, we review the issues encountered in several industrial implementations of
differential privacy13;14. We remark that the ε values are often omitted, with concrete risk of
privacy-washing. Hence, we claim that firms should make public the details of their implemen-
tations15. This would enable stakeholders to compare the quality of privacy offered by various
firms and create pressure to reduce privacy losses. Moreover, an adequate compensation policy
for infringement of the GDPR (Article 82) could effectively contrast privacy-washing, enforcing
the value of ε indirectly. Indeed, the privacy-utility trade-off and the compensation policy de-
termine an optimal value of ε that minimizes the expected economic loss of firms16. Finally,
we advocate for educational initiatives aiming at the diffusion of “privacy literacy”. While a
complete understanding of the computational issues requires technical training, the large pub-
lic could grasp the main concepts of differential privacy through interactive simulations and
intuitive user interfaces9;17;18.
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