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2School of Informatics, University of Edinburgh, EH8 9AB Edinburgh, United Kingdom

Abstract

The problem of private learning has been extensively studied in classical computer science.
Notably, a striking equivalence between local differentially private learning and statistical
query learning has been shown. In addition, the statistical query model has been recently
extended to quantum computation. In this work, we give a formal definition of quantum
local differential privacy and we extend the aforementioned result to quantum computation.

1 Introduction

Making predictions based on empirical observations is a central task in many scientific fields and
it is at the hearth of statistical learning theory. A fundamental tool for the analysis of learning
algorithms is undoubtedly the probably approximately correct (PAC) model, introduced by [1].
In the classical PAC model of learning, the goal is to learn a collection of Boolean functions
C ⊆ {c : {0, 1}d −→ {0, 1}}. A learner is given in input labelled examples {xi, c(xi)}, where x is
drawn from a (possibly arbitrary) distribution X : {0, 1}d −→ [0, 1] and c ∈ C is a target concept.
Given two parameters ε, δ ∈ (0, 1), the goal of the learner is to output a hypothesis h such
that Prx∼X [h(x) 6= c(x)] ≤ ε with probability at least 1− δ, for any choice of c and X . Several
extension of the PAC model have been proposed. In particular, [2] introduced the quantum PAC
model, where the classical labelled examples are replace by the following quantum example

|ψc〉 =
∑

x∈{0,1}d

√
X (x) |x, c(x)〉 ,

which is a quantum superposition of labelled examples. Note that by measuring the above state
in the computational basis we obtain the labelled example {x, c(x)} with probability X (x). A
key question is whether quantum learners may be able to learn concepts with less examples than
is possible classically. Early results in this direction were both positive and negative, with the
distribution from which the examples are sampled being a crucial ingredient. For example, it
was shown in [2, 3, 4, 5] that exponential advantages for PAC learners were possible under the
uniform distribution. On the other hand, if the distribution is arbitrary, there is only a marginal
improvement that quantum samples can hope to provide [6].

Statistical query model. In the (classical) statistical query (SQ) model [7], instead of ac-
cessing examples directly, the learner can specify some function on the examples, for which he
is given an estimate, up an additive perturbation error, of their expectation with respect to the
distribution X . PAC learning is strictly stronger than the SQ learning, as shown in [7]. The SQ
was extended to quantum computation in [8]. In the quantum statistical query (QSQ) model,
the learner is still a classical randomized algorithm and can query an oracle to obtain statistics
of quantum examples. More concretely, the learner specifies an observable M and receives an
estimate of the expectation value 〈ψc|M |ψc〉. When M is diagonal, this reduces to the classical
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SQ model. The QSQ model is considerably more powerful than its classical counterpart. As
shown in [8], it is possible to learn parity functions, juntas and DNF formulas under the uniform
distribution in polynomial time in the QSQ model, while this is provably hard in the classical
SQ model.

Differential privacy. Many of the dataset processed by machine learning algorithms contains
sensitive information, namely biometric or financial data. To this end, a mathematical notion of
privacy, known as differential privacy (DP) [9, 10] has been extensively studied. Differentially
private mechanisms ensure that the final output of an algorithm does not depend too heavily
on any one input or specific training example. In the standard model, a trusted curator collects
the raw data of the individuals and it’s responsible of their privacy. On the contrary, in the local
model the curator is possibly malicious, and hence each individual submits her own privatized
data. More formally, consider a statistical database, i.e. a vector x = (x1, . . . , xn) over a domain
X, where each entry xi ∈ X represents information contributed by one individual. Databases
x and x′ are neighbors if xi 6= x′i for exactly one i ∈ [n]. A randomized algorithm A is α-
differentially private if for any two neighbor databases x, x′ and for every subset F of the
possible outcomes of A we have

Pr[A(x) ∈ F ] ≤ eα Pr[A(x′) ∈ F ].

We now turn our attention to the local model. Following the notation used in [11], we say that
a randomized algorithm over databases is α-local differentially private if it’s an α-differentially
private algorithm that takes in input a database of size n = 1.

As shown in [11], there’s a striking equivalence between local differentially private learning
and SQ learning. Differential privacy has been extended to quantum computation in [12]. Let σ
and ρ be two quantum mixed states on n registers each. We call them neighbors if it’s possible
to reach either σ from ρ, or ρ from σ, by performing a general quantum operation on a single
register only. Given a set S of quantum mixed states each on n registers, a measurement M and
a parameter α ≥ 0, we define M to be α-DP on S if for all states ρ, σ ∈ S that are neighbors,
and all possible outputs y of M , we have

Pr[M(ρ) = y] ≥ eα Pr[M(σ) = y].

Interestingly, the authors of [12] showed that the definition above is connected to quantum gentle
measurements, and provided an application to quantum shadow tomography. An alternative
notion of quantum differential privacy was instead proposed in [13].

Our contribution. In this work, we give a formal definition of quantum local differential
privacy and extend the definition of quantum statistical query to mixed states. Thus we prove
an equivalence between these two models, extending the classical result of [11] and addressing
an open problem posed in [14].

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n} and E[·] to denote the expectation of a random variable.
Let I be the d-dimensional identity matrix. We will omit the dimension d when it is clear from
the context.
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2.1 Quantum computing

We briefly review the basic concepts in quantum computing. We define |0〉 :=
(
1 0

)⊺
and

|1〉 :=
(
0 1

)⊺
as the canonical basis for C2. A single-qubit pure state |ψ〉 is a unit vector in C

2,
i.e. α |0〉+β |1〉 for α, β ∈ C that satisfy |α|2+ |β|2 = 1. Multi-qubit pure states are obtained by
taking tensor products of single-qubit states: an arbitrary n-qubit pure state |ψ〉 ∈ C

2n is a unit
vector in C

2n and can be expressed as |ψ〉 =
∑

x∈{0,1}n αx |x〉 where αx ∈ C and
∑

x |αx|
2 = 1.

We denote by 〈ψ| as the conjugate transpose of the quantum state |ψ〉.
In general, we may also have classical probability distributions over pure states. This scenario

is captured by mixed states, the most general kind of states in quantum mechanics. Mixed
states cannot be expressed as superpositions and are conveniently described by density matrices.
Formally, a d-dimensional mixed state ρ is a d × d positive semidefinite matrix that satisfies
Tr(ρ) = 1. Equivalently, ρ is a convex combination of outer products of pure states with
themselves:

ρ =

d∑

i=1

pi |ψi〉 〈ψi| ,

where pi ≥ 0 and
∑

i pi = 1. In the special case where pi = 1 for some i, we obtain a pure state

ρ = |ψi〉 〈ψi|. A superoperator S maps a mixed state ρ to the mixed state S(ρ) =
∑k

i=1BiρB
†
i ,

where B1, . . . , Bk can be any matrices satisfying
∑k

i=1B
†
iBi = I. This is the most general (norm-

preserving) mapping from mixed states to mixed states allowed by quantum mechanics.
The most general class of measurements that we can perform on mixed states are the POVMs

(Positive Operator Valued Measures). Although they can be represented as superoperators, it’s
convenient to define them separately. In the POVM formalism, a measurement M is given by a
list of d×d positive semidefinite matrices E1, . . . , Ek, which satisfy

∑
iEi = I. The measurement

rule is:
Pr[M(ρ) returns outcome i] = Tr(Eiρ)

and hence E[M(ρ)] =
∑

i iTr(Eiρ).

2.2 Quantum statistical queries.

We present here a definition of QSQ oracle that returns an approximation of the expectation
value of any POVM. This definition generalizes the one given in [8], which is stated with respect
to projective measurements.

Definition 1 (QSQ oracle). A quantum statistical query oracle QSQρ(·, ·) for some d-dimensional
mixed state ρ receives as inputs a tolerance parameter τ ≥ 0 and a POVM measurement
M = (E1, . . . , Ek). Such oracle outputs a number α satisfying

|α− E[M(ρ)]| ≤ τ.

A QSQ algorithm accesses a quantum state ρ via the quantum statistical query oracle QSQρ.
QSQ algorithms that prepare all their queries to QSQρ before receiving any answers are called
nonadaptive; otherwise, they are called adaptive.

2.3 Quantum differential privacy

We recall the definition of quantum differential privacy given in [12]. For the sake of simplicity,
we assume that the input state is a product state.
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Definition 2 (DP measurement). Two product states ρ = ρ1 ⊗ . . .⊗ ρn and σ = σ1 ⊗ · · · ⊗ σn
are neighbors if there exists exactly one i ∈ [n] such that ρi 6= σi. A POVM measurement M
is α-differentially private on some subset S of product states if for all states ρ, σ ∈ S that are
neighbors and every possible outcome y of M we have that

Pr[M(ρ) = y] ≤ exp (α) Pr[M(σ) = y].

Definition 3 (Trivial measurement). A measurement M is α-trivial on some subset S if for all
states ρ, σ ∈ S and every possible output y of M we have that

Pr[M(ρ) = y] ≤ exp (α) Pr[M(σ) = y].

We provide here a formal definition of quantum local differential privacy (LDP), inspired by
its classical counterpart introduced in [11].

Definition 4 (QLDP oracle). Let ρ = ρ1 ⊗ · · · ⊗ ρn be a product state. An α-quantum local
differentially private (QLDP) oracle QLρ(·, ·) gets an index j ∈ [n] and an α-trivial measurement
M = (E1, . . . , Ek). Such oracle outputs i ∈ [k] with probability Tr(Eiρj).

Given a product state ρ = ρ1 ⊗ . . . ⊗ ρn, we say that an algorithm is α-QLDP if it ac-
cesses the state ρ via the oracle QLρ and the following restriction holds: for all i ∈ [n], if
QLρ(i,M1), . . . , QLρ(i,Mk) are the algorithm’s invocations of QLρ on state ρi, where each Mj

is an αj-local differentially private measurement, then
∑k

j=1 αj ≤ α. We stress that, in our
model, the invocations above refer to the same state ρi, and we ignore post-measurement states.
In other words, we replace each measured state with a fresh copy.

QLDP algorithms that prepare all their queries to QLρ before receiving any answers are
called noninteractive; otherwise, they are interactive.

2.4 Quantum PAC learning

The probably approximately correct (PAC) model of learning gives a formalization of what
“learning a function” means [1]. In this learning model, a concept class C is a collection of
Boolean functions C ⊆ {c : {0, 1}d −→ {0, 1}}. The functions inside C are referred to as concepts.
We recall here the definition of quantum PAC learning, introduced in [2].

Definition 5 (Quantum PAC learning). A concept class C ⊆ {c : {0, 1}d −→ {0, 1}} is quantum
PAC learnable if there exist a quantum algorithm A and a polynomial poly(·, ·, ·) such that for
all concepts c ∈ C, all distributions X on {0, 1}d, and all α, β ∈ (0, 1), given in input α, β and
n copies of |ψc〉 =

∑
x∈{0,1}d

√
X (x) |x, c(x)〉, where n = poly(d, 1/α, log(1/β)), algorithm A

outputs a hypothesis h : {0, 1}d −→ {0, 1} satisfying

Pr
x∼X

[h(x) 6= c(x)] ≤ α,

with probability at least 1 − β. The probability is taken over A. Class C is (inefficiently) PAC
learnable if there exists a PAC learner A such that A PAC learns C. Class C is efficiently PAC
learnable if A runs in time polynomial in d, 1/α, and log(1/β).

We recall as well the definition of QSQ learning, introduced in [8].
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Definition 6 (QSQ learning). QSQ learnable is defined identically to PAC learnable (Defini-
tion 5), except that instead of having access to n copies of |ψc〉 =

∑
x∈{0,1}d

√
X (x) |x, c(x)〉,

a QSQ learner A can make poly(d, 1/α, log(1/β)) queries to oracle QSQ|ψ〉
c
with tolerance

τ ≥ 1/poly(d, 1/α, log(1/β)). Class C is efficiently QSQ learnable if both: (i) the running time
of A and (ii) the time to evaluate each query that A makes are bounded by some polynomial in
d, 1/α, and log(1/β).

Here we give a definition of QLDP learning, which naturally extend the notion of local
learning given in [11].

Definition 7 (QLDP learning). Let α, β be as in Definition 5 and ε > 0. Concept class
C ⊆ {c : {0, 1}d −→ {0, 1}} is (inefficiently) QLDP learnable if there exists a quantum algorithm
A that takes inputs ε, α, β and n copies of |ψc〉 =

∑
x∈{0,1}d

√
X (x) |x, c(x)〉, where n, the number

of labeled examples in z, is polynomial in 1/ε, d, 1/α, log(1/β), and satisfies

1. (Local differential privacy) For all ε > 0, algorithm A(ε, ·, ·, ·) is ε-QLDP.

2. (Utility) Algorithm A PAC learns C (Definition 5).

C is efficiently privately PAC learnable if A runs in time polynomial in d, 1/ε, 1/α, and log(1/β).

3 The equivalence

In this section, we relate the QSQ model and the QLDP model. Specifically, we show that a QSQ
algorithm that queries the oracle QSQρ can be simulated by a QLDP algorithm that queries
the oracle QLρ⊗n . Moreover, the expected query complexity is preserved up to polynomial
factors. For the sake of simplicity, we restrict our analysis to noninteractive QLDP algorithms
and nonadaptive QSQ algorithms.

Theorem 1 (Simulation of QSQ algorithms by QLDP algorithms). Let A be a QSQ algorithm
that makes at most t queries to a QSQ oracle QSQρ, each with tolerance at least τ , with respect

to some POVM with outcomes in {1, . . . , k}. Then for any α ∈ (0, 1), there exists a ln
(
1+αk
1−α

)
-

QLDP algorithm that makes n = tk
2 ln(2t/β)
2τ2α2 queries to QLρ⊗n and simulates A correctly with

probability at least 1− β.

Proof. Let ρ a quantum state and M = (E1, . . . , Ek) a POVM measurement. For τ ≥ 0, we
show that any query to QSQρ(τ,M) can be simulated efficiently by a QLDP algorithm or,
equivalently, with nearly trivial measurements on single copies of ρ.

Define the measurement M ′ = (E′
1, . . . , E

′
k) such that, for i ∈ {1, . . . , k},

E′
i = αEi +

(
1− α

k

)
I.

Informally, we perform M with probability α and we output an index i sampled u.a.r. with the
remaining probability. Recall that, for any ρ, Pr[M ′(ρ) = i] = Tr(E′

iρ). We observe that,

1− α

k
≤ Tr(E′

iρ) ≤ α+
1− α

k
≤
αk + 1

k

and hence the measurement M ′ is ln
(
1+αk
1−α

)
-trivial. Apply M ′ on n fresh copies of ρ and let

x1, . . . , xn be the random variables corresponding to the measurements. Define zi :=
xi
α + α−1

α .
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Observe that

E[zi] =
E[xi]

α
+
α− 1

α

=
1

α

(
∑

i

iTr(E′
iρ)

)
+
α− 1

α
=

1

α

(
∑

i

iTr

[(
αEi +

1− α

k
I

)
ρ

))
+
α− 1

α

=
∑

i

iTr(Eiρ) = E[M(ρ)].

Observe that xi ∈ [0, k] and hence zi ∈
[
α−1
α , α−1

α + k
α

]
. By Chernoff-Hoeffding bound,

Pr

[∣∣∣∣∣
1

n

∑

i

zi − E[M(ρ)]

∣∣∣∣∣ ≥ τ

]
≤ 2 exp

(
−
2τ2α2n

k2

)
.

Thus we can approximate E[M(ρ)] up to an additive error τ with probability 1 − δ by

performing the measurement M ′ on n = k2 ln(2/δ)
2τ2α2 fresh copies of ρ.

Recall that the algorithm A performs t queries to the QSQ oracle. By union bound, the
probability of any of the queries not being approximated within additive error τ is bounded by
β := tδ. Thus the simulation succeeds with probability at least 1− β.

Theorem 2 (Simulation of QLDP algorithms by QSQ algorithms). Let A be a noninteractive
ε-QLDP algorithm that makes at most t queries to a QLDP oracle QLρ⊗n. There exists a
nonadaptive QSQ algorithm B that makes in expectation at most O(teε) queries to QSQρ with
tolerance τ := β/(3t) and the statistical difference between B’s and A’s output distributions is
at most β.

Proof. Since the QLDP algorithm is noninteractive, we can assume without loss of generality
that it accesses each copy of ρ just once. Thus, we want to simulate a ε-trivial measurementM =
(E1, . . . , Ek) on input ρ with a QSQ oracle QSQρ. In other words, we seek for an approximation
of the following probability distribution p(·) over the set [k]:

p(i) := Tr(Miρ).

To this end, we adopt the following “rejection-sampling” strategy:

1. Apply M to |0 . . . 0〉 〈0 . . . 0|.

Let w be the output and define q(w) := Tr(Ew |0 . . . 0〉 〈0 . . . 0|).

2. Define M ′ = (E′
0, E

′
1), where E

′
1 = Ew and E′

0 = I− Ew.

3. Set τ := β
3t and query QSQρ(M

′, τ). Denote the output with p̃(w).

4. Accept w with probability
p̃(w)

exp(ε)(1 + τ)q(w)
.

Otherwise, reject w and repeat the procedure from step (1).

6



Observe that E[M ′(ρ)] = Tr(E′
1ρ) and then p̃(w) ∈ p(w)± τ .

In a given iteration, any particular element w gets output with probability

q(w)×
p̃(w)

exp(ε)(1 + τ)q(w)
=

p̃(w)

exp(ε)(1 + τ)
.

Then the probability that a given iteration terminates (i.e., outputs some w) is

pterminate =
∑

w

p̃(w)

exp(ε)(1 + τ)
.

Since p̃(w) ∈ p(w) ± τ , we have that
∑

w p̃(w) ∈ 1 ± τ . Hence, pterminate ∈ 1
exp(ε)(1+τ) (1 ± τ).

Thus, conditioned on the iteration terminating, element w is output with probability

1− τ

1 + τ
p(w) ≤

p̃(w)

exp(ε)(1 + τ)pterminate
≤

1 + τ

1− τ
p(w),

Since τ ≤ 1/3,

Pr[w output in a given iteration | iteration produces output] ∈ (1± 3τ)p(w).

This implies that no matter which iteration produces output, the statistical difference between
the distribution of w and p(·) will be at most 3τ = β/t. Because the algorithm Amakes t queries,
the overall statistical distance between the output distribution of A and the distribution resulting
from the simulation is at most β, as desired.

We proved the correctness of the simulation. It remains to bound the number of queries to
QSQρ. Each iteration of the sampling procedure terminates with probability at least 1−τ

(1+τ) exp (ε) ,

thus the expected number of iteration is at most exp (ε)(1+τ)
1−τ = O(eε), and the total number of

queries to the QSQ oracle is O(teε).

4 Implications for quantum local learning

We defined learning in the QLDP and QSQ model in Section 2.4. An immediate but important
corollary of the previous section is that QLDP learning and QSQ learning are equivalent.

Combining Theorems 1 and 2, we can state the following result.

Theorem 3. Let C ⊆ {c : {0, 1}d −→ {0, 1}} be a concept class. Let X be a distribution over
{0, 1}d. Let |ψc〉 :=

∑
x∈{0,1}d

√
X (x) |x, c(x)〉. Concept class C is quantum locally learnable

by an adaptive QSQ learner with inputs α, β, and access to QL|ψc〉
⊗n if and only if C is QSQ

learnable by an adaptive QSQ learner with inputs α, β, and access to QSQ|ψc〉.
Furthermore, the simulations guarantee the following additional properties: (i) an efficient

QSQ learner is simulatable by an efficient QLDP learner; (ii) an efficient QLDP learner is
simulatable by an efficient QSQ learner; (iii) a nonadaptive QSQ (resp. noninteractive QLDP)
learner is simulatable by a noninteractive QLDP (resp. nonadaptive QSQ) learner.

As shown in [8], parities, juntas and DNFs are QSQ learnable (with nonadaptive algorithms).
By Theorem 3 they are QLDP learnable with noninteractive algorithms.
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5 Discussion and future work

This paper provided a notion of quantum local differential privacy and established a connec-
tion with quantum statistical queries. But one could also consider a more general definition for
quantum local differential privacy, allowing multiple trivial measurements on the same state. In
this case, the proof of Theorem 2 would still hold for noninteractive QLDP algorithms. In the
interactive case, we would need to take into account the effect of sequential adaptive measure-
ments on the same state, possibly using the connection between quantum DP and gentleness
established in [12]. Indeed, a possible separation between the interactive QLDP model and the
adaptive QSQ model would shed light on the power of quantum adaptive measurements, which
are widely employed in experiments [15, 16, 17].

Building upon the result of [8], we showed that parities, juntas and DNFs are efficiently
learnable in the QLDP model. However, it’s still unclear whether the quantum PAC model is
more powerful than the QSQ and the QLDP models. So far, all the concepts learnable in the
quantum PAC model seem to be learnable in the QSQ and in the QLDP models. Moreover,
we can also consider the learnability of quantum states in the QSQ and QLDP models. Many
algorithms for learning quantum states can be expressed in the QSQ model [18, 19, 20, 21], while
in [12] they provide a quantum DP algorithm for shadow tomography. Thus, it would interesting
to design QLDP algorithms for shadow tomography. A QLDP algorithm would measure each
copy of the state separately, and hence bring shadow tomography much closer to experimental
feasibility.

Acknowledgements We thank Alex B. Grilo for discussions about quantum statistical query
model and Mina Doosti for discussions about differential privacy
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