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Quantum Local Differential Privacy and Quantum Statistical Query Model

The problem of private learning has been extensively studied in classical computer science. Notably, a striking equivalence between local differentially private learning and statistical query learning has been shown. In addition, the statistical query model has been recently extended to quantum computation. In this work, we give a formal definition of quantum local differential privacy and we extend the aforementioned result to quantum computation.

Introduction

Making predictions based on empirical observations is a central task in many scientific fields and it is at the hearth of statistical learning theory. A fundamental tool for the analysis of learning algorithms is undoubtedly the probably approximately correct (PAC) model, introduced by [START_REF] Valiant | A theory of the learnable[END_REF].

In the classical PAC model of learning, the goal is to learn a collection of Boolean functions C ⊆ {c : {0, 1} d -→ {0, 1}}. A learner is given in input labelled examples {x i , c(x i )}, where x is drawn from a (possibly arbitrary) distribution X : {0, 1} d -→ [0, 1] and c ∈ C is a target concept. Given two parameters ε, δ ∈ (0, 1), the goal of the learner is to output a hypothesis h such that Pr x∼X [h(x) = c(x)] ≤ ε with probability at least 1 -δ, for any choice of c and X . Several extension of the PAC model have been proposed. In particular, [START_REF] Nader | Learning dnf over the uniform distribution using a quantum example oracle[END_REF] introduced the quantum PAC model, where the classical labelled examples are replace by the following quantum example

|ψ c = x∈{0,1} d X (x) |x, c(x) ,
which is a quantum superposition of labelled examples. Note that by measuring the above state in the computational basis we obtain the labelled example {x, c(x)} with probability X (x). A key question is whether quantum learners may be able to learn concepts with less examples than is possible classically. Early results in this direction were both positive and negative, with the distribution from which the examples are sampled being a crucial ingredient. For example, it was shown in [START_REF] Nader | Learning dnf over the uniform distribution using a quantum example oracle[END_REF][START_REF] Arunachalam | Two new results about quantum exact learning[END_REF][START_REF] Grilo | Learning-with-errors problem is easy with quantum samples[END_REF][START_REF] Atici | Improved bounds on quantum learning algorithms[END_REF] that exponential advantages for PAC learners were possible under the uniform distribution. On the other hand, if the distribution is arbitrary, there is only a marginal improvement that quantum samples can hope to provide [START_REF] Arunachalam | Optimal quantum sample complexity of learning algorithms[END_REF].

Statistical query model. In the (classical) statistical query (SQ) model [START_REF] Kearns | Efficient noise-tolerant learning from statistical queries[END_REF], instead of accessing examples directly, the learner can specify some function on the examples, for which he is given an estimate, up an additive perturbation error, of their expectation with respect to the distribution X . PAC learning is strictly stronger than the SQ learning, as shown in [START_REF] Kearns | Efficient noise-tolerant learning from statistical queries[END_REF]. The SQ was extended to quantum computation in [START_REF] Arunachalam | Quantum statistical query learning[END_REF]. In the quantum statistical query (QSQ) model, the learner is still a classical randomized algorithm and can query an oracle to obtain statistics of quantum examples. More concretely, the learner specifies an observable M and receives an estimate of the expectation value ψ c |M |ψ c . When M is diagonal, this reduces to the classical 1 SQ model. The QSQ model is considerably more powerful than its classical counterpart. As shown in [START_REF] Arunachalam | Quantum statistical query learning[END_REF], it is possible to learn parity functions, juntas and DNF formulas under the uniform distribution in polynomial time in the QSQ model, while this is provably hard in the classical SQ model. Differential privacy. Many of the dataset processed by machine learning algorithms contains sensitive information, namely biometric or financial data. To this end, a mathematical notion of privacy, known as differential privacy (DP) [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF][START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF] has been extensively studied. Differentially private mechanisms ensure that the final output of an algorithm does not depend too heavily on any one input or specific training example. In the standard model, a trusted curator collects the raw data of the individuals and it's responsible of their privacy. On the contrary, in the local model the curator is possibly malicious, and hence each individual submits her own privatized data. More formally, consider a statistical database, i.e. a vector x = (x 1 , . . . , x n ) over a domain X, where each entry x i ∈ X represents information contributed by one individual. Databases x and x ′ are neighbors if

x i = x ′ i for exactly one i ∈ [n].
A randomized algorithm A is αdifferentially private if for any two neighbor databases x, x ′ and for every subset F of the possible outcomes of A we have

Pr[A(x) ∈ F ] ≤ e α Pr[A(x ′ ) ∈ F ].
We now turn our attention to the local model. Following the notation used in [START_REF] Prasad Kasiviswanathan | What can we learn privately?[END_REF], we say that a randomized algorithm over databases is α-local differentially private if it's an α-differentially private algorithm that takes in input a database of size n = 1.

As shown in [START_REF] Prasad Kasiviswanathan | What can we learn privately?[END_REF], there's a striking equivalence between local differentially private learning and SQ learning. Differential privacy has been extended to quantum computation in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF]. Let σ and ρ be two quantum mixed states on n registers each. We call them neighbors if it's possible to reach either σ from ρ, or ρ from σ, by performing a general quantum operation on a single register only. Given a set S of quantum mixed states each on n registers, a measurement M and a parameter α ≥ 0, we define M to be α-DP on S if for all states ρ, σ ∈ S that are neighbors, and all possible outputs y of M , we have

Pr[M (ρ) = y] ≥ e α Pr[M (σ) = y].
Interestingly, the authors of [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF] showed that the definition above is connected to quantum gentle measurements, and provided an application to quantum shadow tomography. An alternative notion of quantum differential privacy was instead proposed in [START_REF] Zhou | Differential privacy in quantum computation[END_REF].

Our contribution. In this work, we give a formal definition of quantum local differential privacy and extend the definition of quantum statistical query to mixed states. Thus we prove an equivalence between these two models, extending the classical result of [START_REF] Prasad Kasiviswanathan | What can we learn privately?[END_REF] and addressing an open problem posed in [START_REF] Arunachalam | Private learning implies quantum stability[END_REF].

Quantum computing

We briefly review the basic concepts in quantum computing. We define |0 := 1 0 ⊺ and |1 := 0 1 ⊺ as the canonical basis for C 2 . A single-qubit pure state |ψ is a unit vector in C 2 , i.e. α |0 + β |1 for α, β ∈ C that satisfy |α| 2 + |β| 2 = 1. Multi-qubit pure states are obtained by taking tensor products of single-qubit states: an arbitrary n-qubit pure state |ψ ∈ C 2n is a unit vector in C 2n and can be expressed as |ψ = x∈{0,1} n α x |x where α x ∈ C and x |α x | 2 = 1. We denote by ψ| as the conjugate transpose of the quantum state |ψ .

In general, we may also have classical probability distributions over pure states. This scenario is captured by mixed states, the most general kind of states in quantum mechanics. Mixed states cannot be expressed as superpositions and are conveniently described by density matrices. Formally, a d-dimensional mixed state ρ is a d × d positive semidefinite matrix that satisfies Tr(ρ) = 1. Equivalently, ρ is a convex combination of outer products of pure states with themselves:

ρ = d i=1 p i |ψ i ψ i | ,
where p i ≥ 0 and i p i = 1. In the special case where p i = 1 for some i, we obtain a pure state ρ = |ψ i ψ i |. A superoperator S maps a mixed state ρ to the mixed state S(ρ) = k i=1 B i ρB † i , where B 1 , . . . , B k can be any matrices satisfying k i=1 B † i B i = I. This is the most general (normpreserving) mapping from mixed states to mixed states allowed by quantum mechanics.

The most general class of measurements that we can perform on mixed states are the POVMs (Positive Operator Valued Measures). Although they can be represented as superoperators, it's convenient to define them separately. In the POVM formalism, a measurement M is given by a list of d×d positive semidefinite matrices E 1 , . . . , E k , which satisfy i E i = I. The measurement rule is:

Pr[M (ρ) returns outcome i] = Tr(E i ρ)

and hence E[M (ρ)] = i iTr(E i ρ).

Quantum statistical queries.

We present here a definition of QSQ oracle that returns an approximation of the expectation value of any POVM. This definition generalizes the one given in [START_REF] Arunachalam | Quantum statistical query learning[END_REF], which is stated with respect to projective measurements.

Definition 1 (QSQ oracle). A quantum statistical query oracle QSQ ρ (•, •) for some d-dimensional mixed state ρ receives as inputs a tolerance parameter τ ≥ 0 and a POVM measurement

M = (E 1 , . . . , E k ). Such oracle outputs a number α satisfying |α -E[M (ρ)]| ≤ τ.
A QSQ algorithm accesses a quantum state ρ via the quantum statistical query oracle QSQ ρ . QSQ algorithms that prepare all their queries to QSQ ρ before receiving any answers are called nonadaptive; otherwise, they are called adaptive.

Quantum differential privacy

We recall the definition of quantum differential privacy given in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF]. For the sake of simplicity, we assume that the input state is a product state.

Definition 2 (DP measurement). Two product states ρ = ρ 1 ⊗ . . . ⊗ ρ n and σ = σ 1 ⊗ • • • ⊗ σ n are neighbors if there exists exactly one i ∈ [n] such that ρ i = σ i . A POVM measurement M is α-differentially private on some subset S of product states if for all states ρ, σ ∈ S that are neighbors and every possible outcome y of M we have that

Pr[M (ρ) = y] ≤ exp (α) Pr[M (σ) = y].
Definition 3 (Trivial measurement). A measurement M is α-trivial on some subset S if for all states ρ, σ ∈ S and every possible output y of M we have that

Pr[M (ρ) = y] ≤ exp (α) Pr[M (σ) = y].
We provide here a formal definition of quantum local differential privacy (LDP), inspired by its classical counterpart introduced in [START_REF] Prasad Kasiviswanathan | What can we learn privately?[END_REF].

Definition 4 (QLDP oracle). Let ρ = ρ 1 ⊗ • • • ⊗ ρ n be a product state. An α-quantum differentially private (QLDP) oracle QL ρ (•, •) gets an index j ∈ [n] and an α-trivial measurement M = (E 1 , . . . , E k ). Such oracle outputs i ∈ [k] with probability T r(E i ρ j ).
Given a product state ρ = ρ 1 ⊗ . . . ⊗ ρ n , we say that an algorithm is α-QLDP if it accesses the state ρ via the oracle QL ρ and the following restriction holds: for all i ∈ [n], if QL ρ (i, M 1 ), . . . , QL ρ (i, M k ) are the algorithm's invocations of QL ρ on state ρ i , where each M j is an α j -local differentially private measurement, then k j=1 α j ≤ α. We stress that, in our model, the invocations above refer to the same state ρ i , and we ignore post-measurement states. In other words, we replace each measured state with a fresh copy.

QLDP algorithms that prepare all their queries to QL ρ before receiving any answers are called noninteractive; otherwise, they are interactive.

Quantum PAC learning

The probably approximately correct (PAC) model of learning gives a formalization of what "learning a function" means [START_REF] Valiant | A theory of the learnable[END_REF]. In this learning model, a concept class C is a collection of Boolean functions C ⊆ {c : {0, 1} d -→ {0, 1}}. The functions inside C are referred to as concepts. We recall here the definition of quantum PAC learning, introduced in [START_REF] Nader | Learning dnf over the uniform distribution using a quantum example oracle[END_REF].

Definition 5 (Quantum PAC learning). A concept class C ⊆ {c : {0, 1} d -→ {0, 1}} is quantum PAC learnable if there exist a quantum algorithm A and a polynomial poly(•, •, •) such that for all concepts c ∈ C, all distributions X on {0, 1} d , and all α, β ∈ (0, 1), given in input α, β and n copies of

|ψ c = x∈{0,1} d X (x) |x, c(x) , where n = poly(d, 1/α, log(1/β)), algorithm A outputs a hypothesis h : {0, 1} d -→ {0, 1} satisfying Pr x∼X [h(x) = c(x)] ≤ α,
with probability at least 1 -β. The probability is taken over A. Class C is (inefficiently) PAC learnable if there exists a PAC learner A such that A PAC learns C. Class C is efficiently PAC learnable if A runs in time polynomial in d, 1/α, and log(1/β).

We recall as well the definition of QSQ learning, introduced in [START_REF] Arunachalam | Quantum statistical query learning[END_REF].

Definition 6 (QSQ learning). QSQ learnable is defined identically to PAC learnable (Definition 5), except that instead of having access to n copies of |ψ c = x∈{0,1} d X (x) |x, c(x) , a QSQ learner A can make poly(d, 1/α, log(1/β)) queries to oracle QSQ |ψ c with tolerance τ ≥ 1/poly(d, 1/α, log(1/β)). Class C is efficiently QSQ learnable if both: (i) the running time of A and (ii) the time to evaluate each query that A makes are bounded by some polynomial in d, 1/α, and log(1/β).

Here we give a definition of QLDP learning, which naturally extend the notion of local learning given in [START_REF] Prasad Kasiviswanathan | What can we learn privately?[END_REF]. 

(Utility) Algorithm A PAC learns C (Definition 5).

C is efficiently privately PAC learnable if A runs in time polynomial in d, 1/ε, 1/α, and log(1/β).

The equivalence

In this section, we relate the QSQ model and the QLDP model. Specifically, we show that a QSQ algorithm that queries the oracle QSQ ρ can be simulated by a QLDP algorithm that queries the oracle QL ρ ⊗n . Moreover, the expected query complexity is preserved up to polynomial factors. For the sake of simplicity, we restrict our analysis to noninteractive QLDP algorithms and nonadaptive QSQ algorithms.

Theorem 1 (Simulation of QSQ algorithms by QLDP algorithms). Let A be a QSQ algorithm that makes at most t queries to a QSQ oracle QSQ ρ , each with tolerance at least τ , with respect to some POVM with outcomes in {1, . . . , k}. Then for any α ∈ (0, 1), there exists a ln 1+αk 1-α -QLDP algorithm that makes n = t k 2 ln(2t/β) 2τ 2 α 2 queries to QL ρ ⊗n and simulates A correctly with probability at least 1 -β.

Proof. Let ρ a quantum state and M = (E 1 , . . . , E k ) a POVM measurement. For τ ≥ 0, we show that any query to QSQ ρ (τ, M ) can be simulated efficiently by a QLDP algorithm or, equivalently, with nearly trivial measurements on single copies of ρ.

Define the measurement

M ′ = (E ′ 1 , . . . , E ′ k ) such that, for i ∈ {1, . . . , k}, E ′ i = αE i + 1 -α k I.
Informally, we perform M with probability α and we output an index i sampled u.a.r. with the remaining probability. Recall that, for any ρ,

Pr[M ′ (ρ) = i] = Tr(E ′ i ρ). We observe that, 1 -α k ≤ Tr(E ′ i ρ) ≤ α + 1 -α k ≤ αk + 1 k
and hence the measurement M ′ is ln 1+αk 1-α -trivial. Apply M ′ on n fresh copies of ρ and let x 1 , . . . , x n be the random variables corresponding to the measurements. Define z i :=

x i α + α-1 α .
Observe that

E[z i ] = E[x i ] α + α -1 α = 1 α i iTr(E ′ i ρ) + α -1 α = 1 α i iTr αE i + 1 -α k I ρ + α -1 α = i iTr(E i ρ) = E[M (ρ)].
Observe that

x i ∈ [0, k] and hence z i ∈ α-1 α , α-1 α + k α . By Chernoff-Hoeffding bound, Pr 1 n i z i -E[M (ρ)] ≥ τ ≤ 2 exp - 2τ 2 α 2 n k 2 .
Thus we can approximate E[M (ρ)] up to an additive error τ with probability 1 -δ by performing the measurement M ′ on n = k 2 ln(2/δ) 2τ 2 α 2 fresh copies of ρ. Recall that the algorithm A performs t queries to the QSQ oracle. By union bound, the probability of any of the queries not being approximated within additive error τ is bounded by β := tδ. Thus the simulation succeeds with probability at least 1 -β.

Theorem 2 (Simulation of QLDP algorithms by QSQ algorithms). Let A be a noninteractive ε-QLDP algorithm that makes at most t queries to a QLDP oracle QL ρ ⊗n . There exists a nonadaptive QSQ algorithm B that makes in expectation at most O(te ε ) queries to QSQ ρ with tolerance τ := β/(3t) and the statistical difference between B's and A's output distributions is at most β.

Proof. Since the QLDP algorithm is noninteractive, we can assume without loss of generality that it accesses each copy of ρ just once. Thus, we want to simulate a ε-trivial measurement M = (E 1 , . . . , E k ) on input ρ with a QSQ oracle QSQ ρ . In other words, we seek for an approximation of the following probability distribution p(•) over the set [k]:

p(i) := Tr(M i ρ).
To this end, we adopt the following "rejection-sampling" strategy:

1. Apply M to |0 . . . 0 0 . . . 0|.

Let w be the output and define q(w) := Tr(E w |0 . . . 0 0 . . . 0|).

Define M

′ = (E ′ 0 , E ′ 1 )
, where E ′ 1 = E w and E ′ 0 = I -E w .

3. Set τ := β 3t and query QSQ ρ (M ′ , τ ). Denote the output with p(w).

4. Accept w with probability p(w) exp(ε)(1 + τ )q(w) .

Otherwise, reject w and repeat the procedure from step [START_REF] Valiant | A theory of the learnable[END_REF].

Observe that E[M ′ (ρ)] = Tr(E ′ 1 ρ) and then p(w) ∈ p(w) ± τ . In a given iteration, any particular element w gets output with probability q(w) × p(w) exp(ε)(1 + τ )q(w) = p(w) exp(ε) (1 + τ ) .

Then the probability that a given iteration terminates (i.e., outputs some w) is

p terminate = w p(w) exp(ε)(1 + τ ) .
Since p(w) ∈ p(w) ± τ , we have that w p(w) ∈ 1 ± τ . Hence, p terminate ∈ 1 exp(ε)(1+τ ) (1 ± τ ). Thus, conditioned on the iteration terminating, element w is output with probability

1 -τ 1 + τ p(w) ≤ p(w) exp(ε)(1 + τ )p terminate ≤ 1 + τ 1 -τ p(w), Since τ ≤ 1/3, Pr[w output in a given iteration | iteration produces output] ∈ (1 ± 3τ )p(w).
This implies that no matter which iteration produces output, the statistical difference between the distribution of w and p(•) will be at most 3τ = β/t. Because the algorithm A makes t queries, the overall statistical distance between the output distribution of A and the distribution resulting from the simulation is at most β, as desired.

We proved the correctness of the simulation. It remains to bound the number of queries to QSQ ρ . Each iteration of the sampling procedure terminates with probability at least 1-τ (1+τ ) exp (ε) , thus the expected number of iteration is at most exp (ε)(1+τ ) 1-τ = O(e ε ), and the total number of queries to the QSQ oracle is O(te ε ).

Implications for quantum local learning

We defined learning in the QLDP and QSQ model in Section 2.4. An immediate but important corollary of the previous section is that QLDP learning and QSQ learning are equivalent.

Combining Theorems 1 and 2, we can state the following result. Furthermore, the simulations guarantee the following additional properties: (i) an efficient QSQ learner is simulatable by an efficient QLDP learner; (ii) an efficient QLDP learner is simulatable by an efficient QSQ learner; (iii) a nonadaptive QSQ (resp. noninteractive QLDP) learner is simulatable by a noninteractive QLDP (resp. nonadaptive QSQ) learner.

As shown in [START_REF] Arunachalam | Quantum statistical query learning[END_REF], parities, juntas and DNFs are QSQ learnable (with nonadaptive algorithms). By Theorem 3 they are QLDP learnable with noninteractive algorithms.

Discussion and future work

This paper provided a notion of quantum local differential privacy and established a connection with quantum statistical queries. But one could also consider a more general definition for quantum local differential privacy, allowing multiple trivial measurements on the same state. In this case, the proof of Theorem 2 would still hold for noninteractive QLDP algorithms. In the interactive case, we would need to take into account the effect of sequential adaptive measurements on the same state, possibly using the connection between quantum DP and gentleness established in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF]. Indeed, a possible separation between the interactive QLDP model and the adaptive QSQ model would shed light on the power of quantum adaptive measurements, which are widely employed in experiments [START_REF] Wiseman | Adaptive measurements in the optical quantum information laboratory[END_REF][START_REF] García-Pérez | Learning to measure: Adaptive informationally complete generalized measurements for quantum algorithms[END_REF][START_REF] Marco | Efficient qubit phase estimation using adaptive measurements[END_REF].

Building upon the result of [START_REF] Arunachalam | Quantum statistical query learning[END_REF], we showed that parities, juntas and DNFs are efficiently learnable in the QLDP model. However, it's still unclear whether the quantum PAC model is more powerful than the QSQ and the QLDP models. So far, all the concepts learnable in the quantum PAC model seem to be learnable in the QSQ and in the QLDP models. Moreover, we can also consider the learnability of quantum states in the QSQ and QLDP models. Many algorithms for learning quantum states can be expressed in the QSQ model [START_REF] Anshu | Sample-efficient learning of interacting quantum systems[END_REF][START_REF] Chung | Sample efficient algorithms for learning quantum channels in pac model and the approximate state discrimination problem[END_REF][START_REF] Scott Aaronson | Online learning of quantum states[END_REF][START_REF] Rocchetto | Stabiliser states are efficiently pac-learnable[END_REF], while in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF] they provide a quantum DP algorithm for shadow tomography. Thus, it would interesting to design QLDP algorithms for shadow tomography. A QLDP algorithm would measure each copy of the state separately, and hence bring shadow tomography much closer to experimental feasibility.
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 7 QLDP learning). Let α, β be as in Definition 5 and ε > 0. Concept class C ⊆ {c : {0, 1} d -→ {0, 1}} is (inefficiently) QLDP learnable if there exists a quantum algorithm A that takes inputs ε, α, β and n copies of |ψ c = x∈{0,1} d X (x) |x, c(x) , where n, the number of labeled examples in z, is polynomial in 1/ε, d, 1/α, log(1/β), and satisfies 1. (Local differential privacy) For all ε > 0, algorithm A(ε, •, •, •) is ε-QLDP.

  Theorem 3. Let C ⊆ {c : {0, 1} d -→ {0, 1}} be a concept class. Let X be a distribution over {0, 1} d . Let |ψ c := Concept class C is quantum locally learnable by an adaptive QSQ learner with inputs α, β, and access to QL |ψc ⊗n if and only if C is QSQ learnable by an adaptive QSQ learner with inputs α, β, and access to QSQ |ψc .

	x∈{0,1} d

X (x) |x, c(x) .

PreliminariesWe use[n] to denote the set {1, 2, . . . , n} and E[•] to denote the expectation of a random variable. Let I be the d-dimensional identity matrix. We will omit the dimension d when it is clear from the context.
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