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SOME RECENT ADVANCES ON THE METHOD OF MOMENTS IN KINETIC

THEORY

Teddy Pichard1

Abstract. This review presents some recent works on the construction of closure relations for moment
systems extracted from a kinetic equation. A rough construction of those closures together with the
main properties of the resulting systems are described. Especially, based on the underlying kinetic
equation, the main properties desired for such moment systems are the realizability, i.e. the positivity
of an underlying kinetic solution, global strong hyperbolicity and entropy dissipation.

1. Introduction

Kinetic theory is widely used to describe, at mesoscopic level, clouds of objects interacting with each other
in a medium. Numerical methods to solve those equations can be classified in two types, the direct method
that solve directly the kinetic equation, typically the discrete Monte Carlo methods and the discrete velocity
methods; and the moment methods that is focused on in this note which commonly preserves some structure
of the underlying kinetic model.

The method of moments in kinetic theory can be viewed either as a Petrov-Galerkin discretization with
respect to the kinetic variable, or it can be interpreted as a model reduction leading toward a macroscopic
description of the flow as it describes the evolution of macroscopic quantities.

The first issue when constructing such a discretization or model consists in defining the set of solutions, in a
Galerkin framework or a closure relation in a macroscopic description. In practice, the equations resulting from
this moment method are under-determined and one needs additional relation before solving them.

For a moment model, the closure is not unique, and it needs to be chosen carefully. This choice is generally
driven by the kinetic properties that one aims at retrieving after the moments extraction. Among those proper-
ties, we mainly focus on three of them which are most taken into account in those constructions: 1-the existence
of a positive underlying kinetic distribution, also called realizability, 2-the entropy decay which describes the
trend of the solution toward an equilibrium, and 3-the hyperbolicity of the moment system.

The closure problem has been widely studied over the last decades, and only a non-exhaustive list of the
recent constructions of closures are presented below. In the next section, the kinetic and models are presented
in more details together with those three properties and their applications. The following four sections describe
families of closures from the literature and their specificities, namely the method constructed after Harold
Grad’s technique in Section 3, the based on quadrature techniques in Section 4, the ones constructed out of the
study of the entropy decay of the kinetic solution in Section 5 and those that aim at approximating positive
distribution function in Section 6. Section 7 gathers conclusive comments.
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2. Kinetic equations and moment extraction

The generic kinetic equation and its properties is first presented, before its moment version is deduced.

2.1. Kinetic equation and properties

Consider the kinetic equation
∂tf + vT∇xf = Q(f), (1)

where the unknown f(t, x, v) is a density of particles depending on time t ∈ R+, position x ∈ Rd, and velocity
v ∈ Rd.

This equation is assumed to satisfy three properties that one commonly aims to retrieve under a certain form
after the moment extraction:

Well-posedness and non-negativity: Together with appropriate initial and boundary conditions, this
equation is assumed to possess a unique solution that is non-negative f(t, x, v) ≥ 0 and depends con-
tinuously on the data.

Entropy: Defining η(f) = f log f − f such that η′(f) = log f , then

∂tH(f) + divxG(f) = D(f) ≤ 0, (2a)

H(f) =

∫
R
η(f)(v)dv, G(f) =

∫
R
vη(f)(v)dv, D(f) =

∫
R
η′(f)(v)Q(f)dv. (2b)

Furthermore, D(f) = 0 if and only if f is of the form of a Maxwellian, i.e. f ≡M =: ρ√
2πT

exp
(
− (v−u)2

2T

)
with mean velocity u ∈ R and positive density ρ ∈ R∗+ and temperature T ∈ R∗+ can be interpreted
from the moments of f of order 0 to 2.

Hyperbolicity: The left-hand side of (1) is an hyperbolic transport operator. The solution of such
systems commonly takes the form of waves propagating in a medium, and even if the collision term Q
impacts the shape of the solution, this property also holds for the moment equation at equilibrium, i.e.
when approximating f by M and extracting its first moments.

2.2. Construction and properties of the moment system

Such a system is obtained by integrating (1) against a vector of basis function, commonly chosen to be the
canonical monomial basis b(v) = bN (v) := (1, v, . . . , vN )T . This yields the system

∂tf + divxF = Q, (3a)

where the moment vector f , flux F and collision operator Q are

f =

∫
Rd

b(v)f(v)dv, F =

∫
Rd

b(v)vT f(v)dv, Q =

∫
Rd

b(v)Q(f(v))dv. (3b)

The unknown in the moment system (3a) is chosen to be f and one needs to define F and Q as functions of f
instead of f . This is the closure problem. One common strategy to close this system consists in interpreting (3a)
as one particular discretization of (1), and the flux and collision terms are defined by replacing f in (3b) by one
chosen reconstruction fR satisfying ∫

Rd

b(v)fR(v)dv = f . (4)

The reconstruction fR is defined out of an integral. The sense given to such an integral (L1 functions, distribution
or measure) may impact on the well-definition of the flux and the collision term and on the properties satisfied
by the moment system. Especially fR needs to be integrable against vN+1, and one need to give a sense to
Q(fR) when fR is not a function but a distribution or a measure.
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With such a kinetic closure of the moment system, the properties of the kinetic equation turns at the moment
level into the following properties.

Hyperbolicity: The left-hand side of (3a) is an hyperbolic operator, i.e. the flux of Jacobian has real
eigenvalues and a complete set of eigenvectors,

JfF(f) = PDiag(λ1, . . . , λN )P−1, λi ∈ R.

Entropy: There exists a set of entropy-entropy flux pair (h, g) satisfying

∂th(f) + divxg(f) ≤ 0, Jfg(f) = Jfh(f)JfF(f). (5)

Ideally, one would like this hyperbolic entropy-entropy flux to be defined out of the kinetic entropy η(f).
The entropy dissipation can be obtained from the symmetrizability of the system ( [22]) which consists
in writing the ansatz f as a function of parameters α and requiring that Jαf(α) is symmetric positive
definite and JαF(α) is symmetric.

Well-posedness and realizability: The moment solution is assumed to be unique, depending continu-
ously on the data and belong to the following convex cone, so-called realizability domain

f(x, t) ∈ R :=

{∫
E

b(v)f(v)dv, f ≥ 0

}
, (6)

in the sense of functions f ∈ L1(E), of distributions f ∈ D′(E) or of measures f ∈M(E).

These three properties are rarely all satisfied by one choice of reconstruction fR, and compromises need to be
done. The following sections aim to describe axes of research that lead to recent developments of closures and
the properties they provide. In addition to those, one also needs to include in the balance:

Numerical cost: The reconstruction, or directly the closure itself, needs to be numerically tractable, and
the numerical cost to obtain it needs to be put in balance with brute force kinetic solvers.

The first model emerging from the moment extraction is the Euler system obtained by choosing for recon-
struction fR = M the Maxwellian that minimizes Boltzmann entropy under the constraint of having ρ, u and
T for moments. This choice of reconstruction also provides a pressure law (here the closure) in these equations,
and it leads naturally to a hyperbolic, entropy dissipated moment system with a realizable solution. All the
next sections describe alternative closures or extensions of such a model when considering moments of higher
order.

2.3. Necessity of these properties?

The method of moments applies to various kinetic equations, which possess similar features as (1). However,
depending on the considered physics, some of the aforementioned properties are more important to preserve
than others. None of the closures satisfy all the properties presented above, choices were made adapted to the
considered physics or application. Therefore, we discuss the specificity of those properties and when they can
be relaxed.

2.3.1. Positivity

All the density functions are positive in all the considered applications. But preserving this property and even
identifying realizable vectors is difficult (see e.g. [24,37]). So it is rarely an objective on its own, and positivity
is often enforced in order to obtain other properties. Typically, realizable closures are able to capture singular
solutions, while non-realizable ones are commonly simpler to compute in such singular regimes. Such regimes
often appear in spray modelling or in radiative transfer and those physics often exploit realizable closures, while
only relatively small perturbations away from the equilibrium are sufficient in rarefied gases and sometimes in
plasma physics.
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2.3.2. Entropy decay

This property is closely related to 1-the considered collision operator and 2-some equilibrium regime the
solution tends to. For the first, some physics are modeled without collisions, and those models generally satisfy
some other form of stability, which can be more meaningful to preserve when constructing closure relations.
This can be the case for collisionless plasma or in population balance, where the interactions between particles
emerge from other effect than collisions. For the second, equilibrium distributions are often exploited, when
available, when deriving moment closures.

2.3.3. Hyperbolicity

Two types of hyperbolicity loss are considered. First, the eigenvalues of the Jacobian of the flux can turn
complex. This generally leads to non-physical oscillations, which need to be avoided. Though, such loss of
hyperbolicity may appear in regimes that are not reached during a simulation. Second, the Jacobian of the
flux may lack of eigenvectors. Such weakly hyperbolic systems may create singular solutions propagated with
the flow (see e.g. [17, 25]), which may be acceptable depending on the physics, typically in population balance
or in radiative transfer, such solutions may occur. In such cases, the moments are understood in the sense of
measures or of distributions.

2.4. Applications and their specificities

Here, we discuss the importance of the properties of the last subsection depending on the considered physical
application and other specific properties.

2.4.1. Rarefied gases

Rarefied gases is probably the most classical application of kinetic theory. This is typically modeled exactly
by (1) where the collision operator needs to be specified.

The study of moment models in this field is closely related to the construction of BGK relaxation oper-
ators. Indeed, relaxation operators are design to be the simplest possible exploiting only moment data and
preserving the main properties of Boltzmann’s term. Mainly, the entropy decay which drives the trend toward
thermodynamical equilibrium is carefully studied for this purpose.

2.4.2. Plasma physics

The same kinetic equation is often used in plasma physics to model one or several of populations of particles.
These equations are generally coupled with an equation on the electromagnetic fields.

Convergence to equilibrium is not only driven by collision (some models are collisionless) but also by elec-
tromagnetic effects. Plasma regimes and applications are various, and the collision operator, models and
instabilities to capture are equally.

2.4.3. Radiative transfer

Commonly, radiations are assumed to propagate at the speed of light exactly and interact with matter and
not with each others. Therefore, (1) is reduced into a model of the form

1

c
∂tI + ΩT∇xI = LI,

where I is the radiation intensity, c is the speed of light, the normalized speed Ω ∈ S2 evolves on the unit
sphere, and the collision operator is linear. These modifications have much impact on the construction of the
moment model, as the set of integration S2 is compact, the entropy dissipated is modified η(I) = I2, and the
kinetic equation is linear.
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2.4.4. Population balance

Population balance generically refers to the modelling of other clouds of objects interacting with each others.
This includes e.g. liquid droplets or solids transported in another fluid or biological models.

The kinetic variable may include a velocity variable as in (1), but also other state variables characterizing the
object. These models also lead to various interaction operators (though, commonly not collisions). Therefore,
the impacts at the moment level are twofold: first the moments extraction is performed with respect to all the
kinetic variables and the set of integration in (2) is larger; second, the model (1) itself is modified, together with
its interaction operator, and especially the properties that need to preserved at the moment level are various.

3. Grad’s methods

Harold Grad was one of the first to propose an enriched moment closure to model out of equilibrium regimes.
It is essentially applied to construct fluid models, typically rarefied gases. Though some recent works aim at
extending the techniques and applying them in plasma physics ( [6]) or radiative transfer ( [14]).

Grad’s work originally applied to rarefied gases. It aimed at capturing well the equilibrium represented by a
Maxwellian and the small perturbations away from it, but it is not valid close to the boundary of the realizability
domain. In this part, the moments are understood in the sense of L1 functions.

3.1. Grad’s closure (1949 ; [19])

The construction of Grad consists, after a change of unknown w : v 7→ (v−u)/
√
RT , in a Hermite polynomial

expansion. This eventually corresponds to a reconstruction of the form

fR(v) =

(
n∑
i=0

aipi(w(v))

)
M(v), (7)

where the polynomials pi ∈ Ri[X1, X2, X3] are orthgonal with respect to the Gaussian measure. Especially, the
first ones are p0(w) = 1, p1i (w) = wi and p2i,j(w) = wiwj − δi,j .

In practice, the first coefficient a0 = 1 and this reconstruction is a polynomial perturbation of the equilibrium,
and a1i = 0 = a2i,i. The other coefficients are non-zero, they can be found in the original paper [19] and can be
given physical interpretations.

This reconstruction takes the form of a (relatively) simple and analytic formula, so the numerical cost is
very small. However, the other properties are not satisfied. One observes that the first non-zero coefficients a2i,j
necessarily to some values v ∈ R3 where p2i,j(w) < 0 and therefore fR is not positive on all the space v ∈ R3.
A more problematic drawback is the appearance of non-hyperbolicity regions in the set of moments R that can
be reached by this model. The appearance of such values during a simulation can be the source of non-physical
artifacts. Grad also exhibited some perturbed entropy equality.

In practice, this model is an extension of the Euler system that requires a low numerical cost to compute,
and it is hyperbolic and entropy dissipating as long as the solution does not reach these pathologic regions.

3.2. Grad’s regularizations

Several works aimed at extending the region of applicability of Grad’s closure, mostly by compensating the
lack of hyperbolicity at the moment level.

3.2.1. Based on a Chapman-Enskog expansion

A first idea of regularization consisted in computing deviations from Grad’s moment closure, by exploiting
a Chapman-Enskog expansion near the equilibrium (see [39] and references therein). This expansion of the
solution f in order of the Knudsen number commonly leads to diffusive (Navier-Stokes) or dispersive (Burnett
or super-Burnett) systems. It is used here to correct the higher order moments away from the equilibrium and
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results in adding diffusion in the moment system. Such a regularization turn the model ”valid” in a larger range
of the attainable moment vectors, but the set of moment vectors satisfying positivity, hyperbolicity (for the flux
part) and entropy decay remains a subset of the realizability domain.

3.2.2. Based on the Jacobian of the flux

A second idea based on the study of the Jacobian of the flux F(f) aimed at modifying the structure of the
Jacobian. The system is written in a quasi-linear form

∂tf +A(f)∂xf = Q(f),

and one aims at modifying the matrix A(f). This idea has been fruitful in the literature, and only a few of these
recent strategies are listed below:

• A first modification (see [8]) consisted in adding a regularization term, an appropriate flux term, to
correct the characteristic speed.

• A second modification ( [23]) was justified by the use of an appropriate quadrature method together
with the expansion of the form (7).

• A third approach ( [9]) consisted in performing the expansion (7) separately to each of the term in (3a).
That corresponded to taking into account a contribution of higher degree into the flux.

Eventually, they provide globally hyperbolic moment systems based on a known approximation of the dis-
tribution function (though still not positive). However, the resulting moment systems a priori remains in a
non-conservative formalism.

3.2.3. Through projection techniques

Other interpretations of the third idea of the last section were afterward provided and extended. Grad’s
method is interpreted here as a polynomial expansion using orthogonality w.r.t. to the Gaussian measure.
Then, [13] suggested exploiting projections onto a set of weighted polynomials. These projections P are applied
on the kinetic solution Pf , on its derivatives P∂tPf and P∇xPf and onto the flux term PvT∇xPf . Using
an appropriate combination of those lead to a closed reduced system from (1) which is globally hyperbolic and
symmetrizable. The system is eventually written in a non-conservative form and it is a modification of (2) in
the sense that it is not obtained directly by imposing the closure terms.

This work was also extended to radiative transfer (see e.g. [14] and references therein).

4. Quadrature methods

As the moments are weighted integrals of a distribution function, a natural approximation consists in using
appropriate quadrature formulae.

4.1. Quadrature Method Of Moments (QMOM ; 1984)

The QMOM closure was indeed based on this simple remark. It originates in the field of spray modelling
( [29]). The original method consists simply in approaching the integrals in the definition of the vector of
moments f using quadrature. One therefore needs to define the positive weights and abscissa of this quadrature,
then the same quadrature is used to approach the integral in the definition of the flux function F(f). This
equivals to choosing a reconstruction in the form of a sum of Dirac (measures or distributions)

fR =

n∑
i=1

αiδvi .

A wide variety of algorithms is available in the literature to compute such quadratures, and the computational
cost is rather low to compute it.
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In terms of modelling property, the resulting moment system is only weakly hyperbolic as the Jacobian of
the flux possesses n eigenvalues (these are the quadrature points vi) with a double multiplicity and only one
eigenvector per eigenvalue. Such a weakly hyperbolic tends to propagating δ-shock, i.e. each of the δ in this
reconstruction is propagated at its speed vi.

Similarly, entropies are dissipated through this equation (any
∑
αihi(vi) for convex hi are dissipated [7]),

but this is not directly related to the one dissipated at the kinetic level.

4.2. Multi-Gaussian or extended QMOM

The extended QMOM ( [43]) or multi-Gaussian ( [10,40]) closure consists in replacing the Diracs by regular
functions in the quadrature formula. This is typically done using Gaussians with the same dispersion. The
purpose of this modification is mostly to extend this model to a wider range of physical phenomena. For
instance, non-zero ansatz is required in some specific values when considering evaporation of droplets in a spray
while Dirac deltas are zero everywhere but at the quadrature points. Also, the dispersion of the Gaussian leads
to a model with a non-zero temperature.

The definition of dispersion is possible using a clever change of variables. However, using the same dispersion
for all the Gaussians is necessary to perform the computations.

Eventually, the moment system is based on a strictly positive ansatz. At this step, few things can be said
about hyperbolicity and entropy dissipation.

4.3. Hyperbolic QMOM

A recent alternative aimed at turning the QMOM model strongly hyperbolic. This technique is based on the
algorithm of Chebychev ( [11,42]). The characteristic polynomial of the Jacobian of the flux can be obtained at
the last step of this sequence of polynomials. All the coefficients of the QMOM closure can also be determined
from the coefficients of this polynomial sequence. The HyQMOM closure consists in following this sequence up
to one higher degree, and to fix the coefficients at the last iteration such that the Jacobian JfF is diagonalizable.
A reconstruction with N + 1 positive Dirac measures can be deduced out of this technique.

5. Entropy-based methods

In a similar manner as the Maxwellian minimizes the entropy D under the constraints of satisfying (3b), the
entropy-based methods exploits the minima of an entropy function.

5.1. Entropy-minimizing closure

The idea of minimizing the entropy to construct a distribution was studied in various fields (typically in
information theory with the work of Shannon), and is often associated to Dave Levermore in kinetic theory
( [26]). This reconstruction is defined as

fR = argmin∫
bf=f

H(f). (8)

This choice offers most of the properties expected in Section 2.2. For most physically relevant η, the reconstruc-
tion fR > 0 is strictly positive, the resulting moment model is symmetric hyperbolic ( [16, 18]) and dissipates
the underlying kinetic entropy H(fR) (see e.g. [22]). Euler’s system can be interpreted as the first model in this
hierarchy. However, two drawbacks of these models have been widely studied in the literature:

The first one, closer to the application, is the relatively high computational cost to compute this closure.
In order to compute this closure, one needs to solve the optimization problem (8) at every location at every
time. Algorithms were developed, for this specific minimization problem, to reduce the numerical costs ( [4,20]),
especially close to the boundary of the realizability domain where the condition of the optimization problem
deteriorates.
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The second problem appears only when the set of integration is unbounded (e.g. in rarefied gases v ∈ R3,
but not in radiative transfer Ω ∈ S2 for instance). In such cases, Michael Junk ( [21]) showed that there exists
realizable vectors f ∈ R that do not possess such a reconstruction. This may lead to ill-posed problems.

5.2. Reducing computational costs

Several works aimed at reducing the computational costs of the entropy-based closure. A first approach ( [5])
consisted in changing basis functions when using the minimization algorithm in order to solve better conditioned
problems. However, the optimization problem remains singular along the boundary of the realizability domain,
where the distribution function turns singular. Another approach ( [3]) based on a Tikhonov regularization of
the optimization problem leads to a well-defined solution along this boundary.

5.3. Relaxed moment constraints

A first idea to circumvent the appearance of such a Junk line consisted in relaxing the last moment constraint
into an inequality ( [38]). For all moments realized by a minimum-entropy reconstruction, this reconstruction is
identical. For all moment vector along a Junk line, this technique provides a reconstruction with a lower (finite)
entropy, but that does not realize the higher order moment.

5.4. ϕ-divergence closure

The ϕ-divergence closure, developed through the thesis of M. Abdelmalik ( [1, 2]), can be interpreted as a
modification of the entropy to minimize. In this framework, the equilibrium represented by the Maxwellian
M does not depend on the perturbation, and needs to be fixed a priori. Once the Maxwellian M is fixed, the
minimizer of an approximation of the relative entropy is computed. This provides a symmetric hyperbolic model
for the perturbation away from the equilibrium, then it dissipates some approximation of the relative entropy.
With an appropriate choice of approximation of the relative entropy, this yields a positive reconstruction fR,
and no Junk line can be created through this closure.

6. Realizability-based methods

Some closures were constructed based on the study of the realizability domain. In the monovariate case
v ∈ [−1,+1], the reconstruction is known to be unique along the boundary of the realizability domain. With
the knowledge of this unique representation, one can then decompose any realizable vector as a positive sum of
vectors which all have a known reconstruction.

6.1. Interpolative closures

The interpolative closures were developed in the fields of CFD ( [28]) and of radiative transfer ( [27,34,36]).
It aimed at reducing the computational costs of the entropy-based closure by using a high order polynomial
approximation that interpolates the exact entropy-minimizing closure at specific locations in the realizability
domain. From a theoretical point of view, none of the properties of realizability, entropy dissipation and
hyperbolicity can be ensured globally in the realizability domain, but these closures approximate a closure
that does satisfy all of them (except for [27] that lose these properties in certain regions of R) and numerical
experiments showed no loss of these properties.

6.2. Projective closure

The projective closure ( [32,33]) consists in a reconstruction of the form

fR = α0f
eq + fQMOM ,
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where feq correspnds to a chosen equilibrium function, typically a Maxwellian M , and fQMOM is a quadrature-
based reconstruction. This can be interpreted using projection techniques on the boundary of the realizability
domain.

This closure ensures realizability and weak hyperbolicity. However, as for the ϕ-divergence technique, the
numerical computation of this closure when feq depends on f remains difficult and the entropic structure in
that case is weaker than the symmetric hyperbolic structure of the entropy-minimizing closure.

7. Conclusive remarks

The construction of appropriate closure for moment equations remains an active field of research for accurately
simulating many phenomena emerging in engineering and physics. Even though many solutions were suggested,
none possesses all the desired properties and choices still needs to be done.

Other issues emerge when trying to use those moment models, and that are not discussed in this short
note. First, most of the presented closures are appropriately defined for the flux term, but many of them still
require to be extended to the collision operator (together with a proper entropy study). Second, if constructing
appropriate moment fluxes is complicated, constructing boundary conditions for moment equations remains an
open problem and well-posedness results including such boundaries are rare.
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