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Abstract. We focus on a toy problem which corresponds to a simplification of a boiling two-
phase flow model. This model is a hyperbolic system of balance laws with a source term defined
as a discontinuous function of the unknown. Several discretizations of this source terms are
studied, and we illustrate their capacity to capture steady states.

1 INTRODUCTION

The present work present numerical approaches adapted to hyperbolic balance laws with
a source term defined as a discontinuous function of the unknown. These constructions are
described on the following toy problem ([9])

∂tu− ∂xu = Su(h(u, v)), Su(h) =

{
a if h ≤ 0,
b if h > 0,

(1a)

∂tv + ∂xv = Sv(h(u, v)), Sv(h) =

{
c if h ≤ 0,
d if h > 0,

(1b)

h(u, v) = u+ v.

This system corresponds to a simplification of a 4-equation drift-flux model ([7, 1, 10]) for 1D
boiling two-phase flow given by

∂t


αρv
ρ
ρu
ρe

+ ∂x


αρvu
ρu

ρu2 + p
(ρe+ p)u

 =


Γ
0
0
φ

 , Γ =

{
0 if h ≤ heb,
Kφ otherwise,

(2)

where the enthalpy h depends on (αρv, ρ, ρu, ρe) and the heat source φ > 0 and the evaporation
constant K > 0.

System (1) retains the main difficulties of (2), i.e. the discontinuity of the source term w.r.t.
the unknown, but it is reduced to two equations and the fluxes and the enthalpy were linearized
and normalized for simplicity.

This system was studied at a continuous level in [9] where a framework was proposed for
well-posedness studies. Now, we aim at tackling the difficulties emerging at the numerical level
when discretizing it.
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2 POSITION OF THE PROBLEM

The main issue emerging when discretizing (1) is the appearance of artifacts, typically spu-
rious oscillations. These already appear when considering steady solutions, and we illustrate
these issue by applying a naive scheme to capture a steady solution.

2.1 The continuous steady state

We first construct a steady solution to (1) in a domain x ∈ [−1, 1]. We fix

a = 0, b = −3

5
, c =

2

5
, d = 0.

Then, one verifies that

u0(x) =

{
−ax if x < 0,
−bx otherwise,

v0(x) =

{
cx if x < 0,
dx otherwise,

is a time-independent solution to (1) with the boundary conditions u(x = 1) = u0(x = 1) and
v(x = −1) = v0(x = −1).

The well-posedness of (1) was studied in [9] and this test does not satisfy the conditions
provided in Proposition 3.5 in this reference. These were only sufficient conditions, but not
necessary ones and, in practice, one easily verifies that the Cauchy problem possesses a unique
generalized solution. We even exhibit some stability property of this equilibrium.

Proposition 1. There exists a convex entropy-entropy flux pair (H,G) such that

∂tH(u, v) + ∂xG(u, v) = D(u, v) ≤ 0,

such that H(u, v) ≥ 0 and H(u, v) = 0⇔ (u, v) = (u0, v0).

Proof. Writing (uε, vε) the solution to (1) with a perturbed initial condition (u0 + εδu, v0 + εδv),
one computes for all (x, t)

∂t(u
ε − u0)− ∂x(uε − u0) =


(a− b) if x > 0 and (uε + vε)(x, t) < 0,
(b− a) if x ≤ 0 and (uε + vε)(x, t) ≥ 0,
0 otherwise,

∂t(v
ε − v0) + ∂x(vε − v0) =


(c− d) if x > 0 and (uε + vε)(x, t) < 0,
(d− c) if x ≤ 0 and (uε + vε)(x, t) ≥ 0,
0 otherwise.

Then summing the first equation multiplied by (uε − u)/3 with the second equation multiplied
by (vε − v)/2, and using the exact value of u0, v0, a, b, c and d yields

∂t

[
(vε − v0)2

4
+

(uε − u0)2

6

]
+ ∂x

[
(vε − v0)2

4
− (uε − u0)2

6

]

=


1
5(uε + vε)− 3x

10 if x > 0 and (uε + vε)(x, t) < 0,
−1

5(uε + vε) + 2x
10 if x ≤ 0 and (uε + vε)(x, t) ≥ 0,

0 otherwise.

Especially, the values on the right-hand-side are non-positive and the equilibrium is stable.
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One remarks that some values (u, v) 6= (u0, v0) satisfy D(u, v) = 0 and the solution is not
necessarily attracted back to the equilibrium (u0, v0).

2.2 Non-existence of a discrete steady state with a centered source term

First, let us write an explicit discretization of (1) with upwind fluxes and centered source

un+1
i − uni

∆t
−
uni+1 − uni

∆x
= Su(hni ), (3a)

vn+1
i − vni

∆t
+
vni − vni−1

∆x
= Sv(hni ), (3b)

where hni = uni + vni .

Proposition 2. Suppose a − d < 0 and b − c > 0, then the scheme (3) possesses no discrete
steady state with source switch.

Proof. By contradiction, let us assume that a discrete steady state is reached. Then uni = ui
and vni = vi, and this rewrites

ui = ui+1 + ∆xSu(hi), vi = vi−1 + ∆xSv(hi).

For simplicity, consider only the two cells in the middle of the domain where the source switches
value. This system has for unknowns un1 , un2 , vn1 , vn2 and has for boundary conditions (given) un3
and vn0 . Rewriting this system with hn1 = un1 + vn1 and hn2 = un2 + vn2 as unknowns reads

h1 = (u3 + v0) + ∆x [(Su + Sv)(h1) + Su(h2)] ,

h2 = (u3 + v0) + ∆x [(Su + Sv)(h2) + Sv(h1)] .

where u3 + v0 is a constant. We may differentiate four cases

(h1, h2) =


(
(u3 + v0) + ∆x(2a+ c), (u3 + v0) + ∆x(a+ 2c)

)
if h1 < 0, h2 < 0,(

(u3 + v0) + ∆x(a+ c+ b), (u3 + v0) + ∆x(b+ d+ c)
)

if h1 < 0, h2 ≥ 0,(
(u3 + v0) + ∆x(b+ d+ a), (u3 + v0) + ∆x(a+ c+ d)

)
if h1 ≥ 0, h2 < 0,(

(u3 + v0) + ∆x(2b+ d), (u3 + v0) + ∆x(b+ 2d)
)

if h1 ≥ 0, h2 ≥ 0.

(4)

The first and the last correspond to the cases with a constant source and are not those of interest
here. Computing h1 − h2 in the two middle cases provides

h1 − h2

∆x
= a− d if h1 < 0, h2 ≥ 0,

h1 − h2

∆x
= b− c if h1 ≥ 0, h2 < 0.

Based on the expected signs of h1 and h2, we violate these two conditions when

a− d > 0, b− c < 0.

If neither of those two conditions are satisfied, then there exists no discrete steady state with
source switch.

Especially, these conditions are not satisfied with the values given in the last subsection.
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Figure 1: Exact solution (and initial condition) in straight line and discrete one with (3) in dotted line
with pluses. The solution u are in black, v are in red and u+ v in blue.

2.2.1 Numerical test

The numerical results obtained with the centered scheme on the test case of the Subsection 2.1
are given in Fig. 1. These are given for an initial condition u0

i = u0(xi) and v0
i = v0(xi) with

parameters xi = (i − 1
2)∆x and ∆x = L/N with a number of cells N = 128. The final time is

T = 1 and a CFL condition of ∆t = 0.95∆x was used. The non-existence of a discrete source
term is characterized here by oscillations. In practice, the enthalpy h in the middle of the domain
alternates between a positive and a negative value, which creates an oscillation. This oscillation
is afterward transported at velocity +1 with the unknown v and velocity −1 with the unknown
u.

3 FIRST ALTERNATIVE SCHEMES

Some techniques from the literature offers the well-balanced property, here capturing the
steady states. We present some of them here that we adapt to the present problem.

A first family of approaches was proposed in [2] as extensions of [6] with source terms. These
approaches were shown to be well-adapted to capture equilibria.

They were both developed for a generic non-linear hyperbolic balance law

∂tU + ∂xF (U) = S(U),

in an explicit finite volume formalism

Un+1
i = Uni −

∆t

∆x
(Fi+ 1

2
−Fi− 1

2
) + ∆tSni .

3.1 Flux-difference splitting approach

The flux-difference splitting approach leads to fixing

Fn
i+ 1

2

=
1

2

[
F (Uni ) + F (Uni+1)−An

i+ 1
2

(Uni+1 − Uni )
]

4
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where the matrix An
i+ 1

2

= A(Uni+1, U
n
i ) satisfies the homogeneity property A(U,U)U = F (U).

One popular manner of discretizing the source term following this flux-difference splitting yields
Sni = Sn,R

i− 1
2

+ Sn,L
i+ 1

2

with

Sn,R
i+ 1

2

=
1

2

[
Id−

∣∣∣Ani+ 1
2

∣∣∣ (Ani+ 1
2

)−1
]
SR(Uni+1, U

n
i ),

Sn,L
i− 1

2

=
1

2

[
Id+

∣∣∣Ani− 1
2

∣∣∣ (Ani− 1
2

)−1
]
SL(Uni , U

n
i−1),

where the interface source terms also satisfy the homogeneity properties SR(U,U) = S(U) and
SL(U,U) = S(U).

Applying this scheme with Roe matrix (in the linear case F (U) = AU , then A(U,U) = A
and it equivals to upwind fluxes) to (1) yields

un+1
i = uni

(
1− ∆t

∆x

)
+

∆t

∆x
uni+1 + ∆tSu,R(Uni+1, U

n
i ), (5a)

vn+1
i = vni

(
1− ∆t

∆x

)
+

∆t

∆x
vni−1 + ∆tSv,L(Uni , U

n
i−1). (5b)

Following the computations of [9] in the Riemann problem case, we suggest defining at the
interfaces

Su,R(Uni+1, U
n
i ) = Su(uni+1 + vni ), Sv,L(Uni+1, U

n
i ) = Sv(uni+1 + vni ). (5c)

In a stationnary framework, one obtains

u1 = u2 + ∆xSu(u2 + v1), u2 = u3 + ∆xSu(u3 + v2),

v1 = v0 + ∆xSv(u1 + v0), v2 = u3 + ∆xSv(u2 + v1),

and eventually writing h1 = u1 + v0, h2 = u2 + v1 and h3 = u3 + v2 provides

h1 = v0 + u2 + ∆xSu(h2) = v0 + u3 + ∆x(Su(h2) + Su(h3)),
h2 = v0 + u3 + ∆x(Su(h3) + Sv(h1)),
h3 = v1 + u3 + ∆xSv(h2) = v0 + u3 + ∆x(Sv(h2) + Sv(h1)).

This leads to

h2 − h1

∆x
= Sv(h1)− Su(h2),

h3 − h2

∆x
= Sv(h2)− Su(h3).

When expecting a change of sign either between h1 and h2 or between h2 and h3, we fall back
onto the same issue seen in Section 2.

3.2 Flux-vector splitting approach

In a flux-vector splitting approach, we decompose the numerical flux

Fn
i+ 1

2

= A+
i+ 1

2

Uni+1 +A−
i+ 1

2

Uni ,

5
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where the matrices A±
i+ 1

2

= A±(Uni+1, U
n
i ) satisfies the homogeneity properties[

A+(U,U) +A−(U,U)
]
U = F (U), Sp(A±(U, V )) ⊂ R±.

One popular manner of discretizing the source term following this flux-vector splitting consists
in decomposing similarly

Sni =
1

2

[
Sn
i− 1

2

+ Sn
i+ 1

2

]
, Sn

i+ 1
2

= B+
i+ 1

2

S(Uni+1) +B−
i+ 1

2

S(Uni ), (6)

where the matrices B±
i+ 1

2

= B±(Uni+1, U
n
i ) satisfy the homogeneity property

B+(U,U) +B−(U,U) = Id.

Applying this scheme by fixing A± = (A± |A|)/2 as the positive, resp. negative, part of the
Roe matrix to (1) yields similarly

un+1
i = uni

(
1− ∆t

∆x

)
+

∆t

∆x
uni+1 +

∆t

2

(
B+
i+ 1

2

S(Uni+1) + (B−
i+ 1

2

+B+
i− 1

2

)S(Uni ) +B−
i+ 1

2

S(Uni−1)

)
1

,

vn+1
i = vni

(
1− ∆t

∆x

)
+

∆t

∆x
vni−1 +

∆t

2

(
B+
i+ 1

2

S(Uni+1) + (B−
i+ 1

2

+B+
i− 1

2

)S(Uni ) +B−
i+ 1

2

S(Uni−1)

)
2

.

An intuitive choice for B± consists in choosing A±A−1 which reads B+
i+ 1

2

Uni = uni and B−
i+ 1

2

Uni =

vni and therefore

un+1
i = uni

(
1− ∆t

∆x

)
+

∆t

∆x
uni+1 +

∆t

2

(
Su(Uni+1) + Su(Uni )

)
, (7a)

vn+1
i = vni

(
1− ∆t

∆x

)
+

∆t

∆x
vni−1 +

∆t

2

(
Sv(Uni ) + Sv(Uni−1)

)
. (7b)

In a stationnary framework, writing hi = ui + vi, one obtains

u1 = u3 +
∆x

2
(Su(h3) + 2Su(h2) + Su(h1)), u2 = u3 +

∆x

2
(Su(h3) + Su(h2)),

v2 = v0 +
∆x

2
(Sv(h2) + 2Sv(h1) + Sv(h0)), v1 = v0 +

∆x

2
(Sv(h1) + Sv(h0)),

and eventually

h1 = (v0 + u3) +
∆x

2
(Su(h3) + Sv(h0)) +

∆x

2
(2Su(h2) + Su(h1) + Sv(h1))

h2 = (v0 + u3) +
∆x

2
(Su(h3) + Sv(h0)) +

∆x

2
(Sv(h2) + 2Sv(h1) + Su(h2)).

This leads to

h2 − h1

∆x
= (Sv − Su)(h2) + (Sv − Su)(h1),

or equivalently
(Id−∆x(Sv − Su))(h2) = (Id+ ∆x(Sv − Su))(h1).

The function Id±∆x(Sv − Su) are discontinuous in 0 and do not cross each other. Therefore,
there still exists no stationnary solutions.
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Figure 2: Exact solution (and initial condition) in straight line and discrete ones with (5) in dashed line
with squares and with (7) with circles. The solution u are in black, v are in red and u+ v in blue.

3.3 Numerical test

Again, these two schemes are tested with the parameters of Subsection 2.2.1. The numerical
results are given in Fig. 2. We observe again oscillations with the flux-vector splitting scheme (7),
but those are of smaller amplitude than with the centered source. On this test case, the flux-
difference scheme (5) seems to have a better behavior.

4 TWO OTHER WELL-BALANCED DISCRETIZATIONS

4.1 An integral finite difference scheme

One essential reason for the upwind discretizations of the source term presented in the last
section to fail to capture steady states lies in the choice of approximation used. These schemes
are closely related to the approximate Riemann solver approaches but extended with a source
term. However, it was shown in [9] that (1) with a Heavyside initial condition, i.e. Riemann
problems, do not possess a steady state at the continuous level. In practice, the solution always
evolves in time. In this previous work, only one type of configuration was shown to create steady
states, it was those associated with a subcharacteristic boiling curve, i.e. when the boiling front
{(x, t) s.t. (u+ v)(x, t) = 0} propagates slower than the characteristic speeds. Then, instead of
using a finite volume approach based on approximating the solution by constants in each cell, we
use a finite difference approach where the solution is approximated by continuous piecewise affine
functions (the exact generalized solution was shown to be W 1,∞). Following the characteristics,
this yields

u(xi, t
n+1) = u(xi + ∆t, tn) +

∫ ∆t

0
Su(u+ v)(xi + (∆t− τ), tn + τ)dτ, (8a)

v(xi, t
n+1) = v(xi −∆t, tn) +

∫ ∆t

0
Sv(u+ v)(xi − (∆t− τ), tn + τ)dτ. (8b)

7
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Approximating u(. , tn) and v(. , tn) by a continuous piecewise affine function passing in uni ,
resp. vni , at xi, and approximating τ 7→ (u+ v)(xi + (∆t− τ)) and τ 7→ (u+ v)(xi − (∆t− τ))
by constants in the integral provides (3). Let us modify this last approximation. We compute
similarly

un+1
i = uni

(
1− ∆t

∆x

)
+ uni+1

∆t

∆x
+ ∆tSu,ni , (9a)

vn+1
i = vni

(
1− ∆t

∆x

)
+ vni−1

∆t

∆x
+ ∆tSv,ni , (9b)

where uni and vni approximate u(xi, t
n) and v(xi, t

n) and Su,ni and Sv,ni approximate the integrals
in (8). The functions in these integrals are constant by part (they switch if u+ v changes sign).
Following the computations in [9], we suggest the following approximation that mimics this
change of sign (w designate either u and v)

Su,ni = S̃u,n+,iβ
u,n
i +

(
a+ b− S̃u,n+,i

)
(1− βu,ni ) , Sv,ni = S̃v,n−,iβ

v,n
i +

(
c+ d− S̃v,n−,i

)
(1− βv,ni ) ,

(9c)

S̃w,n±,i = Sw
(

(uni + vni )

(
1− ∆t

∆x

)
+ (uni±1 + vni±1)

∆t

∆x

)
, (9d)

and where the coefficients β are either 1 if no jump occurs along the respective characteris-
tics or β ∈]0, 1[ and they are computed to capture the time of switch of sign of h along the
characteristics.

To keep this writing short, only the computations to obtain βu are described below, those
for βv follows by similar computations. Following the characteristics, we have

(u+ v)(xi + ∆t(1− β), tn + β∆t) = 0,

u(xi + ∆t(1− β), tn + β∆t) = u(xi + ∆t, tn) + β∆tSu ((u+ v) (xi + ∆t, tn)) ,

v(xi + ∆t(1− β), tn + β∆t) = v(xi + (1− 2β)∆t, tn) + β∆tSv ((u, v) (xi + (1− 2β)∆t, tn)) ,

and where we approximate down the characteristics

w(xi + α∆t, tn) ≈ w̃(xi + α, tn) := wni (1− α∆t

∆x
) + wni+1α

∆t

∆x
,

w(xi − α∆t, tn) ≈ w̃(xi − α, tn) := wni (1− α∆t

∆x
) + wni−1α

∆t

∆x
,

Sw ((u+ v) (xi + α∆t, tn)) ≈ Sw ((ũ+ ṽ) (xi + α∆t, tn)) .

Defining γ± = min
(

1,max
(

0,± uni +vni
(uni±1+vni±1)−(uni +vni )

))
which corresponds to the potential loca-

tion where (u+ v)(x+ γ∆x, tn) = 0, then

Sw ((ũ+ ṽ) (xi ± α, tn)) =

{
Sw(uni±1 + vni±1) if α ≥ γ±,
Sw(uni + vni ) otherwise.

Eventually, this leads to

βu,ni = 1 if sign ((ũ+ ṽ)(xi + ∆t, tn)) = sign
(
ũ(xi + ∆t, tn) + ṽ(xi −∆t, tn) + ∆t(S̃u,n+,i + S̃v,n−,i)

)
.

8
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Figure 3: Representation of the differnent quantities for the computation of βu.

Otherwise, βu,ni = β̃u,ni if β̃u,ni ≤ min(1
2 ,

1−γ+
2 ) where

β̃u,ni =
uni
(
1− ∆t

∆x

)
+ uni+1

∆t
∆x + vni+1

∆t
(
S̃u,n+,i + S̃v,n+,i − 2

vni+1−vni
∆x

) .
Otherwise, βu,ni = β̃u,ni if 1−γ+

2 ≤ β̃u,ni ≤ 1
2 where

β̃u,ni =
uni
(
1− ∆t

∆x

)
+ uni+1

∆t
∆x + vni+1

∆t
(
S̃u,n+,i + S̃v,ni − 2

vni+1−vni
∆x

) .
Otherwise, βu,ni = β̃u,ni if 1

2 ≤ β̃
u,n
i ≤ 1+γ−

2 where

β̃u,ni =
uni
(
1− ∆t

∆x

)
+ uni+1

∆t
∆x + vni (1 + ∆t

∆x)− vni−1
∆t
∆x

∆t
(
S̃u,n+,i + S̃v,ni − 2

vni −vni−1

∆x

) .

Otherwise, βu,ni = β̃u,ni if 1+γ−

2 ≤ β̃u,ni ≤ 1 where

β̃u,ni =
uni
(
1− ∆t

∆x

)
+ uni+1

∆t
∆x + vni (1 + ∆t

∆x)− vni−1
∆t
∆x

∆t
(
S̃u,ni,+ + S̃v,ni,− − 2

vni −vni−1

∆x

) .

These correspond to the exact integrals if the solution at time tn was indeed continuous piece-
wise affine passing at the (uni , xi) and (vni , xi). By construction, the underlying approximation
(continuous piecewise affine) is an exact continuous steady state for (1). Therefore, its discrete
data (uni , v

n
i ) also captures a discrete steady state.

4.2 A Finite Volume approach with a localized source

Another approach is often prefered as it remains the approximate Riemann solver framework.
It was based on the idea of Greenberg and Leroux [5] (see also [4, 3]) and consists in approximat-
ing the source term by a distribution of the form S(t)δxi+1/2

which is defined at the interfaces.

9
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This approach is very popular for the construction of well-balanced schemes capturing steady
states in a non-linear framework.

In this spirit, we aim to approximate the solution of the system

∂tu− ∂xu− Su(u, v)∂xy = 0, (10a)

∂tv + ∂xv − Sv(u, v)∂xz = 0, (10b)

∂ty = 0 = ∂tz, (10c)

where the exact a = x = b are also approximated. We consider Heaviside initial condition for
every component. The non-conservative products are understood by regularizing

yε(x, t = 0) = yL + (yR − yL)
(x
ε
1[0,ε[(x) + 1[ε,+∞[(x)

)
(x),

zε(x, t = 0) = zR + (zL − zR)

(
x

−ε
1]−ε,0](x) + 1]−∞,−ε](x)

)
,

and taking the limit ε→ 0. Integrating (10a) on [0,∆t]× [−∆x,−ε] and (10b) on [0,∆t]× [ε,∆x]
and computing the limit provides

u∗ − uL
∆t

− u(x = 0−)− uL
∆x

= 0,
v∗ − vR

∆t
+
vR − v(x = 0+)

∆x
= 0,

where u∗ ≈ u(x, tn+1) for x ∈ [−∆t, 0] and v∗ ≈ v(x, tn+1) for x ∈ [0,∆t] and we need to give a
sense to the flux terms u(x = 0−) and v(x = 0+).

Integrating (10a) over [−∆x, 0] and taking the limit ε→ 0 (see [5]), those fluxes satisfy

yR − yL =

{
−u(x=0−)−uL

Su(uR,vL) if sign(uL + vL + (yR − yL)Su(uR, vL)) = sign(uL + vL),

− u(xL)−uL
Su(uR,vL) −

u(x=0−)−u(xL)
a+b−Su(uR,vL) otherwise,

zR − zL =

{
vR−v(x=0+)
Sv(uR,vL) if sign(uR + vR + (zR − zL)Sv(uR, vL)) = sign(uR + vR),
vR−v(xR)
Sv(uR,vL) −

v(xR)−v(x=0+)
c+d−Sv(uR,vL) otherwise,

where xR and xL locate the zeros of u+ v, i.e. such that

u(xL) + vL = uL + vL + (yR − y(xL))Su(uR, vL) = 0,

uR + v(xR) = uR + vR + (zR − z(xx))Sv(uR, vL) = 0.

Eventually, integrating (10a) and (10b) on [0,∆t]× [xi−1/2, xi+1/2] provides the scheme

un+1
i − uni

∆t
+
f+(uni+1, v

n
i+1, u

n
i , v

n
i )− f−(uni , v

n
i , u

n
i−1, v

n
i−1)

∆x
= 0, (11a)

vn+1
i − vni

∆t
+
g+(uni+1, v

n
i+1, u

n
i , v

n
i )− g−(uni , v

n
i , u

n
i−1, v

n
i−1)

∆x
= 0, (11b)
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Figure 4: Exact solution (and initial condition) in straight line and discrete ones with (9) in dashed line
with up triangles and with (11) with down triangles. The solution u are in black, v are in red and u+ v
in blue.

with

f−(uR, vR, uL, vL) = −uR, g+(uR, vR, uL, vR) = vL, (11c)

f+(uR, vR, uL, vL) = −uR −


Su(uR + vL)∆x

if sign(uR + vR + ∆xSu(uR + vL)) = sign(uR + vR),
∆x
[
−uR−uL

∆x + (a+ b− Su(uR + vL))
]

+ a+b
Su(uR+vL)uL +

(
a+b

Su(uR+vL) − 1
)
vL otherwise.

(11d)

g−(uR, vR, uL, vL) = vL +


Sv(uR, vL)∆x

if sign(uL + vL + ∆xSv(uR + vL)) = sign(uL + vL),
∆x
[
vR−vL

∆x + (c+ d− Sv(uR + vL))
]

+
(

c+d
Su(uR+vL) − 1

)
uR + c+d

Sv(uR+vL)vR otherwise.

(11e)

As for the last scheme, this one is obtained from the exact solution of a continuous solution
which a priori possesses a steady state. Therefore, it may possess a discrete steady state.

4.3 Numerical tests

These last two schemes are tested with the numerical parameters of Subsection 2.1 and the
values are plotted on Fig. 4. As expected, these two schemes capture a steady state that is
consistent with the exact one.

5 CONCLUDING REMARKS AND COMMENTS

In this short paper, some discretizations of discontinuous source terms in a hyperbolic balance
law were proposed. The existence or not of discrete steady states with each of them was studied
and illustrated on a test case.

11
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If not all the schemes presented capture steady states, their use is not necessarily prohibited.
Indeed, we have observed numerically that some of those still had a good behavior even if
they were not well-balanced (the flux difference splitting from [2]). Furthermore, we want to
highlight that the considered numerical test was specifically design to trigger oscillations. All the
schemes, even with a centered source term, have a good behavior in most numerical experiments
performed by the author. Especially, no steady configurations satisfying the criteria from [9]
were found to trigger such numerical artifacts. The stability of the equilibrium in such cases is
probably stronger than the one described in Subsection 2.1.

Perspectives of this work include the extension and application of this approach to the full
non-linear model (2) for boiling flows and a complete stability analysis of the equilibria in this
case and at the discrete level. Study of these steady states in a non-linear framework were also
provided in [8]
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