
HAL Id: hal-03752751
https://hal.science/hal-03752751v2

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of the spatial component in the source
term of a space-time fractional diffusion equation

Mohamed Ben Salah, Maatoug Hassine

To cite this version:
Mohamed Ben Salah, Maatoug Hassine. Identification of the spatial component in the source term of
a space-time fractional diffusion equation. CARI 2022, Oct 2022, Monastir, Tunisia. �hal-03752751v2�

https://hal.science/hal-03752751v2
https://hal.archives-ouvertes.fr


Identification of the spatial component in the source term of a space-time
fractional diffusion equation

Mohamed Ben Salah1* and Maatoug Hassine2

1Department of Mathematics, Faculty of Sciences, University of Monstir, Tunisia
2Department of Mathematics, Faculty of Sciences, University of Monstir, Tunisia

*E-mail : mohamed.bensalah@fsm.rnu.tn

Abstract
This paper is concerned with an inverse source problem for a space-time fractional diffusion equa-
tion. The aim is to reconstruct the spatial component in the source term from partially observed
data. The considered ill-posed inverse source problem is formulated as a minimization one. The
existence and the stability of the minimization system are discussed. An iterative process is devel-
oped for identifying the unknown source term. The efficiency and the accuracy of the algorithm
are shown by several numerical experiments.
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I INTRODUCTION

Fractional diffusion equations (FDEs), which are obtained by replacing the classical derivative
(in time and /or space) by a generalized derivative of fractional order, have been applied to ex-
plain various physical phenomena (see [4] and references therein). Notably, FDEs serve as a
valuable tool for characterizing anomalous diffusion patterns attributed to the nonlocal charac-
teristics inherent in fractional order derivatives. To provide greater clarity, fractional extensions
of foundational model equations have found application in comprehending a wide spectrum
of physical phenomena, spanning biological systems [7], porous media [9], viscoelasticity [5],
quantum mechanics [11], contaminant dispersion [12], and so forth.

In this article, we investigate an inverse problem for a fractional diffusion equation, that is the
identification of the spatial component in the source term of a space-time fractional diffusion
equation. Let Ω ⊂ Rd, d ≥ 1, be an open bounded domain with a sufficiently smooth boundary
and T > 0, we consider the following space-time fractional diffusion equation

∂α
t u(x, t) + (−∆)su(x, t) = f(x) g(t), x ∈ Ω, t ∈ (0, T ), (1)

subject to the boundary condition

u(x, t) = 0 in Ωc × (0, T ), where Ωc = Rd\Ω, (2)

with initial condition

u(x, 0) = 0 in Ω. (3)
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In equation (1), the function f(x) models the spatial distribution e.g. of the contaminant source,
the temporal component g(t) describes the time evolution pattern, and the operator ∂α

t represents
the Caputo fractional derivative of order 0 < α < 1 and is defined as

∂α
t w(t) :=

1

Γ (1− α)

∫ t

0

w′(τ)

(t− τ)α
dτ,

where Γ(.) is the usual Gamma function. For 0 < s < 1, (−∆)s denotes the fractional Laplace
operator, defined as

(−∆)sw(x) =
22ssΓ

(
s+ d

2

)
πd/2Γ(1− s)

P.V.
∫
Rd

w(x)− w(y)

|x− y|d+2s
dy,

where "P.V." denotes the principal value of the integral:

P.V.
∫
Rd

w(x)− w(y)

|x− y|d+2s
dy = lim

ε↓0

∫
{y∈Rd,|y−x|>ε}

w(x)− w(y)

|x− y|d+2s
dy.

An extra condition usually termed an over-specified condition is considered for the determina-
tion of the solution of the inverse considered problem for (1)-(3) and is given by

u(x, t) = Vδ
obs in ω × (0, T ),

where ω ⊂ Ω be an arbitrarily chosen open subdomain.

Recently, inverse source problems for FDEs have been considered by many researchers. For
space fractional diffusion equations, identification of a source term is considered in [12, 18], the
considered problem has application in water contamination. On the other hand, inverse source
problems for time-fractional diffusion equations have been extensively studied. Yamamoto
et al. [13] proved the uniqueness result by using the Duhamel principle. Wang et al. [6]
determined the space-dependent source term from the final time data. Ben Salah [16] utilized
the topological gradient method to identify the shape and location of the source term. However,
to the best of our knowledge, there are rare work on inverse source problems for the space-time
fractional diffusion equations. Muhammad et al. [14] used the eigenfunction expansion method
to prove the uniqueness of the inverse source problem. Tatar and Ulusoy [10] have proved the
uniqueness of inverse source problem using a final overdetermining data u(x, T ). The main
difference from these studies is that we will examine both theoretical and numerical aspects
related to the considered inverse problem.

It is well known that the considered inverse source problem mentioned above is an ill-posed
problem in the sense of Hadamard [1]. To deal with this ill-posedness, in this paper, we will
utilize a classical Tikhonov regularization method. Hence, the reconstruction of the source term
can be reformulated as a minimization one. After that, the existence, uniqueness and stability
of the optimization problem have been discussed. In the numerical aspect, we will propose an
efficient and accurate iterative reconstruction algorithm. The main idea of our approach is to
characterize the minimizer by a variational equation with the help of the adjoint state, which
results in the iterative thresholding algorithm. The efficiency and accuracy of the proposed
algorithm are illustrated by some numerical results.

This paper is organized as follows: In the next section we reformulate the inverse problem as a
regularized minimization one. Existence, uniqueness and stability for the minimization problem
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are discussed in Section III. Section IV is concerned with the proposed reconstruction approach.
An optimality condition is established in Section 4.1. The main steps of the derived numerical
algorithm are described in Section 4.2. In Section V, some numerical results are presented to
show the efficiency and the accuracy of the proposed method. Finally, we give a conclusion in
Section VI.

II INVERSE PROBLEM FORMULATION

Let Ω ⊂ Rd (d ≥ 1) be an open bounded domain and T > 0 be a fixed final time. Assuming that
the temporal component g ∈ L2(0, T ) be given, the inverse problem that we consider consists
in identifying the source term f ∈ L2(Ω) in the following initial-boundary value problem

∂α
t u(f) + (−∆)su(f) = f(x) g(t) in Ω× (0, T )

u(f) = 0 in Ωc × (0, T )

u(f) = 0 in Ω× {0}.
(4)

from an internal observation data Vδ
obs, measured on ω× (0, T ) where ω ⊂ Ω be a given subdo-

main.

It is well known that this inverse problem is ill-posed in the sense of Hadamard [1]. To deal
with the ill-posedness, we shall utilize a classical Tikhonov regularization methodology as that
in [3, 13, 17]. Consequently, the considered inverse source problem may be reformulated and
modeled by the following regularized minimization problem:

min
f∈L2(Ω)

K(f), K(f) :=
∥∥u(f)− Vδ

obs

∥∥2

L2(ω×(0,T ))
+ β∥f∥2L2(Ω) (Pmin)

where u(f) is solution to (4) and β > 0 is the regularization parameter.

III MATHEMATICAL ASPECTS

This section is concerned with a mathematical analysis of the minimization problem (Pmin).

3.1 Preliminaries

In this subsection, we first set up notations, and review some of the standard facts on fractional
calculus ( see Adams [2], and Edmunds et al. [19]). For s ∈ (0, 1), the usual fractional Sobolev
space Hs(Ω) is defined as

Hs(Ω) =

{
v ∈ L2(Ω) :

∫
Ω

∫
Ω

|v(x)− v(y)|2

|x− y|d+2s
dxdy <∞

}
.

It is well-known that Hs(Ω) is a Hilbert space endowed with the norm ∥ · ∥Hs(Ω), defined by

∥v∥Hs(Ω) =
(
∥v∥2L2(Ω) + |v|2Hs(Ω)

) 1
2
,

where | · |Hs(Ω) denotes the Aronszajn-Slobodeckij seminorm, given by

|v|2Hs(D) =

∫
Ω

∫
Ω

|v(x)− v(y)|2

|x− y|d+2s
dxdy.

Moreover, let us introduce the fractional space H̃s(Ω) of order s ∈ (0, 1), which is defined as Ω

H̃s(Ω) :=
{
v ∈ Hs

(
Rd

)
: supp v ⊂ Ω

}
.

The following theorem gives us the regularity of the weak solution of the forward problem (4).
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Theorem III.1: [15, Theorem 3.2]
Let 0 < α, s < 1, f ∈ L2(Ω) and g ∈ L2(0, T ) be given. Then, problem (4) admits a unique
solution u ∈ L2(0, T ; H̃s(Ω)∩Hs+γ(Ω)) such that ∂α

t u ∈ L2(Ω× (0, T )). Further, there exists
a constant C > 0 such that

∥∂α
t u∥L2(Ω×(0,T )) + ∥u∥L2(0,T ;Hs+γ(Ω)) ≤ C∥f∥L2(Ω),

here γ := min{s, 1/2− ε} with ε > 0 arbitrarily small.

3.2 Analysis of the minimization problem

In this subsection, we will discuss some questions related to the minimization problem (Pmin).
We start by showing the unique existence result in Theorem III.2. The stability question is
proved in Theorem III.3.

Theorem III.2: [18, Theorem 3.5]
Let Vδ

obs ∈ L2(ω× (0, T )) be an observed data, measured on a given sub-domain ω ⊂ Ω. Then,
the minimization problem (Pmin) admits a unique solution f ⋆ ∈ L2(Ω).

Proof. Since K(f) is nonnegative, we establish that inff∈L2(Ω)K(f) is finite. Consequently, a
minimizing sequence {fn} ⊂ L2(Ω) is identified, satisfying

lim
n→∞

K (fn) = inf
f∈L2(Ω)

K(f).

By the definition of K (fn), it is evident that {fn} is uniformly bounded in L2(Ω). This leads
to the existence of f ⋆ ∈ L2(Ω) and a subsequence of {fn}, denoted as {fn}, such that

fn ⇀ f ⋆ in L2(Ω) as n→∞.

We proceed to establish that f ⋆ is indeed the unique minimizer of (Pmin). As each fn cor-
responds to a solution u (fn) to (4) with f = fn, we utilize Theorem III.1 to assert that the
sequence {u (fn)} is uniformly bounded in L2(0, T ; H̃s(Ω)∩Hs+γ(Ω)). This implies the exis-
tence of u⋆ ∈ L2(0, T ; H̃s(Ω)∩Hs+γ(Ω)) and a subsequence of {u (fn)}, denoted as {u (fn)},
such that

u (fn) ⇀ u⋆ in L2(0, T ; H̃s(Ω) ∩Hs+γ(Ω)).

Utilizing the weak formulation of problem (4), we establish u⋆ = u (f ⋆). Consequently, by
employing the lower semi-continuity of the L2-norm, we deduce

K (f ⋆) =
∥∥u (f ⋆)− Vδ

obs

∥∥2

L2(ω×(0,T ))
+ β ∥f ⋆∥2L2(Ω)

≤ lim inf
n→∞

∥∥u (fn)− Vδ
obs

∥∥2

L2(ω×(0,T ))
+ β lim inf

n→∞
∥fn∥2L2(Ω)

≤ lim inf
n→∞

K (fn) = inf
f∈L2(Ω)

K(f),

establishing that f ⋆ is indeed a minimizer to the optimization problem (Pmin). Furthermore, the
uniqueness of f ⋆ is evident from the convexity of K(f).

Next, we justify the stability of the minimization problem (Pmin) concerning the perturbation
in observation data.
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Theorem III.3: [18, Corollary 3.6]
Let Vδ

ℓ ⊂ L2(ω× (0, T )) be a sequence such that Vδ
ℓ → Vδ

obs in L2 (0, T ;L2(ω)) as ℓ→∞ and{
f ℓ
}

be a sequence of minimizers of problems

min
f∈L2(Ω)

Kℓ(f), Kℓ(f) :=
∥∥u(f)− Vδ

ℓ

∥∥2

L2(ω×(0,T ))
+ β∥f∥2L2(Ω), ℓ = 1, 2, . . .

Then
{
f ℓ
}

converges strongly in L2(Ω) to the minimizer of (Pmin).

Proof. The unique existence of each f ℓ is guaranteed by Theorem III.2. By definition, we have

Kℓ

(
f ℓ
)
≤ Kℓ(f), ∀f ∈ L2(Ω),

which implies the uniform boundedness of f ℓ in L2(Ω). Hence, there exist f ⋆ ∈ L2(Ω) and a
subsequence of

{
f ℓ
}

, still denoted by
{
f ℓ
}

, such that

f ℓ ⇀ f ⋆ in L2(Ω) as ℓ→∞.

Now it suffices to show that f ⋆ is indeed the unique minimizer of (Pmin). Repeating the same
argument as that in the proof of Theorem III.2, we can derive

u
(
f ℓ
)
⇀ u (f ∗) in L2(0, T ; H̃s(Ω) ∩Hs+γ(Ω)) as ℓ→∞,

up to taking a further subsequence. It follows

u
(
f ℓ
)
− Vδ

ℓ ⇀ u (f ⋆)− Vδ
obs in L2

(
0, T ;L2(ω)

)
as ℓ→∞.

Therefore, we get∥∥u (f ⋆)− Vδ
obs

∥∥2

L2(ω×(0,T ))
≤ lim inf

ℓ→∞

(∥∥u (f ℓ
)
− Vδ

ℓ

∥∥2

L2(ω×(0,T ))

)
. (5)

For any f ∈ L2(Ω), again we take advantage of the lower semi-continuity of the L2-norm to
deduce

K (f ⋆) ≤
∥∥u(f)− Vδ

obs

∥∥2

L2(ω×(0,T ))
+ β∥f∥2L2(Ω) = K(f), ∀f ∈ L2(Ω), (6)

which verifies that f ⋆ is the minimizer of (Pmin).

Next, we shall prove that
{
f ℓ
}

converges to f ⋆ strongly in L2(Ω) by contradiction. Assuming

that it is not true, then we know that
{∥∥f ℓ

∥∥
L2(Ω)

}
does not converge to ∥f ⋆∥L2(Ω). As f ℓ ⇀ f ⋆

in L2(Ω), by the weak lower semi-continuity of the norm, we have

∥f ⋆∥L2(Ω) ≤ lim inf
ℓ→∞

∥∥f ℓ
∥∥
L2(Ω)

.

Hence, setting B := lim supℓ→∞
∥∥f ℓ

∥∥
L2(Ω)

, we get

B = lim sup
ℓ→∞

∥∥f ℓ
∥∥
L2(Ω)

> lim inf
ℓ→∞

∥∥f ℓ
∥∥
L2(Ω)

≥ ∥f ⋆∥L2(Ω) , (7)
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and there exists a subsequence {fm} of
{
f ℓ
}

such that B = limm→∞ ∥fm∥L2(Ω). Now taking
f = f ⋆ in (6), we find that∥∥u (f ∗)− uδ

∥∥2

L2(ω×(0,T ))
+ β ∥f ∗∥2L2(Ω)

= lim inf
m→∞

(∥∥u (fm)− Vδ
m

∥∥2

L2(ω×(0,T ))
+ β ∥fm∥2L2(Ω)

)
= lim inf

m→∞

∥∥u (fm)− Vδ
m

∥∥2

L2(ω×(0,T ))
+ βB2.

This, together with (7), implies that∥∥u (f ⋆)− Vδ
obs

∥∥2

L2(ω×(0,T ))
= lim inf

m→∞

∥∥u (fm)− Vδ
m

∥∥2

L2(ω×(0,T ))
+ β

(
B2 − ∥f ⋆∥2L2(Ω)

)
> lim inf

m→∞

∥∥u (fm)− Vδ
m

∥∥2

L2(ω×(0,T ))
,

which contradicts with (5).

IV RECONSTRUCTION APPROACH

This section is devoted to develop a numerical reconstruction approach for solving the mini-
mization problem (Pmin). It is based on an optimality condition which is obtained with the help
of the corresponding adjoint problem of (4).

4.1 Optimality condition

In the following proposition, we will derive a first-order optimality condition which consists to
provide a new characterization of the unknown source term f ⋆.

Proposition IV.1: [18, Theorem 3.6]
Let f ⋆ be the solution to the minimization problem (Pmin). Then, the source term f ⋆ satisfies
the following optimality condition∫ T

0

g(t) z(f ⋆)(., t) dt+ βf ⋆ = 0, (8)

where z(f ⋆) is the associated adjoint state, solution to the following system:
Dα

t z + (−∆)sz = χω

(
u(f ⋆)− Vδ

obs

)
in Ω× (0, T )

z = 0 in Ωc × (0, T )

J1−α
T− z = 0 in Ω× {T}

(9)

where χω denotes the characterization function of ω, the operator Jα
T− stands the right Riemann-

Liouville fractional integral which is defined by

Jα
T−z(., t) =

1

Γ(α)

∫ T

t

z(., τ)

(τ − t)1−α
dτ,

and Dα
t is the backward Riemann-Liouville fractional derivative

Dα
T−z(., t) :=

−1
Γ(1− α)

d

dt

∫ T

t

z′(., τ)

(τ − t)α
dτ.
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4.2 Reconstruction algorithm

Following the same line as that in [3, 17, 18], the variational equation (8) can be solved by the
following iterative thresholding algorithm

fk+1 =
M
M+ β

fk − τ

M+ β

∫ T

0

g(t) z
(
fk

)
(., t) dt, k = 0, 1, . . . , (10)

whereM > 0 is a tuning parameter for the convergence. The choice ofM should be larger
than the operator norm of the forward operator

B : L2(Ω) −→ L2(ω × (0, T ))

f 7−→ u(f)|ω×(0,T )

It means, the parameterM is chosen in such a way that

M∥f∥2L2(Ω) ≥ ∥B(f)∥2L2(ω×(0,T )), ∀f ∈ L2(Ω).

Thanks to Theorem III.1, this choice can be achieved by choosing

∥|B|∥2 ≤M. (11)

For more details, one can refer to [3, 17].

We are now ready to propose the iterative thresholding algorithm for the reconstruction.

Algorithm 1: Iterative reconstruction algorithm.

Initialisation :
• Choose an initial source term f 0.
• Fix a tuning constantM > 0 according to (11) and a regularization parameter β > 0.
• Choose an error tolerance ρ > 0 and a fixed observation sub-domain ω ⊂ Ω.
• Give an observed data Vδ

obs with a fixed level of noise δ (can be obtained from an exact
solution fexact).

Set k = 0
(i) Solve problems (4) and (9), respectively, with f = f 0.
(ii) Determine the term f 1 by using the relation (10).
(iii) Compute the error estimate err(0) by using the following error function

err(k) =

∥∥fk+1 − fk
∥∥
L2(Ω)

∥fk∥L2(Ω)

.

Set k = 1
while err(k − 1) > ρ

(i) Solve problems (4) and (9), respectively, with f = fk.
(ii) Determine the term fk+1 by using the relation (10).
(iii) Compute the error estimate err(k).

k ←− k + 1.
end while

In the next section, we shall present several numerical experiments by applying Algorithm 1 to
solve the minimization problem (Pmin).
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V NUMERICAL EXPERIMENTS

In this section, we present several numerical examples that demonstrate the efficiency of the
proposed approach. The aim is the reconstruction of the spatial component in the source term
for the considered space-time fractional diffusion system by applying Algorithm 1.

5.1 Numerical implementation

Without loss of generality, in the numerical implementation, we set

Ω = (−1, 1), T = 1.

To solve problems (4) and (9), we utilize an approximation method based on the combination
of the finite difference approximation method [8] and the P1 finite element discretization [15,
18]. The noisy observation data Vδ

obs is generated by adding a random perturbation, i.e.

Vobs(x, t) = (1 + δ rand(−1, 1))u (fexact ) (x, t), (x, t) ∈ ω × (0, T ).

where fexact is the true solution, rand(−1, 1) denotes the uniformly distributed random number
in [−1, 1] and δ ≥ 0 is the noise level. The known temporal component g, the parameters β and
ρ are fixed as : g(t) = 1 + t2, β = 10−4 and ρ = 10−4, respectively. Note that we are using
MATLAB 2017b for our numerical simulations.

5.2 Reconstruction results

Throughout this subsection, we denote by In the iteration number and by err the relative error
between the exact solution and the reconstructed one.

5.2.1 Effect of the solution regularity

This test is concerned with the identification of source terms with different regularities. More
precisely, we fix α = 0.4, s = 0.6,M = 0.5, δ = 2%. and apply Algorithm 1 to reconstruct the
following functions

f sm
exact (x) = sin(πx) and f n-sm

exact (x) =


0.25 if − 1 ≤ x < −0.5
0.5 if − 0.5 ≤ x < 0.5

0.75 if 0.5 ≤ x ≤ 1

In Figure 1, we illustrate the true source terms with the corresponding reconstructions, and the
iteration steps In and the relative errors are shown in the caption. From Figure 1, one can
observe that Algorithm 1 works better on the reconstruction of a smooth function.

5.2.2 Effect of the noisy data

In this test, we fix α = 0.8, s = 0.1,M = 0.1 and the true solution fexact(x) = cos(πx)+x2+3.
Our aim is to test the numerical performance of Algorithm 1 with various choices of the noise
level δ to see their influences on the reconstructions. The choices of δ in the tests and the
corresponding numerical performances are listed in Table 1. From Table 1, one can observe
that the relative error and iteration steps increase with larger noise level as expected.

8



Figure 1: True source terms and their reconstructions. Left: f sm
exact , In = 37, err = 3.15%. Right:

fn-sm
exact , In = 67, err = 5.85%.

δ 0.5% 1% 2% 4% 8%
err 1.44% 1.55% 1.95% 3.10% 6.16%
In 28 28 28 29 32

Table 1: The relative errors and the iteration numbers with respect to the noise level.

5.2.3 Effect of the subdomain ω

This test, we examine the influence of the subdomain ω on the accuracy of the reconstruction
results. In doing so, we fix M = 1, δ = 2%, α = 0.4 and s = 0.7 and we apply Algorithm
1 to identify the true source term fexact(x) = 2 − x from an observation data Vδ

obs measured on
ωζ × (0, T ) where the subdomain ωζ is defined by

[−1,−1 + ζ] ∪ [1− ζ, 1], ζ ∈ [0, 1].

Figure 2 shows the variation of the relative error with respect to the parameter ζ . From Figure 2,

Figure 2: Variation of the error err with respect to ζ.

one can observe that the relative error decreases with the increase of the parameter ζ . However,
the efficiency of the algorithm increases as the size of the subdomain ωζ decreases.

VI CONCLUSION AND REFERENCES

In this paper, we investigate an inverse space-dependent source problem for a space-time frac-
tional diffusion equation by internal noisy measured data. In the theoretical part, the inverse
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problem is formulated as a regularized minimization one. The existence, uniqueness and sta-
bility questions related to the minimization problem have been examined. In the numerical
aspect, the minimization problem has been characterized by a variational equation with the help
of the adjoint problem (9). Based on this characterization, an efficient and accurate iterative
reconstruction algorithm has been developed and implemented. Then several numerical tests
are implemented to show the influence of some parameters on the efficiency and accuracy of
Algorithm 1.
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