European Conference on X-ray Spectrometry 2022

HIGH ENERGY ION BEAM MONITORING: X-RAYS BREMSSTRAHLUNG PRODUCTION CROSS SECTION MEASUREMENTS FOR CARBON TARGET

F. Ralite ^(1,3), C. Koumeir ⁽²⁾, <u>Q. Mouchard</u> ⁽¹⁾, N. Servagent ⁽¹⁾ and V. Métivier ⁽¹⁾

(1) Laboratoire SUBATECH, IMT Atlantique, CNRS-IN2P3, Université de Nantes, Nantes, France
(2) GIP ARRONAX, Saint-Herblain, France
(3) Institut Bergonié, Bordeaux, France

Contact : f.ralite@bordeaux.unicancer.fr

MEDICAL CONTEXT

WORLDWIDE CANCER STATISTICS

(World Health Organisation Report 2018)

SPREAD-OUT BRAGG PEAK (SOBP)

SECONDARY PARTICLES PRODUCTION

Figure 2 : Schematic view of particles emitted from the irradiated medium after interaction with a proton beam.

Non-invasive method to monitore ion beam are based on the detection of the secondary particles produced in the irradiated medium

Ion beam interaction with matter:

- X-ray production
 - Ionisation / Excitation
 - Bremsstrahlung
- γ photon production
 - Gamma prompt production from nuclear interaction
 - Annihilation of positron from β+ emitter created by the radiation

NON-INVASIVE METHODS : DIFFERENT WAYS

THE BREMSSTRAHLUNG X-RAYS

Figure 4 : Schematic view fo the bremsstrahlung X-rays emitted from different processes.

Bremsstrahlung

- X-ray emissions from the deceleration of the charged particles in the medium
- X-ray energy is proportional to the energy loss of the charged particles
- Continuous part of the X-ray spectrum

Bremsstrahlung processes

- QFEB : Quasi-Free Electron Bremsstrahlung
- SEB : Secondary Electron Bremsstrahlung
- AB : Atomic Bremsstrahlung
- NB : Nuclear Bremsstrahlung

Why should we study the Bremsstrahlung ?

- Directly link to the deposited dose
- Sensitive to the medium attenuation
 - Low energy X-rays : medium chemical composition
 - High energy X-rays : medium density

THE BREMSSTRAHLUNG CROSS-SECTION

- Theoretical model of the bremsstrahlung cross-section was developed in context of PIXE (Particle Induced X-Ray Emission)
- Models only valid for ion beams with an energy lower to 20 MeV

Chu, Phys. Rev. A, 1981; Miraglia, Phys. Rev. A, 1989; Pacher, Phys. Rev. A, 1990; Amusia, Rad. Phys. Chem., 2006; Ishii, Rad. Phys. Chem., 2006; Ishii, NIM B., 2018

Figure 5 : Theoretical bremsstralung cross section from a carbon target irradiated with protons of 5 MeV.

EXPERIMENTAL SET-UP

Figure 6 : Schematic view of the experimental set-up to measure bremsstrahlung spectra and cross section.

Purpose:

- To study the sensitivity of the method by measuring bremsstrahlung cross sections
- To study the theoretical bremsstrahlung cross section models in the ARRONAX beam energy range (17–70 MeV)

Experimental set-up:

- Alpha beam of 62 MeV
- Protons beams of 15, 29, 33, 39 and 49 MeV
- Carbon target:
 - Monoatomic target
 - Present in chemical composition of the biological samples

Context – Beam monitoring method – Bremsstrahlung cross sections – Results – Conclusion

MEASUREMENT OF THE X-RAYS SPECTRA

Figure 7 : Photography of the experimental set-up.

SIMULATION OF THE BREMSSTRAHLUNG SPECTRA

CROSS SECTION MEASUREMENT RESULTS

Calculation of cross-sections:

• For the kth X-ray energy :

$$\frac{d\sigma}{dh\nu} = \frac{1}{dh\nu} \sum_{k=1}^{N} \frac{N_k^{XR} \cdot M_C}{N_p \cdot \varepsilon_k \cdot \mathcal{A}_k \cdot \mathcal{N}_a}$$

- *M_C* : Carbon's molar mass
- \mathcal{N}_a : Avogadro constant
- Energy detection window of 0.4 keV to satisfy a significant statistics (>1000 counts)
- *Ak:* The medium attenuation is calculated with the NIST (XCOM) coefficient
- The real target thickness is calculted after mass measurements

$$e_{carbon} = \frac{m_{carbon}}{s_{carbon} \cdot \rho_{carbon}}$$

Comparison with literature data:

- Significant agreement with the litterature
- Discrepancies due to beam energy difference and the carbon thickness difference
- Compton scaterring is not included in the model

CROSS SECTION MEASUREMENT RESULTS

Figure 13 : Differential bremsstrahlung cross sections simulated (lines) and measured (dots) for alpha beam of 62 MeV and protons beams of 15 MeV, 29 MeV, 33 MeV and 49 MeV on a carbon target. Cross sections measured :

- 10 mbarn.keV⁻¹ to 1 barn.keV⁻¹
- Significant signal for ion beam monitoring
- Some measurement were repeated :
 - Protons of 15 MeV and 49 MeV
 - Deviations under 3%
- Theoreticcal bremsstrahlung cross section models :
 - Good agreement for low X-rays energies (< $h v_{max}^{QFEB}$)
 - Discrepancies for high energies : Compton scattering is not included in the model
 - Validity of the models for the ARRONAX ion beam range (up to 50 MeV)
 - Measurements required for clinical energy beams (> 100 MeV)

CONCLUSION AND OUTSKIRTS

Bremsstrahlung cross sections were measured

- Alpha beam of 62 MeV
- Protons beams in the ARRONAX beam energy range (<50 MeV)
- The magnitude of the bremsstrahlung cross sections measured indicates the signifiant sensitivity of the bremsstrahlung signal
 - · Possibility to use the bremsstrahlung signal for ion beam monitoring

Simulation of the bremsstrahlung cross sections

- Based on the theoretical works from PIXE
- Comparison with measurements showing a significant agreement
- QFEB and SEB are the main bremsstralung processes
- Validity of the models for ion beams < 50 MeV
- Simulation can be improved by taking into accont the Compton scattering and the electrons target velocities to have better agreement with the measurements

• The Bremsstrahlung radiations are a promising tool for hadrontherapy applications

- Cross sections measurements are required for clinical energy beam (> 100 MeV)
- · Link between the bremsstrahlung signal and the deposited dose should be investigated