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Abstract

We herein introduce an analytical model of hydrogen inventory saturation in the subsurface of ma-
terials (several micrometers depth) under plasma implantation. This model is valid for materials for
which the desorption process is not limited by hydrogen recombination at the surface. It is based on a
simplified assumption for the implantation of both hydrogen ions and atoms (point sources) and on a
stationary approach. The model provides an approximation of the density profile of mobile/interstitial
hydrogen and of the density profile of hydrogen trapped at materials defects in the subsurface layer.
The analytical model shows good agreement with Reaction-Diffusion simulations of deuterium im-
plantation in tungsten at different material temperatures. For the fusion relevant materials tungsten
and beryllium, it is shown that most of the inventory is found in traps. The model gives the filling
ratio of traps in the subsurface at steady-state fBULK

stat,i . This simple parameter indicates how the total
subsurface inventory builds up during plasma exposure and provides a simple way to understand the
retention dynamics observed during non-linear Reaction-Diffusion simulations.

1 Introduction.

The interaction of Hydrogen Isotopes (HI) with materials has attracted lots of attention in the past
years, especially in the field of nuclear fusion. Future reactors will produce energy via nuclear fusion of
deuterium and tritium nuclei. Part of the tritium will be retained in the wall of the reactor leading to
safety issues as tritium is radioactive [1]. The two main mechanisms leading to HI retention are: (i) HI
co-deposition with eroded wall materials [1] and (ii) HI implantation within the materials. The latter
can be theoretically studied via the so-called Reaction-Diffusion (R-D) system of equations introduced
by McNabb and Foster [2]. This system describes the implantation of HIs, their diffusion and trapping
at defects into the materials. Since then, the R-D model has been numerically solved to study the
interaction of HI with various fusion relevant materials: tungsten [3, 4, 5, 6, 7, 8], beryllium [9, 10],
steel [11, 12], aluminium [13] to mention just a few examples.
However, in a tokamak, the implantation conditions vary widely as a function of the location on the
wall; this complicates the full modelling of HI retention and the interpretation of the simulation results.
Nonetheless, the first simulation of the dynamics of HI retention was recently performed at the scale
of the JET tokamak [14]. But the R-D equations are non-linear, making the full understanding of
the phenomenon they describe difficult. To achieve such an understanding, we here propose a simple
analytical model.

1



In 1982, B. L. Doyle already introduced an analytical model based on a simplified description of the
implantation source considered as a point [15]. Doyle also assumed that a steady state was reached. The
mechanisms incorporated in the model were diffusion and surface recombination of HI, while trapping
of HI at defects was omitted. As a consequence, the model provides only the interstitial/mobile HI
density profiles, not the HIs density trapped at defects. Moreover, recent results have shown that
the recombination model used by Doyle is dependent on the implantation flux density [16], and this
dependence has not yet been theoretically established. More recent attempts were carried out to derive
a time-dependent analytical model [17, 18]. This model has the advantage to consider trapped HIs
and to follow their evolution in time. However, it is based on the assumption of deep trapping, which
implies a high density of traps and that trapped HI cannot be released. Such an assumption implies
low temperature and low implantation flux density, which limits the range of validity of the model.
This range of validity has still not been evaluated yet.
It follows that the retention dynamics of HIs into the wall of tokamak would have its understanding
facilitated by the availability of an analytical model considering implantation, diffusion, trapping and
release, all of this in a broad range of temperature. This is precisely the aim of this work. The present
model is based on the same assumptions as used by Doyle: (i) the implantation source is assumed as a
point source, and (ii) the steady-state is reached. Trapping at various point defects is also considered
while the recombination process is assumed not rate-limiting.
The rest of the paper is organised as follows. First the considered R-D system of equations is intro-
duced. Then it is shown that the HI inventory calculated by this system tends to saturate during
plasma exposure in a time scale similar to the one experimentally observed. An analytical model for
hydrogen inventory saturation in the subsurface under plasma exposure is subsequently introduced and
is compared to R-D simulations at different material temperatures. This model gives the expression
of the filling ratio of traps in the subsurface at steady-state, fBULK

stat,i . We eventually determine which
kind of implanted HIs (mobile or trapped) dominates the total subsurface inventory in fusion relevant
material tungsten and beryllium. The article concludes by highlighting that the simple parameter
fBULK
stat,i is key to understand the dynamics of the total HI inventory in the subsurface of materials.

2 Reaction-Diffusion equations.

The analytical model is derived from the R-D system of equations [2]. According to McNabb and
Foster, two HI populations are considered: mobile HI, which diffuses in the material by jumping from
interstitial site to interstitial site, and trapped HI which are retained at lattice defects (also called
traps). It is considered that these defects are saturable and can only accommodate a single HI. The
model expresses the time evolution of the density of mobile HI, nm [m−3], and of the density of trapped
HI at the trap of kind i, nt,i [m

−3]. The R-D system is made of a diffusion equation for the mobile
particles (equation 1a) coupled to trapping-detrapping equations in various traps of kind i according
to the reaction HIm +Trapi ⇆ HIt,i (equation 1b):

∂nm(x, t)

∂t
=

∂

∂x

(
D(T )

∂nm

∂x

)
−

Ntrap∑
i=1

∂nt,i

∂t

+ Si+
ext(x, t) + Sat

ext(x, t)

(1a)

∂nt,i(x, t)

∂t
= ν∗t,i(T )

ni(x)− nt,i

nIS
nm − νdt,i(T )nt,i (1b)

B.C. at x = 0: nm(0, t) = 0 (1c)

B.C. at x = L:

∣∣∣∣∣∣∣∣
nm(L, t) = 0

or

D(T )
∂nm

∂x
(L, t) = 0

(1d)
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All the parameters and variables of this system of equations are given in table 1.

Variable or parameter Definition Units

x Material depth m
T Material temperature K
D(T ) = D0 exp (−Ediff/(kBT )) Diffusion coefficient of HI in the material m2.s−1

Ediff Activation energy of diffusion eV
kB Boltzmann constant eV.K−1

Ntrap Number of traps in the material
ν∗t,i(T ) = ν0t,i exp (−Et,i/(kBT )) Trapping attempt frequency in the trap of kind i s−1

Et,i Activation energy of trapping eV
ni(x) Trap density m−3

nIS Density of interstitial sites for HI m−3

νdt,i = ν0dt,i exp (−Edt,i/(kBT )) Detrapping frequency s−1

Edt,i Activation energy of detrapping eV

Table 1: Variables and parameters of the Reaction-Diffusion equations.

The R-D equations consider the interaction between HI and material defects/traps. These traps can
be intrinsic (i.e. due to the manufacturing process) like grain boundaries and impurities, or extrinsic,
i.e. due to the plasma or neutron irradiation, like vacancies or bubbles. The latter traps depend on
the material and on the experimental conditions. The number of traps Ntrap is obtained by fitting
of thermal-desorption analysis with the R-D equations 1, see for example references [5, 6, 7]. The
fitting gives also the density profile of traps ni(x) and their detrapping energy Edt,i. It is possible
to compare these detrapping energies to detrapping energies calculated with first-principle Density
Functional Theory calculation for point defects (vacancy, di-vacancy, impurities) to characterise the
type of defects present in the real material.
In equation 1a, implantation of ions and atoms from the plasma are given by two volume source, Si+

ext

and Sat
ext respectively:

Sj
ext(x, t) = Γj

imp(t)f
j
imp(x, t) (2)

where Γj
imp(t) is the particle implantation flux density and f j

imp is the implantation profile. It is usually

considered as a gaussian defined by a mean implantation range of particles Xj
imp(t) [m] and a standard

deviation σj
imp(t). Both parameters depend on the HI impact energy, Ej

imp [eV], and on the angle of

incidence with respect to the surface, αj
imp [°]. They can be given by Binary Collision Approximation

codes such as SRIM [19] or SDTrim.sp [20].
The system of equations 1 is solved using Boundary Conditions (B.C.) at both front (x = 0) and
rear (x = L) surfaces. The choice of these B.Cs depends on the material. We here consider that
HI recombination and desorption are immediate at the front surface of the material, yielding to the
Dirichlet B.C equation 1c. On the rear side, either Dirichlet or Neumann B.C., equations 1d, is
assumed depending on the material.

3 Hydrogen inventory saturation in the subsurface under plasma
implantation.

In fusion devices, it is experimentally observed through gas balance analysis that saturation of HI
retention due to implantation in the wall is achieved within 1 to 100 s. This characteristic time
depends on the wall materials and on the plasma scenario [21, 22, 23]. By nature, such a saturation
process has to be reproduced by the non-linear R-D model presented above. The code Migration of
Hydrogen Isotopes in MaterialS (MHIMS) [7, 18] features an implementation of the R-D equations
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1. The saturation process is further investigated with MHIMS via the modelling of deuterium (D)
implantation in a tungsten (W) wall at three different implantation temperatures: 300 K, 500 K and
800 K. A 1 mm depth W sample is loaded with both D+ and D. The implantation conditions (flux
density and energy, the same for the three simulations - shown in table 2) are chosen consistent with
divertor conditions. The parameterisation of the R-D equations defined by Hodille et al. for D-W
interaction [18] is also used and is given in Appendix A. The W sample presents 3 traps for D with
respective profiles and detrapping energies reported in figure 7 in Appendix A.

Implantation parameters D+ D

Γj
imp [m−2.s−1] 1.0× 1021 0.5× 1021

Ej
imp [eV] 100 50

αj
imp [°] 90 90

Xj
imp [nm] 2.7 1.8

Table 2: Implantation parameters for both D+ and D considered in the simulation of D implantation
in W. They correspond to divertor-like conditions. The angle of incidence αj

imp is given with respect

to the material surface. The values of the corresponding mean implantation ranges X i+
imp and Xat

imp

calculated by the SRIM code are also given.

The MHIMS code provides the D desorption flux density Γout [m
−2.s−1], defined as the diffusive flux

density at the material surface. Γout is expressed in terms of D atoms (not D2 molecules) to be
compared to the implantation flux densities of D ions and atoms. This comparison is achieved through
a phenomenological coefficient often referred to as molecular recycling coefficient, Rm:

Rm(t) =
Γout(t)

Γi+
imp(t) + Γat

imp(t)
(3)

In figure 1.a, the time evolution of the molecular recycling coefficient is displayed for the three different
implantation temperatures: Rm tends to 1 in all the three cases within 1 to 100 s depending on the
temperature as observed experimentally. The derivative of the total D areal inventory, Inv [HI.m−2],
tends simultaneously to zero.

The relation between Rm and dInv/dt is analysed below. To this end, the diffusion equation 1a is
reformulated as follows:

∂

∂t

nm(x, t) +

Ntrap∑
i=1

nt,i(x, t)

 =
∂

∂x

(
D(T )

∂nm

∂x

)
+ Si+

ext(x, t) + Sat
ext(x, t) (4)

The sum in parenthesis in the left-hand side is the total HI density. The total HI areal inventory is
obtained through spatial integration of this equation:

∫ L

0

∂

∂t

nm(x, t) +

Ntrap∑
i=1

nt,i(x, t)

 dx =

∫ L

0

∂

∂x

(
D(T )

∂nm

∂x

)
dx+

∫ L

0

Si+
ext(x, t)dx+

∫ L

0

Sat
ext(x, t)dx

dInv(t)

dt
=

�������
D(T )

∂nm

∂x
(L, t)−D(T )

∂nm

∂x
(0, t) + Γi+

imp(t) + Γat
imp(t)

(5)
From the MHIMS simulation at high temperature (800 K), one can see that the desorption flux density
at the rear surface at x = L (the first term in the right-hand side of the last equation of equations
5) is negligible even after 1000 s (the mobile D did not reach the rear boundary of the material). In
addition, one can recognise the outgassing flux density Γout in the second term of the right-hand side
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Figure 1: Time evolution of the molecular recycling coefficient Rm (a) and of the time derivative of
the total D areal inventory (b) for a simulation of implantation of D in a W sample. The implantation
parameters are listed in table 2 while the parameters for D–W interaction considered in MHIMS are
summed up in Appendix A. The implantation is performed at three different sample temperatures:
300 K, 500 K and 800 K. The plots for T = 300 K and T = 500 K overlap. For all the simulations, Rm

tends to 1 indicating a saturation of the wall inventory. The vertical dashed lines indicate the three
times at which the density profiles of mobile and trapped particles are plotted in figures 3, 4 and 5.

of the same equation. Therefore equation 5 can be reformulated to express the relation between Rm

and Inv:

Rm(t) =
Γout(t)

Γi+
imp(t) + Γat

imp(t)

Rm(t) = 1− dInv(t)

dt
× 1

Γi+
imp(t) + Γat

imp(t)

(6)

From equation 6, one can easily see that Rm tends to 1 when the following condition is verified:

Rm(t) → 1 ⇔ dInv(t)

dt
≪ Γi+

imp(t) + Γat
imp(t) (7)

This condition indicates that Rm tends to unity when the evolution of the inventory is low w.r.t. the
total implantation flux density. Such a condition is especially true when the subsurface inventory
saturates. As a consequence, dInv(t)/dt tends to 0 simultaneously as Rm tends to 1. This indicates
saturation of the subsurface region and is consistent with results displayed in figure 1.a and 1.b. This
is also consistent with experimental observations of saturation of the wall inventory. In the following,
a simplified analytical model is derived to understand qualitatively this saturation process.

4 Analytical model for hydrogen inventory saturation in the
subsurface under plasma implantation.

The analytical model is based on the same simplified description of material implantation as used by
B. L. Doyle [15]. The external source S∗

ext is considered as point source at a depth X∗
imp equal to the
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mean implantation depth. In this work, we consider two sources of implantation: a ionic one, Si+
ext, and

an atomic one, Sat
ext. Which source implants deeper has no importance; we will only consider source

1 S1 and source 2 S2 such as Ximp,1 < Ximp,2 (with S1 = Si+
ext or Sat

ext and reversely for S2). The
temperature in the material is assumed constant in space and time. Moreover, we consider that the
HI inventory has saturated and consequently that a steady-state has been reached. Under all these
assumptions, the diffusion equation in the R-D model becomes:

∂

∂x

(
D(T )

∂nm

∂x

)
+ Γimp,1δ(x−Ximp,1) + Γimp,2δ(x−Ximp,2) = 0 (8)

Equation 8 can be solved assuming the Dirichlet B.C. at the front surface, equation 1c, and either the
Dirichlet B.C. or the Neumann B.C at the rear surface, equations 1d. For both cases of B.C. at the
rear surface, the overall density profiles of mobile particle displayed in figure 2 is linear by parts and
only differs for x > Ximp,2 depending on the B.C. used.

!" [m-3]

x	[m]*+,-,/

0+,-,1 0+,-,/

*+,-,1 20

4,5627 Neumann:
8!"
89 9 = ; = 0

Dirichlet:
!" 9 = ; = 0

Front surface Rear surface

Figure 2: Schematic of the steady-state density profile of mobile HI in the simplified description of HI
implantation in material. The two externals sources of implantation are considered as point sources at
their respective mean implantation ranges x = Ximp,1 and x = Ximp,2. The two different bulk profiles
(for Ximp,2 ≤ x ≤ L), corresponding to the use of a Dirichlet boundary condition (dark blue line) and
of a Neumann boundary condition (light blue line) at the rear surface are also depicted.

Under realistic implantation conditions in fusion devices, the HI mean ranges Ximp,1 and Ximp,2 do
not exceed 50 nm. Dirichlet B.C. at the rear surface is often used for massive surface material with
a thickness L of several millimeters. However, since Ximp,i ≪ L, the gradient of nm in the zone
[Ximp,2, L] is weak, and when focusing on the front surface up to a length referred to as k%L, both
Dirichlet and Neumann B.C. lead to the same solutions given below in equation 9:

∀ x ∈ [0, Ximp,1], nm(x) =

[
Γimp,1

D(T )
+

Γimp,2

D(T )

]
x (9a)

∀ x ∈ [Ximp,1, Ximp,2], nm(x) =
Γimp,2

D(T )
x+

Γimp,1

D(T )
Ximp,1 (9b)

∀ x ∈ [Ximp,2, k%L], nm(x) =
Γimp,2

D(T )
Ximp,2 +

Γimp,1

D(T )
Ximp,1 = nBULK

m (9c)
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where equation 9c defines the maximum value of the density nBULK
m extending in the bulk direction.

For the case a Neumann B.C. at x = L, this profile is the exact solution of the diffusion equation
8 and is valid for the whole material length (k% = 100 %). Regarding the case of a Dirichlet B.C.
at x = L, this profile is an approximation of the exact profile. If one considers an absolute error of
k%n

BULK
m on nm (hence a maximum relative error k% for x > Ximp,2), this approximation is valid for

L ≫ Ximp,2/k% up to a depth x = k%L (cf. Appendix B). For example, in the MHIMS simulations
presented in section 3, L = 1 mm and Ximp,2 = 2.7 nm: assuming a relative error k% = 1 %, the
approximated profile given by equation 9 is valid up to x = 10 µm.
Then one can obtain the outgassing flux density from equation 9a:

Γout = D(T )
∂nm

∂x
(0) = Γimp,1 + Γimp,2 (10)

And the resulting molecular recycling coefficient is:

Rm =
Γout

Γimp,1 + Γimp,2
= 1 (11)

which verifies the condition of full recycling.

Now, we focus on the profile of trapped particles. At steady-state, equation 1b gives:

∂nt,i(x, t)

∂t
= 0 ⇔ nt,i(x) =

ni(x)

1 +
νdt,i(T )

ν∗t,i(T )

nIS

nm(x)

(12)

We obtain the density profiles of trapped HI at steady-state by inserting nm(x) from equation 9 in
equation 12. We then define the stationary filling ratio for each trap of kind i by:

fstat,i(x) =
nt,i(x)

ni(x)
=

1

1 +
νdt,i(T )

ν∗t,i(T )

nIS

nm(x)

(13)

Inserting the maximum density of mobile nBULK
m (equation 9c) into equation 13 leads to the stationary

bulk filling ratio for each trap of kind i:

fBULK
stat,i =

1

1 +
νdt,i(T )

ν∗t,i(T )

nIS

nBULK
m

=
1

1 +
νdt,i(T )

ν∗t,i(T )

nISD(T )

Γimp,1Ximp,1 + Γimp,2Ximp,2

fBULK
stat,i =

1

1 +
ν0dt,i
ν0t,i

nISD0

Γimp,1Ximp,1 + Γimp,2Ximp,2
exp

(
−Eb,i − Ediff

kBT

) (14)

where the binding energy of HI to the trapping site i is Eb,i = Edt,i − Et,i. The expression of fBULK
stat,i

is further simplified assuming that only diffusion limits trapping, which implies ν∗t,i(T ) = D(T )/λ2, as
in section 3:

fBULK
stat,i =

1

1 +
νdt,i(T )λ

2nIS

Γimp,1Ximp,1 + Γimp,2Ximp,2

fBULK
stat,i =

1

1 +
νdt,i(T )

νBULK
t (Γimp,1, Ximp,1, Γimp,2, Ximp,2)

(15)

This expression is of a central importance for the rest of this work. Since fBULK
stat,i = nBULK

t,i (x)/ni(x),

it allows to determine if trap i is filled or empty. More precisely, in equation 15, fBULK
stat,i presents
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a ratio between the detrapping frequency from trap i (νdt,i), which only depends on the material
temperature, and νBULK

t or maximum trapping frequency, which only depends on the implantation
conditions (flux densities and mean implantation ranges). The comparison between νdt,i and νBULK

t

enables to highlight the process that dominates the interaction between D and traps:

• when νdt,i ≫ νBULK
t , detrapping is more efficient than trapping, fBULK

stat,i tends to 0 and the trap
i remains empty.

• when νdt,i = νBULK
t , fBULK

stat,i is equal to 0.5 and the trap i is half filled with HI.

• when νdt,i ≪ νBULK
t , trapping is more efficient than detrapping, fBULK

stat,i tends to 1 and the trap
i saturates.

5 Comparison of the analytical model with Reaction-Diffusion
simulations.

The analytical model described in the previous section is now compared to the R-D simulations per-
formed with the MHIMS code and presented in section 3. The aim is to estimate the validity of the
analytical model in the full range of temperature found in the materials of fusion devices. The profiles
simulated by MHIMS are extracted at three times during the simulations: 0.01 s, 1 s and 100 s (cf.
figure 1). At t = 0.01 s, Rm is way below 1 for the three implantation temperatures, T = 300 K, 500 K
and 800 K. At t = 1 s, Rm is around 0.9 for T = 300 K and 500 K, while it saturates at Rm = 1 for
T = 800 K. At t = 100 s, Rm saturates at 1 for the three simulations and full saturation of subsurface
inventory is expected.
The density profiles of mobile particles nm are plotted at t = 0.01 s, 1 s and 100 s for the three
implantation temperatures of 300 K, 500 K and 800 K in figures 3.a, 3.b and 3.c respectively. The
analytical density profiles obtained from equation 9 are also displayed as well as the mean implantation
ranges for ions X i+

imp and for atoms Xat
imp (whose values are reported in table 2). A very good agreement

between the analytical profiles and the simulated profiles is observed in the implantation zone (0 ≤
x ≤ 30 nm) for the cases where Rm = 1. This corresponds to t = 100 s for the three implantation
temperatures and to t = 1 s for T = 800 K. On the contrary, at t = 0.01 s for the three temperatures,
the density profile of mobile still builds up, and at t = 1 s for T = 300 K and 500 K, the diffusion
front in the depth of the material is not distant enough from the implantation zone to have an almost
flat density profile of mobile in the zone x > Ximp,2. It is clear that the density profiles for each
implantation temperature tend to the analytical profiles when the implantation time increases. Thus,
equation 9 can be seen as an upper limit to the density profile of mobile particles in the subsurface.
In the same way, the analytical density profiles of trapped particle nt,i given by equation 12 are
compared to the one simulated by MHIMS. Figures 4 and 5 display nt,i for traps 1 and 3, respectively,
during the same simulations as above. These traps are arbitrarily selected due to their highly different
detrapping energies and density profiles. For the sake of clarity, the results for trap 2 are not shown;
they are similar to the ones for traps 1 and 3. The same conclusions as for nm can be drawn for nt,i: (i)
a very good agreement is found between the analytical and the simulated profiles in the implantation
zone (0 ≤ x ≤ 30 nm) when Rm = 1, and (ii) the profiles for each implantation temperature tend to
the analytical profiles when the implantation time increases. The agreement is particularly good in
case of trap 3, whose density profile is non-uniform. Thus, the analytical profile given by equation
12 can also be seen as an upper limit to the profile of nt,i to which the R-D model converges at the
subsurface.
Finally, the bulk filling ratio at steady state fBULK

stat,i is given in inset for the three simulations in figure
4 for trap 1 and in figure 5 for trap 3. At 300 K both traps are fully saturated. At 500 K, trap 3 is still
saturated while trap 1 remains empty during implantation with a bulk filling ratio of 3 %. At 800 K,
trap 1 is completely empty while trap 3 is partially filled with fBULK

stat,3 = 17 %. Overall, trap 3 retains
more efficiently D due to its higher detrapping energy.
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Figure 3: Density profile of mobile D obtained in the simulation of D implantation in a W sample
with MHIMS. The profiles are plotted for three different times in the simulation: 0.01 s, 1 s and 100 s.
The implantation is performed at three different sample temperatures: 300 K, 500 K and 800 K. The
respective profiles are plotted in figures (a), (b) and (c). The analytical density profiles obtained from
equation 9 are also plotted. The density is expressed in at.% of W. The implantation mean ranges for
ions X i+

imp and for atoms Xat
imp in the simulations are also indicated.

To conclude, the analytical model shows a very good agreement with Reaction-Diffusion equations in
the subsurface layer of materials. It is however based on three assumptions whose relevance is discussed
below in the context of fusion devices:

(i) Constant temperature in space and time: in fusion devices, most of the wall is submitted to
very low heat fluxes and therefore stays at the initial wall temperature. Only the divertor region
is submitted to strong heat fluxes and exhibits strong temperature excursions. However, with
actively-cooled plasma-facing components, the wall temperature, including the divertor, reaches
a steady-state after 5 to 10 s depending on the component design, making the approximation
valid in time. It is also valid in space, with a temperature variation below 1 K in the first ten
micrometers of both W and Be under divertor-like heat flux densities (10 MW.m−2).

(ii) Steady-state: as shown in figures 3, 4 and 5, steady-state is quickly reached in the subsurface
layer, after ∼ 1 s for the three considered temperatures, making the steady-state approximation
valid. To estimate a lower bound for the time to reach steady-state, a similar simulation has been
performed with a lower implantation flux density (1×1019 m−2.s−1) and low temperature (300 K).
In these conditions, saturation of the wall (initially empty) occurs after 230 s, which may seem
too long to validate the assumption. However, at such temperature, HI are not released from
traps after a discharge and this time represents a cumulative plasma time: the subsurface traps
are saturated after some twenty plasma discharges after which the time to reach steady-state will
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Figure 4: Density profile of D trapped in trap 1 obtained in the simulation of D implantation in a W
sample with MHIMS. The profiles are plotted for three different times in the simulation: 0.01 s, 1 s
and 100 s. The implantation is performed at three different sample temperatures: 300 K, 500 K and
800 K. The respective profiles are plotted in figures (a), (b) and (c). The analytical density profiles
of trapped D, obtained from equation 12, are also plotted. Trap 1 presents a flat profile in all the
material depth (cf. figure 7). The mean implantation ranges for ions X i+

imp and for atoms Xat
imp in the

simulations are also indicated. The bulk filling ratio of the trap at steady-state fBULK
stat,1 , as defined by

equation 14, is also given for the three implantation temperatures.

be shorter and the approximation of a quick steady-state becomes valid.

(iii) Point sources for implantation: this point is discussed in appendix C, in which realistic
gaussian sources have been considered and where the exact solutions of the diffusion equation 1a
were derived at steady-state. It is shown that the point source assumption entails a maximum
error on nBULK

m of 5 % for W and of 6 % to 12 % for Be depending on the HI angle of incidence.
Concerning fBULK

stat,i , the relative error is below the errors reported for nBULK
m .

6 A hydrogen isotopes subsurface inventory dominated by traps.

The analytical model here proposed provides good estimates of the density of mobiles nm and the
density of trapped HIs nt,i in the subsurface at steady-state. It allows to define a bulk filling ratio of
traps at steady-state fBULK

stat,i . It follows that, given the knowledge of the density of traps i ni(x), f
BULK
stat,i

determines an upper limit to which nt,i tends in time: nBULK
t,i (x) = fBULK

stat,i ni(x). As the implantation
ranges Ximp,i are in the order of few nanometers for both ions and atoms, the majority of the HI
inventory is found in the bulk direction (x > Ximp,2). As a consequence, in case HIs would reside
mostly in traps (as opposed to HIs as mobile), the knowledge of only fBULK

stat,i would fully provide the
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Figure 5: Density profile of D trapped in trap 3 obtained in the simulation of D implantation in a W
sample with MHIMS. The profiles are plotted for three different times in the simulation: 0.01 s, 1 s
and 100 s. The implantation is performed at three different sample temperatures: 300 K, 500 K and
800 K. The respective profiles are plotted in figures (a), (b) and (c). The analytical density profiles of
trapped D, obtained from equation 12, are also plotted. Trap 3 is an ion-induced trap presenting two
damaged zones (cf. figure 7) which explains the highly non-uniform profiles of trapped D observed in
these figures. The mean implantation ranges for ions X i+

imp and for atoms Xat
imp in the simulations are

also indicated. The bulk filling ratio of the trap at steady-state fBULK
stat,3 , as defined by equation 14, is

also given for the three implantation temperatures.

limit to the total HIs inventory into the subsurface. Whether or not HIs reside in traps is analysed
below.
Looking at figures 3, 4 and 5, we note that nt,i is much higher than nm for the three implantation
temperatures in all the material depth. To verify if this is always true, we can look at the ratio between
the maximum density of trapped HIs and the maximum density of mobile HIs:

nBULK
t,i (x)

nBULK
m

≫ 1 ⇔
fBULK
stat,i ni(x)

nBULK
m

≫ 1

nBULK
t,i (x)

nBULK
m

≫ 1 ⇔ ni(x) ≫ nBULK
m +

νdt,i(T )

ν∗t,i(T )
nIS︸ ︷︷ ︸

nMIN
i

(16)

From equation 16, if the density of traps ni is way above a threshold value called nMIN
i , the subsurface

inventory will mostly resides in traps at steady-state. nMIN
i is a sum of two terms. The first one is

nBULK
m , equation 9c, and only depends on the implantation conditions and on the diffusion coefficient.
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The second one depends on the ratio between the detrapping frequency and the trapping frequency
(hence function of the trap binding energy), making nMIN

i strongly dependent on the material temper-
ature. The expression of nMIN

i is further simplified assuming that only diffusion limits trapping, which
implies ν∗t,i(T ) = D(T )/λ2:

nMIN
i =

Γimp,2Ximp,2 + Γimp,1Ximp,1

D(T )
+

νdt,i(T )λ
2

D(T )
nIS (17)
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Figure 6: Minimum trap density nMIN
i that must be exceeded by the traps to have a D subsurface

inventory mostly found in traps (condition 16) rather than in interstitial sites. nMIN
i is calculated

considering extreme implantation conditions (Γimp = 1 × 1024 m−2.s−1, Eimp = 1 keV) so that the
plots represent a upper limit of the condition 16. The calculation is made for both tungsten (a)
and beryllium (b) considering different values of the detrapping energy. For beryllium, the red shaded
region indicates the temperature range where the analytical model may be invalid as the recombination
process could be rate-limiting. A dashed line is plotted in red at a trap density of 1 at.% as a guide for
the eye. For tungsten, the density of traps used in the MHIMS simulations presented in this article (cf.
Appendix A) are plotted in grey in figure (a). They were obtained by Hodille et al. [18] through fitting
with MHIMS of the experiment of deuterium implantation in tungsten followed by thermal desorption
spectrometry made by Ogorodnikova et al. [4].

nMIN
i is plotted in figure 16.a and 16.b for W and Be with the parameters given in Appendices A

and D, respectively. The interval of temperature is chosen representative of temperatures found in
fusion devices. We consider only a single implanted specie (D) with extreme implantation conditions
(Γimp = 1 × 1024 m−2.s−1, Eimp = 1 keV) to maximise nBULK

m and therefore nMIN
i . Detrapping

energies (0.8, 1.2, 1.6 and 2.0 eV) are chosen in order to span the range of energies usually found
for HI traps in those materials from Density Functional Theory calculations [24, 25, 26, 27] or from
fitting of thermal desorption spectrometry [7, 28, 10]. All curves from figure 6.a and 6.b present the
same trend with both a low and a high temperature regimes. In the low-temperature regime, nMIN

i is
similar for all the detrapping energies: nMIN

i is dominated by nBULK
m , first term in equation 17, which

is similar for all the detrapping energies. Consequently it depends on the implantation conditions

12



and decreases with increasing temperature due to an increase of the diffusion coefficient. As nMIN
i is

calculated assuming extreme implantation conditions, this low-temperature regime can be seen as an
upper limit. In the high-temperature regime, nMIN

i increases with the temperature. The lower the
detrapping energy, the lower the transition temperature between both regimes: the second term in
nMIN
i becomes preponderant.

While the nMIN
i curves present a similar shape for both materials, they differ in terms of amplitude for

similar detrapping energies. According to equation 17, this is due to the different diffusion coefficients
of D in both materials1. Below 1000 K, the diffusion coefficient of D is higher in W than in Be, and
consequently nMIN

i is lower in W than in Be. Above 1000 K, D diffusion is higher in Be than in W
and the minimum density of traps is lower.
In figure 16, a red and dashed horizontal line is plotted at nMIN

i = 1 at.%. For W, any traps with
such density and a detrapping energy above 1.2 eV satisfies the condition 16 in all the temperature
range. For Be, above 500 K, one can note that any trap with a detrapping energy above 1.2 eV and
with a density above 1 at.% satisfies the condition 16. Below 500 K (red shaded area in figure 16.b),
recombination may be rate-limiting [10] and the validity of the analytical model is not guaranteed.
This would lead to an increase of the density of interstitial HI and therefore an increase of nMIN

i .
One will see if the condition on the trap density, equation 16, is fulfilled by traps reported in the
literature. First, for W, one will consider the traps used in the MHIMS simulations presented in
the previous sections. These traps were identified by Hodille et al. [18] through fitting with MHIMS
of the experiment of D implantation in W followed by thermal desorption spectrometry made by
Ogorodnikova et al. [4]. Three traps were identified with respective detrapping energies Edt,1 = 0.85 eV,
Edt,2 = 1.00 eV and Edt,3 = 1.50 eV. First, we focus on trap 3, which has the highest trap density
(cf. traps profiles in figure 7). This trap has a first plateau in the implantation zone with a density
n3 = 16 at.% up to 30 nm and a second plateau at n3 = 1 at.% from 30 nm up to 1 µm. Consequently,
trap 3 fulfills the condition n3 ≫ nMIN

3 given by equation 16 in all the temperature range and hosts the
majority of the D inventory under any implantation conditions. Regarding traps 1 and 2, their trap
densities are uniform and are equal to n1 = 0.13 at.% and n2 = 0.035 at.% respectively. From figure
6.a, the condition 16 is fulfilled in a limited temperature region. In the low-temperature region, this
condition is not fulfilled for both traps between 300 and 400 K. However, a factor of 10 decrease in the
implantation flux density (1024 → 1023 D.m−2.s−1, which is still a strong flux density) would lead to
a similar decrease in nBULK

m and therefore in nMIN
i in the low-temperature region. Thus, n1 ≫ nMIN

1

and n2 ≫ nMIN
2 are satisfied in the low-temperature region. The temperature range of validity of the

analytical model for W, where the full inventory is found in traps, is as follows:

• trap 1, for 300 K ≤ T ≤ 800 K

• trap 2, for 300 K ≤ T ≤ 1000 K

• trap 3, full range of temperature

For Be, Matveev et al. have fitted the saturated high-temperature peak (> 500 K) observed in thermal
desorption spectrometry of D implanted Be at room temperature made by Oberkofler considering a
density of vacancies of 14 at.% extending to 50 nm depth with a detrapping energy Edt = 1.5 eV
and a detrapping pre-exponential factor ν0dt = 1012 s−1 [10]. Consequently, from figure 6.b, we see
that this density of vacancies is way above nMIN

i and we conclude that vacancies in Be will host
the majority of the inventory under any implantation conditions2. Also in reference [29], the high-
temperature desorption peak observed in the thermal desorption spectrometry made by Reinelt et al.
after D implantation in Be at room temperature was fitted with the MHIMS code assuming one trap

1In the high-temperature regime, nMIN
i also differs for the two materials due to different terms λ2nIS. However, this

term is slightly higher for Be than for W (by a factor of ∼ 1.3).
2It must be noted that Matveev et al. have used a lower pre-exponential factor for detrapping ν0dt than the one used

to calculate nMIN
i in figure 6.b. However, according to equation 17, a lower ν0dt would lead to a lower nMIN

i than in
figure 6.b and our conclusion is still valid.
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with Edt,1 = 1.82 eV, ν0dt,1 = 1013 s−1 and n1 = 10.3 at.% extending to 60 nm depth. Again, the

condition n1 ≫ nMIN
1 is valid in the full temperature range and the majority of the inventory is found

in the beryllium traps.

To summarise, the HI subsurface inventory is fully dominated by trapped HIs:

• in W: in all the temperature range, if there is a trap i with a density ni ≥ 1 at.% and a detrapping
energy Edt,i ≥ 1.2 eV

• in Be: for T ≥ 500 K, if there is a trap i with a density ni ≥ 1 at.% and a detrapping energy
Edt,i ≥ 1.2 eV

We have shown that such traps are reported in the literature and we conclude that the HI subsurface
inventory in W and Be is dominated by trapped HIs during plasma implantation.

7 Conclusions.

An analytical model for hydrogen inventory saturation in the subsurface (several micrometers depth)
under plasma implantation has been derived. This model was compared to non-linear Reaction-
Diffusion simulations of deuterium implantation in tungsten at three different material temperatures.
A good agreement is observed between the profiles of mobile/interstitial deuterium and trapped deu-
terium at the subsurface given by the analytical model and by the Reaction-Diffusion simulations for
the three considered temperatures.
It was demonstrated using the analytical model that the hydrogen isotopes subsurface inventory is
dominated by trapped hydrogen for both tungsten and beryllium in all the range of material temper-
ature found in fusion devices. For beryllium, the situation is unclear below 500 K as recombination at
the surface may be rate-limiting and the interstitial hydrogen may dominate the subsurface inventory.
Using the analytical model, the maximum subsurface density profiles of trapped hydrogen in the trap
i, nBULK

t,i (x), is expressed as function of the trap density profile, ni(x), and of the bulk filling ratio of

the trap at steady-state, fBULK
stat,i , as follows: nBULK

t,i (x) = fBULK
stat,i ni(x). fBULK

stat,i , equation 15, expresses
the balance between trapping and detrapping and is function of the material temperature and of the
implantation conditions (flux density and impact energy). As the subsurface hydrogen inventory is
dominated by traps, fBULK

stat,i represents a simple parameter that indicates how the total subsurface
inventory builds up during plasma operation. This parameters will be used in future contributions to
understand the retention dynamics observed during non-linear Reaction-Diffusion simulations.
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Appendix A: Reaction-Diffusion parameters for the simulations
of deuterium implantation in tungsten.

The free-parameters of the Reaction-Diffusion equations considered for the simulations of deuterium
implantation in tungsten reported in this contribution are summed up in table 3.

DIFFUSION

Parameter Value From

D0 1.9× 10−7/
√
A m2.s−1 Density Functional Theory [24]

Ediff 0.2 eV Density Functional Theory [24]
A = mD/mH 2 —

TRAPPING

Parameter Value From

ν0t,i D0/λW
2 —

λW 111.7 pm Experiment [30] and Density Functional Theory [24]
Et,i 0.2 eV —
nIS 6ρW Density Functional Theory [24]
ρW 6.3382× 1028 m−3 [31]

DETRAPPING

Parameter Value From
ν0dt,i 1013 s−1 —

Table 3: Parameters of the Reaction-Diffusion equations considered for simulations of D implantation
in W.

Regarding the W traps that can accommodate D, the detrapping energies and trap density profiles
defined by Hodille et al. [18] are used. They were obtained through fitting with the Reaction-Diffusion
code MHIMS of the experiment of D implantation in W followed by thermal desorption spectrometry
made by Ogorodnikova et al. [4]. Three traps are considered: two intrinsic traps and one trap induced
by plasma irradiation. Their profiles are displayed in figure 7. The intrinsic traps 1 and 2 have a
flat depth profile and were respectively attributed to dislocations and/or iron impurities and to grain
boundaries. The plasma-induced trap 3 presents two damaged zones: a highly damaged zone in the
implantation zone, attributed to thermodynamic formation of vacancies [32] and often referred to
as super-saturated layer, and a damaged zone extending in the depth of the material, attributed to
vacancies filled with light impurities (e.g. oxygen or carbon). These parameters are considered to be
appropriate for a W material submitted to divertor-like irradiation conditions.
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Appendix B: Interval of validity of the analytical model for the
case of Dirichlet boundary condition at the rear surface.

The exact solution of the diffusion equation 8 considering a Dirichlet B.C. at x = L, nD
m, can be

expressed as a function of the exact solution of the same equation for the case of Neumann B.C., nN
m

(given by equation 9), and of nBULK
m (equation 9c):

∀ x ∈ [0, L], nD
m(x) = nN

m(x)− nBULK
m

x

L
(18)

Thus, the approximation of nD
m by nN

m gives an absolute error δa on nD
m:

∀ x ∈ [0, L], δa(x) =
∣∣nD

m(x)− nN
m(x)

∣∣ = nBULK
m

x

L
(19)

δa increases with x. For a maximum tolerated error of k%n
BULK
m , the approximation of nD

m by nN
m is

valid up to x = k%L:
∀ x ∈ [0, k%L], n

D
m(x) ≈ nN

m(x) (20)

We are interested in the case where the plateau nD
m(x) ≈ nBULK

m for x > Ximp,2 exists. This sets a
minimum value of the material length L:

∃ x ∈ [Ximp,2, L] | nD
m(x) ≈ nBULK

m ⇔ δa(Ximp,2) ≪ k%n
BULK
m ⇔ L ≫ Ximp,2

k%
(21)
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Appendix C: Exact solutions of the diffusion equation 1a with
source terms at steady-state and error estimation of the ana-
lytical model.

At steady-state, the diffusion equation 1a of the Reaction-Diffusion system becomes linear and can be
solved analytically. We herein provide the resolution of this equation. We first generalise this equation
at steady-state by considering a given number of external sources NS:

∂

∂x

(
D(T )

∂nm

∂x

)
+

NS∑
j=1

Sj
ext(x) = 0 (22a)

B.C. at x = 0: nm(0) = 0 (22b)

B.C. at x = L:

∣∣∣∣∣∣∣∣
Dirichlet B.C.: nm(L) = 0

or

Neumann B.C.: D(T )
∂nm

∂x
(L) = 0

(22c)

By invoking the superposition theorem, the solutions nBC
m (x) of the diffusion equation 22 can be

expressed as follows:

nBC
m (x) =

NS∑
j=1

{∫ L

0

GBC(x, y)Sj
ext(y) dy

}
(23)

where BC is the type of B.C. considered at x = L. GBC(x, y) is the impulse response / the Green
function of the system 22, solution of the following auxiliary problem:

∂

∂x

(
D(T )

∂GBC(x, y)

∂x

)
+ δ(x− y) = 0 (24a)

B.C. at x = 0: GBC(0, y) = 0 (24b)

B.C. at x = L:

∣∣∣∣∣∣∣∣∣
Dirichlet B.C.: GBC(L, y) = 0

or

Neumann B.C.: D(T )
∂GBC

∂x
(L, y) = 0

(24c)

where δ(x− y) is the Dirac function. The diffusion equation in the auxiliary system, equation 24a, is
similar to the diffusion equation 8 used to derive the analytical model in section 4.
For the case of Neumann B.C. at x = L, the Green function GN(x, y) can be expressed using equation
9: 

∀ x ∈ [0, y], GN(x, y) =
x

D(T )
(25a)

∀ x ∈ [x, L], GN(x, y) =
y

D(T )
(25b)

The density of mobile is then expressed as follows:

nN
m(x) =

1

D(T )

NS∑
j=1

{∫ x

0

ySj
ext(y) dy + x

∫ L

x

Sj
ext(y) dy

}
(26)

For the case of Dirichlet B.C. at x = L, the Green function GD(x, y) is expressed as a function of
GN(x, y) using equation 18:

∀ x ∈ [0, L], GD(x, y) = GN(x, y)− y

D(T )

x

L
(27)
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and the resulting density of mobile is expressed as follows:

nD
m(x) = nN

m(x)−
1

D(T )

x

L

NS∑
j=1

{∫ L

0

ySj
ext(y) dy

}
(28)

To calculate the expressions of nN
m(x) and nD

m(x), one must specify a profile of the external HI sources.
It is usually considered as a gaussian defined by a mean implantation range of particles Xj

imp and a

standard deviation σj
imp. Both parameters can be provided by Binary Collision Approximation codes

such as SRIM [19] or SDTrim.sp [20].

Sj
ext(x) =

KjΓj
imp√

2πσj
imp

exp

−

(
x−Xj

imp

)2
2σj

imp

2

 (29)

where Kj is a normalisation factor defined as follows:∫ L

0

Sj
ext(x) dx = Γj

imp ⇔ Kj =
2

erf

(
L−Xj

imp√
2σj

imp

)
+ erf

(
Xj

imp√
2σj

imp

) (30)

Then the expressions of the mobile density become:

nN
m(x) =

1

D(T )

NS∑
j=1

KjΓj
imp

2

{
x erf

(
L−Xj

imp√
2σj

imp

)

+
√
2σj

imp

[
− ierf

(
x−Xj

imp√
2σj

imp

)
+ ierf

(
Xj

imp√
2σj

imp

)]} (31)

nD
m(x) = nN

m(x) +
1

D(T )

x

L

NS∑
j=1

KjΓj
imp

2

{
√
2σj

imp

[
ierf

(
L−Xj

imp√
2σj

imp

)
− ierf

(
Xj

imp√
2σj

imp

)]

−L. erf

(
L−Xj

imp√
2σj

imp

)} (32)

where ierf is the integral of the error function defined as follows:

ierf (z) =
1√
π
exp

(
−z2

)
+ z. erf (z) (33)

We can reduce these equations by considering the following approximations:

x > Xj
imp + 8σj

imp ⇒


ierf

(
x−Xj

imp√
2σj

imp

)
≈

x−Xj
imp√

2σj
imp

erf

(
x−Xj

imp√
2σj

imp

)
≈ 1

(34)

Such approximations are especially true for x = L. Indeed, the maximum implantation range Xj
imp and

standard deviation σj
imp for both W and Be are 90 nm and 25 nm respectively (for 4 eV D implantation

in Be), which entails according to equation 34 that L > 290 nm for both approximations to be valid.
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This condition is fulfilled as the material thickness is usually above 1 µm. Then the expressions 31
and 32 become:

nN
m(x) =

1

D(T )

NS∑
j=1

KjΓj
imp

2

{
x+

√
2σj

imp

[
− ierf

(
x−Xj

imp√
2σj

imp

)
+ ierf

(
Xj

imp√
2σj

imp

)]}
(35)

nD
m(x) = nN

m(x)−
1

D(T )

x

L

NS∑
j=1

KjΓj
imp

2

{
Xj

imp +
√
2σj

imp ierf

(
Xj

imp√
2σj

imp

)}
(36)

Approximations 34 can be used to further simplify the expressions to obtain the exact density of mobile
in the bulk direction nBULK

m,e :

∀ x ∈
[
Xj

imp + 8σj
imp, L

]
,

nN
m(x) ≈ nBULK

m,e =
1

D(T )

NS∑
j=1

Γj
impX

j
imp

1 +
1

1 + erf

(
Xj

imp√
2σj

imp

) √
2σj

imp√
πXj

imp

exp

−
Xj

imp

2

2σj
imp

2


 (37)

nD
m(x) ≈ nBULK

m,e − 1

D(T )

x

L

NS∑
j=1

KjΓj
imp

2

{
Xj

imp +
√
2σj

imp ierf

(
Xj

imp√
2σj

imp

)}
(38)

From the equation 37, one can see that nBULK
m given by the analytical model, equation 9c, underesti-

mates the value of mobile density in the bulk. The relative error on nBULK
m is then bounded:

δnm

nm
=

∣∣∣∣∣nBULK
m − nBULK

m,e

nBULK
m,e

∣∣∣∣∣ < max


1

1 +

[
1 + erf

(
Xj

imp√
2σj

imp

)] √
πXj

imp√
2σj

imp

exp

Xj
imp

2

2σj
imp

2

 , j = 1..NS


(39)

The maximum relative error can be estimated from SRIM implantation tables. It is about 5 % for W
in all the impact energy and angle of incidence ranges found in fusion devices. For Be, it ranges from
6 % for normal incidence to 12 % for grazing-incidence angles. Then the corresponding relative error
on the stationary bulk filling ratio of traps fBULK

stat,i , and therefore on the density of trapped HI, is:

δfstat,i
fstat,i

=
1

1 +
ν∗t,i(T )

νdt,i(T )

nm(x)

nIS

δnm

nm
≤ δnm

nm
(40)

This error is below the one on the mobile density, and therefore below 5 % for W and below 12 % for
Be.
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Appendix D: Reaction-Diffusion parameters considered for deu-
terium implantation in beryllium.

DIFFUSION

Parameter Value From

D0 1.89× 10−6/
√
A m2.s−1 Kinetic Monte-Carlo [10] [33]

Ediff 0.4 eV Kinetic Monte-Carlo [10] [33]
A = mD/mH 2 —

TRAPPING

Parameter Value From

ν0t,i D0/λBe
2 —

λBe 157.7 pm Density Functional Theory [34]
Et,i 0.4 eV —
nIS 2ρBe Density Functional Theory [34]
ρBe 12.2× 1028 m−3 [35]

DETRAPPING

Parameter Value From
ν0dt,i 1013 s−1 —

Table 4: Parameters of the Reaction-Diffusion equations considered for deuterium implantation in
beryllium.
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[27] L. Ferry et al. Tritium behaviour in beryllium investigated by DFT. In presented at the 16th
International Conference on Plasma-Facing Materials and Components, Neuss, Germany, 16–19
May 2017.

[28] M. Zibrov, S. Ryabtsev, Yu. Gasparyan, and A. Pisarev. Experimental determination of the
deuterium binding energy with vacancies in tungsten. Journal of Nuclear Materials, 477:292–297,
2016.

[29] Julien Denis. Dynamic modelling of local fuel desorption and retention in the wall of nuclear fusion
reactors for auto-consistent plasma-wall interaction simulations. Theses, Aix-Marseille Université
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