
HAL Id: hal-03752645
https://hal.science/hal-03752645v1

Submitted on 17 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of Dataflow Graph Moldable Parameters on
Optimization Criteria

Alexandre Honorat, Thomas Bourgoin, Hugo Miomandre, Karol Desnos,
Daniel Menard, Jean-François Nezan

To cite this version:
Alexandre Honorat, Thomas Bourgoin, Hugo Miomandre, Karol Desnos, Daniel Menard, et al.. Influ-
ence of Dataflow Graph Moldable Parameters on Optimization Criteria. DASIP 2022 - Workshop on
Design and Architectures for Signal and Image Processing, Jun 2022, Budapest, Hungary. pp.83-95,
�10.1007/978-3-031-12748-9_7�. �hal-03752645�

https://hal.science/hal-03752645v1
https://hal.archives-ouvertes.fr

Influence of Dataflow Graph Moldable
Parameters on Optimization Criteria‹

Alexandre Honorat1r0000´0001´5875´7258s, Thomas Bourgoin2, Hugo
Miomandre2, Karol Desnos2, Daniel Menard2, and Jean-François Nezan2

1 Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{firstname}.{lastname}@inria.fr

2 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
{firstname}.{lastname}@insa-rennes.fr

Abstract. The integration of static parameters into Synchronous Data-
flow (SDF) models enables the customization of an application functional
and non-functional behaviours. However, these parameter values are gen-
erally set by the developer for a manual Design Space Exploration (DSE).
Instead of a single value, moldable parameters accept a set of alternative
values, representing all possible configurations of the application. The
DSE is responsible for selecting the best parameter values to optimize
a set of criteria such as latency, energy, or memory footprint. However,
the DSE process explodes in complexity with the number of parameters
and their possible values.
In this paper, we study an automated DSE algorithm exploring multiple
configurations of a dataflow application. Our experiments show that: 1)
Only limited sets of configurations lead to Pareto-optimal solutions in a
multi-criteria optimization scenario. 2) How individual parameters im-
pact on optimization criteria are determined accurately from a limited
subset of design points. The approach was evaluated on three image pro-
cessing applications having from hundreds to thousands configurations.

Keywords: Design Space Exploration · Moldable Parameter · SDF

1 Introduction

Designing signal processing applications requires an ever-increasing amount of
time and resources, as well as a careful choice of the appropriate target hardware
architecture, along with the corresponding software optimizations. On the hard-
ware side, embedded systems are limited by their memory and processing power
capabilities, as well as by power consumption and heat dissipation constraints.
On the software side, applications for embedded systems are usually written with

‹ This work was supported by DARK-ERA (ANR-20-CE46-0001-01).
A. Honorat, T. Bourgoin, H. Miomandre: Equal contribution.

2 A. Honorat, T. Bourgoin, H. Miomandre et al.

procedural languages such as C. As C is a relatively low-level language, it offers
the possibility to maximize the utilization of a given hardware resource through
hardware-specific optimization, but at the cost of specialized cumbersome code.
This widens the software productivity gap between the developer productivity
and the code complexity required to fully exploit hardware resources [4, 8].

Dataflow Models of Computation (MoCs) and associated design tools exist
to bridge the software productivity gap. A piece of software described with a
dataflow graph [11] is composed of a set of actors, representing computational
entities, connected by First-In First-Out queues (Fifos). A Fifo transports data
tokens between actors which consume, process and produce said data tokens.
An actor is executed when its input Fifos contain the required number of data
tokens. The production and consumption of data tokens for each actor execu-
tion is specified by a set of firing rules. Thus, dataflow semantics exposes task
and data parallelism of data-driven computations. Design tools use the dataflow
representation of an application to efficiently handle the allocation of hardware
resources when deploying software on specific target hardware architectures, such
as Multi-Processor System-on-Chips (MPSoCs).

This paper focuses on statically parameterized dataflow MoCs which allow
both functional and non-functional behaviour of the application to be customized
at compile time. We propose moldable parameters, that we have implemented for
the first time within a dataflow MoC. Contrary to regular parameters, which hold
a unique value or expression, moldable parameters are associated with a set of
alternative values, each resulting in a different configuration of the application.
The main contribution of this work lies in the study of how these moldable
parameters impact on criteria such as latency, throughput, energy consumption
and memory footprint.

In order to study the influence of moldable parameters, we have implemented
a Design Space Exploration (DSE) algorithm to find the Pareto-front of multi-
ple application configurations of the same dataflow graph. Considering a multi-
objective optimization problem with independent criteria, the Pareto-front is the
set of configurations providing the best trade-offs between the optimized criteria.
This DSE is completed by a set of scripts used for analyzing and classifying how
the different moldable parameters impact on each optimization criterion. The
DSE and parameter analysis have been executed on three real-world computer
vision applications: Sobel filtering, stereo-matching and Scale-Invariant Feature
Transform (SIFT) [12]. Results of these analyses show that: 1) only a limited set
of configurations belong to the Pareto-front, and 2) how moldable parameters
impact on optimization criteria are determined accurately from a limited subset
of configurations. These results lay the ground for the design of low-complexity
DSE heuristics responsible for finding automatically the Pareto-efficient config-
urations of a set of functional and non-functional application parameters.

Related works on parameterized dataflow MoCs and resource allocation for
static dataflow MoCs are presented in Section 2. Section 3 presents the concept
of moldable parameters. Finally, Section 4 studies how moldable parameters
impact on optimization criteria, and Section 5 concludes this paper.

Influence of Dataflow Parameters on Optimization Criteria 3

2 Context & Related work

In the semantics of most static dataflow MoCs, the production or consumption
rate on each data port of an actor is defined by a fixed integer value [11], or some-
times by a sequence of integer values [2]. In practice, when editing a dataflow
graph, it is easier to specify the production and consumption rates of actors by
using symbolic expressions made of mathematical operators and functions ap-
plied to a list of pre-defined parameters associated to the graph. While the use
of such parameterization mechanism is common in many dataflow frameworks,
parameters are generally not part of the dataflow MoC semantics, and symbolic
expressions are replaced by their resolved values before any analysis or execution
of the graph. There exists a few parametric dataflow MoCs with a well defined
parameterization semantics, as surveyed in [3]. Nevertheless, these parametric
MoCs mostly integrate parameters in their semantics to support dynamic recon-
figuration of the application graph during its execution. In this paper, we focus
on static parameters whose values can be resolved statically without executing
the application. After describing the model used in the present work, this section
presents related work about the resource allocation for static dataflow MoCs.

2.1 Static PiSDF MoC

The parameterized dataflow MoC studied in this paper is the Parameterized and
Interfaced Synchronous Dataflow (PiSDF) MoC [7] whose semantics is depicted
in Figure 1a. Configuration in the Parameterized and Interfaced Synchronous
Dataflow (PiSDF) MoC is based on explicit parameters, which are nodes of the
graph associated to a scalar value. The integer production and consumption rates
of actors and the number of initial data token in Fifos, known as delays, can be
specified with expressions depending on those parameters. If all rates of an actor
are evaluated to zero, it is not executed. Moreover, the Parallel and Real-time
Embedded Executives Scheduling Method (PREESM) tool [13] implementing
PiSDF also supports parameterized expressions of the actor execution times and
energy specifications; and parameter values can be used as input argument to
actor function calls in its code generation process.

By changing the value of a parameter, it is possible to modify the func-
tional and non-functional behaviour of an application. Non-functional parame-
ters only impact on intrinsic properties of an application such as its degree of

(a) PiSDF
semantics

(b) PiSDF graph
of an image filter-
ing application

Fig. 1: An example of PiSDF graphical representation.

4 A. Honorat, T. Bourgoin, H. Miomandre et al.

parallelism and granularity, tuned by data production and consumption rates;
and its pipeline depth, tuned by the size of delays. Functional parameters im-
pact on the extrinsic properties of an application, such as its Quality of Service
(QoS). For example, a functional parameter can control the resolution of pro-
cessed images or the bounds of an iterative process, through the modification
of data production and consumption rates or number of delays. Functional pa-
rameter may also cause the execution of alternative code implementations for
actors with different time or energy properties, through time and energy expres-
sions associated to each actor and through actor parameter input. While the
semantics of the PiSDF MoC also allows actors to set dynamically the values of
graph parameters, in this paper we will focus only on static parameters whose
alternative values are known at compile time.

Figure 1b depicts a graph implementing a simple video filtering algorithm,
using elements from the PiSDF semantics in Figure 1a. Each iteration of the
graph, starting by an execution of the ReadFrame actor and ending by an exe-
cution of the Display actor, corresponds to the processing of a new frame.

Four parameters influence the behaviour of this application:

– h,w P N˚ are two functional parameters controlling the height and width,
respectively, of the images processed by the algorithm.

– tN P N˚ | h mod N “ 0u is a non-functional integer parameter controlling
the number of slices in which the input image is split before being processed
by the N data-parallel firings of the Sobel, Dilation and Erosion actors.

– B P t0, 1u is a non-functional Boolean parameter controlling the presence
of delays between the Sobel and Dilation actors. When enabled, these
delays separate the computations of the graphs into two pipeline stages,
thus increasing the parallelism and throughput of the application, at the
expense of greater memory requirements and latency.

2.2 Resource Allocation for Static Dataflow MoCs

Software synthesis is the process translating a dataflow graph into executable
code for a complex computing platform, such as a heterogeneous MPSoC [1]. To
do so, software synthesis allocates all the hardware resources needed to support
the execution of the dataflow graph. Among other tasks, the software synthesis
is in charge of:

– Scheduling and mapping, which orders the individual firings of actors, and
assigns these firings to the processing element handling them [5];

– Allocating the memory needed to store the data produced and consumed by
actors near their processing elements [6];

– Communication routing which ensures the availability of data and the syn-
chronization of computations [10];

– Configuring the computing platform appropriately to optimize the applica-
tion execution, for example by tuning the Dynamic Voltage and Frequency
Scaling (DVFS) configuration of the cores, or by selecting the appropriate
scheduling strategy of the supporting operating system [15].

Influence of Dataflow Parameters on Optimization Criteria 5

Each one of the aforementioned tasks is a complex, often NP-hard, optimiza-
tion problem. Indeed, each resource allocation choice made during the software
synthesis potentially impacts many optimization criteria such as the latency and
throughput of the application, its energy consumption or its memory footprint.
Because the resource allocation problem and optimization criteria are deeply
entangled, each design decision, or each change in the dataflow graph can have
intricate consequences on the different optimization criteria. For example, aug-
menting the parallelism of a dataflow graph by pipelining it will increase the
throughput of the application, at the expanse of larger latency and memory
footprint. To make all the resource allocation choices, the DSE process relies on
abstract models or on means of hardware simulations for predicting rapidly the
optimized criteria depending on the design decisions made. Resource allocation
heuristics produce their results in a time ranging from a fraction of a second to
hours, depending on their complexity and the desired quality of their outcome.

Most related work on DSE for applications modelled with static dataflow
graphs assumes that the dataflow graph is fixed before entering the DSE pro-
cess, thus evaluating multiple solutions given by the resource allocation solvers.
When exploring different application configurations with such a DSE process,
the developer must manually modify the application graph, possibly by changing
its static parameters, and re-start the whole DSE process for each configuration.
Only few works consider exploring design choices on the application model itself,
exploiting the dataflow MoC semantics. MASES [16] is one of them; it optimizes
the throughput, latency and processor utilization of applications represented
with a restriction of Synchronous Dataflow (SDF) where it automatically adds
software pipelining. Another tool [14] supports DSE deciding to enable actors
or not, for an extended version of SDF with dynamic actors. In our work, the
DSE exclusively refers to the domain of parameter configurations: it explores the
multiple configurations of an application while considering a single target hard-
ware architecture and a single resource allocation solution to each configuration.
Next section introduces the moldable parameters supporting this DSE process.

3 Moldable Parameters

This section introduces moldable parameters, which can hold multiple expres-
sions. Once evaluated, those expressions provide the different possible applica-
tion configurations. To the best of our knowledge, this work represents the first
attempt to define and integrate such moldable parameters in a dataflow MoC.
After motivating the use of moldable parameters, this section presents their
semantics and discusses their influence on DSE and multi-criteria optimization.

3.1 Moldable Parameters Semantics

Parameters in the PiSDF MoC may be used to set various characteristics of
the application: data production and consumption rates on Fifos, delay sizes,

6 A. Honorat, T. Bourgoin, H. Miomandre et al.

execution times and energy per actor firing, and even actor static integer in-
put argument. Tuning PiSDF regular parameters holding a single expression is
cumbersome for developers since they have to set the right expression of a pa-
rameter manually in order to run the application analysis or code generation for
a specific application configuration. Instead, moldable parameters hold multi-
ple alternative expressions so that developers do not have to set them multiple
times. Most importantly, moldable parameters make it possible to automatically
run analyses on all possible application configurations.

Moldable parameters are a simple extension of parameters as defined in the
PiSDF semantics [7]. Each moldable parameter holds a list of symbolic expres-
sions, separated by semi-colons. The first expression is the default one, so that
moldable parameters can always be used as regular parameters. Much as regular
parameters, symbolic expressions held by moldable parameters can be a mere
static integer value or a complex expression depending on other parameters and
using mathematical operators and functions.

In this work, we consider only static parameters, which means that parameter
values never depend on any actor output. Moreover as parameters may depend
on other parameters, cyclic dependencies are forbidden, and thus parameters
and their dependencies eventually form a tree whose root parameters only hold
integer values. A parameter configuration of the application dataflow graph is
obtained by selecting and evaluating for each moldable parameter a single ex-
pression among the list of available ones. When not specified, the word parameter
refers to both regular and moldable parameters.

3.2 Relation with Multi-Criteria Optimization Problem

In order to select the most suitable parameter configuration, a developer will of-
ten consider multiple criteria: throughput, end-to-end latency, memory footprint,
energy consumption, or any QoS metric. Evaluating the optimization criteria for
each configuration takes from a fraction of a second to hours whereas most con-
figurations are irrelevant, as we shall see in Section 4. Moreover the domain of
possible configurations is the Cartesian product of the expressions of moldable
parameters, so the size C of the configuration domain to explore explodes with
the number of expressions held by moldable parameters. If denoting P the set
of moldable parameters and |p| the number of expressions held by p P P, then
C “

ś

pPP |p|. Hence, there is a critical need for algorithms automating the
search for the best configuration, while exploring only a subset of all possible
configurations. When a moldable parameter holds only integer values, an option
is to sort these values and explore only a representative sample of it.

As moldable parameters may be either functional or non-functional, their
influence on the criteria to optimize are not always clear and they might com-
pensate each other even when looking at a single criterion. In a multi-criteria op-
timization problem, only the points of the Pareto-front are relevant and multiple
ones can be considered optimal. In the PREESM tool [13] supporting moldable
parameters, it is also possible to automatically select a single best configuration
if given a priority ordering of the aforementioned criteria. The criteria will be

Influence of Dataflow Parameters on Optimization Criteria 7

minimized3, or forced to stay below a given threshold. However in the context
of this paper, the criteria are neither ordered nor weighted, thus there is a priori
no single best configuration. Yet the criteria to consider for the Pareto-front
should be picked carefully: they should not be entirely dependent on other ones.
For example energy and power are not considered together with the throughput
since the power is computed by multiplying the energy by the throughput in
PREESM. Next section experimentally studies the influence of moldable param-
eters on all criteria, except QoS ones for practical reasons.

4 Multi-Criteria DSE with Moldable Parameters

This section presents experiments on three use-cases. The influence of moldable
parameters on the behaviour of the chosen criteria is first evaluated through an
exhaustive DSE; results are then compared with a non-exhaustive DSE.

4.1 Use-Cases: Sobel, stereo and SIFT Applications

Three common computer vision applications have been used for experiments:
Sobel, stereo and SIFT4. They all contain the following moldable parameters:

– image width: QoS parameter holding 2 possible values for the resolution;
– AspectRatioDenominator: QoS parameter holding 2 possible values (but

fixed for stereo);
– parallelismLevel: non-functional parameter holding 3 values and setting

the degree of parallelism of most compute intensive actors;
– delayRead and delayDisplay: non-functional parameters enabling a pipeline

stage after the image read and the result display respectively, it is used only
in the corresponding delay size expressions;

– NumeratorFrequency: non-functional parameter simulating 12 processor fre-
quencies and used only in expression specifying each actor timing and energy.

The execution times of actors have been measured on a JetsonTX2 board for
their default configuration: maximum image size and processor frequency, no
pipeline, and minimum degree of parallelism. In this work, the latency is mea-
sured as the strictly positive number of graph iterations required to process a
bundle of data tokens from end-to-end, that is the full software pipeline depth
controlled by the delayRead and delayDisplay parameters. The Power criterion
is the sum of all actor energy specifications weighted by their number of firings,
and then multiplied by the throughput. The actor timing expressions are linear
to the amount of processed data and inversely proportional to the frequency set
by the NumeratorFrequency parameter. The actor energy expressions are linear
to the amount of processed data and quadratic to the frequency.

3 For the throughput, its reciprocal is considered so that it can be minimized.
4 Code is available upon request. For SIFT, see a similar version here:

https://github.com/preesm/preesm-apps/tree/master/SIFT

8 A. Honorat, T. Bourgoin, H. Miomandre et al.

While Sobel contains no other moldable parameter, stereo and SIFT have
extra ones to enable some specific actors in the data path or to specify a QoS
metric. In particular stereo can be configured with 10 different numbers of dis-
parities used to control the accuracy of the computed depth map. The SIFT
application is the most complex one containing 57 actors and 121 Fifos dis-
patched into 4 levels of hierarchy and representing between 200 and 550 actor
firings for each processed image, depending on the graph configuration. The
moldable parameters specific to SIFT are:

– nKeypointsMaxUser: QoS parameter holding 9 possible values for the max-
imum number of keypoints to detect;

– imgDouble: QoS parameter enabling one resolution upsampling.

4.2 Raw DSE results

For each configuration, the application is scheduled on an homogeneous archi-
tecture with 4 cores. A list scheduling algorithm [9] is used, followed by a static
memory allocation [6]. The DSE takes a few seconds to 6 hours to sequentially
explore all the configurations within the PREESM framework, respectively for
Sobel and SIFT. The Pareto-front is defined for 4 criteria: either Power or En-
ergy, plus Latency, Throughput´1 and Memory, respectively denoted PLTS and
ELTS. The Pareto-front of SIFT in the domain (Power, Throughput´1, Memory)
is represented in Figure 2 for a latency value of 2, that is 2 pipeline stages.

0 0.5 1 1.5 2 2.5 3 3.5

Power

0

0.5

1

1.5

2

2.5

3

5.53

5.82

6.04

6.21

6.22

6.27

T
h
ro

u
g

h
p

u
t-1

 (
1

0
0

 m
s)

M
e
m

o
ry

 (
M

B
)

Fig. 2: Pareto-front (Power, Throughput´1, Memory) of SIFT for a latency of 2.

While some purples clusters, especially around the p0.5, 0.5q coordinates,
seem to be strictly dominated by blue and yellow clusters below them, they
actually boast a smaller memory footprint; the Pareto-front is correct. This
slightly smaller memory footprint of purple clusters comes at the cost of worse

Influence of Dataflow Parameters on Optimization Criteria 9

Throughput´1 and power consumption. Besides, the developer is most prob-
ably interested in only one point of each cluster, thus the number of rele-
vant DSE points on the Pareto-front is even more reduced. A manual analysis
of the point configurations reveals that all the clusters of points of the same
colour are produced by the parameter nKeypointsMaxUser. Also, the parameter
NumeratorFrequency creates the twelve clusters of each colour. Similar results
were observed for other latency values and for other applications, but are not
presented due to lack of space. The automatic discovery of clusters and of their
relation to a specific parameter is an interesting direction for future work.

As the DSE takes up to 6 hours (for SIFT), it is important to know if it
really worth it to explore all the configurations. To answer this main question, we
answer two corollary ones: Q1 only the points on the Pareto-front are relevant
for the developer, but how many are they among all configurations? Q2 is it
possible to explore only a subset of the configurations to get the influence of
each moldable parameter on each criteria?

Q2 will be answered in Section 4.4 by applying the analysis detailed in Sec-
tion 4.3 on a subset of the expressions held by moldable parameters: if expressions
are mere integer, only Npts are retained for the analysis. Regarding Q1, Table 1
gives the total number of configurations and the number of points on the Pareto-
front for all applications and different values of Npts. While 20% of the points
belong to the Pareto-front of the smallest application (Sobel), this percentage
goes down to 1% and 2% for stereo and SIFT respectively. Note that the afore-
mentioned percentages are for the PLTS criteria and considering Npts “ all;
they would be even lower for the ELTS criteria.

Sobel stereo SIFT

Npts ELTS PLTS total ELTS PLTS total ELTS PLTS total

all 81 119 576 24 63 5760 91 244 10368
4 – – – – – – 31 73 2048
3 19 36 144 8 29 768 23 56 864
2 11 19 64 4 25 128 12 26 384

Table 1: Number of points on the ELTS and PLTS Pareto-fronts and total num-
ber of configurations for each application.

4.3 Exhaustive Parameter Analysis

To evaluate the influence of a specific moldable parameter on a given criterion,
the variation of this criterion is classified depending on the variation of the
moldable parameter, with all other parameters being fixed. We classify moldable
parameters in 4 categories depending on their influence on the EPLTS criteria:

– Same Ñ: the criterion is constant as the parameter changes.
– Increase Õ: the criterion strictly increases as parameter value increases.
– Decrease Œ: the criterion strictly decreases as parameter value increases.

10 A. Honorat, T. Bourgoin, H. Miomandre et al.

– Inconsistent ÕŒ: the variation of the criterion is not strictly monotonic
while the variation of the parameter value is monotonic.

Each parameter-criterion pair is evaluated on all parameter configurations.
If the behaviour of a criterion is consistent for all configurations, the appropriate
class is assigned to the parameter-criterion pair. Otherwise, the class is Incon-
sistent. It is implemented as Matlab scripts which run in less than a second
despite a high complexity: linear to the number of moldable parameters, to the
number of criteria and to the number of configurations.

Moldable parameters Power Latency Throughput´1 Memory Energy

nKeypointsMaxUser ÕŒ Ñ ÕŒ ©Õ ÕŒ Õ

image width ÕŒ Ñ Õ Õ Õ

parallelismLevel Õ Ñ Œ ÕŒ ÕŒ

AspectRatioDenominator ÕŒ Ñ Õ Õ Õ

delayRead ÕŒ Õ ÕŒ ÕŒ Ñ

delayDisplay Õ Õ Œ ÕŒ Ñ

NumeratorFrequency Õ Ñ Œ ÕŒ Õ

imgDouble ÕŒ Ñ Õ Õ Õ

Table 2: Influence of each moldable parameter on each criterion for exhaustive
DSE of SIFT. Circled results are erroneous classifications with Npts ď 3.

Results of this evaluation are shown in Table 2 for SIFT. Some criteria are
mostly independent of parameters, such as the Latency criterion, which only
depends of the delayRead and delayDisplay moldable parameters. This par-
ticular result is expected as only these parameters impact on the pipelining of
the application. At the opposite the energy evolves most of the time in the same
direction as the parameters, except for the two parameters adding delays, which
is also expected. On the other hand, the power and memory criteria exhibit a
mostly Inconsistent behaviour. So power and memory are not classified the
same way and while the power might be more relevant for the developer, its
intricate relation with the throughput makes it harder to classify. Results on
Sobel and stereo have a similar amount of Inconsistent parameter-criterion
pairs, also linked to the power and the delays.

The parameter imgDouble {0,1} controls the execution of an optional branch
of the PiSDF graph. This branch upsamples the input images to find keypoints
with a better accuracy. Larger input images imply more data to store and pro-
cess, hence the mostly negative influence of this parameter on the criteria shown
in Table 2. Consequently, as the QoS is not part of the studied criteria, the
Pareto-front does not contain any points featuring the parameter imgDouble

with a value of 1. The same phenomenon is observed for image width and
aspectRatioDenominator: these parameters worsen the throughput and the
memory and energy footprints, so there is no point having the maximum reso-
lution on the Pareto-front. Similar results are obtained for the two other appli-
cations, with only a few exceptions about the resolution.

Influence of Dataflow Parameters on Optimization Criteria 11

4.4 Faster Parameter Analysis

Here the goal is to reduce the number of configurations required to evaluate the
influence of a moldable parameter on a given criterion. We observe that despite
less configurations being evaluated, the results are similar to the ones described
in Section 4.3. The same set of 4 classes defined in Section 4.3 is used, and the
analysis is performed with the same Matlab scripts.

Instead of performing an exhaustive evaluation with every configuration, the
number of possible expressions that a moldable parameter can be set to is capped
arbitrarily according to Npts. Doing so, the DSE run time is greatly decreased
as the domain of configurations to evaluate, being the Cartesian product of less
expressions, decreases from the same ratio. This technique benefits the appli-
cations having moldable parameters holding numerous expressions. The class
corresponding to each parameter-criterion pair is then evaluated on the subset
of possible configurations. As all moldable parameters hold mere integer expres-
sions in our experiments, we arbitrarily select the minimum, median and maxi-
mum values if Npts “ 3 and equally distributed values otherwise. The choice of
which expressions to keep in the general case is yet an open question.

Table 2 also shows the results of the evaluation with Npts ď 3. For Npts ď 3,
all results are identical to the classification from exhaustive data, except for the
only erroneous parameter-criterion pair displayed within a circle. The number of
tested configurations for SIFT is reduced from 10368 to 864 for Npts ď 3. For
stereo, only 4 errors occur with Npts “ 2. No error occurs for Sobel.

The classification of a parameter-criterion pair as Inconsistent requires an
explicit divergent behaviour across multiple configurations. Consequently, lim-
iting the DSE to a smaller sublist of moldable parameter expressions, such as
Npts “ 2, increases the likelihood of parameter-criterion pairs misclassification
away from the Inconsistent class. Increasing Npts to 4 yields a classification
identical to the exhaustive analysis for SIFT, while testing only 1536 config-
uration out of 10368, representing 15% of the design space and an equivalent
analysis speedup of almost 7x. No error occurs for stereo with Npts “ 3, testing
432 configurations out of 5760.

5 Conclusion

This paper introduces the first use of moldable parameters in the semantics of
dataflow MoCs as a way to automatically explore different configurations of an
application in a multi-criteria optimization context. Results on three computer
vision applications reveal that only 1 to 20% of configurations obtained with
this technique belong to the Pareto-front. Finding these Pareto-efficient config-
urations is crucial for the developer. An analysis on how moldable parameters
impact on DSE criteria shows that only a limited subset of all configuration is
needed to classify accurately the influence of each parameter. This observation
gives credit to the design of smart DSE heuristics capable of finding Pareto-
efficient configurations without resorting to an exhaustive analysis.

12 A. Honorat, T. Bourgoin, H. Miomandre et al.

References

1. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software synthesis from dataflow
graphs, vol. 360. Springer Science & Business Media (1996)

2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow.
IEEE Transactions on signal processing 44(2), 397–408 (1996)

3. Bouakaz, A., Fradet, P., Girault, A.: A survey of parametric dataflow models of
computation. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 22(2), 1–25 (2017)

4. Castrillón, J.: Programming heterogeneous MPSoCs : tool flows to close the soft-
ware productivity gap. Ph.D. thesis, RWTH Aachen University, Aachen (2013),
aachen, Techn. Hochsch., Diss., 2013

5. Castrillon, J., Leupers, R., Ascheid, G.: Maps: Mapping concurrent dataflow ap-
plications to heterogeneous mpsocs. IEEE Transactions on Industrial Informatics
9(1), 527–545 (Feb 2013)

6. Desnos, K., Pelcat, M., Nezan, J., Aridhi, S.: Pre- and post-scheduling memory
allocation strategies on mpsocs. In: Proceedings of the 2013 Electronic System
Level Synthesis Conference (ESLsyn). pp. 1–6 (2013)

7. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S., Aridhi, S.: PiMM: Param-
eterized and interfaced dataflow meta-model for MPSoCs runtime reconfigura-
tion. In: Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). pp. 41–48. IEEE (2013)

8. Ecker, W., Müller, W., Dömer, R.: Hardware-dependent Software, pp. 1–13.
Springer Netherlands, Dordrecht (2009)

9. Honorat, A., Desnos, K., Bhattacharyya, S.S., Nezan, J.F.: Scheduling of Syn-
chronous Dataflow Graphs with Partially Periodic Real-Time Constraints. In: Real-
Time Networks and Systems. Paris, France (Jun 2020)

10. Kang, S., Yang, H., Schor, L., Bacivarov, I., Ha, S., Thiele, L.: Multi-objective
mapping optimization via problem decomposition for many-core systems. In: 2012
IEEE 10th Symposium on Embedded Systems for Real-time Multimedia. pp. 28–37

11. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the IEEE
75(9), 1235–1245 (1987)

12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60(2), 91–110 (Nov 2004)

13. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J., Aridhi, S.: Preesm: A
dataflow-based rapid prototyping framework for simplifying multicore dsp pro-
gramming. In: 2014 6th European Embedded Design in Education and Research
Conference (EDERC). pp. 36–40 (2014)

14. Schwarzer, T., Falk, J., Müller, S., Letras, M., Heidorn, C., Wildermann, S., Te-
ich, J.: Compilation of dataflow applications for multi-cores using adaptive multi-
objective optimization. ACM Trans. Des. Autom. Electron. Syst. 24(3), 29:1–29:23

15. Wang, J., Roop, P.S., Girault, A.: Energy and timing aware synchronous program-
ming. In: International Conference on Embedded Software, EMSOFT’16. p. 10.
ACM, Pittsburgh, United States (Oct 2016)

16. Yu, W., Kornerup, J., Gerstlauer, A.: Mases: Mobility and slack enhanced schedul-
ing for latency-optimized pipelined dataflow graphs. In: Proceedings of the 21st
International Workshop on Software and Compilers for Embedded Systems. pp.
104–109. SCOPES ’18, ACM, New York, NY, USA (2018)

