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THURSTON’S COMPACTIFICATION VIA GEODESIC

CURRENTS: THE CASE OF NON-COMPACT FINITE

AREA SURFACES

MARIE TRIN

Abstract. In 1988, Bonahon gave a construction of Thurston’s com-
pactification of Teichmüller space using geodesic currents. His argument
only applies in the case of closed surfaces, and there are good reasons for
that. We present a variant which applies to surfaces of finite area and
to do so we prove a control theorem for sequences of random geodesics.
Note that this theorem may be of independant interest, especially when
the surface is non-compact.

1. Introduction

The Teichmüller space T(S) of a surface S of finite topological type, with
no boundary and of negative Euler characteristic χ(S) is the space of isotopy
classes of (complete and finite volume) Riemannian metrics on S of constant
curvature −1. Teichmüller space is not compact but Thurston showed in [21]
how it can be compactified by the space P+ML(S) of projective measured
laminations on S. The starting point of Thurston’s compactification is the

embedding of T(S) into the space P+(RC(S)
+ ) = R+

�R
C(S)
+ :

` : T(S) → P+(RC(S)
+ )

X 7→ R+`X(·);
Here `X is the length function associated to the hyperbolic structure X on
S and C(S) is the set of free homotopy classes of essential closed curves of
S. What Thurston did is to prove that the image of ` is locally compact

and to identify the boundary of T(S) in P+(RC(S)
+ ) with P+ML(S).

Theorem (Thurston’s compactification). If S is a finite analytic type sur-
face with negative Euler characteristic, then the accumulation points of T(S)

in P+(RC(S)
+ ) are the projective classes of functions γ 7→ i(λ, γ) where λ ∈

ML(S) is a measured lamination on S.
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Thurston’s original proof is explained in [9]. Some versions using real-
trees are given by Morgan–Shalen [13], Bestvina [3] or Paulin [15]. An
overview of the different compactification methods is availlable in [16] or
[14]. A compactification for the set of flat-structures and using geodesic
currents is done in [7], note that this article is interested in both compact and
non-compact surfaces. Here, we will be mostly interested in a very elegant
argument, for closed surfaces, due to Bonahon [6]. Let’s sketch the proof.
Recall that geodesic currents are π1(S)-invariant Radon measures on the set
of bi-infinite geodesics of the universal cover of S. Bonahon embeds T(S)
into the space C(S) of geodesic currents of S, sending each element X ∈ T(S)
of the Teichmüller space to the associated Liouville current LX ∈ C(S). The
Liouville current satisfies two important properties:

i(LX , γ) = `X(γ) for every essential closed curve γ, and(1.1)

i(LX , LX) = π2|χ(S)|.(1.2)

Here, i : C(S) × C(S) → R+ is the intersection form, a continuous bilin-
ear map extending the usual geometric intersection number between curves.
Compactness of S implies compactness of the space P+C(S) of projective
currents. It follows that each sequence (Xn)n∈N in Teichmüller space ad-
mits a subsequence, say the whole sequence, which projectively converges
to a non-zero current µ, meaning that there are positive reals εn such that
lim
n→∞

εnLXn = µ. The continuity of i and property (1.1) ensure that the

length functions `Xn(·) converge projectively to i(µ, ·). Moreover, εn tends
to zero unless Xn converges in T(S). Knowing that εn −−−→

n→∞
0, property

(1.2) ensures that i(µ, µ) = 0, meaning that µ is a measured lamination, as
we needed to prove.

We stress that Bonahon’s argument, with all its simplicity, only applies
to closed surfaces. We will come back later to this specificity and to the
obstructions to a direct extension of his argument. Recently, Bonahon and
Šarić have given another proof of this theorem using geodesic currents. The
arguments in [4] are geared to infinite type surfaces, it is worth noticing
that working in such a general context implies the lost of the simplicity of
Bonahon’s original proof.

Our goal here is to adapt Bonahon’s original argument to be able to deal
with non-compact surfaces of finite analytic type .

Let’s look at the difficulties that prevent the extension of Bonahon’s proof
to the non-compact case. The intersection form, especially its continuity,
is the linchpin of Bonahon’s original proof. However, continuity fails when
the surface is not compact, even if it has finite area (see [18] or Example 2.1
below). We will therefore change our point of view to allow us to benefit
from the continuity of i. We will consider currents on Σ instead of S, where
Σ is a compact hyperbolic surface with geodesic boundary whose interior
is homeomorphic to S, that is S = Σ \ ∂Σ. The second key ingredient of
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Bonahon’s proof is the existence of the Liouville current but, as we will see,
when working with currents on Σ we lose the Liouville current.

Proposition 2.2. Let Σ be a compact hyperbolic surface with non-empty
boundary and X a hyperbolic structure on S = Σ \ ∂Σ. There is no current
LX on Σ which satisfies i(LX , γ) = `X(γ) for every essential closed curve
γ ∈ C(Σ).

In order to recover a version of properties (1.1) and (1.2), we will, for
every hyperbolic structure X on S, replace the Liouville current LX by spe-

cific sequences of random geodesics (γ
(X)
n )n∈N, that is sequences of essential

closed geodesics whose associated probability measures in T 1X converge to
the Liouville measure with respect to the weak-∗ topology. They will be
chosen to satisfy (1.1) and (1.2) asymptotically, that is:

lim
n→∞

i

(
γn

`X(γn)
, γ

)
=

`X(γ)

π2|χ(S)|
for all essential closed curve γ,(1.3)

lim
n→∞

i

(
γn

`X(γn)
,

γn
`X(γn)

)
=

1

π2|χ(S)|
.(1.4)

As discussed in [8], any sequence of random geodesics (γn)n∈N satisfies (1.3).
Moreover, if the surface is compact then (1.4) is ensured for every sequence of
random geodesics. However, for a non-compact surface, arbitrary sequences
of random geodesics do not necessarily satisfy (1.4), see Example 3.2 below.
Indeed, a large part of this article will be dedicated to building sequences of
random geodesics satisfying this property for non-compact surfaces.

Theorem 1.1. For every complete and finite area hyperbolic structure X on
a finite analytic type surface S of negative Euler characteristic χ(S), there

is a sequence (γ
(X)
N )n∈N of random geodesics such that:

lim
n→∞

i

(
γ

(X)
N

`X(γ
(X)
N )

,
γ

(X)
N

`X(γ
(X)
N )

)
=

1

π2|χ(S)|
.

Theorem 1.1 is actually part of a more technical result, Theorem 3.5, that
we will prove in section 3. The main additional content of Theorem 3.5 is to
ensure that the convergence rates in (1.3) and (1.4) hold with no dependance
on the structure X. This uniformity will be important to achieve the proof
of Thurston’s compactification in section 4. Moreover, the proof of the
theorem also ensures that we can control the behavior of sequences of random
geodesics into some cusp’s neighborhoods.

Acknowledgements. I am grateful to Juan Souto for our discussions and
for all his suggestions about this paper. I would like to thank people who
gave me their feedbacks on the first version of this document, especially
Francis Bonahon, Frédéric Paulin, Beatrice Pozzetti, and Dylan Thurston
for their remarks and Didac Martinez-Granado and Arya Vadnere for their
questions. I also want to thank the PhD students of the IRMAR in ergodic
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theory for our debates on hyperbolic geometry, Barbara Schapira for her
help with computations and Jing Tao for the time she gave me, her advices
and her comments on my work. Finally, I thank the anonymous referee for
their careful review of this document.

2. Preliminaries

In this section, we give some technical results and definitions. We refer
the reder to [6], [5] and [8] for details. From now on, let S be a non-compact
surface of finite analytic type, with negative Euler characteristic χ = χ(S) <
0. We denote by X,X ′, Xn... points in the Teichmüller space of S, or maybe
just the underlying complete and finite area hyperbolic structure. Note
that, although not specified, all the hyperbolic structures are complete and
finite area. Moreover, we will write Z to refer indifferently to any finite area
hyperbolic surface, possibly with punctures or with geodesic boundaries.
If S is endowed with a hyperbolic structure X then every free homotopy
class of essential closed curves contains a unique geodesic representative,
so we identify a class with its geodesic representative when the hyperbolic
structure is fixed. We will denote by C(S) the set of free homotopy classes of
essential closed curves -by essential we mean non-null-homotopic and non-
peripheral- or equivalently the set of essential closed geodesics. Let also
Σ be a compact hyperbolic surface with geodesic boundary whose interior
is homeomorphic to S. We fix a homeomorphism between S and Σ \ ∂Σ.
This homeomorphism immediately induces a correspondance between the
essential closed curves of S and the ones of Σ, that is

(2.1) C(S) = C(Σ).

The homeomorphism S = Σ \ ∂Σ also gives an identification between mea-
sured laminations of S and the ones of Σ supported by Σ \ ∂Σ:

(2.2) ML(S) = {λ ∈ML(Σ)|λ supported by Σ \ ∂Σ}.
The identifications (2.1) and (2.2) will allow us to work on Σ rather than on
S.

2.1. Currents on surfaces. We recall now a few properties of currents
that we will need in the following. A geodesic current on Z is a π1(Z)-
invariant Radon measure on the set of bi-infinite geodesics on the universal
cover Z̃ of Z (even if the surface has non-empty boundary). The space C(Z)
of geodesic currents on Z was introduced by Bonahon in [5] and is endowed
with the weak-∗ topology. For more information on currents we refer to [5],
[6], [1] and, [8, Chap. 3].

The currents we will be mainly interested in are weighted multicurves and
measured laminations and we will always consider currents on the compact
surface Σ. An advantage of doing so is that when Z is compact, the topo-
logical space C(Z) is locally compact, and the associated projective space

P+C(Z) = R+
�C(Z) \ {0} is compact. Moreover, in the compact case, the
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geometric intersection number between curves extends to a continuous bi-
linear map i : C(Z)×C(Z)→ R+. It will be important later on to know that
this form gives us a characterisation of the measured laminations as being
the currents µ ∈ C(Z) satisfying i(µ, µ) = 0. We can also notice that the
boundary curves are characterised by a zero intersection form with every
current. As mentioned earlier, the reason why we want to work with the
currents on the compact surface Σ, rather than with the currents on S, is
that the continuity of the intersection number fails in the latter case.

Figure 1. Obstruction to the continuity of i

Example 2.1 (Discontinuity of the intersection form in the non-compact
case). Take a hyperbolic surface with at least two cusps, fix an embedded
horocycle around each of them, and a simple geodesic arc between those
curves which meet them orthogonally. Note that this arc is part of a cusps-
to-cusps geodesic arc γ. Consider a sequence of closed curves (γn)n∈N, where
γn is the geodesic homotopic to the closed curve which runs the geodesic arc
mentioned above, turns n times around the first cusp following the fixed
horocycle, goes back along the geodesic arc and turns n times around the
second cusp as in Fig. 1. The self-intersection number of such a sequence is
going to grow without bound. On the other hand, it approaches the weight 2
current associated to γ which has 0 self-intersection number.

See [18, Prop. 5.1] for a more detailed discussion on that obstruction to
a continuous extension of the intersection number on the space of currents
for non-compact surfaces.

Example 2.1 shows that there is no continuous extension of the intersec-
tion number for currents on S — it is the reason why we chose to work with
currents on the compact surface Σ instead of the currents on S = Σ \ ∂Σ.
This solves the problem of continuity of i(·, ·) but raises a new problem: we
won’t be able to consider the Liouville current anymore.

Proposition 2.2. Let Σ be a compact hyperbolic surface with non-empty
boundary and X a hyperbolic structure on S = Σ \ ∂Σ. There is no current
LX on Σ which satisfies i(LX , γ) = `X(γ) for every essential closed curve
γ ∈ C(Σ).

Proof. If γ is a closed geodesic and µ a weighted multicurve of Σ then

(2.3) i(γ, µ) = min

{
](γ′ ∩ µ),

γ′ piecewise geodesic homotopic to γ

in µ-general position

}
,
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where a piecewise geodesic homotopic to γ is in µ-general position if the set
of geodesics passing through the corners has vanishing µ measure.

Figure 2. Obstruction to the existence of the Liouville cur-
rent

Now, consider b1 and b2 two boundary components of Σ, maybe the same,
and γ a non-trivial geodesic arc joining them. For every k, we define γk as
the unique closed geodesic homotopic to the piecewise geodesic which follows
γ, turns k times around b1, follows back γ and turns k times around b2. We
obtain from Eq. (2.3) that for any weighted multicurve µ,

i(γk, µ) ≤ k](b1 ∩ µ) + k](b2 ∩ µ) + 2](γ ∩ µ) = 2](γ ∩ µ).

We want to extend the previous inequality for µ a current, to do so we
need a well-defined notion of intersection with γ. For this purpose we can
embed Σ into the closed doubled surface DΣ, for more details about how to
pass from Σ to DΣ the reader can refer to [22]. Hence, C(Σ) is a subset of
C(DΣ), the double γ̂ of γ is a curve and in C(DΣ) we have

i(γk, µ) ≤ 2i(γ̂, µ),(2.4)

for any µ weighted multicurve of Σ. Moreover, the weighted multicurves
are dense in C(Σ) and the intersection number is continuous in C(DΣ) so
Eq. (2.4) induces that

(2.5) ∀ν ∈ C(Σ), i(γk, ν) ≤ 2i(γ̂, ν) <∞.
However, lim

k→∞
`X(γk) =∞ for any hyperbolic structureX on S, so Eq. (2.5)

prevents any intersection with a fixed current to produce the length. �

2.2. Cusps neighborhoods and intersection number. Everything in
the next section relies on a good understanding of the behaviour of geodesics
in cusps. More precisely, if X is a hyperbolic structure on S then we denote
by H i

k the embedded horosphere of length 1/k around the i-th cusp. The
horosphere H i

k bounds the horoball Bi
k of area 1/k. We will refer to H i

k and

Bi
k as the horosphere and horoball of depth k. We also set Xk the compact

core of X bounded by the horospheres H i
k and Bk its complement:

Xk = X \
⋃
i

Bi
k, Bk =

⋃
i

Bi
k.(2.6)

There is a direct link between the number of times a curve turns around a
cusp and the depth it reaches [2, Prop. 3.4]. It follows that every curve that
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goes deep into a cusp has a large self-intersection number. To make this
link more clear we recall a notion introduced in [8, Def. 2.6]: the peripheral
self-intersection number.

Definition 2.3. Let Z be a hyperbolic surface (compact or not) and re-
call that a peripheral subgroup of π1(Z) is nothing other than a cyclic sub-
group generated by a non-essential closed curve. The peripheral self-
intersection number iper(γ, γ) of γ ∈ C(Z) is the supremum over all
maximal peripheral subgroups G ⊂ π1(Z) of the maximal number of times

that the image of a lift γ̃ of γ under Z̃ → G�
Z̃ meets itself transversely.

The peripheral self-intersection number is a topological invariant. It is
thus independent of the metric on S, or more specifically, whether one con-
siders the curves on S or on Σ. Moreover, for every compact subset K of
Z \ ∂Z there is a upper bound for the peripheral self-intersection number
of the closed geodesics contained in K. Conversely, for every N > 0 there
is a compact subset KN of Z \ ∂Z that contains all the geodesics γ with
iper(γ, γ) ≤ N [8, Lem. 2.7]. In the absence of boundary, one can easily
quantify this property.

Lemma 2.4. Let X be a non-compact finite topological type surface with no
boundary, and γ be an essential closed curve on X, this curve has support
on Xk if and only if iper(γ, γ) ≤ 4k.

Proof. If we think of the curves of π1(X) as deck transformations then a
peripheral subgroup of π1(X) is a subgroup generated by a parabolic ele-
ment. Let’s study a given cusp Ci, we can assume that the correspondence
between X̃ and H2 is such that an associated maximal parabolic element
is z 7→ z + 1. In that case, H i

k lifts to the horizontal line {=(z) = k}
and if γ is a closed geodesic of X then the number of times that the im-

age of a lift γ̃ under X̃ → < z 7→ z + 1 >�
X̃ meets itself transversely is

]{n ∈ Z \ {0}|γ̃ ∩ (γ̃ + n) 6= ∅}. However, γ stays in Xk around Ci, if and
only if its lifts stay below the line {=(z) = k}, if and only if its lifts are
half circles of radius at most k. Such a geodesic of H2 meets at most 4k
translations of itself (n = ±1,±2... ± 2k). The same process applies for
every cusps and then to every maximal parabolic subgroup and we obtain
the lemma. �

3. Construction of controled sequences of random geodesics

In this section we prove that for all non-compact hyperbolic surfaces of
finite volume with no boundary there are sequences of random geodesics
satisfying (1.4). However, we will first see with Example 3.2 that in the non-
compact case not all the sequences of random geodesics have this property.

3.1. Sequences of random geodesics. As we saw in Proposition 2.2, the
Liouville current does not exist anymore in our setting. However, for every
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(complete and finite area) hyperbolic structure X on S the Liouville measure
on T 1X still exists. Recall that the Liouville measure LX is the measure
on the unit tangent bundle T 1X, obtained by pushing forward the Haar
measure on PSL2(R) and normalized so that LX(T 1X) = 2π volX(S) =
4π2|χ(S)|. We are going to consider geodesics approximating the Liouville
measure in the following sense.

Definition 3.1. A sequence (γn)n∈N of essential closed geodesics on X is
a sequence of random geodesics if the associated probability measures
converge to LX with respect to the weak-∗ topology, meaning that:∫

T 1X
f

dγn
`X(γn)

−→
n→+∞

∫
T 1X

f
dLX

4π2|χ(S)|
,

for every f ∈ C0
c (T 1X) continuous and compactly supported function on

T 1X.

Remark. We will generally use the notation γ̂ for the renormalisation
γ

`X(γ)
.

The Birkhoff ergodic theorem, together with the ergodicity of the geodesic
flow, implies the existence of such sequences of geodesics. We refer to [8,
Chap. 2] for some facts about sequences of random geodesics that we will
use here.

The construction of the Liouville measure ensures that for a compact
subsurface K of X we have LX(T 1K) = 2π volX(K). Then, if the boundary
of K is smooth, the Portmanteau Theorem implies that for every sequence
of random geodesics (γn)n∈N we have

`X(γn ∩K)

`X(γn)
−→

n→+∞

volX(K)

2π|χ(S)|
.

Applying this property to our compact core Xk we have

(3.1)
`X(γn ∩Xk)

`X(γn)
−→

n→+∞

volX(Xk)

2π|χ(S)|
,

and hence,

(3.2)
`X(γn ∩Bk)

`X(γn)
−→

n→+∞

volX(Bk)

2π|χ(S)|
.

What is much more surprising is that sequences of random geodesics can
also be used to compute lengths. More concretely, we have

(3.3)
i(γn, I)

`X(γn)
−→

n→+∞

`X(I)

π2|χ(S)|
,

for every compact geodesic segment I in X. This property is basically due
to Bonahon [6, Prop. 14], we also refer the reader to [8, Prop. 2.4] for
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details. A direct consequence of (3.3) is that we can use random geodesics
(γn)n∈N to compute the length of any essential geodesic γ ∈ C(S):

(3.4)
i(γn, γ)

`X(γn)
−→

n→+∞

`X(γ)

π2|χ(S)|
.

Note that in this equation the curve γ is fixed. Meaning that a priori,
equation (3.4) does not say anything about i(γn, γn). However, for compact
sets (3.3) holds uniformly. As a consequence, cutting the geodesics γn into
geodesic segments we have

(3.5) i

(
γn

`X(γn)
,

γn|K

`X(γn|K)

)
−→

n→+∞

1

π2|χ|
.

for K any fixed compact subsurface of X.
All those considerations about sequences of random geodesics apply to

compact surfaces, hence, if S were compact, applying (3.5) to K = S, then
we would immediatly have that every sequence of random geodesics satisfies
(1.4). However, that is not necessarily true in general.

Example 3.2. First, note that an excursion of length ` into some Bk
i has

between ke`/2 − 2 and 4ke`/2 self-intersections. Consider now a sequence of
random geodesics (γn)n∈N. Add to γn an excursion of length 6 log(`X(γn))
at depth kn −−−→

n→∞
∞ and pull it tight into a new geodesic γ′n. If we add the

excursions in a well-chosen way (for example, gluing it at the deepest point
of an excursion) then the (γ′n)n∈N are still random geodesics and

i(γ′n, γ
′
n)

`X(γ′n)2
≈ i(γn, γn) + kn`X(γn)3

(`X(γn) + 6 log(`X(γn)))2
∼

+∞

i(γn, γn)

`X(γn)2
+ kn`X(γn) −−−→

n→∞
∞.

One can can also refer to the arguments in Lemma 3.4 below to prove that
such sequences of random geodesics exist.

In [12, Cor. 11.2] or [11], Lalley gives a construction of random geodesics
that justifies the use of the term ”random”: if for all n the geodesic γn is
randomly chosen among the geodesics of length at most n then (γn)n∈N is a
sequence of random geodesics with probability 1. Hence, we wonder which
proportion of sequences of random geodesics satisfies (1.4). This problem
might be linked to the study of the length of cusp excursions for random
geodesics, see for example [10], [17] or [20] and the references therein.

Anyway, the above example makes clear that to obtain (1.4) in the non-
compact case we have to control the excursions of the sequences of random
geodesics into cusps neighborhoods. We will do it through the cutting pro-
cess described below.

3.2. Cutting process. Suppose that X is a fixed complete and finite area
hyperbolic structure for S. Recall that Xt denotes the compact core of
X bounded by the horospheres of length 1/t around the cusps of S and
that Bt = X \ Xt is its complement. Given two parameters k ∈ N and
0 < θ < π/4, and a curve γ we want to cut the excursions of γ in Bk in
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order to prevent γ from leaving Xk/ sin(θ). To do so, we will study γ through
its lifts in the universal cover X̃ of X. We focus here on a given cusp but we
apply the same construction around each cusps of X. For t ≥ 1 we denote by
Ht the horosphere of depth t around this cusp and Bt the horoball it bounds.
Since X is a hyperbolic surface endowed with a complete hyperbolic metric,
its universal cover identifies with H2, and we can suppose that the parabolic
element associated to the cusp we are interested in is z 7→ z + 1. With
this normalization Ht lifts to the horizontal line {=(z) = t} and we have
that if a curve enters Ht with some angle α ∈ [0, π/2) then it reaches the
horosphere Hk/ sin(α) (we measure the non-oriented angle with the normal
to the horosphere). We want to cut γ in order to replace its long excursions
into Bk (ie. the ones which cross Hk/ sin(θ)) by short ones (excursions staying
between Hk/ sin(2θ) and Hk/ sin(θ)). To make it explicit we make a description
of the process on the universal cover.

Figure 3. Cutting process

If γ makes excursions in Bk we are going to modify γ explaining the
process on a fixed lift γ̃ which makes an excursion in the horoball {=(z) > k}
bounded by {=(z) = k} but the same process applies to all lifts of Bk. First,
if γ̃ enters with an angle greater than θ then we don’t change it. On the
other hand, if it enters with an angle smaller than θ then we replace this arc
by a geodesic arc I which enters with angle between θ and 2θ and whose exit
point coincides with the exit point of a different lift γ̃′ of γ (see Fig. 3). This
is always possible as long as 2k cotan(θ)− 2k cotan(2θ) ≥ 1. If we apply the
same process to all the excursions of γ around every cusp then γ is replaced
by a closed piecewise geodesic γ′.

Now, pulling γ′ tight we obtain a closed geodesic γ∗: we refer to γ∗ as the
geodesic obtained by cutting process of parameters k and θ from γ. Note that
if θ is small then γ′ and γ∗ have basically the same length, more precisely,
they can be mapped one to each other through a homotopy with small
displacement and without disturbing to much the lengths. For the lengths,
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it is easy to see that there is some eθ −−−→
θ→0

0, idependent from X, such that

for every k ≥ 1 and θ small

(3.6) `X(γ′) ≤ (1 + eθ)`X(γ∗).

Here `X(γ′) refer to the arc length of γ′, we will use again this abuse of
notation but its meaning is clear from the context.

3.3. Construction of controled sequences of random geodesics.

Lemma 3.3. There is some θ0 > 0 such that if (γn)n∈N is a sequence of
random geodesics on X and (γ∗n)n∈N is obtained from the γn applying the
cutting process of parameters k > 1 and θ > θ0 then there is µn −−−→

n→∞
0

such that

1 ≤ `X(γn)

`X(γ∗n)
≤ (1 + µn)

volX(S)

volX(Xk)
(1 + eθ),

for every n. Here, eθ is as in (3.6).

Proof. We use the same notation as in the description of the cutting process,
and, as above, we denote by `X(γ′n) the arc length of the piecewise geodesics.

We take θ0 small enougth such that (3.6) occurs. The γn being random
geodesics, (3.1) ensures that we can find a sequence µn −−−→

n→∞
0 such that

`X(γn)
`X(γ

n|Xk ) = (1 + µn) volX(S)
volX(Xk)

. The construction of γ′n ensures that γn|Xk =

γ′
n|Xk , thus

`X(γ
n|Xk )

`X(γ′n) ≤ 1 and if θ > θ0 then `X(γ′n)
`X(γ∗n) ≤ (1 + eθ). The upper

bound follows from those three inequalities.
Now, γn and γ′n coincide on Xk but γ′n has shorter excursions than γn in

Bk, hence, `X(γn)
`X(γ′n) ≥ 1. The geodesic γ∗n is the unique geodesic representative

of the free homotopy class of γ′n which proves that `X(γ′n)
`X(γ∗n) ≥ 1 and the lower

bound follows. �

Lemma 3.4. Let (γn)n∈N be a sequence of random geodesics. If (γ∗n)n∈N is
obtained from (γn)n∈N applying the cutting processes of parameters kn −−−→

n→∞
∞ and θn −−−→

n→∞
0, then (γ∗n)n∈N is a sequence of random geodesics.

Proof. In this proof, we denote by γ̃ the canonical lift of a geodesic γ to the
unit tangent bundle of X.

Let f ∈ C0
c (T 1X) be a continuous and compactly supported function on

T 1X, there is K a compact core of X such that Supp(f) ⊂ T 1K. Since
kn −−−→

n→∞
∞ then there is n0 ∈ N such that for all n ≥ n0, γn|K = γ′n|K .

The homotopy between γ′n and γ∗n induces that the arcs of γn|K are freely
homotopic to geodesic arcs of γ∗n. Such a homotopy induces a projection
from γn|K to γ∗n and lifts to Ψn : γ̃n|K → γ̃∗n, which is a homeomorphism on
its image. The homotopy can be chosen to have low displacement, that is
d(p,Ψn(p)) ≤ εn −−−→

n→∞
0 for every p ∈ γ̃n|K , and not to distort too much

the lengths. Moreover, we can find ϕn : [0, `X(γn|K)] → R+ a piecewise
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smooth reparametrization of [0, `X(γn|K)] such that for all t ∈ [0, `X(γn|K)],
Ψn(γ̃n|K(t)) = γ̃∗n(ϕn(t)). The homotopy between γ′n and γ∗n does not distort
too much the lengths, hence, we have some δn −−−→

n→∞
0 such that 1 − δn ≤

ϕ′n ≤ 1 + δn where it is defined.
Fix some µ > 0. A compactly supported continuous function is uniformly

continuous, thus, there is εµ > 0 such that if d(p, q) ≤ εµ then |f(p)−f(q)| ≤
µ. We can suppose that for every n ≥ n0, εn ≤ εµ. We have∫
T 1X

fdγ∗n =

∫ `X(Ψn(γn|K))

0
f ◦ γ̃∗n(t)dt =

∫ `X(γn|K)

0
f ◦ γ̃∗n(ϕn(s))ϕ′n(s)ds,

it follows that

(1− δn)

∫ `X (γn|K )

0

f(Ψn(γ̃n|K(s))ds ≤
∫

T1X

fdγ
∗
n ≤ (1 + δn)

∫ `X (γn|K )

0

f(Ψn(γ̃n|K(s))ds

⇒ (1− δn)

 ∫
T1X

fdγn − µ`X(γn|K)

 ≤ ∫
T1X

fdγ
∗
n ≤ (1 + δn)

 ∫
T1X

fdγn + µ`X(γn|K)



⇒ (1− δn)
`X(γn)

`X(γ∗n)

 ∫
T1X

fdγ̂n − µ

 ≤ ∫
T1X

fdγ̂
∗
n ≤ (1 + δn)

`X(γn)

`X(γ∗n)

 ∫
T1X

fdγ̂n + µ



Adapting the proof of Lemma 3.3 we have
`X(γn)

`X(γ∗n)
−−−→
n→∞

1, and passing to

the limit in n we obtain∫
T 1X

f
dLX

4π2|χ(S)|
− µ ≤ limn

∫
T 1X

fdγ̂∗n ≤ limn

∫
T 1X

fdγ̂∗n ≤
∫
T 1X

f
dLX

4π2|χ(S)|
+ µ.

This is true for all µ, hence, lim
n→∞

∫
T 1X

fdγ̂∗n =
∫
T 1X

f
dLX

4π2|χ(S)|
and we have

proved that (γ∗n)n∈N is a sequence of random geodesics. �

Now, for every hyperbolic structure X on S, we will be able to build

sequences (γ
(X)
n )n∈N of random geodesics satisfying (1.4). Moreover, we will

build them in such a way that neither the converging rates in (1.4) and (3.4),

nor the peripheral self-intersection numbers iper(γ
(X)
n , γ

(X)
n ) depend on X.

Theorem 3.5. For every complete and finite area hyperbolic structure X
on a finite analytic type surface of negative Euler characteristic S, there is

a sequence (γ
(X)
n )n∈N of random geodesics such that :

lim
n→∞

i

(
γ

(X)
n

`X(γ
(X)
n )

,
γ

(X)
n

`X(γ
(X)
n )

)
=

1

π2|χ(S)|
.

More precisely, they can be chosen such that

(1) i(γ̂
(X)
n , γ̂

(X)
n ) ≤ 1

π2 |χ(S)|

(
1 +

1

n

)
, ∀n ∈ N,
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(2) ∀α ∈ C(S), ∃nα ∈ N :

∣∣∣∣i(γ̂(X)
n , α)

(
`X(α)
π2|χ|

)−1
− 1

∣∣∣∣ ≤ 3

n
, ∀n ≥ nα,

(3) iper(γ
(X)
n , γ

(X)
n ) ≤ Cn, ∀n ∈ N,

where Cn and nα do not depend on X.

Proof. To obtain the desired sequence (γ
(X)
n )n∈N we start with an arbitrary

sequence of random geodesics (γn)n∈N. For every p we set kp = ep/2 and

θp = e−p/2, if we apply the cutting process with parameters kp and θp to the
sequence (γn)n∈N then we obtain a sequence (γ̃pn)n∈N of piecewise geodesics
and by pulling it tight a sequence (γpn)n∈N of geodesics. We will chose the

(γ
(X)
N )N∈N among the γpn.
First, study the self-intersection number of those γpn. As γpn is the geodesic

representative of γ̃pn, its self-intersection number is lower than the number of
self-intersections of γ̃pn. To count it, we divide X into two parts, the compact
core Xk and its complement Bk. On Xk, the geodesic arcs γ̃p

n|Xk and γn|Xk

are identical so γ̃pn has i(γn|Xk , γn) self-intersections. On the complement,

we count the self-intersections of γ̃pn considering its different excursions in
Bk:

i(γpn, γ
p
n) ≤ i(γn ∩Xk, γn) +

∑
I,J excursions in Bk

i(I, J).

We can distinguish two types of pairs (I, J): the ones where at least one of

the excursions stays in Bk ∩ Xk/ sin(2θ), and the ones where both I and J
reach Bk/ sin(2θ). In the first case, I and J meet at most as many times as
the corresponding excursions of γn and then:

i(γpn, γ
p
n) ≤ i(γn ∩Xk/ sin(2θ), γn) +

∑
I,J excursions in Bk

which reach Bk/ sin(2θ)

i(I, J).

Moreover, an excursion of γ̃pn in Bk which reaches Bk/ sin(2θ) has a length of
at least ln(1/θ), a lower bound for the length of the geodesic arc which enters

with angle 2θ. It follows that there is at most `X(γn∩Bk)
ln(1/θ) such excursions.

Also, the intersection number of two excursions reaching Bk/ sin(2θ) is at most
4k/θ, the self-intersection number of the excursion which enters with angle
θ. All in all,

i(γpn, γ
p
n) ≤ i(γn ∩Xk/2θ, γn) +

(
`X(γn ∩Bk)

ln(1/θ)

)2
4k

θ
.

Applying equations (3.5) and (3.2) we have

i(γn ∩Xk/2θ, γn) = (1 + εpn)
`X(γn)`X(γn ∩Xk/2θ)

π2|χ|
and

`X(γn ∩Bk) = (1 + δpn)
`X(γn)

2π|χ|
C

k
where C is the number of cusps of S,
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where εpn −−−→
n→∞

0 and δpn −−−→
n→∞

0 depend on X. As a consequence,

i(γpn, γ
p
n) ≤ (1 + εpn)

`X(γn)2

π2|χ|
+

(
(1 + δpn)

C`X(γn)

2π|χ| · k · ln(1/θ)

)2 4k

θ

and we obtain a upper bound for the self-intersection number of the nor-
malized curves:

i

(
γpn

`X(γpn)
,

γpn
`X(γpn)

)
≤ 1

π2|χ|

(
(1 + εpn) + (1 + δpn)2C

2

|χ|
4

p2

)(
`X(γn)

`X(γpn)

)2

.

(3.7)

We next study the intersection number of the γpn with closed curves. The
set C(S) is infinite and can be enumerated with C(S) = {αq|q ∈ N} in
such a way that iper(αq, αq) ≤ 4q for every q. This enumeration is fixed

whatever the structure X. Recall that for every p we have k = kp = ep/2

and θ = θp = e−p/2. Hence, when p is big enough, for q ≤ p the curve αq is

included in Xq ⊂ Xk. However in Xk we have i(γn, ·) = i(γpn, ·) thus

(3.8) i(γ̂pn, αq) =
`X(γn)

`X(γpn)
i(γ̂n, αq).

Now, applying Lemma 3.3, for every p there is µpn −−−→
n→∞

0, depending on

X, such that

(3.9) 1 ≤ `X(γn)

`X(γpn)
≤ (1 + µpn)

volX(S)

volX(Xk)
(1 + ep).

with ep = ee−p/2 with the notation of (3.6).
Therefore, there are mp large enough such that εpmp , δ

p
mp , µ

p
mp ≤ 1

p , and∣∣∣∣ i(γ̂mp , αq)

`X(αq)/π2|χ|
− 1

∣∣∣∣ ≤ 1
p for every q ≤ p. Thus (3.9) and (3.7) give us

1 ≤
`X(γmp)

`X(γpmp)
≤ volX(S)

volX(Xk)
(1 +

1

p
)(1 + ep) −−−→

p→∞
1,(3.10)

(3.11) i(γ̂pmp , γ̂
p
mp) ≤

1

π2|χ|

(
1 + (1 +

1

p
)

4C2

p2|χ|

)
volX(S)

volX(Xk)
(1 +

1

p
)2(1 + ep)

−−−→
p→∞

1

π2|χ|
.

The terms on the right in inequalities (3.10) and (3.11) do not depend on X
anymore so, forN an integer there is pN , independent from X and with pN >

pN−1, such that 1 ≤ `X(γpN )

`X(γpNmpN )
≤ 1 + 1

N and i(γ̂pNmpN , γ̂
pN
mpN

) ≤ 1
π2|χ|(1 + 1

N ).

As a consequence, we can take γ
(X)
N = γpNmpN .

The previous constructions ensure that i(γ̂
(X)
N , γ̂

(X)
N ) ≤ 1

π2|χ|(1 + 1
N ), and we

have proved (1) in the statement of the theorem.
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Applying Proposition 2.4 we have iper(γ
(X)
N , γ

(X)
N ) ≤ 4epN where pN does

not depend on X, which gives us the third point.
At last, (3.8) and the choice of pN and mp induces that

1− 3

N
≤ (1− 1

N
) ≤

i(γ̂
(X)
N , αq)

`X(αq)/π2|χ|
≤ (1 +

1

N
)2 ≤ 1 +

3

N
, ∀q ≤ N,

hence, we obtain the second point with nα = q when α = αq.

Moreover, up to passing to a subsequence, the (γ
(X)
N )N∈N are built from

the sequence (γN )N∈N of random geodesics through cutting processes of

parameters kN = epN/2 −−−−→
N→∞

∞ and θN = e−pN/2 −−−−→
N→∞

0. As a con-

sequence, Lemma 3.4 ensures that we have built a sequence of random
geodesics. At last, for K a compact subsurface of X we have

i

γ̂(X)
n ,

γ
(X)
n|K

`X(γ
(X)
n|K)

 ≤ i(γ̂(X)
n , γ̂(X)

n ) ≤ 1

π2|χ|
(1 +

1

n
),

and if we pass to the limit, using (3.5), we obtain that

lim
N→∞

i(γ̂
(X)
N , γ̂

(X)
N ) =

1

π2|χ|
.

�

4. Proof of Thurston’s compactification

Armed with Theorem 3.5, we are now able to prove Thurston’s compact-
ification. As we already mentioned in the introduction, the starting point
of this compactification is the embedding of T(S) and P+ML(S) into the

space P+(RC(S)
+ ):

` : T(S) → P+(RC(S)
+ )

X 7→ R+`X(·),
ι : P+ML(S) → P+(RC(S)

+ )
λ 7→ R+i(λ, ·).

The image of T(S) in P+(RC(S)
+ ) is included into a compact set (use Eq. (4.1)

for instance), thus, the closure T(S) of T(S) is compact. The boundary of
this set is given by the following theorem.

Theorem (Thurston’s compactification). If S is a finite analytic type sur-
face with negative Euler characteristic then the accumulation points of T(S)

in P+(RC(S)
+ ) are the projective classes of functions γ 7→ i(λ, γ) where λ ∈

ML(S) is a measured lamination on S.

Our arguments apply to the compact case, but for the sake of concreteness
we will focus on non-compact surfaces.

Let Xk ∈ T(S) be a sequence which converges in P+(RC(S)
+ ) and leaves all

compact sets of T(S), meaning that there are a non-zero element F of RC(S)
+
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and a sequence (εk)k∈N of positive real numbers such that lim
k→∞

εk`k(·) = F

pointwise (we have written `k for `Xk). We will prove that F is given by
taking the intersection number with a suitable measured lamination.

Fix a filling curve β on S, that is a closed curve such that the connected
components of S \β are balls and annular neighborhoods of the cusps. Such
a curve gives us a bound on the length of every curve γ ∈ C(S), namely,

(4.1) `X(γ) ≤ `X(β)i(γ, β)(1 + i(γ, γ))

for every hyperbolic structure X [19, Lem. 2.1]. Since F = lim
k→∞

εk`k(·)
is non-zero, there is γ ∈ C(S) with F (γ) 6= 0. We obtain from (4.1) that
0 < F (γ) ≤ F (β)(1 + i(γ, γ))i(γ, β) and hence that F (β) 6= 0. Since we are

only interested in convergence in P+(RC(S)
+ ), we can assume that F (β) = 1,

meaning that

lim
k→∞

δk
`k(·)
π2|χ|

= F,

where δk = π2|χ|
`k(β) .

We will now prove that F is of the form i(µ, ·) where µ is a measured
lamination on S.

Applying Theorem 3.5 to each Xk, we obtain some sequences of essen-

tial closed geodesics (γ
(k)
n )n∈N = (γ̂

(Xk)
n )n∈N with lim

n→∞
i(γ

(k)
n /`k(γ

(k)
n ), ·) =

`k(·)/π2|χ|. As all along, let Σ be a compact complete hyperbolic sur-
face with boundary whose interior is homeomorphic to S and let’s iden-
tify C(S) with C(Σ). In particular, we can consider the weighted curves

γ̂
(k)
n = γ

(k)
n /`k(γ

(k)
n ) as currents of Σ. The space P+C(Σ) being compact

each (γ̂
(k)
n )k∈N projectively converges to a non-zero current µn ∈ C(Σ).

We first want to show that the µn are measured laminations. Consider

the sequence (γ̂
(k)
n )k∈N for n fixed, there are some εkn > 0 such that εknγ̂

(k)
n

tends to µn up to a subsequence in k. So, by diagonal extraction we can

suppose that εknγ̂
(k)
n −−−→

k→∞
µn for every n. What we have to show is that

lim
k→∞

εkn = 0 for every n. The sequence (Xk)k∈N leaves every compact set

of T(S) so there is a simple closed curve α such that lim
k→∞

`k(α) = ∞.

Recall that to prove Theorem 3.5 we have enumerated C(S) = {αn|n ∈ N}
such that iper(αn, αn) ≤ 4n, since α is a simple curve we can suppose that

α = α1. The γ
(k)
n come from Theorem 3.5 thus

∣∣∣∣i(γ̂(k)
n , α)

(
`k(α)
π2|χ|

)−1
− 1

∣∣∣∣ ≤ 3

n
whatever k and n. By hypothesis `k(α) −−−→

k→∞
∞ and we can suppose,

up to a shift in n, that for every n,

∣∣∣∣i(γ̂(k)
n , α)

(
`k(α)
π2|χ|

)−1
− 1

∣∣∣∣ < 1

2
. As a

consequence i(γ̂
(k)
n , α) −−−→

k→∞
∞. However, ∞ > i(µn, α) = lim

k→∞
εkni(γ̂

(k)
n , α)
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thus εkn −−−→
k→∞

0 for every n, and i(γ̂
(k)
n , γ̂

(k)
n ) is bounded independently from

k and n, hence, i(µn, µn) = lim
k→∞

(εkn)2i(γ̂
(k)
n , γ̂

(k)
n ) = 0 and µn is a measured

lamination on Σ. By construction, iper(γ
(k)
n , γ

(k)
n ) ≤ Cn for every k and n,

as mentioned earlier (or in [8, Lem. 2.7]) it ensures that for n fixed the γ
(k)
n

are all included in the same compact subsurface of Σ \ ∂Σ. It follows that
µn is supported on a compact set of Σ \ ∂Σ and by (2.2) it is a measured
lamination of S.

Recall that β is a filling curve of S, as a consequence, i(µn, β) 6= 0 and
hence, we can suppose that i(µn, β) = 1 for every n and we obtain

(4.2) lim
k→∞

δknγ̂
(k)
n = µn in C(Σ),

where δkn = 1

i(β,γ̂
(k)
n )

is well-defined.

To sum up, we have the following convergence diagram, where all the
convergences are pointwise.

δ1 `X1(.)

π2|χ|
δ2 `X2(.)

π2|χ|
· · · δk

`Xk(.)

π2|χ|
· · · −−→ F ∈ RC(S)

+x x · · ·
x · · ·

x?
...

... · · ·
... · · ·

...

δ1
ni(γ̂

(1)
n , ·) δ2

ni(γ̂
(2)
n , ·) · · · δkni(γ̂

(k)
n , ·) · · · −−→ i(µn, ·)

...
... · · ·

... · · ·
...

...

δ1
2i(γ̂

(1)
2 , ·) δ2

2i(γ̂
(2)
2 , ·) · · · δk2 i(γ̂

(k)
2 , ·) · · · −−→ i(µ2, ·)

δ1
1i(γ̂

(1)
1 , ·) δ2

1i(γ̂
(2)
1 , ·) · · · δk1 i(γ

(k)
1 , ·) · · · −−→ i(µ1, ·)

We want F to be the pointwise limit of (i(µn, ·))n∈N. To prove it, it is

sufficient to show that the convergence δkni(γ̂
(k)
n , γ) −−−→

n→∞
δk `k(γ)

π2|χ| is uniform

in k when γ ∈ C(S) is fixed.

If γ ∈ C(S) is fixed then Theorem 3.5 ensures that

∣∣∣∣δknδk − 1

∣∣∣∣ ≤ εn and∣∣∣∣∣i(γ̂(k)
n , γ)

(
`k(γ)

π2|χ|

)−1

− 1

∣∣∣∣∣ ≤ εn for every k and for n large enough (nγ and

nβ do not depend on k) with εn −−−→
n→∞

0. Moreover, fixing γ we know that

δk `k(γ)
π2|χ| −−−→k→∞

F (γ) hence the sequence (δk `k(γ)
π2|χ| )k∈N is bounded by some dγ

and we obtain ∣∣∣∣δkni(γ̂(k)
n , γ)− δk `k(γ)

π2|χ|

∣∣∣∣ ≤ vndγ −−−→n→∞
0.

Hence, the convergence holds uniformly in k, and lim
n→∞

lim
k→∞

δkni(γ̂
(k)
n , γ) =

lim
k→∞

lim
n→∞

δkni(γ̂
(k)
n , γ), which implies that F (γ) = lim

n→∞
i(µn, γ). Moreover,
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ML(S) is a closed subset of RC(S)
+ hence F (·) = lim

n→∞
i(µn, ·) is of the form

F (·) = i(µ, ·) where µ ∈ML(S), which was what we needed to prove. �
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