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THURSTON’S COMPACTIFICATION VIA GEODESIC CURRENTS: THE CASE
OF NON-COMPACT FINITE AREA SURFACES

MARIE TRIN

Abstract. In [Bon88], Bonahon gave a construction of Thurston’s compactification of Teichmüller
space using geodesic currents. His argument only applies in the case of closed surfaces, and there
are good reasons for that. We present a variant which applies to surfaces of finite area.

1. Introduction

The Teichmüller space T(S) of a surface S of finite topological type, with no boundary and of
negative Euler characteristic χ(S) is the space of isotopy classes of (complete and finite volume)
Riemannian metrics on S of constant curvature −1. Teichmüller space is not compact but Thurston
showed in [Thu88] how it can be compactified by the space PML(S) of projective measured lami-
nations on S. The starting point of Thurston’s compactification is the embedding of T(S) into the
compact space P(RC(S)

+ ):

` : T(S) → P(RC(S)
+ )

X 7→ `X(·);
Here `X is the length function associated to the hyperbolic structure X on S and C(S) is the set of
free homotopy classes of essential closed curves of S. What Thurston did is to identify the boundary
of T(S) in P(RC(S)

+ ) with PML(S).

Theorem (Thurston’s compactification). If S is a finite analytic type surface with negative Euler
characteristic, then the accumulation points of T(S) in P(RC(S)

+ ) are the projective classes of functions
γ 7→ i(λ, γ) where λ ∈ML(S) is a measured lamination on S.

Thurston’s original proof is explained in [FLP79]. Some versions using real-trees are given by
Morgan–Shalen [MS84], Bestvina [Bes01] or Paulin [Pau88]. An overview of the different compact-
ification methods is availlable in [Pau09] or [Ohs14]. Here, we will be mostly interested in a very
elegant argument, for closed surfaces, due to Bonahon [Bon88]. Let’s sketch the proof. Recall that
geodesic currents are π1(S)-invariant Radon measures on the set of bi-infinite geodesics of the uni-
versal cover of S. Bonahon embeds T(S) into the space C(S) of geodesic currents of S, sending each
element X ∈ T(S) of the Teichmüller space to the associated Liouville current LX ∈ C(S). The
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Liouville current satisfies two important properties:

i(LX , γ) = `X(γ) for every essential closed curve γ, and(1.1)

i(LX , LX) = π2|χ(S)|.(1.2)

Here, i : C(S)× C(S)→ R+ is the intersection form, a continuous bilinear map extending the usual
geometric intersection number between curves. Compactness of S implies compactness of the space
PC(S) of projective currents. It follows that each sequence (Xn)n∈N in Teichmüller space admits a
subsequence, say the whole sequence, which projectively converges to a non-zero current µ, meaning
that there are positive reals εn such that lim

n→∞
εnLXn = µ. The continuity of i and property (1.1)

ensure that the length functions `Xn(·) converge projectively to i(µ, ·). Moreover, εn tends to zero
unless Xn converges in T(S). Knowing that εn −−−→

n→∞
0, property (1.2) ensures that i(µ, µ) = 0,

meaning that µ is a measured lamination, as we needed to prove.
We stress that Bonahon’s argument, with all its simplicity, only applies to closed surfaces. We

will come back later to this specificity and to the obstructions to a direct extension of his argument.
Recently, Bonahon and Šarić have given another proof of this theorem using geodesic currents. The
arguments in [BŠ21] are geared to infinite type surfaces, it is worth to notice that working in such
a general context implies the lost of the symplicity of Bonahon’s original proof.

Our goal here is to adapt Bonahon’s original argument to be able to deal with non-compact
surfaces of finite analytic type .

Let’s look at the difficulties that prevent the extension of Bonahon’s proof to the non-compact
case. The intersection form, especially its continuity, is the linchpin of Bonahon’s original proof.
However, continuity fails when the surface is not compact, even if it has finite area (see [Sas20]
or Example 2.1 below). We will therefore change our point of view to allow us to benefit from the
continuity of i. We will consider currents on Σ instead of S, where Σ is a compact hyperbolic surface
with geodesic boundary whose interior is homeomorphic to S, that is S = Σ \ ∂Σ. The second key
ingredient of Bonahon’s proof is the existence of the Liouville current but, as we will see, when
working with currents on Σ we lost the Liouville current.

Proposition 2.2. Let Σ be a compact hyperbolic surface with boundary and X a hyperbolic structure
on S = Σ \ ∂Σ. There is no current LX on Σ which satisfies i(LX , γ) = `X(γ) for every essential
closed curve γ ∈ C(Σ).

In order to recover a version of properties (1.1) and (1.2), we will, for every hyperbolic structure
X on S, replace the Liouville current LX by specific sequences of random geodesics (γ

(X)
n )n∈N, that

is sequences of essential closed geodesics whose associated probability measures in T 1X converge to
the Liouville measure with respect to the weak-∗ topology. They will be chosen to satisfy (1.1) and
(1.2) asymptotically, that is:

lim
n→∞

i

(
γn

`X(γn)
, γ

)
=

`X(γ)

π2|χ(S)|
for every essential closed curve γ, and(1.3)
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lim
n→∞

i

(
γn

`X(γn)
,

γn
`X(γn)

)
=

1

π2|χ(S)|
.(1.4)

As discussed in [ES22], any sequence of random geodesics (γn)n∈N satisfies (1.3). Moreover, if the
surface is compact then (1.4) is ensured for every sequence of random geodesics. However, for a
non-compact surface, arbitrary sequences of random geodesics do not necessarily satisfy (1.4), see
Example 3.2 below. Indeed, a large part of this article will be dedicated to built sequences of random
geodesics satisfying this property for non-compact surfaces.

Theorem 1.1. For every hyperbolic structure X on a finite analytic type surface S of negative Euler
characteristic χ(S), there is a sequence (γ

(X)
N )n∈N of random geodesics such that :

lim
n→∞

i

(
γ

(X)
N

`X(γ
(X)
N )

,
γ

(X)
N

`X(γ
(X)
N )

)
=

1

π2|χ(S)|
.

Theorem 1.1 is actually part to a more technical result, Theorem 3.5, that we will prove in section
3. The main additional content of Theorem 3.5 is to ensure that the convergence rates in (1.3) and
(1.4) hold with no dependance on the structure X. This uniformity will be important to achieve the
proof of Thurston’s compactification in section 4.

Acknowledgements. I am grateful to Juan Souto for our discussions and for all his suggestions
about this paper. I also want to thank the PhD students of the IRMAR in ergodic theory for our
debates on hyperbolic geometry, and Barbara Schapira for her help with computations. I would also
like to thank Jing Tao for the time she gave me, her advices and her comments on my work.

2. Preliminaries

In this section, we give some technical results and definitions. We refer the reder to [Bon88],
[Bon86] and [ES22] for details. From now on, let S be a non-compact surface of finite analytic
type, with negative Euler characteristic χ = χ(S) < 0. We denote by X,X ′, Xn... points in the
Teichmüller space of S, or maybe just the underlying hyperbolic structure. Moreover, we will
write Z to refer indifferently to any finite area hyperbolic surface, possibly with punctures or with
geodesic boundaries. If S is endowed with a hyperbolic structure X then every free homotopy class
of essential closed curves contains a unique geodesic representative, so we identify a class with its
geodesic representative when the hyperbolic structure is fixed. We will denote by C(S) the set of
free homotopy classes of essential closed curves or equivalently the set of essential closed geodesics.
Let also Σ be a compact hyperbolic surface with geodesic boundary whose interior is homeomorphic
to S. We fixe a homeomorphism between S and Σ \ ∂Σ. This homeomorphism immediately induces
a correspondance between the essential closed curves of S and the ones of Σ, that is

(2.1) C(S) = C(Σ).

The homeomorphism S = Σ \ ∂Σ also gives an identification between measured laminations of S
and the ones of Σ supported by Σ \ ∂Σ:

(2.2) ML(S) = {λ ∈ML(Σ)|λ supported by Σ \ ∂Σ}.
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The identifications (2.1) and (2.2) will allow us to work on Σ rather than on S.

Currents on surfaces. We recall now a few properties of currents that we will need in the following.
A geodesic current on Z is a π1(Z)-invariant Radon measure on the set of bi-infinite geodesics on
the universal cover Z̃ of Z. The space C(Z) of geodesic currents on Z was introduced by Bonahon
in [Bon86] and is endowed with the weak-∗ topology. For more information on currents we refer to
[Bon86], [Bon88], [AL10] and, [ES22].

The currents we will be mainly interested in are weighted multicurves and measured laminations
and we will always consider currents on the compact surface Σ. An advantage of doing so is that when
Z is compact, the topological space C(Z) is locally compact, and the associated projective space
PC(Z) = R+

�C(Z) \ {0} is compact. Moreover, in the compact case, the geometric intersection
number between curves extends to a continuous bilinear map i : C(Z) × C(Z) → R+. It will be
important later on to know that this form gives us a characterisation of the measured laminations
as being the currents µ ∈ C(Z) satisfying i(µ, µ) = 0. We can also notice that the boundary curves
are characterised by a zero intersection form with every current. As mentioned earlier, the reason
why we want to work with the currents on the compact surface Σ, rather than with the currents on
S, is that the continuity of the intersection number fails in the latter case.

Figure 1. Obstruction to the continuity of i

Example 2.1 (Non-continuity of the intersection form in the non-compact case). Take a hyperbolic
surface with at least two cusps, fix an embedded horocycle around each of them, and a simple geodesic
arc between those curves. Note that this arc is part of a cusps-to-cusps geodesic arc γ. Consider
a sequence of closed curves (γn)n∈N, where γn is the geodesic homotopic to the closed curve which
runs the geodesic arc mentionned above, turns n times around the first cusp following the fixed
horocycle, goes back along the geodesic arc and turns n times around the second cusp as in Fig. 1.
The self-intersection number of such a sequence is going to grow without bound. On the other hand,
it approaches the weight 2 current associated to γ which has 0 self-intersection number.

See [Sas20] for a more detailed discussion on the obstruction to a continuous extension of the
intersection number on the space of currents in the non-compact surfaces.

Example 2.1 shows that there is no continuous extension of the intersection number for currents
on S — it is the reason why we chose to work with currents on the compact surface Σ instead of the
currents on S = Σ \ ∂Σ. This solves the problem of continuity of i(·, ·) but raises a new problem:
we won’t be able to consider the Liouville current anymore.
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Proposition 2.2. Let Σ be a compact hyperbolic surface with boundary and X a hyperbolic structure
on S = Σ \ ∂Σ. There is no current LX on Σ which satisfies i(LX , γ) = `X(γ) for every essential
closed curve γ ∈ C(Σ).

Proof. In Σ, if γ is a closed geodesic and µ a weighted multicurve we have

i(γ, µ) = min{](γ′ ∩ µ)|γ′ piecewise geodesic homotopic to γ in µ-general position},(2.3)

where a piecewise geodesic is in µ-general position if the set of geodesics passing through the corners
has vanishing µ measure.

The weighted multicurves are dense in C(Σ) and geodesic arcs could be seen as currents thus (2.3)
extends for µ ∈ C(Σ).

Figure 2. Obstruction to the existence of the Liouville current

Let b1 and b2 be two boundary components of Σ, maybe the same, and let γ be a geodesic arc
joining them. For every k, we define γk as the unique closed geodesic homotopic to the piecewise
geodesic which follows γ, turns k times around b1, follows back γ and turns k times around b2. By
(2.3), for any current µ ∈ C(Σ) we have

i(γk, µ) ≤ ki(b1, µ) + ki(b2, µ) + 2i(γ, µ) = 2i(γ, µ).

However, lim
k→∞

`X(γk) =∞ for any hyperbolic structure X on S. �

Cusps neighborhoods and intersection number. Everything in the next section relies on a
good understanding of the behaviour of geodesics into cusp neighborhoods, by which we mean
neighborhoods bounded by horospheres. More precisely, if X is a hyperbolic structure on S then
we denote by H i

k the embedded horosphere of length 1/k around the i-th cusp. The horosphere H i
k

bounds the horoball Bi
k of area 1/k. We will refer to H i

k and Bi
k as the horosphere and horoball

of depth k. We also set Xk the compact core of X bounded by the horospheres H i
k and Bk its

complement:

Xk = X \
⋃
i

Bi
k, Bk =

⋃
i

Bi
k.(2.4)

There is a direct link between the number of times a curve turns around a cusp and the depth
it reaches [BPT20, Prop 3.4]. It follows that every curve that goes deep into a cusp has a large
self-intersection number. To make this link more clear we recall a notion introduced in [ES22]: the
peripheral self-intersection number.
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Definition 2.3. Let Z be a hyperbolic surface (compact or not) and recall that a peripheral subgroup
of π1(Z) is nothing other than a cyclic subgroup generated by a non-essential closed curve. The
peripheral self-intersection number iper(γ, γ) of γ ∈ C(Z) is the supremum over all maximal
peripheral subgroups G ⊂ π1(Z) of the maximal number of times that the image of a lift γ̃ of γ under

Z̃ → G�
Z̃ meets itself transversely.

The peripheral self-intersection number is a topological invariant. It is thus independent of the
metric on S, or more specifically, whether one considers the curves on S or on Σ. Moreover, for
every compact subset K of Z \∂Z there is a upper bound for the peripheral self-intersection number
of the closed geodesics contained in K. Conversely, for every N > 0 there is a compact subset KN

of Z \ ∂Z that contains all the geodesics γ with iper(γ, γ) ≤ N [ES22, Lem 2.7]. In the absence of
boundary, one can easily quantify this property.

Lemma 2.4. Let X be a non-compact finite topological type surface with no boundary, and γ be an
essential closed curve on X, this curve has support on Xk if and only if iper(γ, γ) ≤ 4k.

Proof. If we think of the curves of π1(X) as deck transformations then a peripheral subgroup of
π1(X) is a subgroup generated by a parabolic element. Let’s study a given cusp Ci, we can assume
that the correspondence between X̃ and H2 is such that an associated maximal parabolic element
is z 7→ z + 1. In that case, H i

k lifts to the horizontal line {=(z) = k} and if γ is a closed geodesic

of X then the number of times that the image of a lift γ̃ under X̃ → < z 7→ z + 1 >�
X̃ meets itself

transversely is ]{n ∈ Z \ {0}|γ̃ ∩ (γ̃ + n) 6= ∅}. However, γ stays in Xk around Ci, if and only if its
lifts stay below the line {=(z) = k}, if and only if its lifts are half circles of radius at most k. Such a
geodesic of H2 meets at most 4k translations of itself (n = ±1,±2...±2k). The same process applies
for every cusps and then to every maximal parabolic subgroup and we obtain the lemma. �

3. Construction of controled sequences of random geodesics

In this section we prove that for all non-compact hyperbolic surfaces of finite volume with no
boundary there are sequences of random geodesics satisfying (1.4). However, we will first see with
Example 3.2 that in the non-compact case not all the sequences of random geodesics have this
property.

Sequences of random geodesics. As we saw in Proposition 2.2, the Liouville current does not
exist anymore in our setting. However, for every (complete and finite volume) hyperbolic structure
X on S the Liouville measure on T 1X still exists. Recall that the Liouville measure LX is the
measure on the unit tangent bundle T 1X, obtained by pushing forward the Haar measure on PSL2(R)

and normalized so that LX(T 1X) = 2π volX(S) = 4π2|χ(S)|. We are going to consider geodesics
approximating the Liouville measure in the following sense.

Definition 3.1. A sequence (γn)n∈N of essential closed geodesics on X is a sequence of random
geodesics if the associated probability measures converge to LX with respect to the weak-∗ topology,
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meaning that: ∫
T 1X

f
dγn

`X(γn)
−→

n→+∞

∫
T 1X

f
dLX

4π2|χ(S)|
,

for every f ∈ C0
c (T 1X) continuous and compactly supported function on T 1X. We will generally

use the notation γ̂ for the renormalisation γ
`X(γ) .

The Birkhoff ergodic theorem, together with the ergodicity of the geodesic flow, implies the
existence of such sequences of geodesics. We refer to [ES22] for some facts about sequences of
random geodesics that we will use here.

The construction of the Liouville measure ensures that for a compact subsurface K of X we have
LX(T 1K) = 2π volX(K). Then, if the boundary of K is smooth, the Portmanteau Theorem implies
that for every sequence of random geodesics (γn)n∈N we have

`X(γn ∩K)

`X(γn)
−→

n→+∞

volX(K)

2π|χ(S)|
.

Applying this property to our compact core Xk we have

(3.1)
`X(γn ∩Xk)

`X(γn)
−→

n→+∞

volX(Xk)

2π|χ(S)|
,

and hence,

(3.2)
`X(γn ∩Bk)

`X(γn)
−→

n→+∞

volX(Bk)

2π|χ(S)|
.

What is much more surprising is that sequences of random geodesics can also be used to compute
lengths. More concretely, we have

(3.3)
i(γn, I)

`X(γn)
−→

n→+∞

`X(I)

π2|χ(S)|
,

for every compact geodesic segment I in X. This property is basically due to Bonahon [Bon88, Prop
14], we also refer the reader to [ES22, Prop 2.4] for details. A direct consequence of (3.3) is that we
can use random geodesics (γn)n∈N to compute the length of any essential geodesic γ ∈ C(S):

(3.4)
i(γn, γ)

`X(γn)
−→

n→+∞

`X(γ)

π2|χ(S)|
.

Note that in this equation the curve γ is fixed. Meaning that a priori, equation (3.4) does not
say anything about i(γn, γn). However, for compact sets (3.3) holds uniformly. As a consequence,
cutting the geodesics γn into geodesic segments we have

(3.5) i

(
γn

`X(γn)
,

γn|K

`X(γn|K)

)
−→

n→+∞

1

π2|χ|
.

for K any fixed compact subsurface of X.
All those considerations about sequences of random geodesics apply to compact surfaces, hence,

if S were compact, applying (3.5) to K = S, then we would immediatly have that every sequence of
random geodesics satisfies (1.4). However, that is not necessarily true in general.
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Example 3.2. First, note that an excursion of length ` into some Bk
i has between ke`/2 − 2 and

4ke`/2 self-intersections. Consider now a sequence of random geodesics (γn)n∈N. Add to γn an
excursion of length 6 log(`X(γn)) at depth kn −−−→

n→∞
∞ and pull it tight into a new geodesic γ′n. If we

add the excursions in a well-chosen way (for example, gluing it at the deepest point of an excursion)
then the (γ′n)n∈N still are random geodesics and

i(γ′n, γ
′
n)

`X(γ′n)2
≈ i(γn, γn) + kn`X(γn)3

(`X(γn) + 6 log(`X(γn)))2
∼

n→+∞

i(γn, γn)

`X(γn)2
+ kn`X(γn) −−−→

n→∞
∞.

One can can also refer to the arguments in Lemma 3.4 below to prove that such sequences of random
geodesics exist.

In [Lal87] or [Lal89, Corollary 11.2], Lalley gives a construction of random geodesics that justifies
the use of the term "random": if for all n the geodesic γn is randomly chosen among the geodesics
of length at most n then (γn)n∈N is a sequence of random geodesics with probability 1. Hence, we
wonder which proportion of sequences of random geodesics satisfies (1.4). This problem might be
linked to the study of the lentgh of cusp excursions for random geodesics, see for example [Haa09],
[Pol09] or [Sul82] and the references there are in.

Anyway, the above example makes clear that to obtain (1.4) in the non-compact case we have to
control the excursions of the sequences of random geodesics into cusps neighborhoods. We will do
it through the cutting process described below.

Cutting process. Suppose that X is a fixed hyperbolic structure for S. Recall that Xt denotes
the compact core of X bounded by the horospheres of length 1/t around the cusps of S and that
Bt = X \Xt is its complement. Given two parameters k ∈ N∗ and 0 < θ < π/4, and a curve γ we
want to cut the excursions of γ in Bk in order to prevent γ from leaving Xk/ sin(θ). To do so, we will
study γ through its lifts in the universal cover X̃ of X. We focus here on a given cusp but we apply
the same construction around each cusps of X. For t ≥ 1 we denote by Ht the horosphere of depth
t around this cusp and Bt the horoball it bounds. Since X is a hyperbolic surface endowed with
a complete hyperbolic metric, its universal cover identifies with H2, and we can suppose that the
parabolic element associated to the cusp we are interested in is z 7→ z + 1. With this normalization
Ht lifts to the horizontal line {=(z) = t} and we have that if a curve enters Ht with some angle α
then it reaches the horosphere Hk/ sin(α) (we measure the angle with the normal to the horosphere).
We want to cut γ in order to replace its long excursions into Bk (ie. the ones which cross Hk/ sin(θ))
by short ones (excursions staying between Hk/ sin(2θ) and Hk/ sin(θ)). To make it explicit we make a
description of the process on the universal cover.

If γ makes excursions in Bk we are going to modify γ explaining the process on a fixed lift γ̃
which makes an excursion in the horoball {=(z) > k} bounded by {=(z) = k} but the same process
applies to all lifts of Bk. First, if γ̃ enters with an angle greater than θ then we don’t change it. On
the other hand, if it enters with an angle smaller than θ then we replace this arc by a geodesic arc
I which enters with angle between θ and 2θ and whose exit point coincides with the exit point of a
different lift γ̃′ of γ (see Fig. 3). This is always possible as long as 2k cotan(θ) − 2k cotan(2θ) ≥ 1.
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Figure 3. Cutting process

If we apply the same process to all the excursions of γ around every cusp then γ is replaced by a
closed piecewise geodesic γ′.

Now, pulling γ′ tight we obtain a closed geodesic γ∗: we refer to γ∗ as the geodesic obtained by
cutting process of parameters k and θ from γ. Note that if θ is small then γ′ and γ∗ have basically
the same length, more precisely, they can be mapped one to each other through a homotopy with
small displacement and without disturbing to much the lengths. For the lengths, it is easy to see
that there is some eθ −−−→

θ→0
0, idependent from X, such that for every k ≥ 1 and θ small

(3.6) `X(γ′) ≤ (1 + eθ)`X(γ∗).

Here `X(γ′) refer to the arc length of γ′, we will use again this abuse of notation but its meaning is
clear from the context.

Construction of controled sequences of random geodesics.

Lemma 3.3. There is some θ0 > 0 such that if (γn)n∈N is a sequence of random geodesics on X

and (γ∗n)n∈N is obtained from the γn applying the cutting process of parameters k > 1 and θ > θ0

then there is µn −−−→
n→∞

0 such that

1 ≤ `X(γn)

`X(γ∗n)
≤ (1 + µn)

volX(S)

volX(Xk)
(1 + eθ),

for every n. Here, eθ is as in (3.6).

Proof. We use the same notation as in the description of the cutting process, and, as above, we
denote by `X(γ′n) the arc length of the piecewise geodesics.

We take θ0 small enougth such that (3.6) occurs. The γn being random geodesics, (3.1) ensures
that we can find a sequence µn −−−→

n→∞
0 such that `X(γn)

`X(γ
n|Xk ) = (1 + µn) volX(S)

volX(Xk)
. The construction

of γ′n ensures that γn|Xk = γ′
n|Xk , thus

`X(γ
n|Xk )

`X(γ′n) ≤ 1 and if θ > θ0 then `X(γ′n)
`X(γ∗n) ≤ (1 + eθ). The

majoration follows from those three inequalities.
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Now, γn and γ′n coincide on Xk but γ′n has shorter excursions than γn in Bk, hence, `X(γn)
`X(γ′n) ≥ 1.

The geodesic γ∗n is the unique geodesic representative of the free homotopy class of γ′n which proves
that `X(γ′n)

`X(γ∗n) ≥ 1 and the minoration follows. �

Lemma 3.4. Let (γn)n∈N be a sequence of random geodesics. If (γ∗n)n∈N is obtained from (γn)n∈N

applying the cutting processes of parameters kn −−−→
n→∞

∞ and θn −−−→
n→∞

0, then (γ∗n)n∈N is a sequence
of random geodesics.

Proof. In this proof, we denote by γ̃ the canonical lift of a geodesic γ to the unit tangent bundle of
X.

Let f ∈ C0
c (T 1X) be a continuous and compactly supported function on T 1X, there is K a

compact core of X such that Supp(f) ⊂ T 1K. Since kn −−−→
n→∞

∞, there is n0 ∈ N such that
for all n ≥ n0, γn|K = γ′n|K . The homotopy between γ′n and γ∗n induces that the arcs of γn|K
are freely homotopic to geodesic arcs of γ∗n. Such a homotopy induces a projection from γn|K to
γ∗n and lifts to Ψn : γ̃n|K → γ̃∗n, which is a homeomorphism on its image. The homotopy can be
chosen to have low displacement, that is d(p,Ψn(p)) ≤ εn −−−→

n→∞
0 for every p ∈ γ̃n|K , and not to

distorb to much the lengths. Moreover, we can find ϕn : [0, `X(γn|K)] → R+ a piecewise smooth
reparametrization of [0, `X(γn|K)] such that for all t ∈ [0, `X(γn|K)], Ψn(γ̃n|K(t)) = γ̃∗n(ϕn(t)). The
homotopy between γ′n and γ∗n does not distort too much the lengths, hence, we have some δn −−−→

n→∞
0

such that 1− δn ≤ ϕ′n ≤ 1 + δn where it is defined.
Fix some µ > 0. A compactly supported continuous function is uniformly continuous, thus, there

is εµ > 0 such that if d(p, q) ≤ εµ then |f(p) − f(q)| ≤ µ. We can suppose that for every n ≥ n0,
εn ≤ εµ. We have

∫
T 1X

fdγ∗n =

∫ `X(Ψn(γn|K))

0
f ◦ γ̃∗n(t)dt =

∫ `X(γn|K)

0
f ◦ γ̃∗n(ϕn(s))ϕ′n(s)ds

⇒ (1− δn)

∫ `X(γn|K)

0
f(Ψn(γ̃n|K(s))ds ≤

∫
T 1X

fdγ∗n ≤ (1 + δn)

∫ `X(γn|K)

0
f(Ψn(γ̃n|K(s))ds

⇒ (1− δn)

 ∫
T 1X

fdγn − µ`X(γn|K)

 ≤ ∫
T 1X

fdγ∗n ≤ (1 + δn)

 ∫
T 1X

fdγn + µ`X(γn|K)


⇒ (1− δn)

 `X(γn)

`X(γ∗n)

∫
T 1X

fdγ̂n − µ
`X(γn)

`X(γ∗n)

 ≤ ∫
T 1X

fdγ̂∗n ≤ (1 + δn)

 `X(γn)

`X(γ∗n)

∫
T 1X

fdγ̂n + µ
`X(γn)

`X(γ∗n)


Adapting the proof of Lemma 3.3 we have

`X(γn)

`X(γ∗n)
−−−→
n→∞

1, and passing to the limit in n we obtain∫
T 1X

f
dLX

4π2|χ(S)|
− µ ≤ lim inf

n

∫
T 1X

fdγ̂∗n ≤ lim sup
n

∫
T 1X

fdγ̂∗n ≤
∫
T 1X

f
dLX

4π2|χ(S)|
+ µ.
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This is true for all µ, hence, lim
n→∞

∫
T 1X

fdγ̂∗n =
∫
T 1X

f
dLX

4π2|χ(S)|
and we have proved that (γ∗n)n∈N is a

sequence of random geodesics. �

Now, for every hyperbolic structure X on S, we will be able to build sequences (γ
(X)
n )n∈N of

random geodesics satisfying (1.4). Moreover, we will build them in such a way that neither the
converging rates in (1.4) and (3.4), nor the peripheral self-intersection numbers iper(γ

(X)
n , γ

(X)
n )

depend on X.

Theorem 3.5. For every hyperbolic structure X on a finite analytic type surface of negative Euler
characteristic S, there is a sequence (γ

(X)
n )n∈N of random geodesics such that :

lim
n→∞

i

(
γ

(X)
n

`X(γ
(X)
n )

,
γ

(X)
n

`X(γ
(X)
n )

)
=

1

π2|χ(S)|
.

More precisely, they can be chosen such that

(1) i(γ̂(X)
n , γ̂

(X)
n ) ≤ 1

π2 |χ(S)|

(
1 +

1

n

)
, ∀n ∈ N,

(2) ∀α ∈ C(S), ∃nα ∈ N :

∣∣∣∣i(γ̂(X)
n , α)

(
`X(α)
π2|χ|

)−1
− 1

∣∣∣∣ ≤ 3

n
, ∀n ≥ nα,

(3) iper(γ
(X)
n , γ

(X)
n ) ≤ Cn, ∀n ∈ N,

where Cn and nα do not depend on X. Here we use the notation γ̂(X)
n =

γ
(X)
n

`X(γ
(X)
n )

.

Proof. To obtain the desired sequence (γ
(X)
n )n∈N we start with an arbitrary sequence of random

geodesics (γn)n∈N. For every p we set kp = ep/2 and θp = e−p/2, if we apply the cutting process
with parameters kp and θp to the sequence (γn)n∈N then we obtain a sequence (γ̃pn)n∈N of piecewise
geodesics and by pulling it tight a sequence (γpn)n∈N of geodesics. We will chose the (γ

(X)
N )N∈N

among the γpn.
First, study the self-intersection number of those γpn. As γpn is the geodesic representative of γ̃pn,

its self-intersection number is lower than the number of self-intersections of γ̃pn. To count it, we
divide X into two parts, the compact core Xk and its complement Bk. On Xk, the geodesic arcs
γ̃p
n|Xk and γn|Xk are identical so γ̃pn has i(γn|Xk , γn) self-intersections. On the complement, we count

the self-intersections of γ̃pn considering its different excursions in Bk:

i(γpn, γ
p
n) ≤ i(γn ∩Xk, γn) +

∑
I,J excursions in Bk

i(I, J).

We can distinguish two types of pairs (I, J): the ones where at least one of the excursions stays in
Bk ∩Xk/ sin(2θ), and the ones where both I and J reach Bk/ sin(2θ). In the first case, I and J meet
at most as many times as the corresponding excursions of γn and then:

i(γpn, γ
p
n) ≤ i(γn ∩Xk/ sin(2θ), γn) +

∑
I,J excursions in Bkwhich reachBk/ sin(2θ)

i(I, J).
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Moreover, an excursion of γ̃pn in Bk which reaches Bk/ sin(2θ) has a length of at least ln(1/θ), a lower
bound for the length of the geodesic arc which enters with angle 2θ. It follows that there is at most
`X(γn∩Bk)

ln(1/θ) such excursions. Also, the intersection number of two excursions reaching Bk/ sin(2θ) is at
most 4k/θ, the self-intersection number of the excursion which enters with angle θ. All in all,

i(γpn, γ
p
n) ≤ i(γn ∩Xk/2θ, γn) +

(
`X(γn ∩Bk)

ln(1/θ)

)2
4k

θ
.

Applying equations (3.5) and (3.2) we have

i(γn ∩Xk/2θ, γn) = (1 + εpn)
`X(γn)`X(γn ∩Xk/2θ)

π2|χ|
and

`X(γn ∩Bk) = (1 + δpn)
`X(γn)

2π|χ|
C

k
where C is the number of cusps of S,

where εpn −−−→
n→∞

0 and δpn −−−→
n→∞

0 depend on X. As a consequence,

i(γpn, γ
p
n) ≤ (1 + εpn)

`X(γn)2

π2|χ|
+

(
(1 + δpn)

C`X(γn)

2π|χ| · k · ln(1/θ)

)2 4k

θ

and we obtain a majoration for the self-intersection number of the normalized curves:

i

(
γpn

`X(γpn)
,

γpn
`X(γpn)

)
≤ 1

π2|χ|

(
(1 + εpn) + (1 + δpn)2C

2

|χ|
4

p2

)(
`X(γn)

`X(γpn)

)2

.(3.7)

We next study the intersection number of the γpn with closed curves. The set C(S) is infinite and
can be enumerated with C(S) = {αq|q ∈ N} in such a way that iper(αq, αq) ≤ 4q for every q. This
enumeration is fixed whatever the structure X. Recall that for every p we have k = kp = ep/2 and
θ = θp = e−p/2. Hence, when p is big enough, for q ≤ p the curve αq is included in Xq ⊂ Xk.
However in Xk we have i(γn, ·) = i(γpn, ·) thus

(3.8) i(γ̂pn, αq) =
`X(γn)

`X(γpn)
i(γ̂n, αq).

Now, applying Lemma 3.3, for every p there is µpn −−−→
n→∞

0, depending on X, such that

(3.9) 1 ≤ `X(γn)

`X(γpn)
≤ (1 + µpn)

volX(S)

volX(Xk)
(1 + ep).

with ep = ee−p/2 with the notation of (3.6).

Therefore, there are mp large enough such that εpmp , δ
p
mp , µ

p
mp ≤ 1

p , and
∣∣∣∣ i(γ̂mp , αq)

`X(αq)/π2|χ|
− 1

∣∣∣∣ ≤ 1
p

for every q ≤ p. Thus (3.9) and (3.7) give us

1 ≤
`X(γmp)

`X(γpmp)
≤ volX(S)

volX(Xk)
(1 +

1

p
)(1 + ep) −−−→

p→∞
1,(3.10)

i(γ̂pmp , γ̂
p
mp) ≤

1

π2|χ|

(
1 + (1 +

1

p
)

4C2

p2|χ|

)
volX(S)

volX(Xk)
(1 +

1

p
)2(1 + ep) −−−→

p→∞

1

π2|χ|
.(3.11)



THURSTON’S COMPACTIFICATION VIA GEODESIC CURRENTS 13

The terms on the right in inequalities (3.10) and (3.11) do not depend on X anymore so, for N an

integer there is pN ≥ 6, independent from X and with pN > pN−1, such that 1 ≤ `X(γpN )

`X(γpNmpN )
≤ 1+ 1

N

and i(γ̂pNmpN , γ̂
pN
mpN

) ≤ 1
π2|χ|(1 + 1

N ). As a consequence, we can take γ(X)
N = γpNmpN .

The previous constructions ensure that i(γ̂(X)
N , γ̂

(X)
N ) ≤ 1

π2|χ|(1 + 1
N ), and we have proved (1) in the

statement of the theorem.
Applying Proposition 2.4 we have iper(γ

(X)
N , γ

(X)
N ) ≤ 4epN where pN does not depend on X, which

gives us the third point.
At last, (3.8) and the choice of pN and mp induces that

1− 3

N
≤ (1− 1

N
) ≤

i(γ̂
(X)
N , αq)

`X(αq)/π2|χ|
≤ (1 +

1

N
)2 ≤ 1 +

3

N
, ∀q ≤ N,

hence, we obtain the second point with nα = q when α = αq.
Moreover, up to passing to a subsequence, the (γ

(X)
N )N∈N are built from the sequence (γN )N∈N

of random geodesics through cutting processes of parameters kN = epN/2 −−−−→
N→∞

∞ and θN =

e−pN/2 −−−−→
N→∞

0. As a consequence, Lemma 3.4 ensures that we have built a sequence of random
geodesics. At last, for K a compact subsurface of X we have

i

γ̂(X)
n ,

γ
(X)
n|K

`X(γ
(X)
n|K)

 ≤ i(γ̂(X)
n , γ̂(X)

n ) ≤ 1

π2|χ|
(1 +

1

n
),

and if we pass to the limit, using (3.5), we obtain that lim
N→∞

i(γ̂
(X)
N , γ̂

(X)
N ) =

1

π2|χ|
. �

4. Proof of Thurston’s compactification

Armed with Theorem 3.5, we are now able to prove Thurston’s compactification. As we already
mentioned in the introduction, the starting point of this compactification is the embedding of T(S)

and PML(S) into the compact space P(RC(S)
+ ):

` : T(S) → P(RC(S)
+ )

X 7→ `X(·),
ι : PML(S) → P(RC(S)

+ )

λ 7→ i(λ, ·).

The compactness of P(RC(S)
+ ) implies that the closure T(S) of T(S) is compact. The boundary of

this set is given by the following theorem.

Theorem (Thurston’s compactification). If S is a finite analytic type surface with negative Euler
characteristic then the accumulation points of T(S) in P(RC(S)

+ ) are the projective classes of functions
γ 7→ i(λ, γ) where λ ∈ML(S) is a measured lamination on S.

Our arguments apply to the compact case, but for the sake of concreteness we will focus on
non-compact surfaces.
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Let Xk ∈ T(S) be a sequence which converges in P(RC(S)
+ ) and leaves all compact sets of T(S),

meaning that there are a non-zero element F of RC(S)
+ and a sequence (εk)k∈N of positive real numbers

such that lim
k→∞

εk`k(·) = F pointwise (we have written `k for `Xk). We will prove that F is given by
taking the intersection number with a suitable measured lamination.

Fix a filling curve β on S, that is a closed curve such that the connected components of S \ β are
balls and annular neighborhoods of the cusps. Such a curve gives us a bound on the length of every
curve γ ∈ C(S), namely,

(4.1) `X(γ) ≤ `X(β)i(γ, β)(1 + i(γ, γ))

for every hyperbolic structure X [SV20, Lemma 2.1]. Since F = lim
k→∞

εk`k(·) is non-zero, there is

γ ∈ C(S) with F (γ) 6= 0. We obtain from (4.1) that 0 < F (γ) ≤ F (β)(1 + i(γ, γ))i(γ, β) and
hence that F (β) 6= 0. Since we are only interested in convergence in P(RC(S)

+ ), we can assume that
F (β) = 1, meaning that

lim
k→∞

δk
`k(·)
π2|χ|

= F,

where δk = π2|χ|
`k(β) .

We will now prove that F is of the form i(µ, ·) where µ is a measured lamination on S.
Applying Theorem 3.5 to each Xk, we obtain some sequences (γ

(k)
n )n∈N∗ = (γ̂

(Xk)
n )n∈N∗ of essential

closed geodesics with lim
n→∞

i(γ
(k)
n /`k(γ

(k)
n ), ·) = `k(·)/π2|χ|. As all along, let Σ be a compact complete

hyperbolic surface with boundary whose interior is homeomorphic to S and let’s identify C(S) with
C(Σ). In particular, we can consider the weighted curves γ̂(k)

n = γ
(k)
n /`k(γ

(k)
n ) as currents of Σ. The

space PC(Σ) being compact each (γ̂
(k)
n )k∈N projectively converges to a non-zero current µn ∈ C(Σ).

We first want to show that the µn are measured laminations. Consider the sequence (γ̂
(k)
n )k∈N

for n fixed, there are some εkn > 0 such that εknγ̂
(k)
n tends to µn up to a subsequence in k. So,

by diagonal extraction we can suppose that εknγ̂
(k)
n −−−→

k→∞
µn for every n. What we have to show

is that lim
k→∞

εkn = 0 for every n. The sequence (Xk)k∈N leaves every compact of T(S) so there is

a simple closed curve α such that lim
k→∞

`k(α) = ∞. Recall that to prove Theorem 3.5 we have

enumerated C(S) = {αn|n ∈ N} such that iper(αn, αn) ≤ 4n, since α is a simple curve we can

take α = α1. The γ(k)
n come from Theorem 3.5 thus

∣∣∣∣i(γ̂(k)
n , α)

(
`k(α)
π2|χ|

)−1
− 1

∣∣∣∣ ≤ 3
n whatever k

and n. By hypothesis `k(α) −−−→
k→∞

∞ and we can suppose, up to a shift in n, that for every n,∣∣∣∣i(γ̂(k)
n , α)

(
`k(α)
π2|χ|

)−1
− 1

∣∣∣∣ < 1. As a consequence i(γ̂(k)
n , α) −−−→

k→∞
∞. However, ∞ > i(µn, α) =

lim
k→∞

εkni(γ̂
(k)
n , α) thus εkn −−−→

k→∞
0 for every n, and i(γ̂

(k)
n , γ̂

(k)
n ) is bounded independently from k

and n, hence, i(µn, µn) = lim
k→∞

(εkn)2i(γ̂
(k)
n , γ̂

(k)
n ) = 0 and µn is a measured lamination on Σ. By

construction, iper(γ
(k)
n , γ

(k)
n ) ≤ Cn for every k and n, as mentioned earlier it ensures that for n fixed

the γ(k)
n are all included in the same compact subsurface of Σ \ ∂Σ. It follows that µn is supported

on a compact set of Σ \ ∂Σ and by (2.2) it is a measured lamination of S.
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Recall that β is a filling curve of S, as a consequence, i(µn, β) 6= 0 and hence, we can suppose
that i(µn, β) = 1 for every n and we obtain

(4.2) lim
k→∞

δknγ̂
(k)
n = µn in C(Σ),

where δkn = 1

i(β,γ̂
(k)
n )

is well-defined.
To sum up, we have the following convergence diagram, where all the convergences are pointwise.

δ1 `X1(.)

π2|χ|
δ2 `X2(.)

π2|χ|
· · · δk

`Xk(.)

π2|χ|
· · · −−→ F ∈ RC(S)

+x x · · ·
x · · ·

x?
...

... · · ·
... · · ·

...
δ1
ni(γ̂

(1)
n , ·) δ2

ni(γ̂
(2)
n , ·) · · · δkni(γ̂

(k)
n , ·) · · · −−→ i(µn, ·)

...
... · · ·

... · · ·
...

...
δ1

2i(γ̂
(1)
2 , ·) δ2

2i(γ̂
(2)
2 , ·) · · · δk2 i(γ̂

(k)
2 , ·) · · · −−→ i(µ2, ·)

δ1
1i(γ̂

(1)
1 , ·) δ2

1i(γ̂
(2)
1 , ·) · · · δk1 i(γ

(k)
1 , ·) · · · −−→ i(µ1, ·)

We want F to be the pointwise limit of (i(µn, ·))n∈N. To prove it, it is sufficient to show that the
convergence δkni(γ̂

(k)
n , γ) −−−→

n→∞
δk `k(γ)

π2|χ| is uniform in k when γ ∈ C(S) is fixed.

If γ ∈ C(S) is fixed Theorem 3.5 ensures that
∣∣∣∣δknδk − 1

∣∣∣∣ ≤ εn and

∣∣∣∣∣i(γ̂(k)
n , γ)

(
`k(γ)

π2|χ|

)−1

− 1

∣∣∣∣∣ ≤ εn

for every k and for n large enough (nγ and nβ do not depend on k) with εn −−−→
n→∞

0. Moreover,

fixing γ we know that δk `k(γ)
π2|χ| −−−→k→∞

F (γ) hence the sequence (δk `k(γ)
π2|χ| )k∈N is bounded by some dγ

and we obtain ∣∣∣∣δkni(γ̂(k)
n , γ)− δk `k(γ)

π2|χ|

∣∣∣∣ ≤ vndγ −−−→n→∞
0.

Hence, the convergence holds uniformly in k, and lim
n→∞

lim
k→∞

δkni(γ̂
(k)
n , γ) = lim

k→∞
lim
n→∞

δkni(γ̂
(k)
n , γ),

which implies that F (γ) = lim
n→∞

i(µn, γ). Moreover, ML(S) is a closed subset of RC(S)
+ hence F (·) =

lim
n→∞

i(µn, ·) is of the form F (·) = i(µ, ·) where µ ∈ML(S), what we needed to prove. �
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