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Abstract. RF Fingerprinting techniques aim to authenticate a wireless
emitter by the imperfections due to these components. It can be useful
for authentication and network management for the future IoT networks.
Various methods has been proposed using hand-crafted features and clas-
sic machine learning but nowadays many researchers try to apply deep
learning architectures for RF Fingeprinting. Our contribution is based
on Siamese Network, a deep learning architecture widely used by the face
recognition community. We use the deep learning architectures proposed
by the RF Fingeprinring community which processes the I/Q (In-phase
and Quadrature) signal and the siamese network learning paradigms de-
veloped for the facial recognition to propose siamese architectures for RF
Fingerprinting. One of the main advantage of the siamese network is the
possibility to use one-shot learning and its ability to require a few data
for the final implementation of the network. In this paper, we explain
our implementation, our results and discuss about the potential benefits
of our approach for final implementation in a wireless network.
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1 Introduction and state of the art

Cybersecurity is a major concern of our epoch. Devices become more and more
connected and cyberattacks are increasingly frequent and massive. The wireless
technologies, such as WiFi, Bluetooth and Mobile networks are massively used.
With the incomming of new technologies such as autonomous vehicules, smart
grid, smart cities among others, the demand for connectivity will explose and
require the use of new protocols such as 5G and IoT Networks (Zigbee, LoRa,
...). Many IoT protocols are based on low energy constraints but these technolo-
gies need to be secured. However the security measures such as cryptography
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are difficult to implement for IoT protocols due to the complexity of keys man-
agement and energy consumption of standard cryptography [1].
The RF Fingerprinting is a part of physical layer securities [2] aiming to protect
communications based on physical-layer properties. This technique consist in au-
thenticate a wireless emitter using the specific impairments of these components.
The manufacturing process has some uncertainties and two devices that seems
to be similar have their own physical impairments. The impairments such as I/Q
offset, I/Q imbalance, clock offset among others can be used to authenticate an
emitter. The RF Fingerprinting is considered as a Non-Cryptographic authen-
tication technique [3], however there is a debate in the community to know if
it can replace the cryptographic authentication protocol (RSA, ...) or be used
as a second factor for authentication [4]. RF Fingerprinting can also be used
for intrusion detection [5] or to secure network layer against attacks [6]. Our
approach based on deep learning architecture and siamese network will focus on
authentication but it is possible to generalize it to other applications.

1.1 Deep Learning architecture

The machine learning (ML) is a part of artificial intelligence, based on algorithms
(SVM, neural network, ...) able to learn how to solve a problem from data. Neural
networks are bio-inspired mathematical models, they are composed of stacked
layers (i.e parallel set) of basic unit called neuron, generally many layers (called
hidden layers) are stacked to mimic the way that brain processes informations.
The deep learning (DL) generally refers to neural network with two or more
hidden layers. Many architectures, inspired from brain specific parts, have ap-
peared over time like Convolutive Neural Networks (CNN) or Recurrent Neural
Networks (RNN) to solve specific problem like, respecively, image recognition or
time-series prediction.
Many methods has been described in the literature for RF Fingerprinting. Some
methods focus on the transcient aspect of the signal [7], others on the steady-
state aspects (also called Modulation-based) like [8] or the both aspects [9]. With
the increasing popularity of deep learning, RF Fingerprinting community begins
to use deep learning architecture on raw I/Q signals, specifically the CNN [1],
[10], [11] and [12]. Futhermore, the DARPA has lauched in 2017 the program
RFMLS3 (Radio Frequency Machine Learning Systems) which aims to develop
the use of machine learning for radio frequency. One argument of the RFMLS
project is to develop the use of deep learning architecture to replace classic
machine learning techniques based on expert hand-crafted features which are
dependent on a priori asumptions [13].

1.2 Siamese network

A siamese network consists of two neural networks which have identical weights
and their inputs are projected on a latent space where similarity measure are

3 https://www.darpa.mil/attachments/RFMLSIndustryDaypublicreleaseapproved.pdf
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applied (L2 distance, ...) to know the similarity between the two inputs. The
first application of siamese networks was for signature recognition [14] but that
type of architecture is widely used by the facial recognition community [15],
[16] and [17]. Other applications using siamese networks have also appeared like
dimensionality reduction [18] or voice casting [19] among others. The siamese
networks can be really useful in several cases: when a few data are available
for the final implementation, when there is a lot of classes and for detection
intrusion. G. Koch et al. [20] show the possibility of using siamese network for
one-shot learning (i.e when there is only one learning example per class) for hand
drawn characters recognition. Futhermore, Langford et al. [21] show the possi-
bility of using siamese network on compressed spectrogram for specific emitter
identification (a task similar to RF Fingerprinting), the authors also show the
performance gains of siamese network compared to classic CNN for low SNR.
Several learning paradigms has been proposed to train a siamese network. The
first approach, developed by LeCun et al. in [14], was based on cosine similarity.
The most popular approach is based on contrastive loss [15], [18] and [19], which
uses a specific loss which constraints the latent representation to respect some
properties (see further explanation in section 2.2). G. Koch et al. proposed in
[20] a siamese network learning paradigm as a logistic regression problem using
weighted L1 norm (see further explanation in section 2.2) which seems yielding
better results than previous methods [21]. The previous approaches were consid-
ered as end-to-end problems but other approaches differ from it like DeepFace
[16] which consists to use transfer learning (i.e transfer some knowledge learned
from similar task to a new one) or the triplet loss [17] which consists to a specific
end-to-end problem using three inputs instead of two.

1.3 Proposed approach

Our approach consist in using the deep learning architecture coming from the
RF Fingerprinting community [1], [10] and [11] directly on I/Q signals collected
over real-world measurements and the siamese network paradigm for RF Fin-
gerprinting. This paper is composed as follow: Proposed method (section II),
Experimental data analysis and results (section III), Potential benefits and fur-
ther work (section IV) and Conclusion (section V).

2 Proposed Method

2.1 Dataset

Original dataset: The dataset 4 on which this study is based come from real-
world measurements and was used by [11] and [1] to explore deep learning ar-
chitectures for RF Fingerprinting. It was composed of 2 types of datasets: over-
the-air and over-the-cable configurations. These datasets are composed of 16
identical USRP X310 SDR (Software-Defined Radio) platforms. Each emitter is

4 http://www.genesys-lab.org/oracle (last visit the 26/08/2020)
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recorded twice (run 1 and run 2 ) for a duration of 4 seconds with a sample rate
of 5 Ms/s which corresponds to 20 millions I/Q samples. The process is repeated
for different distances in the range 2ft to 62ft with an interval of 6ft. The SDR
receiving platform is always the same for each experiment: USRP B210. For our
experimentation, the over-the-air configuration is chosen, which is considered
more realistic. We use the 2ft recordings, which can be considered as a LOS
path and with a really high SNR (> 45 dB). Only the first 10.24 ms (4000*128
samples) of run 2 for each emitter was used to create the database, which is
considered to be of better quality than the run 1. Contrarily to [10] and [11] we
use non-overlapping windows to extract the examples from the recording, which
allows a better independance (in term of sampling) between all the examples.
Our dataset, called baseline dataset, is composed of 16 classes of emitters with
4000 examples per class, which is considered enough for CNN classification.

Siamese dataset preparation: From the baseline dataset, a second dataset
has been created to train the siamese network: the siamese dataset. The strat-
egy used to create this dataset is inspired with the previous works on siamese
network [14], [15], [16], [18], [19] and [20]. It is composed of a equal number of
positive pairs (i.e two inputs from the same emitter) and negative pairs (i.e two
inputs from different emitters). The process to create the dataset is the follow-
ing; for a specific input of the dataset we choose N (here 5) inputs with the
same class (without the corresponding input) using a sampling without replace-
ment to create the positive pairs and we choose N inputs with different class
using a sampling without replacement to create negative pairs. This process is
repeated for each input of the dataset to create the siamese dataset. Concerning
the train/test split of the dataset, the scikit-learn train test split function is used
on baseline dataset and the process described above is applied separately on the
training set and testing set.

2.2 Architecture and learning paradigms

The architecture used for this work (see table 1(a)) is inspired by an architecture
from [11]. The network processes the I/Q signal as an 2x128 image (i.e 2 for I
and Q and 128 for sample number) with one channel, corresponding to an input
size of 2x128x1. In our experiment, we compare several learning paradigms.
The first learning paradigm comes from [20] and consists as a logistic regression
problem (i.e the output predict the propability that two inputs are similar) using
a weighted L1 norm. Indeed, an element-wise absolute difference is applied to
the latent representations followed by a logistic regression (using binary cross-
entropy loss): ŷ(x1, x2) = σ(

∑
i αi|GW (x1)[i]−GW (x2)[i]|+ α0) where GW (xi)

represent the latent representation of the input xi.
The second learning paradigm called the contrastive loss, is based on the work of
LeCun et al. [18] and the third called contrastive transfer, is based on the work
of [16] using transfer learning, but instead of using a weighted L1 norm like
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[20], we used a contrastive loss. The contrastive loss proposed in [18], to train
a mapping function (GW ) for a dimensionnality reduction purpose, consists to
constrain the latent representations to respect some properties. Especially, as
mentioned by [15] and [19], similar points (x1 and x2) need to be near from each
others and the distance between disimilar points (x1 and x

′

1) need to be greater
than a specific constant called margin m (here 1). This constraint can be express
like: E(x1, x2) + m < E(x1, x

′

1) where E(xi, xj) = ‖GW (xi)−GW (xj)‖2 is the
distance (using L2 norm) between the projection of (xi, xj) in the latent space.
The associated loss function is the following:

L(I1, I2, Y ) = Y ∗ ‖GW (I1)−GW (I2)‖22 + (1− Y ) ∗max(0,m− ‖GW (I1)−GW (I2)‖2)
2

(1)

Where:

– Ii is an input and GW (Ii) his corresponding latent representation
– Y indicated if the pair are similar (Y = 1) or dissimilar (Y = 0)

The first two learning paradigms are end-to-end problems unlike the third
one which is based on transfer learning. For this approach we have proceded
as following: we train the network proposed in [11] for a K-class classification
problem (considered as our high-level caracteristics extractor), we remove the
two last layers (i.e the softmax and the last dense layer), add an other dense
layer of 128 neurons and train only the last layer (the parameters of the other
layers are fixed) using the previously introduced contrastive loss.

We used Adam optimizer on 32 epochs with batch size of 128. We used
regularization to avoid over-fitting like l2 regularization on each layer and a
dropout of 50% at the first dense layer. The hyperparameters (see table 1(b))
have been found using grid search and hold-out validation for the learning rate
µ, the l2 regularization parameter l and the number of neurons D of the last
dense layer.

(a) Neural network architecture

Layers Characteristics

Input (2, 128, 1)
Conv2D 50 filters (1x7) + ReLu
Conv2D 50 filters (2x7) + ReLu
Flatten
Dense 256 neurons + ReLu
Dense D neurons + ReLu

(b) Hyperparameters

µ l D

Logistic regression 0.0001 0.00001 128

Contrastive loss 0.001 0.0001 128

Contrastive transfer 0.001 0.0001 128

Table 1: Neural network parameters

3 Experimental data analysis and results

We train our model using Keras framework on the school cluster (Intel Skylable
Gold 6132). The metric used to evaluate the first learning paradigm is the accu-
racy. For the two others, we define a specific metric, which consists to compare
the distance of the latent reprensentations to the half of the margin. If the dis-
tance is lower than the half of the margin the inputs are considered as a similar
pair (Y=1), otherwise the inputs are considered as dissimilar pair (Y=0).
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3.1 Experiments

The performances of the several learning paradigms are shown in the table 2. The
logistic regression have better performances than the others learning paradigms,
which confirms the conclusion of [21]. One can say that is unsual that training
loss is greater than testing loss. But this phenomena, discuted by A. Géron in
this post5, can be explained in our case by the regularization applied during the
training (i.e dropout and l2 regularization).

Learning paradigm Train accuracy Test accuracy

Logistic regression 0.9909 0.9952
Contrastive loss 0.9669 0.9744

Contrastive transfer 0.9195 0.933

Table 2: Performances of learning paradigms

3.2 The dataset problem

The performances obtained are good although slightly below than [21] (reach-
ing 99.79%). There may be several explanations to this lack of performances.
First of all, the dataset used is not really suitable for a siamese network problem
(contrary to Omniglot, [20]). Indeed, a classic siamese dataset consists of many
classes with few examples per class which possed high inter-class variability. On
the contrary, the baseline dataset is composed of few classes and many exam-
ples per class which is usually more adequate for K-class classification problems.
Maybe the variability of dissimilar pairs are not large enough to train a good
network. On the second hand, the impairments present in our siamese dataset
is less controled than in the dataset used by [21] which seems coming from sim-
ulation, including 4 emitters and having a single impairment (frequency offset).
Conversely, our dataset is based on real-world measurements on 16 differents
emitters (USRP X310) with various impairments. Futhermore, our approach
does not require pre-processing like time-frequency transform (used in [21]) and
directly work on I/Q signals.

4 Potential benefits and further work

The main problem of deep learning architectures and more generally machine
learning algorithms is what we defined as scalability, i.e a model needs to be re-
trained for a new group of unknow emitters which is not really scalable for IoT
devices with computational and energy constraints. The majority of the work
on RF Fingerprinting considered the problem as K-class problem with an rela-
tively large amount of data to train the algorithm (approximatively a thousand
exemples per class). These works are interresting because they proposed new
architectures/algorithms for RF Fingerprinting but the authors rarely take into
account the scalability problems introduce by theirs approaches. An other prob-
lem is that K-class classification is also not really performant when the number
of emitters of the network is too large and changing over time: some emitters

5 https://twitter.com/aureliengeron/status/1110839223878184960
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can leave the network and new ones can join it. The last point is concerning the
spoofing attack: if an architecture/algorithm is trained to recognize K emitters
(legitime and known) how will it behave when an illegitimate emitter try to
communicate on the network.
The main interest of a siamese network algorihtm is that it doesn’t learn a
classifier but an ”advanced” similarity metric. This allows to train the siamese
network on a big database which generalize well the variability of the emitter and
use it as similarity metric with a K-Nearest Neighbors (KNN) algorithm for final
implementation with unknow emitters. This approach has several advantages:

– The final implementation need at least one example per emitter: one-shot
learning

– The architecture doesn’t need to be retrained for the final implementation
– Outlier detection can be used to detect illegitimate emitters

This type of approach is widely use for facial recognition, where an input image is
compared with a list of images, to identify the corresponding person (match) or
an intruder (unmatch). It consists: to store the latent representations of known
emitters (one per emitter), to compute the latent representation of the new input
and to compute distance on the latent space to determine if the emitter belongs
to the network (using a pre-determined threshold) and if that is the case to
which emitter it belong. It is quite similar to 1NN (K=1) approach but with the
concept of similarity metric replacing classical metric such as L2 distance.
To our knowledge, only Ioannidis et al. [1] has proposed a method for one-shot
learning for deep learning architecture based on an other type of approach. Our
future work will explore the performance of deeper architectures for siamese
network, complex-valued neural networks and others learning paradigms such as
triplet loss. It will also be interesting to use 1NN algorithm (or more generally
KNN) to test the performance of this approach from a one-shot learning point of
view. Furthermore, we need to explore the performances under a range of SNR
and multi-path environments.

5 Conclusion
The purpose of this article was to proposed a siamese approach for RF Finger-
printing based on the raw I/Q signal. We present the architecture of the network,
the learning paradigms choosen and present the results on a real-world measure-
ment dataset. We also introduced the potential benefits of this architecture for
final implementation in a IoT network and some potential research works and
improvements.
One of the main advantage of this approach compared to others (such as [21]) for
RF Fingerprinting is that the network doesn’t require preprocessing like time-
frequency transform and directly works on I/Q signals. An other advantage of
siamese network is their ability to perform one-shot learning. Use of deeper
architectures and/or complex-valued neural networks (exploiting the complex
nature of the signals) can further increase the obtained performances. This type
of approach can be useful for final implementation, on IoT networks or more
generally radio networks, to perform authentication and to allow a better and
more flexible network management.
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