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RF Fingerprinting techniques aim to authenticate a wireless emitter by the imperfections due to these components. It can be useful for authentication and network management for the future IoT networks. Various methods has been proposed using hand-crafted features and classic machine learning but nowadays many researchers try to apply deep learning architectures for RF Fingeprinting. Our contribution is based on Siamese Network, a deep learning architecture widely used by the face recognition community. We use the deep learning architectures proposed by the RF Fingeprinring community which processes the I/Q (In-phase and Quadrature) signal and the siamese network learning paradigms developed for the facial recognition to propose siamese architectures for RF Fingerprinting. One of the main advantage of the siamese network is the possibility to use one-shot learning and its ability to require a few data for the final implementation of the network. In this paper, we explain our implementation, our results and discuss about the potential benefits of our approach for final implementation in a wireless network.

Introduction and state of the art

Cybersecurity is a major concern of our epoch. Devices become more and more connected and cyberattacks are increasingly frequent and massive. The wireless technologies, such as WiFi, Bluetooth and Mobile networks are massively used. With the incomming of new technologies such as autonomous vehicules, smart grid, smart cities among others, the demand for connectivity will explose and require the use of new protocols such as 5G and IoT Networks (Zigbee, LoRa, ...). Many IoT protocols are based on low energy constraints but these technologies need to be secured. However the security measures such as cryptography are difficult to implement for IoT protocols due to the complexity of keys management and energy consumption of standard cryptography [START_REF] Sankhe | No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments[END_REF]. The RF Fingerprinting is a part of physical layer securities [START_REF] Zou | A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends[END_REF] aiming to protect communications based on physical-layer properties. This technique consist in authenticate a wireless emitter using the specific impairments of these components. The manufacturing process has some uncertainties and two devices that seems to be similar have their own physical impairments. The impairments such as I/Q offset, I/Q imbalance, clock offset among others can be used to authenticate an emitter. The RF Fingerprinting is considered as a Non-Cryptographic authentication technique [START_REF] Zeng | Non-cryptographic Authentication and Identification in Wireless Networks[END_REF], however there is a debate in the community to know if it can replace the cryptographic authentication protocol (RSA, ...) or be used as a second factor for authentication [START_REF] Robyns | Physical-Layer Fingerprinting of LoRa devices using Supervised and Zero-Shot Learning[END_REF]. RF Fingerprinting can also be used for intrusion detection [START_REF] Tuan Nguyen | Device Fingerprinting to Enhance Wireless Security using Nonparametric Bayesian Method[END_REF] or to secure network layer against attacks [START_REF] Capkun | Implications of radio fingerprinting on the security of sensor networks[END_REF]. Our approach based on deep learning architecture and siamese network will focus on authentication but it is possible to generalize it to other applications.

Deep Learning architecture

The machine learning (ML) is a part of artificial intelligence, based on algorithms (SVM, neural network, ...) able to learn how to solve a problem from data. Neural networks are bio-inspired mathematical models, they are composed of stacked layers (i.e parallel set) of basic unit called neuron, generally many layers (called hidden layers) are stacked to mimic the way that brain processes informations. The deep learning (DL) generally refers to neural network with two or more hidden layers. Many architectures, inspired from brain specific parts, have appeared over time like Convolutive Neural Networks (CNN) or Recurrent Neural Networks (RNN) to solve specific problem like, respecively, image recognition or time-series prediction. Many methods has been described in the literature for RF Fingerprinting. Some methods focus on the transcient aspect of the signal [START_REF] Ureten | Wireless security through RF fingerprinting[END_REF], others on the steadystate aspects (also called Modulation-based ) like [START_REF] Brik | Wireless Device Identification with Radiometric Signatures[END_REF] or the both aspects [START_REF] Yuan | Power Ramped-up Preamble RF Fingerprints of Wireless Transmitters[END_REF]. With the increasing popularity of deep learning, RF Fingerprinting community begins to use deep learning architecture on raw I/Q signals, specifically the CNN [START_REF] Sankhe | No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments[END_REF], [START_REF] Riyaz | Deep Learning Convolutional Neural Networks for Radio Identification[END_REF], [START_REF] Sankhe | ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks[END_REF] and [START_REF] Mattei | Feature Learning for Enhanced Security in the Internet of Things[END_REF]. Futhermore, the DARPA has lauched in 2017 the program RFMLS3 (Radio Frequency Machine Learning Systems) which aims to develop the use of machine learning for radio frequency. One argument of the RFMLS project is to develop the use of deep learning architecture to replace classic machine learning techniques based on expert hand-crafted features which are dependent on a priori asumptions [START_REF] Ghasemi | Spectrum Awareness Under Co-Channel Usage Via Deep Temporal Convolutional Networks[END_REF].

Siamese network

A siamese network consists of two neural networks which have identical weights and their inputs are projected on a latent space where similarity measure are applied (L 2 distance, ...) to know the similarity between the two inputs. The first application of siamese networks was for signature recognition [START_REF] Bromley | Signature Verification using a Siamese Time Delay Neural Network[END_REF] but that type of architecture is widely used by the facial recognition community [START_REF] Chopra | Learning a Similarity Metric Discriminatively, with Application to Face Verification[END_REF], [START_REF] Taigman | DeepFace: Closing the Gap to Human-Level Performance in Face Verification[END_REF] and [START_REF] Schroff | FaceNet: A Unified Embedding for Face Recognition and Clustering[END_REF]. Other applications using siamese networks have also appeared like dimensionality reduction [START_REF] Hadsell | Dimension Reduction by Learning an Invariant Mapping[END_REF] or voice casting [START_REF] Greese | Similarity Metric Based on Siamese Neural Networks for Voice Casting[END_REF] among others. The siamese networks can be really useful in several cases: when a few data are available for the final implementation, when there is a lot of classes and for detection intrusion. G. Koch et al. [START_REF] Koch | Siamese Neural Networks for One-shot Image Recognition[END_REF] show the possibility of using siamese network for one-shot learning (i.e when there is only one learning example per class) for hand drawn characters recognition. Futhermore, Langford et al. [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF] show the possibility of using siamese network on compressed spectrogram for specific emitter identification (a task similar to RF Fingerprinting), the authors also show the performance gains of siamese network compared to classic CNN for low SNR. Several learning paradigms has been proposed to train a siamese network. The first approach, developed by LeCun et al. in [START_REF] Bromley | Signature Verification using a Siamese Time Delay Neural Network[END_REF], was based on cosine similarity. The most popular approach is based on contrastive loss [START_REF] Chopra | Learning a Similarity Metric Discriminatively, with Application to Face Verification[END_REF], [START_REF] Hadsell | Dimension Reduction by Learning an Invariant Mapping[END_REF] and [START_REF] Greese | Similarity Metric Based on Siamese Neural Networks for Voice Casting[END_REF], which uses a specific loss which constraints the latent representation to respect some properties (see further explanation in section 2.2). G. Koch et al. proposed in [START_REF] Koch | Siamese Neural Networks for One-shot Image Recognition[END_REF] a siamese network learning paradigm as a logistic regression problem using weighted L 1 norm (see further explanation in section 2.2) which seems yielding better results than previous methods [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF]. The previous approaches were considered as end-to-end problems but other approaches differ from it like DeepFace [START_REF] Taigman | DeepFace: Closing the Gap to Human-Level Performance in Face Verification[END_REF] which consists to use transfer learning (i.e transfer some knowledge learned from similar task to a new one) or the triplet loss [START_REF] Schroff | FaceNet: A Unified Embedding for Face Recognition and Clustering[END_REF] which consists to a specific end-to-end problem using three inputs instead of two.

Proposed approach

Our approach consist in using the deep learning architecture coming from the RF Fingerprinting community [START_REF] Sankhe | No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments[END_REF], [START_REF] Riyaz | Deep Learning Convolutional Neural Networks for Radio Identification[END_REF] and [START_REF] Sankhe | ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks[END_REF] directly on I/Q signals collected over real-world measurements and the siamese network paradigm for RF Fingerprinting. This paper is composed as follow: Proposed method (section II), Experimental data analysis and results (section III), Potential benefits and further work (section IV) and Conclusion (section V).

Proposed Method

Dataset

Original dataset: The dataset4 on which this study is based come from realworld measurements and was used by [START_REF] Sankhe | ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks[END_REF] and [START_REF] Sankhe | No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments[END_REF] to explore deep learning architectures for RF Fingerprinting. It was composed of 2 types of datasets: overthe-air and over-the-cable configurations. These datasets are composed of 16 identical USRP X310 SDR (Software-Defined Radio) platforms. Each emitter is recorded twice (run 1 and run 2 ) for a duration of 4 seconds with a sample rate of 5 Ms/s which corresponds to 20 millions I/Q samples. The process is repeated for different distances in the range 2ft to 62ft with an interval of 6ft. The SDR receiving platform is always the same for each experiment: USRP B210. For our experimentation, the over-the-air configuration is chosen, which is considered more realistic. We use the 2ft recordings, which can be considered as a LOS path and with a really high SNR (> 45 dB). Only the first 10.24 ms (4000*128 samples) of run 2 for each emitter was used to create the database, which is considered be of better quality than the run 1. Contrarily to [START_REF] Riyaz | Deep Learning Convolutional Neural Networks for Radio Identification[END_REF] and [START_REF] Sankhe | ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks[END_REF] we use non-overlapping windows to extract the examples from the recording, which allows a better independance (in term of sampling) between all the examples. Our dataset, called baseline dataset, is composed of 16 classes of emitters with 4000 examples per class, which is considered enough for CNN classification.

Siamese dataset preparation: From the baseline dataset, a second dataset has been created to train the siamese network: the siamese dataset. The strategy used to create this dataset is inspired with the previous works on siamese network [START_REF] Bromley | Signature Verification using a Siamese Time Delay Neural Network[END_REF], [START_REF] Chopra | Learning a Similarity Metric Discriminatively, with Application to Face Verification[END_REF], [START_REF] Taigman | DeepFace: Closing the Gap to Human-Level Performance in Face Verification[END_REF], [START_REF] Hadsell | Dimension Reduction by Learning an Invariant Mapping[END_REF], [START_REF] Greese | Similarity Metric Based on Siamese Neural Networks for Voice Casting[END_REF] and [START_REF] Koch | Siamese Neural Networks for One-shot Image Recognition[END_REF]. It is composed of a equal number of positive pairs (i.e two inputs from the same emitter) and negative pairs (i.e two inputs from different emitters). The process to create the dataset is the following; for a specific input of the dataset we choose N (here 5) inputs with the same class (without the corresponding input) using a sampling without replacement to create the positive pairs and we choose N inputs with different class using a sampling without replacement to create negative pairs. This process is repeated for each input of the dataset to create the siamese dataset. Concerning the train/test split of the dataset, the scikit-learn train test split function is used on baseline dataset and the process described above is applied separately on the training set and testing set.

Architecture and learning paradigms

The architecture used for this work (see table 1(a)) is inspired by an architecture from [START_REF] Sankhe | ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks[END_REF]. The network processes the I/Q signal as an 2x128 image (i.e 2 for I and Q and 128 for sample number) with one channel, corresponding to an input size of 2x128x1. In our experiment, we compare several learning paradigms. The first learning paradigm comes from [START_REF] Koch | Siamese Neural Networks for One-shot Image Recognition[END_REF] and consists as a logistic regression problem (i.e the output predict the propability that two inputs are similar) using a weighted L 1 norm. Indeed, an element-wise absolute difference is applied to the latent representations followed by a logistic regression (using binary crossentropy loss): ŷ

(x 1 , x 2 ) = σ( i α i |G W (x 1 )[i] -G W (x 2 )[i]| + α 0 ) where G W (x i )
represent the latent representation of the input x i . The second learning paradigm called the contrastive loss, is based on the work of LeCun et al. [START_REF] Hadsell | Dimension Reduction by Learning an Invariant Mapping[END_REF] and the third called contrastive transfer, is based on the work of [START_REF] Taigman | DeepFace: Closing the Gap to Human-Level Performance in Face Verification[END_REF] using transfer learning, but instead of using a weighted L 1 norm like [START_REF] Koch | Siamese Neural Networks for One-shot Image Recognition[END_REF], we used a contrastive loss. The contrastive loss proposed in [START_REF] Hadsell | Dimension Reduction by Learning an Invariant Mapping[END_REF], to train a mapping function (G W ) for a dimensionnality reduction purpose, consists to constrain the latent representations to respect some properties. Especially, as mentioned by [START_REF] Chopra | Learning a Similarity Metric Discriminatively, with Application to Face Verification[END_REF] and [START_REF] Greese | Similarity Metric Based on Siamese Neural Networks for Voice Casting[END_REF], similar points (x 1 and x 2 ) need to be near from each others and the distance between disimilar points (x 1 and x 1 ) need to be greater than a specific constant called margin m (here 1). This constraint can be express like: E(x 1 , x 2 ) + m < E(x 1 , x 1 ) where E(x i , x j ) = G W (x i ) -G W (x j ) 2 is the distance (using L 2 norm) between the projection of (x i , x j ) in the latent space. The associated loss function is the following:

L(I1, I2, Y ) = Y * G W (I1) -G W (I2) 2 2 + (1 -Y ) * max(0, m -G W (I1) -G W (I2) 2 ) 2 (1)
Where:

-I i is an input and G W (I i ) his corresponding latent representation -Y indicated if the pair are similar (Y = 1) or dissimilar (Y = 0)

The first two learning paradigms are end-to-end problems unlike the third one which is based on transfer learning. For this approach we have proceded as following: we train the network proposed in [START_REF] Sankhe | ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks[END_REF] for a K-class classification problem (considered as our high-level caracteristics extractor), we remove the two last layers (i.e the softmax and the last dense layer), add an other dense layer of 128 neurons and train only the last layer (the parameters of the other layers are fixed) using the previously introduced contrastive loss.

We used Adam optimizer on 32 epochs with batch size of 128. We used regularization to avoid over-fitting like l 2 regularization on each layer and a dropout of 50% at the first dense layer. The hyperparameters (see table 1(b)) have been found using grid search and hold-out validation for the learning rate µ, the l 2 regularization parameter l and the number of neurons D of the last dense layer. 

Experimental data analysis and results

We train our model using Keras framework on the school cluster (Intel Skylable Gold 6132). The metric used to evaluate the first learning paradigm is the accuracy. For the two others, we define a specific metric, which consists to compare the distance of the latent reprensentations to the half of the margin. If the distance is lower than the half of the margin the inputs are considered as a similar pair (Y=1), otherwise the inputs are considered as dissimilar pair (Y=0).

Experiments

The performances of the several learning paradigms are shown in the table 2. The logistic regression have better performances than the others learning paradigms, which confirms the conclusion of [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF]. One can say that is unsual that training loss is greater than testing loss. But this phenomena, discuted by A. Géron in this post 5 , can be explained in our case by the regularization applied during the training (i.e dropout and l 2 regularization). The performances obtained are good although slightly below than [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF] (reaching 99.79%). There may be several explanations to this lack of performances. First of all, the dataset used is not really suitable for a siamese network problem (contrary to Omniglot, [START_REF] Koch | Siamese Neural Networks for One-shot Image Recognition[END_REF]). Indeed, a classic siamese dataset consists of many classes with few examples per class which possed high inter-class variability. On the contrary, the baseline dataset is composed of few classes and many examples per class which is usually more adequate for K-class classification problems. Maybe the variability of dissimilar pairs are not large enough to train a good network. On the second hand, the impairments present in our siamese dataset is less controled than in the dataset used by [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF] which seems coming from simulation, including 4 emitters and having a single impairment (frequency offset). Conversely, our dataset is based on real-world measurements on 16 differents emitters (USRP X310) with various impairments. Futhermore, our approach does not require pre-processing like time-frequency transform (used in [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF]) and directly work on I/Q signals.

Learning paradigm Train accuracy

Potential benefits and further work

The main problem of deep learning architectures and more generally machine learning algorithms is what we defined as scalability, i.e a model needs to be retrained for a new group of unknow emitters which is not really scalable for IoT devices with computational and energy constraints. The majority of the work on RF Fingerprinting considered the problem as K-class problem with an relatively large amount of data to train the algorithm (approximatively a thousand exemples per class). These works are interresting because they proposed new architectures/algorithms for RF Fingerprinting but the authors rarely take into account the scalability problems introduce by theirs approaches. An other problem is that K-class classification is also not really performant when the number of emitters of the network is too large and changing over time: some emitters can leave the network and new ones can join it. The last point is concerning the spoofing attack: if an architecture/algorithm is trained to recognize K emitters (legitime and known) how will it behave when an illegitimate emitter try to communicate on the network. The main interest of a siamese network algorihtm is that it doesn't learn a classifier but an "advanced" similarity metric. This allows to train the siamese network on a big database which generalize well the variability of the emitter and use it as similarity metric with a K-Nearest Neighbors (KNN) algorithm for final implementation with unknow emitters. This approach has several advantages:

-The final implementation need at least one example per emitter: one-shot learning -The architecture doesn't need to be retrained for the final implementation -Outlier detection can be used to detect illegitimate emitters This type of approach is widely use for facial recognition, where an input image is compared with a list of images, to identify the corresponding person (match) or an intruder (unmatch). It consists: to store the latent representations of known emitters (one per emitter), to compute the latent representation of the new input and to compute distance on the latent space to determine if the emitter belongs to the network (using a pre-determined threshold) and if that is the case to which emitter it belong. It is quite similar to 1NN (K=1) approach but with the concept of similarity metric replacing classical metric such as L 2 distance. To our knowledge, only Ioannidis et al. [START_REF] Sankhe | No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments[END_REF] has proposed a method for one-shot learning for deep learning architecture based on an other type of approach. Our future work will explore the performance of deeper architectures for siamese network, complex-valued neural networks and others learning paradigms such as triplet loss. It will also be interesting to use 1NN algorithm (or more generally KNN) to test the performance of this approach from a one-shot learning point of view. Furthermore, we need to explore the performances under a range of SNR and multi-path environments.

Conclusion

The purpose of this article was to proposed a siamese approach for RF Fingerprinting based on the raw I/Q signal. We present the architecture of the network, the learning paradigms choosen and present the results on a real-world measurement dataset. We also introduced the potential benefits of this architecture for final implementation in a IoT network and some potential research works and improvements. One of the main advantage of this approach compared to others (such as [START_REF] Langford | Robust Signal Classification Using Siamese Networks[END_REF]) for RF Fingerprinting is that the network doesn't require preprocessing like timefrequency transform and directly works on I/Q signals. An other advantage of siamese network is their ability to perform one-shot learning. Use of deeper architectures and/or complex-valued neural networks (exploiting the complex nature of the signals) can further increase the obtained performances. This type of approach can be useful for final implementation, on IoT networks or more generally radio networks, to perform authentication and to allow a better and more flexible network management.
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