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I. INTRODUCTION AND MOTIVATION

N ETWORKS of nonlinear heterogeneous systems are both, ubiquitous and complex. Their ubiquity motivates their study across numerous research disciplines, as varied as Engineering Systems theory [START_REF] Chow | Time-Scale Modeling of Dynamic Networks with Applications to Power Systems[END_REF], Complexity theory [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF] and even Philosophy of Science [START_REF] Silberstein | Reduction, emergence and explanation[END_REF]. Their complexity is motor for two apparently antagonistic trains of thought that attempt to explain the collective behavior of networked systems in a broad sense: reductionism and emergentism. The first asserts that any whole can be reduced to its constituent parts-as in the case of networked linear systems [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], while the tenet of emergentism is that a new behavior appears as a consequence of the interaction of the said parts [START_REF] Silberstein | Reduction, emergence and explanation[END_REF]-as in networks of heterogeneous nonlinear systems. What is more, one of the accepted definitions of Complexity is that it corresponds to the difference between the network as a whole and the sum of its parts and, in that regard, nonlinearity is a necessary condition for complexity to appear [START_REF] Arecchi | A Critical Approach to Complexity and Self Organization, ch[END_REF].

In this paper we show that, to some extent, emergentism and reductionism are not necessarily mutually exclusive, but their respective underlying postulates are both useful to assess the behavior of networks of heterogeneous nonlinear systems. We focus on systems with dynamics given by ẋi = f i (x i ) + u i , i ∈ {1, 2, . . . , N }, x i ∈ R n , [START_REF] Chow | Time-Scale Modeling of Dynamic Networks with Applications to Power Systems[END_REF] where i ∈ {1, 2, . . . , N }, x i ∈ R n is the state of the ith system and u i ∈ R n is the decentralized control input to each system, defined as the consensus control law

u i := -σ l i1 (x i -x 1 ) + . . . + l iN (x i -x N ) , (2) 
where l ij are different non-negative real numbers denoting the individual interconnection weights and the scalar parameter σ > 0 is the common coupling strength. The control law [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF] is reminiscent of that commonly used in the literature on consensus control, in which the coupling strength σ = 1. This is specifically the case for networks of linear systems, in which case complexity hardly appears and the focus turns towards the nature of the interconnections. On one hand, these may be linear [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]; nonlinear [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF], [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF]; time-varying [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF], [START_REF] Chowdhury | Persistence-based convergence rate analysis of consensus protocols for dynamic graph networks[END_REF]; switching [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Adhikari | An emerging dynamics approach for synchronization of linear heterogeneous agents interconnected over switching topologies[END_REF], state-dependent [START_REF] Casadei | Synchronization in networks of identical nonlinear systems via dynamic dead zones[END_REF], dynamic [START_REF] Teel | Smooth time-varying stabilization of driftless systems over communication channels[END_REF]- [START_REF] Jardón-Kojakhmetov | On fastslow consensus networks with a dynamic weight[END_REF], etc. On the other hand, the interconnections may be directed [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF] or signed [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Yet another aspect that plays a crucial role in the behavior of networks of heterogeneous nonlinear systems is the coupling strength. Different kinds of emergent behavior may arise depending on whether σ is "weak" [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], [START_REF] Tumash | Synchronization patterns in Stuart-Landau networks: a reduced system approach[END_REF] or "strong" [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF]. Now, in spite of the generality of the individual systems' dynamics, the control law [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF] remains conservative relatively to other works in which output coupling is consideredsee e.g. [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], [START_REF] Jardón-Kojakhmetov | On fastslow consensus networks with a dynamic weight[END_REF], [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF]- [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF]. The case of output coupling is addressed also in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], for heterogeneous nonlinear systems, but only practical asymptotic synchronization is established.

Our main interest in this paper is to assess the behavior of the corresponding closed-loop system, specifically, in the case that the coupling gain σ is larger than a certain threshold, but we restrict our analysis to networks with an underlying static directed graph. Akin to [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], we analyze the closed-loop networked system via a change of coordinates that exhibits an intrinsic dichotomous structure composed of two dynamics defined in orthogonal spaces. On one hand, one has a reducedorder dynamics with state x m ∈ R n and, on the other, the dynamics that corresponds to the synchronization errors, denoted by e i := x i -x m . This characterization of the networked system is driven by the objective of characterizing synchronization phenomena that may appear (or not) as a result of the systems' interconnections.

Following [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], the systems reach dynamic consensus if, for all i ≤ N , the synchronization errors e i converge to zero asymptotically and the reduced-order dynamics 1 has an asymptotically stable invariant set. The dynamic consensus paradigm generalizes the more common equilibrium consensus, in which case the reduced-order dynamics is null, i.e. ẋm = 0, because the collective behavior is static and the state of the reduced-order dynamics satisfies x m (t) ≡ x m (0), where x m (0) is a weighted average of the nodes' states' initial values. In the case of a network of oscillators, the reduced-order dynamics may admit an asymptotically stable equilibrium (an example is provided in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]) or an asymptotically stable attractor. However, in general, asymptotic dynamic consensus is unreachable due to the heterogeneity [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF]. An exception is that of systems that admit an internal model [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF]- [START_REF] Kim | Output consensus of heterogeneous uncertain linear multi-agent systems[END_REF] but, in general, for nonlinear heterogeneous systems, dynamic consensus may be guaranteed only in a practical sense [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF].

In this paper, we establish several original statements and address two generic cases: one in which the (slow) reducedorder dynamics admits a globally asymptotically stable equilibrium, and another one in which it admits a periodic solution. In the first case, we give sufficient conditions under which the origin for the networked system is globally asymptotically stable. In the second case, we prove that the synchronization errors converge to a unique attractive periodic orbit, so the systems achieve frequency synchronization [START_REF] Zhou | Hierarchical synchronization in complex networks with heterogeneous degrees[END_REF], [START_REF] Skardal | Optimal synchronization of complex networks[END_REF]. Moreover, for "large" values of the coupling strength σ, this orbit is "close" to that generated by periodic solutions of the reduced dynamics. Thus, the emergent dynamics approaches that of the reduced-order system, as the coupling gain grows.

The analysis is based on the recognized premise that in selforganized complex systems, emergence is multi-level, as in occurring in multiple timescales [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF], [START_REF] Haken | Synergetics[END_REF]. Here, we only consider two, one that is slow and pertains to the reduced-order system and another that is fast and pertains to the synchronization errors. The analysis of multi-timescale systems may be carried out using the classical singular-perturbations approach [START_REF] Anosov | Limit cycles of systems of differential equations with small parameters in the highest derivatives[END_REF]- [START_REF] Khalil | Nonlinear systems[END_REF] or the geometric one [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF], [START_REF] Kuehn | Multiple Time Scale Dynamics[END_REF]. Here, we rely on classical singular perturbation theory, but also on original refinements of some statements from [START_REF] Anosov | Limit cycles of systems of differential equations with small parameters in the highest derivatives[END_REF] for systems admitting disconnected sets composed of equilibria and periodic orbits. The proofs of some technical statetements, however, are omitted due to space constraints; for a more complete manuscript see [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF].

The model-reduction-and-multi-time-scale perspective is certainly not new, neither in systems theory [START_REF] Chow | Time-Scale Modeling of Dynamic Networks with Applications to Power Systems[END_REF] nor in other disciplines. In the seminal work [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], which follows up on [START_REF] Chow | Time-Scale Modeling of Dynamic Networks with Applications to Power Systems[END_REF], the authors consider a modular network composed of sparsely connected clusters of densely interconnected dynamical systems modeled by simple integrators-the paradigm is motivated by that of large electrical networks. Using classical singular-perturbation theory [START_REF] Anosov | Limit cycles of systems of differential equations with small parameters in the highest derivatives[END_REF], [START_REF] Kokotović | Singular perturbations and order reduction in control theoryan overview[END_REF], it is showed that such networks achieve synchronization at two levels, within and among the clusters. The analysis is based on relating the network's sparsity to a singular-perturbation parameter. These concepts have been revisited in many succeeding works, such as [START_REF] Bıyık | Area aggregation and time-scale modeling for sparse nonlinear networks[END_REF] and [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF]. In the former, for networks of simple integrators through sector nonlinearities, and in the latter for linear homogeneous systems interconnected through timevarying persistently-exciting gains a la [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF]. On the other hand, networks of linear homogeneous singularly-perturbed systems are considered in [START_REF] Tognetti | Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost[END_REF] and [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF]. Thus, in all of the above, the setting is fundamentally different from the one studied here.

In [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF], for a particular case-study of networked Andronov-Hopf oscillators, we use a coordinate transformation to exhibit the presence of the two-timescale emergent dynamics and singular-perturbation theory to analyze the collective behavior under the premise that the reduced-order system admits an asymptotically stable orbit. Based on the coordinate transformation introduced in [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF], singular-perturbation theory is used in [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF] on a wider class of nonlinear systems with rankdeficient coupling to establish synchronization in the practical sense. In [START_REF] Awad | Time-scale separation in networks: State-dependent graphs and consensus tracking[END_REF] and [START_REF] Jardón-Kojakhmetov | On fastslow consensus networks with a dynamic weight[END_REF], singular-perturbation theory is used to analyze networked systems over undirected graphs and restricted to the case in which the slow dynamics admits an asymptotically stable equilibrium.

Thus, there are several articles in the literature that explicitly use reduction and singular-perturbation theory, even in a multiagent context. Yet, we are not aware of any work covering generic nonlinear heterogeneous systems interconnected over directed graphs and characterize the collective behavior with higher precision. Conceptually, in phase with the emergentism posit, we evince the appearance of a complex (in the sense of [START_REF] Arecchi | A Critical Approach to Complexity and Self Organization, ch[END_REF]) dynamic behavior, as a result of the systems' interactions. At the same time, we give a more precise characterization (well beyond practical asymptotic stability of the synchronization manifold) of the collective behavior of networked systems based on that of a reduced-order model.

The rest of the paper is organized as follows. In Section II we exhibit the network's reduced-order and synchronization dynamics, under an invertible coordinate transformation. In Sections III and IV we present our main results. In Section V, we present a case-study and in Section VI, we provide concluding remarks and comments on future research directions. The paper is completed with technical appendices.

Notation and definitions. Given a nonempty set K ⊂ R n , we define |x| K := inf y∈K |x -y|, where |s| denotes the Euclidean norm of s. For a set O ⊂ R n , K\O denotes the subset of elements of K that are not in O. For a matrix A ∈ R n×n , |A| denotes its norm, and λ min (A) and λ max (A) denote the smallest and the largest eigenvalues of A, respectively. For a sequence

{A i } N i=1 ⊂ Π N i=1 R ni×ni , blkdiag i∈{1,2,...,N }
{A i } is the block-diagonal matrix whose ith diagonal block corresponds to A i . By 1 N ∈ R N , we denote the vector whose entries are equal to 1. By ⊗, we denote the Kronecker product. For a complex number λ ∈ C, e(λ) denotes the real part of λ and m(λ) denotes its imaginary part. A function α : R ≥0 → R ≥0 is of class K if it is continuous, strictly increasing, and

α(0) = 0. It is of class K ∞ if it is of class K and unbounded.
According to [START_REF] Teel | Semi-global practical asymptotic stability and averaging[END_REF], for ẋ = f (x, ε), with x ∈ R n and ε ∈ [0, 1], the set A ⊂ R n is globally practically attractive if, for each β > 0, there exists ε > 0 such that, for each ε ≤ ε and for every solution t → x(t), there exists T > 0 such that |x(T )| A ≤ β. The set A is globally practically stable if there exists κ ∈ K such that, for each β > 0, there exists ε > 0 such that, for each ε ≥ ε and for every solution t → x(t), we have |x(t)| A ≤ κ (|x(0)| A ) + β for all t ≥ 0. The set A is globally practically asymptotically stable (GPAS) if it is globally practically attractive and globally practically stable.

II. ON STRONGLY-COUPLED CONNECTED NETWORKS

A. The model and standing assumptions

Consider a group of N nonlinear systems as in (1) driven by the distributed control inputs, as defined in [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF], where each l ij ≥ 0 is constant but not necessarily equal to l ji . In particular, when there exists an interconnection from the jth node to the ith node, l ij is strictly positive, but l ji may be null, in which case, the interconnection is said to be unidirectional and the graph is said to be directed. We also assume that the graph is connected, which means that there exists a path (nonnecessarily directed) between every pair of nodes [START_REF] Thulasiraman | Graphs: theory and algorithmsn[END_REF]. More particularly, we pose the following hypothesis.

Assumption 1 (connected digraph): The network's digraph contains at least one directed spanning tree.

Remark 1: In some works, digraphs containing a directed spanning tree are called quasi-strongly connected-see e.g., [START_REF] Thulasiraman | Graphs: theory and algorithmsn[END_REF]. Under this property, the Laplacian L has exactly one eigenvalue (say, λ 1 ) that equals zero, while the others have positive real part, i.e., 0 = λ 1 < e {λ 2 } ≤ . . . ≤ e {λ n }. Furthermore, the right eigenvectors corresponding to the simple eigenvalue λ 1 = 0 are spanned by v r = 1 N ∈ R N , while the left eigenvectors are spanned by a vector that contains only non-negative elements [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], which we denote by v l , and satisfies

1 N v l = 1.
In addition, for each unit, we impose the following. Assumption 2 (Regularity): The functions f i are once continuously differentiable and, for each i ∈ {1, 2, . . . , N }, there exists x * i ∈ R n such that f i (x * i ) = 0. Without loss of generality 2 , we assume that x * i = 0 for all i ∈ {1, 2, . . . , N }. Assumption 3 (Semi-passive units): Each agent is input-tostate strictly semi-passive-cf. [START_REF] Pogromsky | Passivity-based design of synchronizing systems[END_REF], [START_REF] Polushin | Strict quasipassivity and ultimate boundedness for nonlinear control systems[END_REF]. More precisely, for each i ∈ {1, 2, . . . , N }, there exist a continuously differentiable storage function V i : R n → R ≥0 , a class K ∞ function α i , a positive constant ρ i , a continuous function H i : R n → R, 2 If the system does not have an equilibrium at the origin, or at all for that matter, it is assumed that one may be imposed onto it via a preliminary feedback. and a continuous function

ψ i : R n → R ≥0 such that α i (|x i |) ≤ V i (x i ), Vi (x i ) ≤ x T i u i -H i (x i ) and H i (x i ) ≥ ψ i (|x i |) for all |x i | ≥ ρ i .
Assumption 3 is useful to assess the boundedness of solutions for system (1) in closed loop with (2) for a sufficiently large coupling strength σ. More precisely, we have the following result-see [START_REF] Lazri | Global uniform ultimate boundedness of semi-passive systems interconnected over directed graphs[END_REF].

Lemma 1 (Global ultimate boundedness): Consider the systems in (1) in closed loop with the control inputs in [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF] and let Assumptions 1-3 hold. Then, the closed-loop system is globally uniformly (in σ) ultimately bounded. That is, given σ * > 0, there exists r > 0 such that, for any R ≥ 0, there exists τ R ≥ 0 such that, for each σ ≥ σ * and for each solution t → x(t), we have

|x(0)| ≤ R =⇒ |x(t)| ≤ r ∀t ≥ τ R ,
where x ∈ R nN denotes the network's state, i.e., x = [x 1 , . . . , x N ] . Remark 2: The proof follows along the same lines as that for [20, Proposition 2], which is constructive and provides an explicit formula for r. In that regard, we stress that, contrary to its formulation in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], the statement therein holds for directed graphs.

Under the assumptions listed above, we investigate the problem of assessing the behavior of the networked closedloop system (1)- [START_REF] Heylighen | Self-organization, emergence and the architecture of complexity[END_REF]. To this end, as it is customary, let us collect the individual interconnection coefficients l ij into the Laplacian matrix

L := [ ij ] ∈ R N ×N , where ij = k∈Ni a ik i = j -a ij i = j. (3) 
Then, replacing (2) in (1) and using x = [x 1 , . . . , x N ] , we see that the overall network dynamics takes the form

ẋ = F (x) -σ[L ⊗ I n ]x, (4) 
where the function F : R nN → R nN is given by

F (x) := [f 1 (x 1 ) • • • f N (x N )] .
As in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] and [START_REF] Panteley | A stability-theory perspective to synchronisation of heterogeneous networks[END_REF], to analyze the behavior of the network system (4), we acknowledge its dichotomous nature. In these references, as well as in many others-e.g., [START_REF] Montenbruck | Practical synchronization with diffusive couplings[END_REF]- [START_REF] Delellis | On quad, lipschitz, and contracting vector fields for consensus and synchronization of networks[END_REF], synchronization is defined as the property of the trajectories of each individual system following the trajectories of an "averaged" unit with state

x m := [v l ⊗ I n ]x. (5) 
The quotes in "averaged" are superfluous in the case of undirected networks, in which case v l = 1 N , so x m = 1 N N i=1 x i , but for directed connected networks the state x m is more generically defined as a weighted average of the respective systems' states since v li ≥ 0 for all i ∈ {1, 2, ..., N } and v l 1 N = 1.

In either case, a sensible way to define the synchronization errors e is as the difference between the units' states and x m , that is,

e := x -[1 N ⊗ I n ]x m . (6) 
Thus, in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] and [START_REF] Panteley | A stability-theory perspective to synchronisation of heterogeneous networks[END_REF] the collective behavior of network systems is studied in function of the dynamics of the "averaged" unit x m and that of the synchronization errors e.

In the next section, we introduce another change of coordinates to rewrite system (4) in an equivalent form that exhibits two motions: one that is generated by the averaged dynamics and another by a projection of the synchronization errors e on a certain subspace. This coordinate transformation is not a simple artifice for analysis, it exhibits two time-scales that are inherent to networked systems satisfying Assumption 1 and subject to a sufficiently large coupling σ. Other changes of variable that naturally lead to a time-scale separation have been proposed, specially for undirected graphs, e.g., in [START_REF] Awad | Time-scale separation in networks: State-dependent graphs and consensus tracking[END_REF], [START_REF] Bıyık | Area aggregation and time-scale modeling for sparse nonlinear networks[END_REF]. The one we adopt here, and describe below, is taken from [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], [START_REF] Panteley | A stability-theory perspective to synchronisation of heterogeneous networks[END_REF].

B. Characterization of the collective behavior

After Assumption 1 and Remark 1, because λ 1 = 0 has multiplicity one, the Laplacian admits the Jordan-block decomposition

L = U 0 0 0 Λ U -1 , (7) 
where Λ ∈ R (N -1)×(N -1) is composed by the Jordan blocks corresponding to the N -1 non-zero eigenvalues. Remark 3: Note that even though a Jordan decomposition does not necessarily exist with a real matrix U , it is always possible to use the spectral-invariant-subspace decomposition as in [START_REF] Stewart | Matrix Perturbation Theory[END_REF]Theorem 1.5.,p. 224]-see also [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF]Lemma 13]-to generate a real matrix U .

The invertible matrix U is constituted, column-wise, of the right eigenvector of the Laplacian, 1 N , and a left-invertible matrix V ∈ R N ×(N -1) , which consists of the eigenvectors corresponding to the nonzero eigenvalues of L. That is,

U = [1 N V ], U -1 = v l V † , (8) 
where V † ∈ R (N -1)×N , and

v l V = 0, V † V = I N -1 . (9) 
So, using (8) and ( 9), we also have the useful identity

V V † = I N -1 N v l .
Now, using U -1 , we define the new coordinates

x := [U -1 ⊗ I n ]x (10) 
and the inverse transformation

x := [U ⊗ I n ]x. (11) 
The interest of the coordinate x is that it consists in the familiar "averaged" states x m and a projection of the synchronization errors e defined in [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF] onto the subspace that is generated by V † , which is orthogonal to the right eigenvector 1 N . To better see this, note that such projection yields

[V † ⊗ I n ]e = [V † ⊗ I n ] x -[1 N ⊗ I n ]x m .
In the sequel, we refer to the left-hand side of the latter equation as the projected synchronization errors,

e v := [V † ⊗ I n ]e. (12) 
Hence, in view of ( 5), ( 8), [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], and (12), we have

x = x m e v = [v l ⊗ I n ]x [V † ⊗ I n ]x . (13) 
In the new coordinates, the network system (4) is equivalently written as

ẋ = [U -1 ⊗ I n ] F (x) -σ[L ⊗ I n ]x ,
which consists in two interconnected dynamics, that of the "averaged" state x m and that of the projected synchronization errors e v . Therefore, the behavior of the trajectories of ( 4) may be assessed via that of the latter dynamics. To this end, we use

x = [x m e v ] and U = [1 N V ] in (11) to write x = [1 N ⊗ I n ]x m + [V ⊗ I n ]e v . (14) 
Then, differentiating on both sides of (5), using ( 4), ( 14), and the fact that v l L = 0, we obtain

ẋm = F m (x m ) + G m (x m , e v ), (15) 
where

F m (x m ) := [v l ⊗ I n ]F [1 N ⊗ I n ]x m and G m (x m , e v ) := [v l ⊗ I n ] F [1 N ⊗ I n ]x m + [V ⊗ I n ]e v -F [1 N ⊗ I n ]x m .
Note that F m (x m ) effectively corresponds to an "averaged" drift of the systems in (1), i.e.,

F m (x m ) = N i=1 v li f i (x m ),
G m (x m , 0) = 0 and, under Assumption 2, all these functions are smooth and there exists a continuous function h :

R nN → R ≥0 such that G m (x m , e v ) ≤ h(x m , e v )|e v | ∀(x m , e v ) ∈ R nN .
On the other hand, by differentiating on both sides of e v = [V † ⊗ I n ]x and using ( 7), [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF], and ( 14), we obtain the synchronization-errors dynamics

ėv = -σ[Λ ⊗ I n ]e v + G e (x m , e v ), (16) 
where

G e (x m , e v ) := [V † ⊗ I n ]F [V ⊗ I n ]e v + [1 N ⊗ I n ]x m .
The complete collective behavior of the networked control system (4), up to the globally invertible coordinate transformation in [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], may be assessed by analyzing that of the interconnected systems ( 15) and ( 16), which evolve in orthogonal spaces [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]. We see that the systems in (1) under the action of the control laws in (2) synchronize, in the sense that lim t→∞ x i (t) = lim t→∞ x j (t) = lim t→∞ x m (t) for all i, j ≤ N , if and only if the errors e v tend asymptotically to zero. As we explain on p. 2, in this case we say that the systems achieve dynamic consensus. Therefore, because the solutions of (4) do not necessarily stabilize at a common equilibrium, the characterization of the networked systems' behavior would be incomplete unless one can ascertain what the individual systems do when they synchronize. Indeed, a priori, not even boundedness of solutions is guaranteed (whence Assumption 3, see [START_REF] Lazri | On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs[END_REF]). To assess any kind of stable behavior, we analyze the network system (4) on the synchronization subspace corresponding to e v = 0. On such a subspace, we have the reduced-order dynamics

ẋm = F m (x m ). (17) 
Thus, the motion of the synchronized systems is fully determined by that of the reduced-order dynamics [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. In this regard, it is important to underline that ( 17), as well as the "averaged" dynamics (15) are independent of the coupling gain σ. This dynamics is inherent to the network and appears simply as a consequence of the graph's connectivity imposed by Assumption 1. The synchronization dynamics [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF], on the other hand, clearly depends on the coupling strength σ. We are interested in investigating the synchronization behavior for 'large' values of the coupling strength. More precision about the meaning of 'large' is given farther below.

We consider two scenarii of interest. The first pertains to the case in which the reduced-order dynamics ( 17) admits the origin as a globally asymptotically stable equilibrium point. Our main statement in this case (Theorem 1 in Section III) is that, not only the networked system achieves dynamic consensus, but the origin {x = 0} is GAS for (4). The second scenario pertains to the case in which the synchronization errors e vi do not vanish (due to the systems' heterogeneity), but only are ultimately bounded-cf [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], and the reduced-order dynamics admits an unstable equilibrium and a stable periodic orbit generated by a limiting periodic solution x mo (t+α o ) of period α o . In this case, we prove that each error e vi also becomes periodic for sufficiently large values of the coupling gain-see Theorem 2 in Section IV. This is significant because, since e vi := x i -x m and x m (t) → x mo (t + α o ), we also have that, for each i, x i (t) → xi (t + α i ) where xi (t + α i ) denotes a periodic solution of period α i . That is, roughly speaking, each system becomes periodic asymptotically. In addition, we show that as the coupling gain σ → ∞, all the periods become equal to that of the reduced-order system, i.e., α i → α o for all i ≤ N . In other words, all the systems' periodic trajectories mutually synchronize both in amplitude and in frequency.

Remark 4: Part of the significance of our main result (Theorem 2 on p. 8) lies in characterizing the behavior of the networked system when the systems' solutions are ultimately bounded. More precisely, it is a well-known fact that if the solutions of a planar system tend asymptotically to the interior of a compact ball centered at the origin, they exhibit a periodic behavior. The counterpart of this statement for higherdimensional systems is, in general, an open problem. Here, we identify a particular case in which it holds true.

C. Intrinsic two-time-scales decomposition

The analysis of (4), towards the statements described above, starts with the observation that Eqs. ( 15)-( 16) may be written in the familiar singular-perturbation form [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF], [START_REF] Khalil | Nonlinear systems[END_REF], i.e.,

ẋm = F m (x m ) + G m (x m , e v ) (18a) ε ėv = -(Λ ⊗ I n ) e v + εG e (x m , e v ), ε := 1/σ, (18b)
in which, we recognize two time scales, "slow" and "fast", corresponding, respectively, to the dynamics of the averagedunit states x m and the projected synchronization errors e v . Now, in accordance with singular-perturbation theory; see [32, p. 358], the behavior of ( 18) is ineluctably determined by that of the slow dynamics, obtained by setting ε = 0, which clearly corresponds to the reduced-order model [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Thus, the rest of the paper is devoted to the analysis of ( 18) in the two cases evoked above, stability of the origin in Section III and orbital stability, in Section IV.

It is important to stress, however, that even though the analysis of singularly-perturbed systems as in ( 18) is not uncommon in recent literature, available methods hardly address the scenarii considered in this paper. For instance, Eqs. ( 18) are of the same form as [14, Eqs. ( 4)] or [15, Eqs. ( 13)], but these respective equations model different systems than described above. This is because the problem addressed therein is that of classical consensus (so ẋm = 0) over undirected graphs, but with dynamic interconnections. In the first part of [START_REF] Awad | Time-scale separation in networks: State-dependent graphs and consensus tracking[END_REF], as in [START_REF] Jardón-Kojakhmetov | On fastslow consensus networks with a dynamic weight[END_REF], the fast dynamics corresponds to that of the interconnections, and in the second part of [START_REF] Awad | Time-scale separation in networks: State-dependent graphs and consensus tracking[END_REF], it stems from rapidly varying virtual systems, whose trajectories the actual systems are meant to follow. In a different context, in [START_REF] Bıyık | Area aggregation and time-scale modeling for sparse nonlinear networks[END_REF], large-scale networks of integrators are studied, such that certain groups of nodes that are densely connected among themselves synchronize fast, while the (average behaviors of the) groups synchronize at a slower pace-cf. [START_REF] Chow | Time-Scale Modeling of Dynamic Networks with Applications to Power Systems[END_REF]. To assess the stability of the consensus manifold, the statements in [START_REF] Awad | Time-scale separation in networks: State-dependent graphs and consensus tracking[END_REF] rely mostly on Lyapunov theory, in [START_REF] Jardón-Kojakhmetov | On fastslow consensus networks with a dynamic weight[END_REF] the geometric approach based on non-hyperbolic invariant manifolds [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF] is used, and in [START_REF] Bıyık | Area aggregation and time-scale modeling for sparse nonlinear networks[END_REF] the authors rely on the theory of singular perturbations a la Tykhonov [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF]. Apart from Theorem 1 in Section IV, such approaches appear unsuitable for our purposes since, our main interest is to assess the behavior of the networked systems even in the case that the synchronization errors do not vanish. Now, even though in the sequel we focus on the analysis of the system in singularly-perturbed form, [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], we remark that our two main statements are formulated for system (4), which remains the main subject study in this paper. Therefore, we finish this section by re-expressing the properties of (4) in Assumptions 1-3 in terms of [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], in the form of the following, rather evident, statement that is extensively used in the sequel.

Lemma 2: Consider system (4) such that Assumptions 1-3 hold. Then, the resulting system [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], with states defined in [START_REF] Teel | Smooth time-varying stabilization of driftless systems over communication channels[END_REF], enjoys the following properties:

(i) the functions F m , G m , and G e are continuously differentiable; (ii) the origin {(x m , e v ) = (0, 0)} is an isolated equilibrium point;

(iii) the solutions to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] are globally uniformly (in σ) ultimately bounded; (iv) the matrix -Λ is Hurwitz.

III. CASE I: GLOBAL ASYMPTOTIC STABILITY OF THE ORIGIN

Our first original statement establishes global asymptotic stability for networked heterogeneous semi-passive systems, interconnected over a (not-necessarily strongly) connected digraph, provided that the coupling gain is sufficiently large.

Theorem 1 (GAS): Consider system (4) under Assumptions 1-3. Assume, also, that for system [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] the origin {x m = 0} is globally asymptotically stable and there exist ρ > 0, c ρ > 0, a continuously differentiable Lyapunov function V m : R n → R ≥0 , and a class K ∞ function α, such that

∂V m (x m ) ∂x m F m (x m ) ≤ -α (|x m |) 2 (19) 
for all x ∈ B ρ -recall that x := [x m e v ] and B ρ := {x ∈ R q : |x| ≤ ρ}-and

max x∈Bρ G e (x m , e v ) -G e (0, e v ) , ∂V m (x m ) ∂x m ≤ c ρ α (|x m |) . (20) 
Then, there exists σ > 0 such that, for all σ ≥ σ , the origin for ( 4) is globally asymptotically stable. The regularity conditions in ( 19)-( 20) are required to ensure negativity of the time derivative of a Lyapunov function along the solutions to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF]-see the proof farther below. Similar conditions may be found in the literature; for instance in [START_REF] Awad | Time-scale separation in networks: State-dependent graphs and consensus tracking[END_REF], where asymptotic consensus is established for nonlinear systems interconnected through (slowly-varying) dynamic undirected interconnections, but only within a certain domain of attraction, not globally.

Inequalities ( 19)-( 20) are little conservative, as they are required to hold only on an arbitrary compact set containing the origin, but they are not necessary for global asymptotic stability of the origin for [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]-see [START_REF] Khalil | Nonlinear systems[END_REF]Exercise 9.24]. Then, again, if these conditions do not hold the origin may not be globally asymptotically stable either-in [35, Section 5.2], we provide an example that illustrates this claim. On the other hand, GAS for system [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] implies a relaxed form of ( 19) and of the second inequality in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]. This is used in Proposition 1 below, which is an original statement that generalizes the main results in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] on practical asymptotic stability for networks over strongly connected digraphs. The proof of Proposition 1, and subsequently that of Theorem 1, builds upon GAS for [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] and the fact that under Assumptions 1-3 the system is globally ultimately bounded, uniformly in σ-see Lemma 1.

Proposition 1 (GPAS): Consider system (4) under Assumptions 1-3. In addition, assume that for system [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], the origin {x m = 0} is globally asymptotically stable. Then, the origin for ( 4) is globally practically asymptotically stable. Proof: We establish the equivalent statement that the origin {x = 0} for ( 18) is GPAS. For this, we remark first that after Assumptions 1-3 and Lemma 1, there exist σ * > 0 and r > 0 such that, for any R ≥ 0, there exists τ R ≥ 0 such that |x o | ≤ R ⇒ |x(t)| ≤ r for all t ≥ τ R , and all σ ≥ σ * . Now we show that, for every positive constant r f < r, there exists σ f > 0 such that, for each σ ≥ σ f , the compact set B r f is asymptotically stable for (18) on B r [START_REF] Teel | Semi-global practical asymptotic stability and averaging[END_REF].

To that end, let the assumption that the origin for ( 17) is globally asymptotically stable generate, by [START_REF] Khalil | Nonlinear systems[END_REF]Theorem 3.14], the converse Lyapunov function W m : R n → R ≥0 and positive constants α rr f and β rr f such that, for all x ∈ B r \B r f ,

∂W m (x m ) ∂x m ≤ β rr f |x m | , (21) 
∂W m (x m ) ∂x m F m (x m ) ≤ -α rr f |x m | 2 . ( 22 
)
Furthermore, let Item (iv) in Lemma 2 generate a symmetric and positive definite matrix P ∈ R (N -1)×(N -1) such that -P Λ -Λ P ≤ -I N . Then, the total derivative of the Lyapunov function candidate

V (x) := W m (x m ) + e v [P ⊗ I n ]e v ,
along the trajectories of ( 18)-multiplying by σ on both sides of (18b)-yields

V (x) = 2e v P [G e (0, e v ) + (G e (x m , e v ) -G e (0, e v ))] -α rr f |x m | 2 + ∂W m ∂x m G m (x m , e v ) -σ |e v | 2 . ( 23 
)
Now, after Assumption 2 and items (i)-(ii) of Lemma 2 it follows that there exists a constant d r > 0 such that,

max x∈Br {|G m (x m , e v )| , |G e (0, e v )|} ≤ d r |e v | , (24) 
|G e (x m , e v ) -G e (0, e v )| ≤ d r |x m | , ∀x ∈ B r . (25) 
From all the above it follows, in turn, that

V (x) ≤ -α rr f |x m | 2 + d r λ max (P ) + β rr f |x m | |e v | -[σ -2d r λ max (P )] |e v | 2 ∀ x ∈ B r \B r f .
Thus, for σ f := d 2 r λ max (P ) + β rr f 2 + 4d r λ max (P ), we conclude that, for each σ ≥ σ f , we have

V (x) ≤ - 1 2 α rr f |x m | 2 - 1 2 σ |e v | 2 ∀ x ∈ B r \B r f .
This, and uniform global ultimate boundedness, establishes the statement.

Remark 5: Inequalities ( 21), [START_REF] Pereira | Towards a general theory for coupling functions allowing persistent synchronisation[END_REF], and ( 25) are reminiscent of ( 19) and [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]. However, we stress that (25) holds on a compact that is generated by the property of global uniform ultimate boundedness, i.e., it is generated by Assumptions 1-3 via Lemma 1. In turn, Inequalities ( 21) and ( 22) hold for free, for a converse Lyapunov function W m , but not around the origin, as required to establish global asymptotic stability, whence the conditions [START_REF] Tumash | Synchronization patterns in Stuart-Landau networks: a reduced system approach[END_REF] and [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] in Theorem 1. Based on these and the global practical asymptotic stability property just established, the proof of Theorem 1 is constructed upon a similar argumentation as for Proposition 1.

Proof of Theorem 1: The conditions of Proposition 1 are met, so the set B r f , for any r f < r and r being generated by Lemma 1, is globally asymptotically stable. Pick r f sufficiently small such that r f < ρ, where ρ is defined in the theorem. It follows that there exists t ρ such that the solutions generated from arbitrary initial conditions are contained in B ρ for all t ≥ t ρ . Therefore, it is enough to prove that the origin is asymptotically stable for all solutions contained in B ρ . To that end, akin to the proof of Proposition 1, consider the Lyapunov function V (x) := V m (x m )+e v [P ⊗I n ]e v , with V m as defined in the theorem and P generated by Item (iv) of Lemma 2. Its time derivative along the solutions to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] satisfies

V (x) = 2e v P [G e (0, e v ) + (G e (x m , e v ) -G e (0, e v ))] -α(|x m |) 2 + ∂V m ∂x m G m (x m , e v ) -σ |e v | 2 . ( 26 
)
Now, a bound like (24) continues to hold with d ρ , so after this and (20), we have

∂V (x) ∂x m G m (x m , e v ) ≤ c ρ d ρ α (|x m |) |e v | ∀ x ∈ B ρ . ( 27 
)
Consequently, from all of the above it follows that

V (x) ≤ -α(|x m |) 2 + c ρ [2λ max (P ) + d ρ ]α(|x m |)|e v | -[σ -2d ρ λ max (P )]|e v | 2 ∀x ∈ B ρ .
Thus, we conclude that, for each

σ ≥ σ := c 2 ρ [λ max (P ) + d ρ ] 2 + 4d ρ λ max (P ), V (x) ≤ - 1 2 α(|x m |) 2 - 1 2 σ |e v | 2 ∀ x ∈ B ρ .
The statement follows.

IV. CASE II: ALMOST GLOBAL ASYMPTOTIC ORBITAL STABILITY

In this section, we present our second and main statement, which pertains to the case when (17) admits a periodic orbit that is attractive from almost all initial conditions. Under this condition, Theorem 2 below establishes that for σ > 0 sufficiently large, the network system (4) also admits a unique periodic orbit, which is globally attractive from almost all initial conditions. In particular, frequency synchronization is achieved and the synchronization errors can be made arbitrary small by choosing σ sufficiently large. It is important to stress that our main statement establishes a precise periodic behavior for the network system (4) rather than just approaching the periodic solution to [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF].

For completeness and clarity, we start by recalling some notions and tools related to the stability of periodic solutions to nonlinear systems of the form

ẋ = f (x) x ∈ R n , (28) 
where f : R n → R n is at least locally Lipschitz. Definition 1 (Periodic solution and periodic orbit): A solution t → φ(t), or simply φ(t), to ( 28) is said to be α-periodic if there exists α > 0 (the period) such that, for each t ≥ 0, φ(t + α) = φ(t) and φ(t + s) = φ(t) ∀s ∈ (0, α).

Moreover, if the system (28) admits a periodic solution φ, we say that it admits a (closed) periodic orbit γ ⊂ R n generated by the image of φ.

Then, according with Lyapunov theory, we may single out the following desired properties for periodic solutions.

Definition 2 (Orbital Stability): Let γ be a periodic orbit for [START_REF] Skardal | Optimal synchronization of complex networks[END_REF].

• The orbit γ is orbitally stable if, for each ε > 0, there exist δ > 0 and T ≥ 0, such that, for each initial condition Finally, we recall some orbital stability criteria in terms of the so-called characteristics multipliers [55, Section III.7] which, for linear periodic systems, are the counterpart of eigenvalues for linear autonomous systems. To see this, we assume that f is continuously differentiable and we consider the α-periodic matrix A(t) := ∂f ∂x (φ(t)), where φ(t) is the αperiodic solution to [START_REF] Skardal | Optimal synchronization of complex networks[END_REF] generating the orbit γ. After Floquet theory-see e.g., [START_REF] Floquet | Sur les quations diffŕentielles lináires à coefficients périodiques[END_REF] and [START_REF] Perko | Differential Equations and Dynamical Systems[END_REF], there exist an α-periodic nonsingular matrix P : [t o , +∞] → R n×n and a constant matrix B ∈ R n×n such that the transition matrix associated to the linear time-varying system

x o satisfying |x o | γ ≤ δ,
ẋ = A(t)x (29) 
is given by X(t) := P (t)e Bt and the non-singular change of coordinates y := P (t) -x transforms the linear system (29) into ẏ = By. Definition 3 (Characteristic multipliers): The characteristic multipliers of the α-periodic matrix A(t) are the eigenvalues of the matrix e Bα .

Definition 4 (Non-singular periodic orbit): The periodic orbit γ generated by the periodic solution φ(t) is non-singular if the matrix A(t) := ∂f ∂x (φ(t)) admits a simple characteristic multiplier equal to 1.

Lemma 3 (Theorem 2.1, Section VI.2. [START_REF] Hale | Ordinary Differential equations[END_REF]): Consider system [START_REF] Skardal | Optimal synchronization of complex networks[END_REF] with f continuously differentiable and let φ be a non-trivial α-periodic solution generating the orbit γ. Assume that the matrix A(t) := ∂f ∂x (φ(t)) is non-singular and all the characteristic multipliers, except one, have modulus strictly less than 1. Then, the resulting periodic orbit γ is asymptotically orbitally stable.

Sufficient conditions for orbital stability

As mentioned above, generally speaking, the standing assumption in this section is that the reduced-order dynamics (17) admits an orbitally asymptotically stable periodic orbit. However, we remark that some nonlinear systems defined on compact and convex sets and that admit a limit cycle, also admit at least one equilibrium point [START_REF] Basener | The brouwer fixed point theorem applied to rumour transmission[END_REF]. This imposes particular richness to the network's collective behavior, and a considerable difficulty to analyze it since it translates into studying stability of a disconnected invariant set. In that light we pose the following hypothesis.

Assumption 4: The reduced-order dynamics (17) admits a unique compact invariant subset ω ⊂ R n , which is globally attractive. More precisely, for each x mo ∈ R n , the solution x m (t) starting from x mo satisfies lim sup

t→+∞ |x m (t)| ω = 0. (30) 
Furthermore, the set ω is composed of a non-singular periodic orbit γ o (of period α o and that is orbitally asymptotically stable) and, either the origin {x m = 0} if the latter is repulsive 3 , or the homoclinic orbit

γ 1 := W u o (0) ∩ W s o (0), if the origin is hyperbolic-W s o (0)
and W u o (0) stand, respectively, for the global stable and unstable manifolds of the origin. 4 . Assumption 4 imposes, for the case in which the trajectories tend to diverge away from the origin, that the system admits a unique limit cycle. While difficult to verify in full generality, this assumption holds, e.g., for a variety of planar oscillators admitting the origin as an unstable repulsive equilibrium, such as the Liénard equation or the Stuart-Landau oscillator [START_REF] Stuart | Dynamical systems and numerical methods[END_REF]. Sufficient conditions for the existence of a unique limit cycle in more general cases are provided, e.g., in [START_REF] Smith | Existence of periodic orbits of autonomous ordinary differential equations[END_REF]. In Section V we treat an example of Stuart-Landau oscillators.

Remark 6: Note that the global attractivity property in (30) plus the structure of the invariant set ω imply the existence of a Lyapunov function enjoying useful properties along the solutions to [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]-see [START_REF] Angeli | Characterizations of input-to-state stability for systems with multiple invariant sets[END_REF]Theorem 1] or [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF]Lemma 11].

Lemma 4: Under Assumption 4 and Item (i) in Lemma 2, the periodic orbit γ o is almost globally orbitally asymptotically stable for [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF].

We are ready to present our main statement. Theorem 2 (Almost global orbital asymptotic stability): Consider the network system (4) under the Assumptions 1-3 and such that the reduced-order dynamics (17) satisfies Assumption 4. Then, there exists σ f > 0, such that, for all σ ≥ σ f , (i) the networked system (4) admits a unique nontrivial periodic orbit O 1/σ , of period α 1/σ and that is almost globally orbitally asymptotically stable.

(ii) as σ → ∞, α 1/σ → α o and O 1/σ → O o , where O o := {x ∈ R nN : x m ∈ γ o and e v = 0}
-see [START_REF] Teel | Smooth time-varying stabilization of driftless systems over communication channels[END_REF]. Item (i) of Theorem 2 states that if the reduced-order system (17) admits a limit cycle, then there exists a threshold coupling gain σ f , such that, for any interconnection strength above it, each individual system in the network has an asymptotically stable orbit. In general, such limit cycles differ from one system to another, but all of them are generated by trajectories of 3 i.e., there exists σ > 0 such that, for each initial condition |x(t•)| ≤ σ, there exists T > 0 such that implies that |x(t)| > σ for all t ≥ t• + T . 4 i.e., among the eigenvalues of A := the same period. This is sometimes referred to in the literature as frequency synchronization [START_REF] Zhou | Hierarchical synchronization in complex networks with heterogeneous degrees[END_REF], [START_REF] Skardal | Optimal synchronization of complex networks[END_REF]. Item (ii) states that as the coupling gain grows unboundedly, all the said limit cycles converge to the one generated by the periodic solution to the reduced-order dynamics [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], and the periods of the corresponding trajectories all converge to that of the reducedorder system's. In Section V, we illustrate these statements, notably via numerical simulations.

The proof of Theorem 2, which is provided farther below, follows a sequence of logical steps to assess the existence, uniqueness, and almost global orbital asymptotic stability of an orbit for [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]. The analysis relies on studying the singularlyperturbed system ( 18), but we emphasize that the available literature on stability (of the origin or a compact set) for singularly-perturbed systems [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF], [START_REF] Kokotović | Singular perturbations and order reduction in control theoryan overview[END_REF], [START_REF] Khalil | Nonlinear systems[END_REF] does not apply to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], when (17) admits a limit cycle and an isolated equilibrium point. Therefore, the proof of Theorem 2 relies on technical lemmata that are presented next, but due to space constraints, the proofs of the latter are omitted; they are available in [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF].

• Lemma 5 establishes global asymptotic practical stability of the set

{(x m , e v ) ∈ R nN : x m ∈ γ o ∪ γ 1 and e v = 0};
• Lemma 6 establishes that, given a torus sufficiently tight around O o , for each coupling gain σ sufficiently large, system (17) admits a unique periodic orbit O 1/σ contained in the torus; • Lemma 7 establishes that each such orbit O 1/σ is (locally) asymptotically stable and admits the aforementioned torus as a basin of attraction; • Lemma 8 below and Lemma 11 in the Appendix provide a local analysis around the origin, to establish that it attracts only the solutions starting from a null-measure set. Remark 7: Each one of the different Lemmata, used to prove Theorem 2, establishes the existence a coupling threshold, above which, a certain key property holds. From the proofs of those Lemmata, we can see that they do not allow to find the coupling gains explicitly, except, maybe, for Lemma 5, which uses a constructive Lyapunov argument. The proofs of the remaining Lemmata use some existence results that do not seem necessarily constructive. Providing an explicit value for σ f is a challenging open problem.

Technical Lemmata

We start by introducing the following notations. Correspondingly to γ o ⊂ R n and γ 1 ⊂ R n , which denote, respectively, the closed periodic and homoclinic orbits for system [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]-see Assumption 4, we introduce their "lifting" Γ o ⊂ R nN and Γ 1 ⊂ R nN onto the space of system [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], as

Γ o := (x m , e v ) ∈ R nN : x m ∈ γ o and e v = 0 , (31) 
Γ 1 := (x m , e v ) ∈ R nN : x m ∈ γ 1 and e v = 0 . ( 32 
)
Furthermore, we denote by T ρ the torus defined as

T ρ := (e v , x m ) ∈ R N (n-1) × R n : |(x m , e v )| Γo ≤ ρ , ( 33 
)
and we use Γ ε ⊂ R nN to denote a closed orbit generated by a periodic solution to system [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], if it exists. That is, Γ ε is a subset in the space of (x m , e v ) that consists in the image points generated by the parameterized solutions of ( 18), t → (x m (t), e v (t)), that are periodic with period α ε . The first technical lemma provides a statement for system [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] on global practical asymptotic (GPAS) stability of the set

Ω := Γ o ∪ Γ 1 ,
where Γ o and Γ 1 are introduced in ( 31)- [START_REF] Khalil | Nonlinear systems[END_REF].

Lemma 5 (GPAS of Ω): Consider system (18) such that Items (i)-(iii) of Lemma 2 hold and let Assumption 4 be satisfied for the corresponding reduced-order system [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Then, the set Ω := Γ o ∪ Γ 1 is GPAS for [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF]. In particular, for any ρ > 0, there exists ε 1 (ρ) > 0, such that, for each ε ≤ ε 1 (ρ) and for each initial condition

x o = (e vo , z mo ) ∈ R nN , the solution (x m (t), e v (t)) satisfies lim t→∞ |x m (t), e v (t)| Ω ≤ ρ.
The next lemma establishes that, for all sufficiently small values of ρ > 0, there exist sufficiently small values of ε, such that there exists a unique periodic orbit Γ ε ⊂ T ρ generated by a solution to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] of period α ε ≈ α o .

Lemma 6 (Existence of Γ ε ): Consider system (18) such that Items (i) and (iii) of Lemma 2 hold and let Assumption 4 hold for the reduced-order dynamics [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Then, there exist ρ o > 0 and a class K function ε o such that, for each ρ ∈ (0, ρ o ] and for each ε ≤ ε o (ρ), system (18) has a unique nontrivial periodic orbit Γ ε , which is strictly contained in T ρ . Moreover, the period α ε of the solution to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] generating the orbit Γ ε tends to α o , which is the period of the solution to [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] generating the orbit Γ o .

Remark 8: The existence result in Lemma 6 follows from a direct application of Anosov Theorem; see Lemma 9 in Appendix I.

The next lemma establishes local asymptotic orbital stability of all periodic orbits Γ ε lying inside the torus T ρ for sufficiently small values of ε and ρ. Moreover, we show that the corresponding domain of attraction is uniform in ε.

Lemma 7 (Stability of Γ ε ): Let system (18) satisfy Items (i) and (iii) of Lemma 2 and let Assumption 4 be satisfied for the corresponding reduced-order dynamics [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Then, there exist ε * * > 0 and ρ * * > 0 such that, for each ε ≤ ε * * , each periodic orbit Γ ε ⊂ T ρ * * generated by an α ε -periodic solution to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], with α ε sufficiently close to α o , is asymptotically orbitally stable with a domain of attraction that contains T ρ * * . Remark 9: Lemma 7 is reminiscent of a statement established by Anosov-[30, Theorem 5]-that pertains to the case in which the periodic orbit γ o for ( 17) is only non-singular (or hyperbolic). Although it is claimed in [START_REF] Anosov | Limit cycles of systems of differential equations with small parameters in the highest derivatives[END_REF] that the proof therein translates directly to the case where γ o is non-singular and asymptotically stable, in this paper, we provide an original proof for the latter case using the theory of perturbed matrices [START_REF] Stewart | Matrix Perturbation Theory[END_REF], [START_REF] Moro | On the lidskii-vishiklyusternik perturbation theory for eigenvalues of matrices with arbitrary jordan structure[END_REF].

The next statement links those from Lemmata 5-7. It establishes that if ε is sufficiently small, then the periodic behavior of the reduced-order system ( 17) is preserved for system [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF], as well as its stability properties.

Proposition 2: Consider the dynamical system (18) under the assumption that Items (i)-(iv) of Lemma 2 hold and assume further that the reduced-order dynamics [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] satisfies Assumption 4. Then, there exists ρ o > 0 such that, for each ρ ∈ (0, ρ o ], there exists ε 2 (ρ) > 0 such that, for each ε ∈ (0, ε 2 (ρ)], (i) system ( 18) admits a unique orbit Γ ε ⊂ T ρ generated by a non-trivial (α ε )-periodic solution, with Γ ε → Γ o and α ε → α o as ε → 0; (ii) Γ ε is (locally) asymptotically stable; (iii) for any initial condition xo ∈ R nN the corresponding solution x(t) to ( 18) either converges to Γ ε or to a ρneighborhood of Γ 1 , that is,

lim sup t→∞ |x(t)| Γ1 ≤ ρ. ( 34 
)
Proof: Items (i)-(iv) in Lemma 2 and Assumption 4 imply that the statements of Lemmata 5-7 hold. Then, let Lemma 7 generate ε * * > 0 and ρ * * > 0. Furthermore, let Lemma 6 generate (ρ o , ε o (•)), for each ρ ∈ (0, ρ o ], let Lemma 5 generate (ε 1 (ρ), ε 1 (ρ * * )), and let

ε ≤ ε 2 (ρ) := min{ε * * , ε o (ρ), ε o (ρ * * ), ε 1 (ρ), ε 1 (ρ * * )}
be arbitrarily fixed.

After Lemma 6, there exists a unique periodic orbit Γ ε ⊂ T ρ ∩ T ρ * * = T min{ρ,ρ * * } generated by a solution to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF]. Now, given any sequence { i } ∞ i=1 that converges to zero and such that i ≤ ε 2 (ρ) for all i ∈ {1, 2, ...}, from the above, we know that, for i large enough, the unique orbit Γ i satisfies Γ i ⊂ T ρi , where

ρ i := ε -1 o ( i )-note that ε -1 o
exists and is of class K because so it ε o . Item (i) of the proposition follows since T ρi converges to Γ o -see [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF].

Next, after Lemma 7, we conclude that Γ ε is orbitally asymptotically stable and T ρ * * is inside the domain of attraction of Γ ε . This establishes Item (ii).

Finally, from Lemma 5 we conclude that each solution to (18) either converges to T min{ρ,ρ * * } ⊂ T ρ * * , so it also converges to Γ ε , or it converges to a min{ρ, ρ * * }-neighborhood of Γ 1 . This establishes Item (iii).

The last technical lemma provides a local stability analysis around the origin of [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF]. It states that the origin is a hyperbolic equilibrium point, for all sufficiently-small values of ε. Furthermore, inspired by the Stable Manifold Theorem [START_REF] Coddington | Theory of ordinary differential equations[END_REF]Theorem 13.4.1], we show that the stable and unstable manifolds around the origin are uniquely defined on a neighborhood whose size does not shrink with ε.

Lemma 8 (Local behavior around the origin): Consider system (18) and let Items (i)-(ii) of Lemma 2 hold. Assume further that the corresponding reduced-order dynamics [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] satisfies Assumption 4. Then, there exist ρ * > 0, ε * > 0, a neighborhood of the origin denoted U ⊂ R n , and r > 0 such that, for each ε ∈ (0, ε * ), (i) system (18) admits a unique unstable and stable manifolds (W u ε (0), W s ε (0)) defined on U ;

(ii) for each x(t) bounded solution to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] starting from xo ∈ U \W s ε (0), there exists T 1 > 0 such that |x(t)| ≥ r for all t ≥ T 1 ; (iii) for each x(t) solution to [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF] such that |x(0)| Γ1 ≤ ρ * , there exists T 2 > 0 such that |x(T 2 )| < r.

Proof of Theorem 2

Under Assumptions 1-3, Items (i)-(iv) of Lemma 2 hold for system [START_REF] Pogromsky | Pattern generation in diffusive networks: How do those brainless centipedes walk?[END_REF]. This and Assumption 4 imply that the statements of Proposition 2 and Lemmata 5-8 hold too. Then, let Lemma 8 generate ρ * > 0 and ε * > 0 and let Proposition 2 generate (ρ o , ε 2 (min{ρ * , ρ o }/4)). We show that the statement of Theorem 2 holds with σ f := 1/ min {ε * , ε 2 (min{ρ * , ρ o }/4)} in four ordered steps: 1) First, for any σ ≥ σ f or, equivalently, any ε = 1/σ satisfying ε ≤ min {ε * , ε 2 (min{ρ * , ρ o }/4)}, we use Item (i) of Proposition 2 to conclude the existence of a unique nontrivial periodic orbit Γ ε generated by a periodic solution to (18) of period α ε . From Item (ii) of the same Proposition it follows that Γ ε is locally asymptotically stable. In addition, from Item (iii) of Proposition 2 it follows that each solution x(t) to system (18) either converges to the orbit Γ ε , otherwise, it converges to a (min{ρ * , ρ o }/4)-neighborhood of Γ 1 ; that is, (34) holds with ρ = min{ρ * , ρ o }/4 and, consequently, there exists

T < ∞ such that |x(t)| Γ1 = |(x m (t), e v (t))| Γ1 ≤ min{ρ * , ρ o }/2 ∀t ≥ T. (35) 
2) Now, we introduce the backward propagation of the stable manifold W s ε (0) introduced for (18) in Lemma 8. That is, we introduce set

R(W s ε (0)) := {x(t) : t ≤ 0, x(0) ∈ W s ε (0)}
and prove by contradiction that the solution x to (18) satisfying ( 35) must start from the set R(W s ε (0)). Indeed, assume that the opposite holds. Then, using Item (iii) in Lemma 8, we conclude that the solution x must enter B r at some T * ≥ T . In particular, x(T * ) ∈ U and x(T * ) / ∈ W s ε (0). So, using Item (ii) in Lemma 8, we conclude that there exists

T 1 > 0 such that |x(T * + t)| ≥ r ∀t ≥ T 1 .
However, since |x(T * + T 1 )| Γ1 ≤ min{ρ * , ρ o }/2, it follows that x must enter B r again under Item (iii) of Lemma 8, which contradicts Item (ii). 3) Next, we show that the set R(W s ε (0)) is a null measure set using contradiction. That is, let S o ⊂ R(W s ε (0)) such that µ(S o ) = 0. Assume without loss of generality that for some T < 0, we have

S o ⊂ {x(t) : t ∈ [-T, 0], x(0) ∈ W s ε (0), x sol. to (18)}. Note that R b (T, S o ) := {x(T ) : x(0) ∈ S o } ⊂ W s ε (0)
with µ(W s ε (0)) = 0. However, using Lemma 11 from the Appendix, we conclude that µ(S o ) = 0. 4) Finally, using the inverse transformation [START_REF] Adhikari | An emerging dynamics approach for synchronization of linear heterogeneous agents interconnected over switching topologies[END_REF], it follows that the orbit

O ε := {x ∈ R nN : (x e , e v ) ∈ Γ ε }
is almost GAS for (4). The second statement follows from Lemma 6.

V. CASE STUDY: A NETWORK OF ANDRONOV-HOPF OSCILLATORS

To illustrate the use of our main theoretical findings, we address, as a case-study, the analysis of a network of Andronov-Hopf oscillators, also known as Stuart-Landau [START_REF] Stuart | Dynamical systems and numerical methods[END_REF]. The equation of such oscillator represents a normal form of the bifurcation carrying the same name and is given by

ż = -ν|z| 2 z + µz, (36) 
where z ∈ C denotes the state of the oscillator, while ν, µ ∈ C are constant parameters: ν := ν R +iν I and µ := µ R +iµ I , with i = √ -1 and ν R > 0. The analysis of ( 36) is well documented in the literature. For instance, via Lyapunov-exponents-based methods, as in [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF] and [START_REF] Perko | Differential Equations and Dynamical Systems[END_REF], or using Lyapunov's direct method, as in [START_REF] Matthews | Phase diagram for the collective behavior of limit-cycle oscillators[END_REF] and [START_REF] Pham | Stable concurrent synchronization in dynamic system networks[END_REF].

The behavior of the system may also be explained using polar coordinates, which are useful to represent the system's trajectories on the complex plane-see Figure 1 below. Fig. 1. Trajectories of the Andronov-Hopf oscillator on the complex plane with µ R > 0. In this case, the origin is an unstable equilibrium and all trajectories tend to the stable limit-cycle of radius

µ R ν R and period 2πν R |µ I ν R -ν I µ R | .
Let z = re iϕ . Then, the equations for the radial amplitude r and the angular variable ϕ can be decoupled into:

ṙ = µ R r -ν R r 3 (37a) φ = µ I -ν I r 2 . ( 37b 
)
If µ R < 0, Equation (37a) has only one stable fixed point at r = 0. Moreover, the latter is Lyapunov (globally exponentially) stable. However, if µ R > 0, this equation has a stable fixed point at r = µ R ν R , while r = 0 becomes unstable. This implies that the trajectories of the system converge to a circle of radius µ R ν R , starting from initial conditions either inside or outside the circle. Thus, the latter is an attractor and the system (36) exhibits a periodic oscillation at its natural period

2πν R |µ I ν R -ν I µ R | .
The bifurcation of the limit cycle from the origin that appears at the value µ R = 0 is known in the literature as the Andronov-Hopf bifurcation. The curves

Γ α := µ R ν R cos(t) sin(t) : t ∈ 0, 2πν R |µ I ν R -ν I µ R |
define the limit cycle of the system. Now, for the purpose of this paper, we consider N forced Andronov-Hopf oscillators

żk = -ν k |z k | 2 z k + µ k z k + u k k ∈ {1, 2, . . . , N } (38) 
where z k ∈ C denotes the kth oscillator's state, u k ∈ C is its control input, and ν k := ν Rk + iµ Ik and µ k := µ Rk + iµ Ik are constant complex parameters. We assume that ν Rk > 0 for all k ∈ {1, 2, ..., N }.

We assign to the control inputs a distributed control law as in (2), modulo the obvious changes in the notation. It is assumed that the corresponding interconnection graph contains at least one directed spanning tree. Then, in a compact form, the overall network dynamics in closed loop takes the form

ż F (z) -σLz, (39) 
where

z := [z 1 • • • z N ] , the function F : C N → C N is given by F (z) := [f 1 (z 1 ) f 2 (z 2 ) • • • f N (z N )] , f k (z k ) := -ν k |z k | 2 z k + µ k z k ,
the elements of L are defined in [START_REF] Silberstein | Reduction, emergence and explanation[END_REF], and L has a unique null eigenvalue while others have positive real parts. Note that the networked system (39) satisfies Assumptions 1-3. Indeed, Assumption 1 is explicitly imposed, and each single unit has a polynomial vector field, so Assumption 2 holds as well. We also remark that each unit in [START_REF] Bıyık | Area aggregation and time-scale modeling for sparse nonlinear networks[END_REF] is semipassive (Assumption 3) since it is assumed that ν Rk > 0 for all k ∈ {1, 2, ..., N }. To better see this, consider the total derivative of the Lyapunov function candidate

V (z k ) := 1 2 z * k z k , (40) 
where z * k is the complex conjugate of z k ; we obtain

V (z k ) = -ν Rk |z k | 4 + µ Rk |z k | 2 + z * k u k . Now,
after Remark 1, we may apply the coordinate transformation in [START_REF] Teel | Smooth time-varying stabilization of driftless systems over communication channels[END_REF] and rewrite the network dynamics in the singularly-perturbed form, where the reduced-order dynamics, defined by [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], has the form

żm = f m (z m ) := -ν m |z m | 2 z m + µ m z m , (41) 
where z m = v l z, the parameter µ m ∈ C corresponds to the weighted average of the µ k s, i.e.,

µ m := µ mR + iµ mI , µ mR := N j=1 v lj µ Rj , µ mI := N j=1 v lj µ Ij ,
similarly for ν m := ν mR + iν mI , with ν mR > 0.

Remark 10: With an abuse of terminology, we may refer to (41) as the average dynamics. However, we note that µ mR and µ mI do not correspond to simple averages of the individual parameters µ Rk and µ Ik ; through the Laplacian's eigenvector v l , they depend on the network's topology, through v l .

The reduced-order dynamics (41) also corresponds to an Andronov-Hopf oscillator, which admits an invariant set composed of a compact invariant set that is composed of two disjoint invariant subsets, the origin and a limit cycle:

ω = z m ∈ C : |z m | = µ mR ν mR ∪ z m = 0 .
In particular, if µ mR ≤ 0, the set ω reduces to the origin. If µ mR > 0, Assumption 4 holds. Thus, we see that Andronov-Hopf oscillators enjoy several interesting properties, individually. Yet, as we show below, the behavior of a network of different such systems may vary considerably depending on the choice of the coupling gain, and on the individual systems' dynamics. The postulate of this paper, as that of [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], is that the collective behavior may be assessed by studying the evolution of the reduced-order system (41), using Theorems 1 and 2. In what follows, we analyze different scenarii that we regroup into two cases, depending on whether µ mR ≤ 0 or µ mR > 0.

A. The case in which µ mR = 0 Consider the Lyapunov function V defined in [START_REF] Rejeb | Control design with guaranteed cost for synchronization in networks of linear singularly perturbed systems[END_REF], i.e., V (z m ) := (1/2)z * m z m . Its total derivative, along the trajectories of [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF] with µ m = µ mI , yields

V (z m ) = -ν mR |z m | 4 , ν mR := N j=1 v lj ν Rj .
Since ν mR > 0, the origin {z m = 0} for the reduced-order system (41) is globally asymptotically stable.

Remark 11: Note that ν mR > 0 does not necessarily imply that ν Rk > 0 for each individual system. However, the latter is needed to verify Assumption 3. Furthermore, after Item (i) of Theorem 1, we conclude that the origin for the overall networked system (39) is globally practically asymptotically stable. The same may also be concluded after the main results in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], but neither of these theorems gives an assessment regarding the behavior of the trajectories of the networked system, within the compact set to which they converge. For instance, the origin may be unstable or exponentially stable, depending on the coupling gain σ and depending on the individual dynamics composing the network. To see clearer, consider the linearization of (39) around the origin, i.e.,

ż = A σ z, A σ := A o -σL, A o := diag {µ 1 , µ 2 , ..., µ N } . ( 42 
)
and the following examples.

Example 1 (unstable origin): Consider two Andronov-Hopf oscillators interconnected bidirectionally, hence with

L := 1 -1 -1 1 . Let ν 1 = ν 2 = 1, µ R1 = -µ R2 = µ ∈ R, so µ I1 = µ I2 = 0
and µ mR = 0. After (42), we have A o := diag{µ, -µ} and

A σ = -σ + µ σ σ -σ -µ , whose eigenvalues are λ 1,2 (A σ ) = -σ ∓ σ 2 + µ 2 .
That is, A σ has two positive real eigenvalues for any σ > 0, so, after Lyapunov's first method, the origin is unstable for the network of Andronov-Hopf oscillators [START_REF] Tognetti | Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost[END_REF].

Example 2 (exponentially stable origin): Consider two Andronov-Hopf oscillators interconnected bidirectionally as in Example 1 and with ν 1 = ν 2 = 1, µ R1 = -µ R2 = 1, and µ I1 -µ I2 = 2, so µ mR = 0 and A σ in (42) corresponds to

A σ = -σ + 1 -2i σ σ -σ -1 + 2i .
The eigenvalues of A σ above are

λ 1,2 (A σ ) := -σ ± σ 2 -3 -4i,
which have strictly negative real parts for all σ > 0.8376. We conclude that the origin for the networked system is (locally) exponentially stable for such values of sigma. More generally, we can state the following result, which follows directly from Lyapunov's direct method, but it is certainly difficult to apply to large networks; namely, it is increasingly difficult to find the threshold value of σ as the dimension of the network increases. Note, also, that the threshold depends on the network's topology since so does A σ .

Proposition 3: Consider the network of Andronov-Hopf oscillators in [START_REF] Tognetti | Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost[END_REF], interconnected over a connected directed graph. Assume that there exists σ f > 0 such that, for all σ ≥ σ f , the smallest (in norm) eigenvalue of A σ , denoted by λ 1 (A σ ), has a strictly negative real part. Then, there exists σ f > 0 such that, for all σ ≥ σ f , the origin {z = 0} is locally exponentially stable.

Thus, it may be inferred that while standard methods may be used to assess the local behavior of solutions, albeit with increasing difficulty in function of the network's size, such tools fail to address the more interesting problem of finding sufficient conditions for global exponential stability. To the best of our knowledge, this question remains open. Now, one may conjecture that since the origin for [START_REF] Tognetti | Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost[END_REF] is globally practically asymptotically stable, if the origin is also locally exponentially stable, the global property should follow if one could establish exponential stability in the large [START_REF] Furasov | Ustoȋqivost dvi eni , ocenki i stabilizaci[END_REF], [START_REF] Loría | Stability, as told by its developers[END_REF] with a domain of attraction that does not shrink in function of the coupling gain. Such analysis, however, is tedious even for the simple examples above and is beyond this paper's scope.

B. The case in which µ mR = 0 From Examples 1 and 2, it is clear that the parameter µ mR plays a crucial role in the collective behavior, which is hardly predictable from the sole inspection of the corresponding parameter for each individual system. Indeed, the network behavior varies significantly in function of the coupling gain.

In what follows, we analyze it in the case that µ mR is either positive or negative and we provide some illustrative numerical simulation results.

Proposition 4: Consider the network of Andronov-Hopf oscillators defined in [START_REF] Tognetti | Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost[END_REF] interconnected over a connected directed graph. For the corresponding reduced-order system [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF]. Then, (i) if µ mR < 0, then there exists σ f > 0 such that, for all σ ≥ σ f , the origin {z = 0} is GAS; (ii) if µ mR > 0, then there exists σ f > 0 such that, for each σ ≥ σ f , system (39) has a unique nontrivial periodic orbit

O o := {z ∈ C N : z m ∈ γ o and e v = 0}, γ o := z m ∈ C : |z m | = µ mR ν mR
which is almost globally asymptotically stable.

Proposition 4 illustrates the interest of Theorems 1 and 2. Both statements rely on the analysis of the reduced-order dynamics (41) instead of recurring to a local analysis of the overall network. Not only the analysis is straightforward, as one can see from the proof below, but the statements guarantee global properties.

Proof of Proposition 4: The total derivative of V (z m ) := (1/2)z * m z m along the trajectories of (41), yields

V (z m ) = -ν mR |z m | 4 + µ mR |z m | 2 . ( 43 
)
If µ mR < 0 global asymptotic stability for the reducedorder dynamics follows and, after Theorem 1, Item (i) of the proposition follows (i.e., global asymptotic stability for the overall network). If µ mR > 0, the invariant orbit γ o is almost globally asymptotically stable and the origin {z m = 0} is antistable-see [START_REF] Panteley | On the stability and robustness of Stuart-Landau oscillators[END_REF]. So Item (ii) of Theorem 2 implies the second statement of the proposition.

C. Numerical results

For the system (39), using [START_REF] Thulasiraman | Graphs: theory and algorithmsn[END_REF] and standard Lyapunov theory [START_REF] Khalil | Nonlinear systems[END_REF], we may conclude that if µ mR > 0, the solutions are ultimately bounded. However, nothing may be inferred about the behavior of the solutions within the ultimate bound. After Proposition 4, it follows that for sufficiently large values of the coupling gain, all oscillators describe periodic orbits and, moreover, that there exist a unique periodic orbit defined by the solutions of the reduced order system. To illustrate this fact, we used Matlab R to perform several numerical simulations for the system [START_REF] Tognetti | Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost[END_REF], for distinct values of the coupling gain σ.

The setting consists in five Andronov-Hopf oscillators [START_REF] Bıyık | Area aggregation and time-scale modeling for sparse nonlinear networks[END_REF], with ν k = 1 for all k ∈ {1, 2, . . . , 5}, µ k ∈ {1 + i, 3 + Trajectories of (39) on the complex plane. The oscillators become periodic as σ is increased beyond the threshold σ f = 3.53, identified numerically. As σ increases further, the unique oscillators' orbits converge to that of the reduced-order system. The time span in all figures is t ∈ [400, 500]. The orbit γo is showed in black.

2i, -2 + 5i, 4 -i, -1 -i}, interconnected over a directed network with Laplacian matrix

L =       1 -1/4 -1/4 -1/4 -1/4 -1 1 0 0 0 -1 0 1 0 0 -1 0 0 1 0 -1 0 0 0 1       .
The initial conditions were set to z ok ∈ 1 10 {5-3i, 2+6i, 4+ 2i, -3+4i, -3-6i}. In Figure 2, we show the response of the Fig. 4. Real part of the trajectories of (39) against time, in oscillatory steady state, i.e., for t ∈ [400, 500]. From the top: in the first plot one can appreciate that, for a relatively weak coupling gain, the trajectories are not periodic, except for that of the reduced-order system (in black). In the second plot, it is showed that for a coupling gain slightly above the threshold, the solutions become periodic, but of different amplitude. In the third plot, for a higher coupling gain, we see that all the oscillators synchronize in frequency, but not at the same frequency of the reduced order system. In the bottom plot, one sees that all oscillators, under very strong coupling, are in perfect synchrony, albeit out of phase relative to the reduced-order system.

interconnected systems with a relatively low interconnection gain. It is apparent that the Stuart-Landau oscillators do not exhibit periodic orbits, but a new dynamics emerges.

In Figure 3 we present plots of z(t) on the complex plane, for four different values of the coupling gain, for values below the threshold and above it. As Theorem 2 establishes, for gain values above the threshold not only the systems exhibit a periodic behavior, but as the gain increases, it approaches that of the reduced-order "averaged" system [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF]. Finally, in Figure 4, it is appreciated that the oscillators' periods tend to match with respect to each other and with that of the reducedorder system-Item (ii) in Theorem 2, as the coupling gain increases.

VI. CONCLUDING REMARKS

We presented a framework to assess the collective behavior of networks of heterogeneous nonlinear systems, in fair generality. Our approach allows to qualitatively characterize the collective behavior for "large" values of the coupling gains. For systems admitting periodic orbits of any dimension, we demonstrate that there exists a coupling gain threshold characterizing an inherent orbit to which each and all oscillators tend to asymptotically. On one hand, for any gain above this threshold each system admits an individual periodic motion. On the other hand, as the coupling gain increases, all oscillators' motions tend to coincide with that of an average dynamics. Although such behavior may be expected to hold locally, we demonstrate that it occurs for any initial conditions.

Our main results rely on original statements on singularperturbation theory that might serve as starting point to establish interesting extensions. For instance, our analysis, so far, is restricted to networks of systems with state-coupling. Yet, many physical systems are interconnected through part or a function of the state. Statements for systems under output coupling pose a significant and well-motivated challenge.

Furthermore, our analysis does not provide explicit values of the coupling strength threshold, under which, the networked system exhibits the established behavior. Characterizing the emergent behavior, such as orbital asymptotic stability, both qualitatively and quantitatively (in terms of the coupling gain) is still another open and important problem, even in specific case-studies.

Finally, beyond the analysis problems solved in this paper, the control design problem is widely open. To find conditions under which a network of heterogeneous systems may be controlled so that it admits a desired reduced-order dynamics. Finally, we believe that extending the proposed framework for general classes of nonlinear systems such as hybrid systems is an interesting perspective as well. Acknowledgments: The authors are indebted to Anes Lazri, PhD student at Univ Paris Saclay, for performing the illustrative numerical simulations and for valuable technical discussions om boundedness of solutions.

APPENDIX I: BACKGROUND

The following result, which is a consequence of the main statements in [START_REF] Anosov | Limit cycles of systems of differential equations with small parameters in the highest derivatives[END_REF], establishes the existence of periodic solutions for singularly-perturbed systems, ż = f (z, e, ε)

ε ė = g(z, e, ε) (z, e) ∈ R mz × R me . ( 44 
)
Lemma 9: Consider the singularly perturbed system (44) such that the following properties hold: 1) the functions f and g are continuous with respect to (z, e, ε) and differentiable with respect to z and e. Moreover, the derivatives of f and g with respect to z and e depend continuously on (z, e, ε). 2) There is a unique function h : R mz → R me such that g(z, h(z), 0) = 0.

3) The equilibrium state y = 0 (with y = e -h(z)) of the boundary-layer system y = g(z, y + h(z), 0), where y := dy/d(t/ε), is hyperbolic uniformly in z. 4) The unperturbed system ż = f (z, h(z), 0)

has a nontrivial nonsingular periodic orbit γ o ⊂ R mz .

Then, there exists ρ o > 0 and a class K function ε o such that for each ρ ∈ (0, ρ o ] and for each ε ≤ ε o (ρ), the system (44) has a unique nontrivial periodic orbit Γ ε , which is strictly contained in the ρ-neighborhood of Γ o , where Γ o := {(z, e) ∈ R mz × R me : z ∈ γ o and e = h(z)}.

Moreover, the period α ε of the periodic solution to [START_REF] Pogromsky | Passivity-based design of synchronizing systems[END_REF] generating the orbit Γ ε tends to α o the period of the solution to [START_REF] Polushin | Strict quasipassivity and ultimate boundedness for nonlinear control systems[END_REF] generating the orbit Γ o .

APPENDIX II: AUXILIARY LEMMATA Given a function of two scalar variables that is smooth in one and only continuous in the other, the following original lemma shows the existence of a smooth approximation to any given 'nonuniform' degree of precision.

Lemma 10: Consider a function T : [0, 1] × [0, α o ] → R n×n such that τ → T (ε, τ ) is continuous, ε → T (ε, τ ) is continuously differentiable, and τ → T (0, τ ) is continuously differentiable. Then, for each ρ > 0, there exists T : [0, 1] × [0, α o ] → R n×n continuously differentiable such that To obtain the latter inequality we used StoneWeierstrass theorem stating that every continuous function defined on a closed interval [0, α o ] can be uniformly approximated as closely as desired by a polynomial function [START_REF] Stone | The generalized weierstrass approximation theorem[END_REF]. As a result, [START_REF] Lazri | Global uniform ultimate boundedness of semi-passive systems interconnected over directed graphs[END_REF] holds. Furthermore, we note that T (ε, τ ) -T (ε, τ ) = (a(τ ) -â(τ ))ε + g(ε, τ ), which implies that (47) also holds. Finally, (48) holds under [START_REF] Lazri | Global uniform ultimate boundedness of semi-passive systems interconnected over directed graphs[END_REF] and the continuous differentiability of T .

T (0, τ ) = T (0, τ ) ∀τ ∈ [0, α o ], (46) 
| T (ε, τ ) -T (ε, τ )| ∞ ≤ ρε + o(ε) ∀τ ∈ [0, α o ], (47) 
Consider the dynamical system

ẋ = f (x) x ∈ R n , (49) 
where f : R n → R n is continuously differentiable and the origin x = 0 is a hyperbolic equilibrium point. The following lemma allows us to show that the propagation of the local stable manifold W s (0) using the backward solutions to ( 49) is a null-measure set. 

  ∂fm(xm) ∂xm xm=0 , 0 < k < n eigenvalues have positive real part and n -k have negative real part.

Fig. 2 .

 2 Fig. 2. Trajectories of (39) with σ = 3, i.e., below the threshold σ f in Theorem 2. The interconnected oscillators loose their periodic behavior. NB: the time span for the NE plot is t ∈ [0, 500]. The trajectories of the reduced-order system are showed in cyan.

  Fig. 3.Trajectories of (39) on the complex plane. The oscillators become periodic as σ is increased beyond the threshold σ f = 3.53, identified numerically. As σ increases further, the unique oscillators' orbits converge to that of the reduced-order system. The time span in all figures is t ∈ [400, 500]. The orbit γo is showed in black.

  Since the matrix T is continuously differentiable in ε and continuous in τ , then it admits a first-order Taylor expansion of the formT (ε, τ ) = T (0, τ ) + a(τ )ε + g(ε, τ ),where a : [0, α o ] → R n×n is continuous and g : [0, 1] × [0, α o ) → R n×n enjoys the same continuity and smoothness properties as T . Furthermore, there exists M > 0 such that, for each τ ∈ [0, α o ], we have|g(ε, τ )| ≤ M ε 2 ∀ε ∈ [0, 1].Now, we choose the matrix T asT (ε, τ ) = T (0, τ ) + â(τ )ε, where â : [0, α o ] → R n×n is a continuously differentiable approximation of a on [0, α o ] satisfying sup τ ∈[0,αo]{|a(τ ) -â(τ )|} ≤ ρ.

Lemma 11 :

 11 Consider the dynamical system[START_REF] Liu | Output synchronization of dynamical networks with incrementally-dissipative nodes and switching topology[END_REF] and let S o ⊂ R n and T > 0 such that, for each x o ∈ S o , the solution x(t) is well defined on [0, T ]. Furthermore, for each t ∈ [0, T ], we define the reachable setR b (t, S o ) := {y ∈ R n : y = x(t), x(0) = x o ∈ S o } . Then, if there exists τ ∈ [0, T ] such that µ(R b (τ, S o )) = 0 then µ(S o ) = 0, where µ(•) is the Lebesgue measure of (•).Proof: To find a contradiction, we assume that µ(S o ) > 0 and µ(R b (τ, S o )) = 0 for some τ ∈ [0, T ]. Next, we introduce the mapping φ τ : S o → R n such that φ τ (x o ) := x(τ ), where x(τ ) is the unique solution to (49) starting from x o . Using [71, Theorem V.2.1], we conclude that the mapping φ τ is continuous and clearly the reciprocal mapping satisfies φ - τ (x o ) := x(-τ, x o ). Hence, φ - τ (•) is also continuous and therefore φ τ is a homeomorphism; thus, an open map. Let us now fix x o ∈ S o arbitrary such that there exists U (x o ) an open set containing x o that is contained in S o , the latter is possible to find since µ(S o ) = 0. Let φ τ (U (x o )) be the image of U (x o ) by the homeomorphism φ τ . Since φ τ is a homeomorphism, φ τ (U (x o )) is an open set containing φ τ (x o ). Hence, µ(φ τ (U (x o ))) = 0. However, φ τ (U (x o )) ⊂ R b (τ, S o ) and we already assumed that µ(R b (τ, S o )) = 0, which yields to a contradiction.

  the solution φ starting from x o satisfies |φ(t)| γ ≤ ε for all t ≥ T . The orbit γ is orbitally asymptotically stable, if it is orbitally stable and attractive; i.e., if there exists R ∈ (0, +∞] such that, for each x o satisfying |x o | γ ≤ R, the solution φ starting from x o satisfies lim t→∞ |φ(t)| γ = 0. The orbit γ is globally orbitally asymptotically stable if it is orbitally asymptotically stable with R = +∞ and almost globally asymptotically stable if it is orbitally asymptotically stable for all x o ∈ R n \D, where D ⊂ R n has a null Lebesgue measure.

• •

In[START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] we use the term emergent dynamics to refer to what we call here reduced-order dynamics. We correct here a misuse of terminology that we made in[START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]. Indeed, emergent dynamics refers to the complex behavior that arises as an effect of the systems' interactions.