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Singular-Perturbations-Based Analysis of
Dynamic Consensus in Directed Networks of

Heterogeneous Nonlinear Systems
Mohamed Maghenem Elena Panteley Antonio Lorı́a

Abstract— We investigate conditions under which het-
erogeneous nonlinear systems, interconnected over a di-
rected static network may achieve synchrony. Due to the
network’s hetereogeneity, complete synchronization is im-
possible in general, but an emergent dynamics arises. This
may be characterized by two dynamical systems evolving
in two time-scales. The first, “slow”, corresponds to the dy-
namics of the network on the synchronization manifold. The
second, “fast”, corresponds to that of the synchronization
errors. We present a framework to analyze the emergent
dynamics based on the behavior of the slow dynamics.
Firstly, we give conditions under which if the slow dynamics
admits a globally asymptotically stable (GAS) equilibrium,
so do the networked systems. Secondly, we give conditions
under which, if the slow dynamics admits an asymptotically
stable orbit and a single unstable equilibrium point, there
exists a unique periodic orbit that is almost-globally asymp-
totically stable. The emergent behavior is thus clear, the
systems asymptotically synchronize in frequency and, in
the limit, as the coupling strength grows unboundedly, the
emergent dynamics approaches that of the slow system.
Our analysis is established using singular-perturbations
theory. In that regard, we also contribute with original state-
ments on stability of disconnected invariant sets and limit
cycles for systems in singular-perturbation form.
Index Terms— Consensus, multi-agent systems, singular per-
turbations, network systems, synchronization.

I. INTRODUCTION AND MOTIVATION

NETWORKS of nonlinear heterogeneous systems are
both, ubiquitous and complex. Their ubiquity motivates

their study across numerous research disciplines, as varied as
Engineering Systems theory [1], Complexity theory [2] and
even Philosophy of Science [3]. Their complexity is motor
for two apparently antagonistic trains of thought that attempt
to explain the collective behavior of networked systems in a
broad sense: reductionism and emergentism. The first asserts
that any whole can be reduced to its constituent parts—as in
the case of networked linear systems [4], while the tenet of
emergentism is that a new behavior appears as a consequence
of the interaction of the said parts [3]—as in networks of
heterogeneous nonlinear systems. What is more, one of the
accepted definitions of Complexity is that it corresponds to
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the difference between the network as a whole and the sum
of its parts and, in that regard, nonlinearity is a necessary
condition for complexity to appear [5].

In this paper we show that, to some extent, emergentism
and reductionism are not necessarily mutually exclusive, but
their respective underlying postulates are both useful to assess
the behavior of networks of heterogeneous nonlinear systems.
We focus on systems with dynamics given by

ẋi = fi(xi) + ui, i ∈ {1, 2, . . . , N}, xi ∈ Rn, (1)

where i ∈ {1, 2, . . . , N}, xi ∈ Rn is the state of the ith system
and ui ∈ Rn is the decentralized control input to each system,
defined as the consensus control law

ui := −σ
[
li1(xi − x1) + . . .+ liN (xi − xN )

]
, (2)

where lij are different non-negative real numbers denoting the
individual interconnection weights and the scalar parameter
σ > 0 is the common coupling strength.

The control law (2) is reminiscent of that commonly used
in the literature on consensus control, in which the coupling
strength σ = 1. This is specifically the case for networks of lin-
ear systems, in which case complexity hardly appears and the
focus turns towards the nature of the interconnections. On one
hand, these may be linear [4]; nonlinear [6], [7]; time-varying
[8], [9]; switching [10], [11], state-dependent [12], dynamic
[13]–[15], etc. On the other hand, the interconnections may
be directed [16] or signed [17]. Yet another aspect that plays
a crucial role in the behavior of networks of heterogeneous
nonlinear systems is the coupling strength. Different kinds
of emergent behavior may arise depending on whether σ is
“weak” [18], [19] or “strong” [20], [21].

Now, in spite of the generality of the individual systems’
dynamics, the control law (2) remains conservative relatively
to other works in which output coupling is considered—
see e.g. [7], [15], [21]–[23]. The case of output coupling is
addressed also in [20], for heterogeneous nonlinear systems,
but only practical asymptotic synchronization is established.

Our main interest in this paper is to assess the behavior of
the corresponding closed-loop system, specifically, in the case
that the coupling gain σ is larger than a certain threshold,
but we restrict our analysis to networks with an underlying
static directed graph. Akin to [20], we analyze the closed-loop
networked system via a change of coordinates that exhibits
an intrinsic dichotomous structure composed of two dynamics
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defined in orthogonal spaces. On one hand, one has a reduced-
order dynamics with state xm ∈ Rn and, on the other,
the dynamics that corresponds to the synchronization errors,
denoted by ei := xi − xm. This characterization of the
networked system is driven by the objective of characterizing
synchronization phenomena that may appear (or not) as a
result of the systems’ interconnections.

Following [20], the systems reach dynamic consensus if,
for all i ≤ N , the synchronization errors ei converge to
zero asymptotically and the reduced-order dynamics1 has an
asymptotically stable invariant set. The dynamic consensus
paradigm generalizes the more common equilibrium consen-
sus, in which case the reduced-order dynamics is null, i.e.
ẋm = 0, because the collective behavior is static and the state
of the reduced-order dynamics satisfies xm(t) ≡ xm(0), where
xm(0) is a weighted average of the nodes’ states’ initial values.
In the case of a network of oscillators, the reduced-order
dynamics may admit an asymptotically stable equilibrium
(an example is provided in [20]) or an asymptotically stable
attractor. However, in general, asymptotic dynamic consensus
is unreachable due to the heterogeneity [21]. An exception
is that of systems that admit an internal model [24]–[26]
but, in general, for nonlinear heterogeneous systems, dynamic
consensus may be guaranteed only in a practical sense [20].

In this paper, we establish several original statements and
address two generic cases: one in which the (slow) reduced-
order dynamics admits a globally asymptotically stable equi-
librium, and another one in which it admits a periodic solution.
In the first case, we give sufficient conditions under which
the origin for the networked system is globally asymptotically
stable. In the second case, we prove that the synchronization
errors converge to a unique attractive periodic orbit, so the
systems achieve frequency synchronization [27], [28]. More-
over, for “large” values of the coupling strength σ, this orbit is
“close” to that generated by periodic solutions of the reduced
dynamics. Thus, the emergent dynamics approaches that of the
reduced-order system, as the coupling gain grows.

The analysis is based on the recognized premise that in self-
organized complex systems, emergence is multi-level, as in oc-
curring in multiple timescales [2], [29]. Here, we only consider
two, one that is slow and pertains to the reduced-order system
and another that is fast and pertains to the synchronization
errors. The analysis of multi-timescale systems may be carried
out using the classical singular-perturbations approach [30]–
[32] or the geometric one [33], [34]. Here, we rely on classical
singular perturbation theory, but also on original refinements of
some statements from [30] for systems admitting disconnected
sets composed of equilibria and periodic orbits. The proofs of
some technical statetements, however, are omitted due to space
constraints; for a more complete manuscript see [35].

The model-reduction-and-multi-time-scale perspective is
certainly not new, neither in systems theory [1] nor in other
disciplines. In the seminal work [36], which follows up on

1In [20] we use the term emergent dynamics to refer to what we call here
reduced-order dynamics. We correct here a misuse of terminology that we
made in [20]. Indeed, emergent dynamics refers to the complex behavior that
arises as an effect of the systems’ interactions.

[1], the authors consider a modular network composed of
sparsely connected clusters of densely interconnected dynam-
ical systems modeled by simple integrators—the paradigm is
motivated by that of large electrical networks. Using classical
singular-perturbation theory [30], [37], it is showed that such
networks achieve synchronization at two levels, within and
among the clusters. The analysis is based on relating the
network’s sparsity to a singular-perturbation parameter. These
concepts have been revisited in many succeeding works, such
as [38] and [16]. In the former, for networks of simple
integrators through sector nonlinearities, and in the latter
for linear homogeneous systems interconnected through time-
varying persistently-exciting gains a la [8]. On the other hand,
networks of linear homogeneous singularly-perturbed systems
are considered in [39] and [40]. Thus, in all of the above, the
setting is fundamentally different from the one studied here.

In [41], for a particular case-study of networked Andronov-
Hopf oscillators, we use a coordinate transformation to exhibit
the presence of the two-timescale emergent dynamics and
singular-perturbation theory to analyze the collective behavior
under the premise that the reduced-order system admits an
asymptotically stable orbit. Based on the coordinate trans-
formation introduced in [41], singular-perturbation theory is
used in [21] on a wider class of nonlinear systems with rank-
deficient coupling to establish synchronization in the practical
sense. In [14] and [15], singular-perturbation theory is used
to analyze networked systems over undirected graphs and
restricted to the case in which the slow dynamics admits an
asymptotically stable equilibrium.

Thus, there are several articles in the literature that explicitly
use reduction and singular-perturbation theory, even in a multi-
agent context. Yet, we are not aware of any work covering
generic nonlinear heterogeneous systems interconnected over
directed graphs and characterize the collective behavior with
higher precision. Conceptually, in phase with the emergentism
posit, we evince the appearance of a complex (in the sense of
[5]) dynamic behavior, as a result of the systems’ interactions.
At the same time, we give a more precise characterization
(well beyond practical asymptotic stability of the synchroniza-
tion manifold) of the collective behavior of networked systems
based on that of a reduced-order model.

The rest of the paper is organized as follows. In Section II
we exhibit the network’s reduced-order and synchronization
dynamics, under an invertible coordinate transformation. In
Sections III and IV we present our main results. In Section V,
we present a case-study and in Section VI, we provide con-
cluding remarks and comments on future research directions.
The paper is completed with technical appendices.

Notation and definitions. Given a nonempty set K ⊂ Rn,
we define |x|K := infy∈K |x − y|, where |s| denotes the Eu-
clidean norm of s. For a set O ⊂ Rn, K\O denotes the subset
of elements of K that are not in O. For a matrix A ∈ Rn×n,
|A| denotes its norm, and λmin(A) and λmax(A) denote the
smallest and the largest eigenvalues of A, respectively. For
a sequence {Ai}Ni=1 ⊂ ΠN

i=1Rni×ni , blkdiag
i∈{1,2,...,N}

{Ai} is the

block-diagonal matrix whose ith diagonal block corresponds
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to Ai. By 1N ∈ RN , we denote the vector whose entries are
equal to 1. By ⊗, we denote the Kronecker product. For a
complex number λ ∈ C, <e(λ) denotes the real part of λ and
=m(λ) denotes its imaginary part. A function α : R≥0 → R≥0

is of class K if it is continuous, strictly increasing, and
α(0) = 0. It is of class K∞ if it is of class K and unbounded.

According to [42], for ẋ = f(x, ε), with x ∈ Rn and ε ∈
[0, 1], the set A ⊂ Rn is globally practically attractive if, for
each β > 0, there exists ε? > 0 such that, for each ε ≤ ε?

and for every solution t 7→ x(t), there exists T > 0 such that
|x(T )|A ≤ β. The set A is globally practically stable if there
exists κ ∈ K such that, for each β > 0, there exists ε? > 0
such that, for each ε ≥ ε? and for every solution t 7→ x(t),
we have |x(t)|A ≤ κ (|x(0)|A) + β for all t ≥ 0. The set
A is globally practically asymptotically stable (GPAS) if it is
globally practically attractive and globally practically stable.

II. ON STRONGLY-COUPLED CONNECTED NETWORKS

A. The model and standing assumptions

Consider a group of N nonlinear systems as in (1) driven
by the distributed control inputs, as defined in (2), where each
lij ≥ 0 is constant but not necessarily equal to lji. In particular,
when there exists an interconnection from the jth node to
the ith node, lij is strictly positive, but lji may be null, in
which case, the interconnection is said to be unidirectional
and the graph is said to be directed. We also assume that the
graph is connected, which means that there exists a path (non-
necessarily directed) between every pair of nodes [43]. More
particularly, we pose the following hypothesis.

Assumption 1 (connected digraph): The network’s digraph
contains at least one directed spanning tree.

Remark 1: In some works, digraphs containing a directed
spanning tree are called quasi-strongly connected—see e.g.,
[43]. Under this property, the Laplacian L has exactly one
eigenvalue (say, λ1) that equals zero, while the others have
positive real part, i.e., 0 = λ1 < <e {λ2} ≤ . . . ≤ <e {λn}.
Furthermore, the right eigenvectors corresponding to the sim-
ple eigenvalue λ1 = 0 are spanned by vr = 1N ∈ RN , while
the left eigenvectors are spanned by a vector that contains
only non-negative elements [10], which we denote by vl, and
satisfies 1>Nvl = 1.

In addition, for each unit, we impose the following.
Assumption 2 (Regularity): The functions fi are once con-

tinuously differentiable and, for each i ∈ {1, 2, . . . , N}, there
exists x∗i ∈ Rn such that fi(x∗i ) = 0. Without loss of
generality2, we assume that x∗i = 0 for all i ∈ {1, 2, . . . , N}.

Assumption 3 (Semi-passive units): Each agent is input-to-
state strictly semi-passive—cf. [44], [45]. More precisely, for
each i ∈ {1, 2, . . . , N}, there exist a continuously differen-
tiable storage function Vi : Rn → R≥0, a class K∞ function
αi, a positive constant ρi, a continuous function Hi : Rn → R,

2 If the system does not have an equilibrium at the origin, or at all for
that matter, it is assumed that one may be imposed onto it via a preliminary
feedback.

and a continuous function ψi : Rn → R≥0 such that

αi(|xi|) ≤ Vi(xi), V̇i(xi) ≤ xTi ui −Hi(xi)

and Hi(xi) ≥ ψi(|xi|) for all |xi| ≥ ρi.
Assumption 3 is useful to assess the boundedness of solu-

tions for system (1) in closed loop with (2) for a sufficiently
large coupling strength σ. More precisely, we have the follow-
ing result—see [46].

Lemma 1 (Global ultimate boundedness): Consider the
systems in (1) in closed loop with the control inputs in (2)
and let Assumptions 1–3 hold. Then, the closed-loop system
is globally uniformly (in σ) ultimately bounded. That is,
given σ∗ > 0, there exists r > 0 such that, for any R ≥ 0,
there exists τR ≥ 0 such that, for each σ ≥ σ∗ and for each
solution t 7→ x(t), we have

|x(0)| ≤ R =⇒ |x(t)| ≤ r ∀t ≥ τR,

where x ∈ RnN denotes the network’s state, i.e., x =
[x>1 , . . . , x

>
N ]>. �

Remark 2: The proof follows along the same lines as that
for [20, Proposition 2], which is constructive and provides an
explicit formula for r. In that regard, we stress that, contrary to
its formulation in [20], the statement therein holds for directed
graphs.

Under the assumptions listed above, we investigate the
problem of assessing the behavior of the networked closed-
loop system (1)-(2). To this end, as it is customary, let us
collect the individual interconnection coefficients lij into the
Laplacian matrix L := [`ij ] ∈ RN×N , where

`ij =

{ ∑
k∈Ni

aik i = j

−aij i 6= j.
(3)

Then, replacing (2) in (1) and using x = [x>1 , . . . , x
>
N ]>, we

see that the overall network dynamics takes the form

ẋ = F (x)− σ[L⊗ In]x, (4)

where the function F : RnN → RnN is given by

F (x) := [f1(x1) · · · fN (xN )]
>
.

As in [20] and [47], to analyze the behavior of the net-
work system (4), we acknowledge its dichotomous nature. In
these references, as well as in many others—e.g., [48]–[50],
synchronization is defined as the property of the trajectories
of each individual system following the trajectories of an
“averaged” unit with state

xm := [v>l ⊗ In]x. (5)

The quotes in “averaged” are superfluous in the case of undi-
rected networks, in which case vl = 1N , so xm = 1

N

∑N
i=1 xi,

but for directed connected networks the state xm is more
generically defined as a weighted average of the respective
systems’ states since vli ≥ 0 for all i ∈ {1, 2, ..., N} and
v>l 1N = 1.
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In either case, a sensible way to define the synchronization
errors e is as the difference between the units’ states and xm,
that is,

e := x− [1N ⊗ In]xm. (6)

Thus, in [20] and [47] the collective behavior of network sys-
tems is studied in function of the dynamics of the “averaged”
unit xm and that of the synchronization errors e.

In the next section, we introduce another change of coordi-
nates to rewrite system (4) in an equivalent form that exhibits
two motions: one that is generated by the averaged dynamics
and another by a projection of the synchronization errors e
on a certain subspace. This coordinate transformation is not
a simple artifice for analysis, it exhibits two time-scales that
are inherent to networked systems satisfying Assumption 1
and subject to a sufficiently large coupling σ. Other changes
of variable that naturally lead to a time-scale separation have
been proposed, specially for undirected graphs, e.g., in [14],
[38]. The one we adopt here, and describe below, is taken from
[20], [47].

B. Characterization of the collective behavior

After Assumption 1 and Remark 1, because λ1 = 0
has multiplicity one, the Laplacian admits the Jordan-block
decomposition

L = U

[
0 0
0 Λ

]
U−1, (7)

where Λ ∈ R(N−1)×(N−1) is composed by the Jordan blocks
corresponding to the N − 1 non-zero eigenvalues.

Remark 3: Note that even though a Jordan decomposition
does not necessarily exist with a real matrix U , it is always
possible to use the spectral-invariant-subspace decomposition
as in [51, Theorem 1.5., p. 224]—see also [35, Lemma 13]—to
generate a real matrix U .

The invertible matrix U is constituted, column-wise, of the
right eigenvector of the Laplacian, 1N , and a left-invertible
matrix V ∈ RN×(N−1), which consists of the eigenvectors
corresponding to the nonzero eigenvalues of L. That is,

U = [1N V ], U−1 =

[
v>l
V †

]
, (8)

where V † ∈ R(N−1)×N , and

v>l V = 0, V †V = IN−1. (9)

So, using (8) and (9), we also have the useful identity

V V † = IN − 1Nv
>
l .

Now, using U−1, we define the new coordinates

x̄ := [U−1 ⊗ In]x (10)

and the inverse transformation

x := [U ⊗ In]x̄. (11)

The interest of the coordinate x̄ is that it consists in the familiar
“averaged” states xm and a projection of the synchronization

errors e defined in (6) onto the subspace that is generated by
V †, which is orthogonal to the right eigenvector 1N . To better
see this, note that such projection yields

[V † ⊗ In]e = [V † ⊗ In]
[
x− [1N ⊗ In]xm

]
.

In the sequel, we refer to the left-hand side of the latter
equation as the projected synchronization errors,

ev := [V † ⊗ In]e. (12)

Hence, in view of (5), (8), (10), and (12), we have

x̄ =

[
xm
ev

]
=

[
[v>l ⊗ In]x

[V † ⊗ In]x

]
. (13)

In the new coordinates, the network system (4) is equiva-
lently written as

˙̄x = [U−1 ⊗ In]
[
F (x)− σ[L⊗ In]x

]
,

which consists in two interconnected dynamics, that of the
“averaged” state xm and that of the projected synchronization
errors ev . Therefore, the behavior of the trajectories of (4) may
be assessed via that of the latter dynamics. To this end, we
use x̄ = [x>m e>v ]> and U = [1N V ] in (11) to write

x = [1N ⊗ In]xm + [V ⊗ In]ev. (14)

Then, differentiating on both sides of (5), using (4), (14), and
the fact that v>l L = 0, we obtain

ẋm = Fm(xm) +Gm(xm, ev), (15)

where Fm(xm) := [v>l ⊗ In]F
(

[1N ⊗ In]xm
)

and

Gm(xm, ev) := [v>l ⊗ In]
[
F
(

[1N ⊗ In]xm + [V ⊗ In]ev
)

− F
(

[1N ⊗ In]xm
) ]
.

Note that Fm(xm) effectively corresponds to an “averaged”
drift of the systems in (1), i.e.,

Fm(xm) =

N∑
i=1

vlifi(xm),

Gm(xm, 0) = 0 and, under Assumption 2, all these functions
are smooth and there exists a continuous function h : RnN →
R≥0 such that∣∣Gm(xm, ev)

∣∣ ≤ h(xm, ev)|ev| ∀(xm, ev) ∈ RnN .

On the other hand, by differentiating on both sides of
ev = [V † ⊗ In]x and using (7), (8), and (14), we obtain the
synchronization-errors dynamics

ėv = −σ[Λ⊗ In]ev +Ge(xm, ev), (16)

where

Ge(xm, ev) := [V † ⊗ In]F
(

[V ⊗ In]ev + [1N ⊗ In]xm
)
.

The complete collective behavior of the networked control
system (4), up to the globally invertible coordinate trans-
formation in (10), may be assessed by analyzing that of
the interconnected systems (15) and (16), which evolve in
orthogonal spaces [20]. We see that the systems in (1) under
the action of the control laws in (2) synchronize, in the sense
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that limt→∞ xi(t) = limt→∞ xj(t) = limt→∞ xm(t) for all
i, j ≤ N , if and only if the errors ev tend asymptotically
to zero. As we explain on p. 2, in this case we say that
the systems achieve dynamic consensus. Therefore, because
the solutions of (4) do not necessarily stabilize at a common
equilibrium, the characterization of the networked systems’
behavior would be incomplete unless one can ascertain what
the individual systems do when they synchronize. Indeed,
a priori, not even boundedness of solutions is guaranteed
(whence Assumption 3, see [52]). To assess any kind of
stable behavior, we analyze the network system (4) on the
synchronization subspace corresponding to ev = 0. On such a
subspace, we have the reduced-order dynamics

ẋm = Fm(xm). (17)

Thus, the motion of the synchronized systems is fully
determined by that of the reduced-order dynamics (17). In
this regard, it is important to underline that (17), as well as
the “averaged” dynamics (15) are independent of the coupling
gain σ. This dynamics is inherent to the network and appears
simply as a consequence of the graph’s connectivity imposed
by Assumption 1. The synchronization dynamics (16), on the
other hand, clearly depends on the coupling strength σ. We
are interested in investigating the synchronization behavior for
‘large’ values of the coupling strength. More precision about
the meaning of ‘large’ is given farther below.

We consider two scenarii of interest. The first pertains to the
case in which the reduced-order dynamics (17) admits the ori-
gin as a globally asymptotically stable equilibrium point. Our
main statement in this case (Theorem 1 in Section III) is that,
not only the networked system achieves dynamic consensus,
but the origin {x = 0} is GAS for (4). The second scenario
pertains to the case in which the synchronization errors evi do
not vanish (due to the systems’ heterogeneity), but only are
ultimately bounded—cf [20], and the reduced-order dynamics
admits an unstable equilibrium and a stable periodic orbit
generated by a limiting periodic solution xmo(t+αo) of period
αo. In this case, we prove that each error evi also becomes
periodic for sufficiently large values of the coupling gain—see
Theorem 2 in Section IV. This is significant because, since
evi := xi − xm and xm(t) → xmo(t + αo), we also have
that, for each i, xi(t)→ x̃i(t+ αi) where x̃i(t+ αi) denotes
a periodic solution of period αi. That is, roughly speaking,
each system becomes periodic asymptotically. In addition, we
show that as the coupling gain σ →∞, all the periods become
equal to that of the reduced-order system, i.e., αi → αo for all
i ≤ N . In other words, all the systems’ periodic trajectories
mutually synchronize both in amplitude and in frequency.

Remark 4: Part of the significance of our main result (The-
orem 2 on p. 8) lies in characterizing the behavior of the
networked system when the systems’ solutions are ultimately
bounded. More precisely, it is a well-known fact that if
the solutions of a planar system tend asymptotically to the
interior of a compact ball centered at the origin, they exhibit a
periodic behavior. The counterpart of this statement for higher-
dimensional systems is, in general, an open problem. Here, we
identify a particular case in which it holds true.

C. Intrinsic two-time-scales decomposition

The analysis of (4), towards the statements described above,
starts with the observation that Eqs. (15)-(16) may be written
in the familiar singular-perturbation form [31], [32], i.e.,

ẋm = Fm(xm) +Gm(xm, ev) (18a)
εėv = − (Λ⊗ In) ev + εGe(xm, ev), ε := 1/σ, (18b)

in which, we recognize two time scales, “slow” and “fast”,
corresponding, respectively, to the dynamics of the averaged-
unit states xm and the projected synchronization errors ev .
Now, in accordance with singular-perturbation theory; see [32,
p. 358], the behavior of (18) is ineluctably determined by that
of the slow dynamics, obtained by setting ε = 0, which clearly
corresponds to the reduced-order model (17). Thus, the rest of
the paper is devoted to the analysis of (18) in the two cases
evoked above, stability of the origin in Section III and orbital
stability, in Section IV.

It is important to stress, however, that even though the
analysis of singularly-perturbed systems as in (18) is not un-
common in recent literature, available methods hardly address
the scenarii considered in this paper. For instance, Eqs. (18)
are of the same form as [14, Eqs. (4)] or [15, Eqs. (13)],
but these respective equations model different systems than
described above. This is because the problem addressed therein
is that of classical consensus (so ẋm = 0) over undirected
graphs, but with dynamic interconnections. In the first part
of [14], as in [15], the fast dynamics corresponds to that of
the interconnections, and in the second part of [14], it stems
from rapidly varying virtual systems, whose trajectories the
actual systems are meant to follow. In a different context,
in [38], large-scale networks of integrators are studied, such
that certain groups of nodes that are densely connected among
themselves synchronize fast, while the (average behaviors of
the) groups synchronize at a slower pace—cf. [1]. To assess the
stability of the consensus manifold, the statements in [14] rely
mostly on Lyapunov theory, in [15] the geometric approach
based on non-hyperbolic invariant manifolds [53] is used, and
in [38] the authors rely on the theory of singular perturbations
a la Tykhonov [54]. Apart from Theorem 1 in Section IV, such
approaches appear unsuitable for our purposes since, our main
interest is to assess the behavior of the networked systems even
in the case that the synchronization errors do not vanish.

Now, even though in the sequel we focus on the analysis
of the system in singularly-perturbed form, (18), we remark
that our two main statements are formulated for system (4),
which remains the main subject study in this paper. Therefore,
we finish this section by re-expressing the properties of (4) in
Assumptions 1–3 in terms of (18), in the form of the following,
rather evident, statement that is extensively used in the sequel.

Lemma 2: Consider system (4) such that Assumptions 1–3
hold. Then, the resulting system (18), with states defined in
(13), enjoys the following properties:

(i) the functions Fm, Gm, and Ge are continuously differ-
entiable;

(ii) the origin {(xm, ev) = (0, 0)} is an isolated equilibrium
point;
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(iii) the solutions to (18) are globally uniformly (in σ) ulti-
mately bounded;

(iv) the matrix −Λ is Hurwitz. �

III. CASE I: GLOBAL ASYMPTOTIC STABILITY
OF THE ORIGIN

Our first original statement establishes global asymptotic
stability for networked heterogeneous semi-passive systems,
interconnected over a (not-necessarily strongly) connected
digraph, provided that the coupling gain is sufficiently large.

Theorem 1 (GAS): Consider system (4) under Assumptions
1–3. Assume, also, that for system (17) the origin {xm = 0}
is globally asymptotically stable and there exist ρ > 0, cρ > 0,
a continuously differentiable Lyapunov function Vm : Rn →
R≥0, and a class K∞ function α, such that

∂Vm(xm)

∂x>m
Fm(xm) ≤ −α (|xm|)2 (19)

for all x̄ ∈ Bρ—recall that x̄ := [x>m e>v ]> and Bρ := {x ∈
Rq : |x| ≤ ρ}—and

max
x̄∈Bρ

{∣∣Ge(xm, ev)−Ge(0, ev)∣∣, ∣∣∣∣∂Vm(xm)

∂x>m

∣∣∣∣} ≤ cρα (|xm|) .

(20)

Then, there exists σ? > 0 such that, for all σ ≥ σ?, the origin
for (4) is globally asymptotically stable. �

The regularity conditions in (19)-(20) are required to ensure
negativity of the time derivative of a Lyapunov function along
the solutions to (18)—see the proof farther below. Similar
conditions may be found in the literature; for instance in
[14], where asymptotic consensus is established for nonlin-
ear systems interconnected through (slowly-varying) dynamic
undirected interconnections, but only within a certain domain
of attraction, not globally.

Inequalities (19)-(20) are little conservative, as they are
required to hold only on an arbitrary compact set containing
the origin, but they are not necessary for global asymptotic
stability of the origin for (17)—see [32, Exercise 9.24]. Then,
again, if these conditions do not hold the origin may not be
globally asymptotically stable either—in [35, Section 5.2], we
provide an example that illustrates this claim. On the other
hand, GAS for system (17) implies a relaxed form of (19) and
of the second inequality in (20). This is used in Proposition 1
below, which is an original statement that generalizes the main
results in [20] on practical asymptotic stability for networks
over strongly connected digraphs. The proof of Proposition
1, and subsequently that of Theorem 1, builds upon GAS for
(17) and the fact that under Assumptions 1–3 the system is
globally ultimately bounded, uniformly in σ—see Lemma 1.

Proposition 1 (GPAS): Consider system (4) under Assump-
tions 1–3. In addition, assume that for system (17), the origin
{xm = 0} is globally asymptotically stable. Then, the origin
for (4) is globally practically asymptotically stable. �

Proof: We establish the equivalent statement that the origin
{x̄ = 0} for (18) is GPAS. For this, we remark first that
after Assumptions 1-3 and Lemma 1, there exist σ∗ > 0 and

r > 0 such that, for any R ≥ 0, there exists τR ≥ 0 such that
|x̄o| ≤ R ⇒ |x̄(t)| ≤ r for all t ≥ τR, and all σ ≥ σ∗. Now
we show that, for every positive constant rf < r, there exists
σf > 0 such that, for each σ ≥ σf , the compact set Brf is
asymptotically stable for (18) on Br [42].

To that end, let the assumption that the origin for (17)
is globally asymptotically stable generate, by [32, Theorem
3.14], the converse Lyapunov function Wm : Rn → R≥0

and positive constants αrrf and βrrf such that, for all x̄ ∈
Br\Brf , ∣∣∣∣∂Wm(xm)

∂xm

∣∣∣∣ ≤ βrrf |xm| , (21)

∂Wm(xm)

∂x>m
Fm(xm) ≤ −αrrf |xm|

2
. (22)

Furthermore, let Item (iv) in Lemma 2 generate a symmetric
and positive definite matrix P ∈ R(N−1)×(N−1) such that
−PΛ − Λ>P ≤ −IN . Then, the total derivative of the Lya-
punov function candidate V (x̄) := Wm(xm) + e>v [P ⊗ In]ev ,
along the trajectories of (18)—multiplying by σ on both sides
of (18b)—yields

V̇ (x̄) = 2e>v P [Ge(0, ev) + (Ge(xm, ev)−Ge(0, ev))]

− αrrf |xm|2 +
∂Wm

∂x>m
Gm(xm, ev)− σ |ev|2 . (23)

Now, after Assumption 2 and items (i)-(ii) of Lemma 2 it
follows that there exists a constant dr > 0 such that,

max
x̄∈Br

{|Gm(xm, ev)| , |Ge(0, ev)|} ≤ dr |ev| , (24)

|Ge(xm, ev)−Ge(0, ev)| ≤ dr |xm| , ∀x̄ ∈ Br. (25)

From all the above it follows, in turn, that

V̇ (x̄) ≤− αrrf |xm|2 + dr
[
λmax(P ) + βrrf

]
|xm| |ev|

− [σ − 2drλmax(P )] |ev|2 ∀ x̄ ∈ Br\Brf .

Thus, for σf := d2
r

(
λmax(P ) + βrrf

)2
+ 4drλmax(P ), we

conclude that, for each σ ≥ σf , we have

V̇ (x̄) ≤ −1

2
αrrf |xm|2 −

1

2
σ |ev|2 ∀ x̄ ∈ Br\Brf .

This, and uniform global ultimate boundedness, establishes the
statement. �

Remark 5: Inequalities (21), (22), and (25) are reminiscent
of (19) and (20). However, we stress that (25) holds on a
compact that is generated by the property of global uniform
ultimate boundedness, i.e., it is generated by Assumptions 1–
3 via Lemma 1. In turn, Inequalities (21) and (22) hold for
free, for a converse Lyapunov function Wm, but not around
the origin, as required to establish global asymptotic stability,
whence the conditions (19) and (20) in Theorem 1. Based
on these and the global practical asymptotic stability property
just established, the proof of Theorem 1 is constructed upon
a similar argumentation as for Proposition 1.

Proof of Theorem 1: The conditions of Proposition 1
are met, so the set Brf , for any rf < r and r being
generated by Lemma 1, is globally asymptotically stable. Pick
rf sufficiently small such that rf < ρ, where ρ is defined in the
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theorem. It follows that there exists tρ such that the solutions
generated from arbitrary initial conditions are contained in Bρ
for all t ≥ tρ. Therefore, it is enough to prove that the origin is
asymptotically stable for all solutions contained in Bρ. To that
end, akin to the proof of Proposition 1, consider the Lyapunov
function V (x̄) := Vm(xm)+e>v [P⊗In]ev , with Vm as defined
in the theorem and P generated by Item (iv) of Lemma 2. Its
time derivative along the solutions to (18) satisfies

V̇ (x̄) = 2e>v P [Ge(0, ev) + (Ge(xm, ev)−Ge(0, ev))]

− α(|xm|)2 +
∂Vm
∂x>m

Gm(xm, ev)− σ |ev|2 . (26)

Now, a bound like (24) continues to hold with dρ, so after this
and (20), we have∣∣∣∣∂V (x̄)

∂x>m
Gm(xm, ev)

∣∣∣∣ ≤ cρdρα (|xm|) |ev| ∀ x̄ ∈ Bρ. (27)

Consequently, from all of the above it follows that

V̇ (x̄) ≤− α(|xm|)2 + cρ[2λmax(P ) + dρ]α(|xm|)|ev|
− [σ − 2dρλmax(P )]|ev|2 ∀x̄ ∈ Bρ.

Thus, we conclude that, for each σ ≥ σ? := c2ρ[λmax(P ) +
dρ]

2 + 4dρλmax(P ),

V̇ (x̄) ≤ −1

2
α(|xm|)2 − 1

2
σ |ev|2 ∀ x̄ ∈ Bρ.

The statement follows. �

IV. CASE II: ALMOST GLOBAL ASYMPTOTIC
ORBITAL STABILITY

In this section, we present our second and main statement,
which pertains to the case when (17) admits a periodic orbit
that is attractive from almost all initial conditions. Under
this condition, Theorem 2 below establishes that for σ > 0
sufficiently large, the network system (4) also admits a unique
periodic orbit, which is globally attractive from almost all
initial conditions. In particular, frequency synchronization is
achieved and the synchronization errors can be made arbitrary
small by choosing σ sufficiently large. It is important to stress
that our main statement establishes a precise periodic behavior
for the network system (4) rather than just approaching the
periodic solution to (17).

For completeness and clarity, we start by recalling some
notions and tools related to the stability of periodic solutions
to nonlinear systems of the form

ẋ = f(x) x ∈ Rn, (28)

where f : Rn → Rn is at least locally Lipschitz.
Definition 1 (Periodic solution and periodic orbit): A so-

lution t 7→ φ(t), or simply φ(t), to (28) is said to be α-periodic
if there exists α > 0 (the period) such that, for each t ≥ 0,

φ(t+ α) = φ(t) and φ(t+ s) 6= φ(t) ∀s ∈ (0, α).

Moreover, if the system (28) admits a periodic solution
φ, we say that it admits a (closed) periodic orbit γ ⊂ Rn
generated by the image of φ.

Then, according with Lyapunov theory, we may single out
the following desired properties for periodic solutions.

Definition 2 (Orbital Stability): Let γ be a periodic orbit
for (28).

• The orbit γ is orbitally stable if, for each ε > 0, there
exist δ > 0 and T ≥ 0, such that, for each initial
condition xo satisfying |xo|γ ≤ δ, the solution φ starting
from xo satisfies |φ(t)|γ ≤ ε for all t ≥ T .

• The orbit γ is orbitally asymptotically stable, if it is
orbitally stable and attractive; i.e., if there exists R ∈
(0,+∞] such that, for each xo satisfying |xo|γ ≤ R, the
solution φ starting from xo satisfies limt→∞ |φ(t)|γ = 0.

• The orbit γ is globally orbitally asymptotically stable
if it is orbitally asymptotically stable with R = +∞
and almost globally asymptotically stable if it is orbitally
asymptotically stable for all xo ∈ Rn\D, where D ⊂ Rn
has a null Lebesgue measure.

Finally, we recall some orbital stability criteria in terms
of the so-called characteristics multipliers [55, Section III.7]
which, for linear periodic systems, are the counterpart of
eigenvalues for linear autonomous systems. To see this, we
assume that f is continuously differentiable and we consider
the α-periodic matrix A(t) := ∂f

∂x>
(φ(t)), where φ(t) is the α-

periodic solution to (28) generating the orbit γ. After Floquet
theory—see e.g., [56] and [57], there exist an α-periodic non-
singular matrix P : [to,+∞] → Rn×n and a constant matrix
B ∈ Rn×n such that the transition matrix associated to the
linear time-varying system

ẋ = A(t)x (29)

is given by X(t) := P (t)eBt and the non-singular change of
coordinates y := P (t)−x transforms the linear system (29)
into ẏ = By.

Definition 3 (Characteristic multipliers): The characteris-
tic multipliers of the α-periodic matrix A(t) are the eigen-
values of the matrix eBα.

Definition 4 (Non-singular periodic orbit): The periodic
orbit γ generated by the periodic solution φ(t) is non-singular
if the matrix A(t) := ∂f

∂x>
(φ(t)) admits a simple characteristic

multiplier equal to 1.
Lemma 3 (Theorem 2.1, Section VI.2. [55]): Consider sys-

tem (28) with f continuously differentiable and let φ be a
non-trivial α-periodic solution generating the orbit γ. Assume
that the matrix A(t) := ∂f

∂x>
(φ(t)) is non-singular and all the

characteristic multipliers, except one, have modulus strictly
less than 1. Then, the resulting periodic orbit γ is asymptoti-
cally orbitally stable. �

Sufficient conditions for orbital stability

As mentioned above, generally speaking, the standing as-
sumption in this section is that the reduced-order dynamics
(17) admits an orbitally asymptotically stable periodic orbit.
However, we remark that some nonlinear systems defined
on compact and convex sets and that admit a limit cycle,
also admit at least one equilibrium point [58]. This imposes
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particular richness to the network’s collective behavior, and
a considerable difficulty to analyze it since it translates into
studying stability of a disconnected invariant set. In that light
we pose the following hypothesis.

Assumption 4: The reduced-order dynamics (17) admits a
unique compact invariant subset ω ⊂ Rn, which is globally
attractive. More precisely, for each xmo ∈ Rn, the solution
xm(t) starting from xmo satisfies

lim sup
t→+∞

|xm(t)|ω = 0. (30)

Furthermore, the set ω is composed of a non-singular peri-
odic orbit γo (of period αo and that is orbitally asymptotically
stable) and, either the origin {xm = 0} if the latter is repul-
sive3, or the homoclinic orbit γ1 := Wu

o (0) ∩W s
o (0), if the

origin is hyperbolic—W s
o (0) and Wu

o (0) stand, respectively,
for the global stable and unstable manifolds of the origin.4.

Assumption 4 imposes, for the case in which the trajectories
tend to diverge away from the origin, that the system admits a
unique limit cycle. While difficult to verify in full generality,
this assumption holds, e.g., for a variety of planar oscillators
admitting the origin as an unstable repulsive equilibrium, such
as the Liénard equation or the Stuart-Landau oscillator [59].
Sufficient conditions for the existence of a unique limit cycle
in more general cases are provided, e.g., in [60]. In Section V
we treat an example of Stuart-Landau oscillators.

Remark 6: Note that the global attractivity property in (30)
plus the structure of the invariant set ω imply the existence
of a Lyapunov function enjoying useful properties along the
solutions to (17)—see [61, Theorem 1] or [35, Lemma 11].

Lemma 4: Under Assumption 4 and Item (i) in Lemma 2,
the periodic orbit γo is almost globally orbitally asymptotically
stable for (17). �

We are ready to present our main statement.
Theorem 2 (Almost global orbital asymptotic stability):

Consider the network system (4) under the Assumptions
1–3 and such that the reduced-order dynamics (17) satisfies
Assumption 4. Then, there exists σf > 0, such that, for all
σ ≥ σf ,

(i) the networked system (4) admits a unique nontrivial
periodic orbit O1/σ , of period α1/σ and that is almost
globally orbitally asymptotically stable.

(ii) as σ →∞, α1/σ → αo and O1/σ → Oo, where

Oo := {x ∈ RnN : xm ∈ γo and ev = 0}

—see (13). �

Item (i) of Theorem 2 states that if the reduced-order system
(17) admits a limit cycle, then there exists a threshold coupling
gain σf , such that, for any interconnection strength above it,
each individual system in the network has an asymptotically
stable orbit. In general, such limit cycles differ from one sys-
tem to another, but all of them are generated by trajectories of

3i.e., there exists σ > 0 such that, for each initial condition |x(t◦)| ≤ σ,
there exists T > 0 such that implies that |x(t)| > σ for all t ≥ t◦ + T .

4i.e., among the eigenvalues of A :=
∂fm(xm)

∂xm

∣∣
xm=0

, 0 < k < n
eigenvalues have positive real part and n− k have negative real part.

the same period. This is sometimes referred to in the literature
as frequency synchronization [27], [28]. Item (ii) states that
as the coupling gain grows unboundedly, all the said limit
cycles converge to the one generated by the periodic solution
to the reduced-order dynamics (17), and the periods of the
corresponding trajectories all converge to that of the reduced-
order system’s. In Section V, we illustrate these statements,
notably via numerical simulations.

The proof of Theorem 2, which is provided farther below,
follows a sequence of logical steps to assess the existence,
uniqueness, and almost global orbital asymptotic stability of
an orbit for (4). The analysis relies on studying the singularly-
perturbed system (18), but we emphasize that the available
literature on stability (of the origin or a compact set) for
singularly-perturbed systems [54], [37], [32] does not apply
to (18), when (17) admits a limit cycle and an isolated
equilibrium point. Therefore, the proof of Theorem 2 relies
on technical lemmata that are presented next, but due to
space constraints, the proofs of the latter are omitted; they
are available in [35].

• Lemma 5 establishes global asymptotic practical stability
of the set

{(xm, ev) ∈ RnN : xm ∈ γo ∪ γ1 and ev = 0};

• Lemma 6 establishes that, given a torus sufficiently
tight around Oo, for each coupling gain σ sufficiently
large, system (17) admits a unique periodic orbit O1/σ

contained in the torus;
• Lemma 7 establishes that each such orbit O1/σ is (lo-

cally) asymptotically stable and admits the aforemen-
tioned torus as a basin of attraction;

• Lemma 8 below and Lemma 11 in the Appendix provide
a local analysis around the origin, to establish that it
attracts only the solutions starting from a null-measure
set.

Remark 7: Each one of the different Lemmata, used to
prove Theorem 2, establishes the existence a coupling thresh-
old, above which, a certain key property holds. From the
proofs of those Lemmata, we can see that they do not allow to
find the coupling gains explicitly, except, maybe, for Lemma
5, which uses a constructive Lyapunov argument. The proofs
of the remaining Lemmata use some existence results that do
not seem necessarily constructive. Providing an explicit value
for σf is a challenging open problem.

Technical Lemmata

We start by introducing the following notations. Corre-
spondingly to γo ⊂ Rn and γ1 ⊂ Rn, which denote,
respectively, the closed periodic and homoclinic orbits for
system (17)—see Assumption 4, we introduce their “lifting”
Γo ⊂ RnN and Γ1 ⊂ RnN onto the space of system (18), as

Γo :=
{

(xm, ev) ∈ RnN : xm ∈ γo and ev = 0
}
, (31)

Γ1 :=
{

(xm, ev) ∈ RnN : xm ∈ γ1 and ev = 0
}
. (32)

Furthermore, we denote by Tρ the torus defined as

Tρ :=
{

(ev, xm) ∈ RN(n−1) × Rn : |(xm, ev)|Γo ≤ ρ
}
, (33)
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and we use Γε ⊂ RnN to denote a closed orbit generated
by a periodic solution to system (18), if it exists. That is,
Γε is a subset in the space of (xm, ev) that consists in the
image points generated by the parameterized solutions of (18),
t 7→ (xm(t), ev(t)), that are periodic with period αε.

The first technical lemma provides a statement for system
(18) on global practical asymptotic (GPAS) stability of the set

Ω := Γo ∪ Γ1,

where Γo and Γ1 are introduced in (31)-(32).
Lemma 5 (GPAS of Ω): Consider system (18) such that

Items (i)–(iii) of Lemma 2 hold and let Assumption 4 be sat-
isfied for the corresponding reduced-order system (17). Then,
the set Ω := Γo ∪ Γ1 is GPAS for (18). In particular, for any
ρ > 0, there exists ε1(ρ) > 0, such that, for each ε ≤ ε1(ρ)
and for each initial condition xo = (evo, zmo) ∈ RnN , the
solution (xm(t), ev(t)) satisfies limt→∞ |xm(t), ev(t)|Ω ≤ ρ.
�

The next lemma establishes that, for all sufficiently small
values of ρ > 0, there exist sufficiently small values of ε, such
that there exists a unique periodic orbit Γε ⊂ Tρ generated by
a solution to (18) of period αε ≈ αo.

Lemma 6 (Existence of Γε): Consider system (18) such
that Items (i) and (iii) of Lemma 2 hold and let Assumption
4 hold for the reduced-order dynamics (17). Then, there exist
ρo > 0 and a class K function εo such that, for each ρ ∈ (0, ρo]
and for each ε ≤ εo(ρ), system (18) has a unique nontrivial
periodic orbit Γε, which is strictly contained in Tρ. Moreover,
the period αε of the solution to (18) generating the orbit
Γε tends to αo, which is the period of the solution to (17)
generating the orbit Γo. �

Remark 8: The existence result in Lemma 6 follows from
a direct application of Anosov Theorem; see Lemma 9 in
Appendix I.

The next lemma establishes local asymptotic orbital sta-
bility of all periodic orbits Γε lying inside the torus Tρ for
sufficiently small values of ε and ρ. Moreover, we show that
the corresponding domain of attraction is uniform in ε.

Lemma 7 (Stability of Γε): Let system (18) satisfy Items
(i) and (iii) of Lemma 2 and let Assumption 4 be satisfied for
the corresponding reduced-order dynamics (17). Then, there
exist ε∗∗ > 0 and ρ∗∗ > 0 such that, for each ε ≤ ε∗∗, each
periodic orbit Γε ⊂ Tρ∗∗ generated by an αε-periodic solution
to (18), with αε sufficiently close to αo, is asymptotically
orbitally stable with a domain of attraction that contains Tρ∗∗ .
�

Remark 9: Lemma 7 is reminiscent of a statement estab-
lished by Anosov— [30, Theorem 5]—that pertains to the case
in which the periodic orbit γo for (17) is only non-singular
(or hyperbolic). Although it is claimed in [30] that the proof
therein translates directly to the case where γo is non-singular
and asymptotically stable, in this paper, we provide an original
proof for the latter case using the theory of perturbed matrices
[51], [62].

The next statement links those from Lemmata 5–7. It
establishes that if ε is sufficiently small, then the periodic

behavior of the reduced-order system (17) is preserved for
system (18), as well as its stability properties.

Proposition 2: Consider the dynamical system (18) under
the assumption that Items (i)–(iv) of Lemma 2 hold and
assume further that the reduced-order dynamics (17) satisfies
Assumption 4. Then, there exists ρo > 0 such that, for each
ρ ∈ (0, ρo], there exists ε2(ρ) > 0 such that, for each
ε ∈ (0, ε2(ρ)],

(i) system (18) admits a unique orbit Γε ⊂ Tρ generated by
a non-trivial (αε)-periodic solution, with Γε → Γo and
αε → αo as ε→ 0;

(ii) Γε is (locally) asymptotically stable;
(iii) for any initial condition x̄o ∈ RnN the corresponding

solution x̄(t) to (18) either converges to Γε or to a ρ-
neighborhood of Γ1, that is,

lim sup
t→∞

|x̄(t)|Γ1
≤ ρ. (34)

�

Proof: Items (i)-(iv) in Lemma 2 and Assumption 4 imply
that the statements of Lemmata 5–7 hold. Then, let Lemma
7 generate ε∗∗ > 0 and ρ∗∗ > 0. Furthermore, let Lemma 6
generate (ρo, εo(·)), for each ρ ∈ (0, ρo], let Lemma 5 generate
(ε1(ρ), ε1(ρ∗∗)), and let

ε ≤ ε2(ρ) := min{ε∗∗, εo(ρ), εo(ρ
∗∗), ε1(ρ), ε1(ρ∗∗)}

be arbitrarily fixed.
After Lemma 6, there exists a unique periodic orbit Γε ⊂

Tρ∩Tρ∗∗ = Tmin{ρ,ρ∗∗} generated by a solution to (18). Now,
given any sequence {εi}∞i=1 that converges to zero and such
that εi ≤ ε2(ρ) for all i ∈ {1, 2, ...}, from the above, we
know that, for i large enough, the unique orbit Γεi satisfies
Γεi ⊂ Tρi , where ρi := ε−1

o (εi)—note that ε−1
o exists and is

of class K because so it εo. Item (i) of the proposition follows
since Tρi converges to Γo—see (33).

Next, after Lemma 7, we conclude that Γε is orbitally
asymptotically stable and Tρ∗∗ is inside the domain of attrac-
tion of Γε. This establishes Item (ii).

Finally, from Lemma 5 we conclude that each solution to
(18) either converges to Tmin{ρ,ρ∗∗} ⊂ Tρ∗∗ , so it also con-
verges to Γε, or it converges to a min{ρ, ρ∗∗}−neighborhood
of Γ1. This establishes Item (iii). �

The last technical lemma provides a local stability analysis
around the origin of (18). It states that the origin is a
hyperbolic equilibrium point, for all sufficiently-small values
of ε. Furthermore, inspired by the Stable Manifold Theorem
[63, Theorem 13.4.1], we show that the stable and unstable
manifolds around the origin are uniquely defined on a neigh-
borhood whose size does not shrink with ε.

Lemma 8 (Local behavior around the origin): Consider
system (18) and let Items (i)-(ii) of Lemma 2 hold. Assume
further that the corresponding reduced-order dynamics (17)
satisfies Assumption 4. Then, there exist ρ∗ > 0, ε∗ > 0, a
neighborhood of the origin denoted U ⊂ Rn, and r > 0 such
that, for each ε ∈ (0, ε∗),

(i) system (18) admits a unique unstable and stable mani-
folds (Wu

ε (0),W s
ε (0)) defined on U ;
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(ii) for each x̄(t) bounded solution to (18) starting from x̄o ∈
U\W s

ε (0), there exists T1 > 0 such that |x̄(t)| ≥ r for
all t ≥ T1;

(iii) for each x̄(t) solution to (18) such that |x̄(0)|Γ1
≤ ρ∗,

there exists T2 > 0 such that |x̄(T2)| < r. �

Proof of Theorem 2

Under Assumptions 1–3, Items (i)-(iv) of Lemma 2 hold for
system (18). This and Assumption 4 imply that the statements
of Proposition 2 and Lemmata 5–8 hold too. Then, let Lemma
8 generate ρ∗ > 0 and ε∗ > 0 and let Proposition 2 generate
(ρo, ε2(min{ρ∗, ρo}/4)). We show that the statement of The-
orem 2 holds with σf := 1/min {ε∗, ε2(min{ρ∗, ρo}/4)} in
four ordered steps:

1) First, for any σ ≥ σf or, equivalently, any ε = 1/σ
satisfying ε ≤ min {ε∗, ε2(min{ρ∗, ρo}/4)}, we use Item
(i) of Proposition 2 to conclude the existence of a unique
nontrivial periodic orbit Γε generated by a periodic so-
lution to (18) of period αε. From Item (ii) of the same
Proposition it follows that Γε is locally asymptotically
stable. In addition, from Item (iii) of Proposition 2 it
follows that each solution x̄(t) to system (18) either
converges to the orbit Γε, otherwise, it converges to a
(min{ρ∗, ρo}/4)–neighborhood of Γ1; that is, (34) holds
with ρ = min{ρ∗, ρo}/4 and, consequently, there exists
T <∞ such that

|x̄(t)|Γ1
= |(xm(t), ev(t))|Γ1

≤ min{ρ∗, ρo}/2 ∀t ≥ T.
(35)

2) Now, we introduce the backward propagation of the stable
manifold W s

ε (0) introduced for (18) in Lemma 8. That
is, we introduce set

R(W s
ε (0)) := {x̄(t) : t ≤ 0, x̄(0) ∈W s

ε (0)}

and prove by contradiction that the solution x̄ to (18)
satisfying (35) must start from the set R(W s

ε (0)). Indeed,
assume that the opposite holds. Then, using Item (iii) in
Lemma 8, we conclude that the solution x̄ must enter Br
at some T ∗ ≥ T . In particular, x̄(T ∗) ∈ U and x̄(T ∗) /∈
W s
ε (0). So, using Item (ii) in Lemma 8, we conclude that

there exists T1 > 0 such that

|x̄(T ∗ + t)| ≥ r ∀t ≥ T1.

However, since |x̄(T ∗ + T1)|Γ1
≤ min{ρ∗, ρo}/2, it

follows that x̄ must enter Br again under Item (iii) of
Lemma 8, which contradicts Item (ii).

3) Next, we show that the set R(W s
ε (0)) is a null measure

set using contradiction. That is, let So ⊂ R(W s
ε (0)) such

that µ(So) 6= 0. Assume without loss of generality that
for some T < 0, we have

So ⊂ {x̄(t) : t ∈ [−T, 0], x̄(0) ∈W s
ε (0), x̄ sol. to (18)}.

Note that

Rb(T, So) := {x̄(T ) : x̄(0) ∈ So} ⊂W s
ε (0)

with µ(W s
ε (0)) = 0. However, using Lemma 11 from the

Appendix, we conclude that µ(So) = 0.
4) Finally, using the inverse transformation (11), it follows

that the orbit

Oε := {x ∈ RnN : (xe, ev) ∈ Γε}

is almost GAS for (4). The second statement follows
from Lemma 6. �

V. CASE STUDY: A NETWORK OF ANDRONOV-HOPF
OSCILLATORS

To illustrate the use of our main theoretical findings,
we address, as a case-study, the analysis of a network of
Andronov-Hopf oscillators, also known as Stuart-Landau [59].
The equation of such oscillator represents a normal form of
the bifurcation carrying the same name and is given by

ż = −ν|z|2z + µz, (36)

where z ∈ C denotes the state of the oscillator, while ν, µ ∈ C
are constant parameters: ν := νR+iνI and µ := µR+iµI , with
i =
√
−1 and νR > 0. The analysis of (36) is well documented

in the literature. For instance, via Lyapunov-exponents-based
methods, as in [64] and [57], or using Lyapunov’s direct
method, as in [65] and [66].

The behavior of the system may also be explained using
polar coordinates, which are useful to represent the system’s
trajectories on the complex plane—see Figure 1 below.

-1 -0.5 0 0.5
-1

-0.5

0

0.5

Fig. 1. Trajectories of the Andronov-Hopf oscillator on the complex
plane with µR > 0. In this case, the origin is an unstable equilibrium
and all trajectories tend to the stable limit-cycle of radius

√
µR
νR

and

period 2πνR
|µIνR−νIµR|

.

Let z = reiϕ. Then, the equations for the radial amplitude
r and the angular variable ϕ can be decoupled into:

ṙ = µRr − νRr3 (37a)
ϕ̇ = µI − νIr2. (37b)

If µR < 0, Equation (37a) has only one stable fixed point at
r = 0. Moreover, the latter is Lyapunov (globally exponen-
tially) stable. However, if µR > 0, this equation has a stable
fixed point at r =

√
µR
νR

, while r = 0 becomes unstable. This
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implies that the trajectories of the system converge to a circle
of radius

√
µR
νR

, starting from initial conditions either inside
or outside the circle. Thus, the latter is an attractor and the
system (36) exhibits a periodic oscillation at its natural period

2πνR
|µIνR−νIµR| .

The bifurcation of the limit cycle from the origin that
appears at the value µR = 0 is known in the literature as
the Andronov-Hopf bifurcation. The curves

Γα :=

{√
µR
νR

[
cos(t)
sin(t)

]
: t ∈

[
0,

2πνR
|µIνR − νIµR|

]}
define the limit cycle of the system.

Now, for the purpose of this paper, we consider N forced
Andronov-Hopf oscillators

żk = −νk|zk|2zk + µkzk + uk k ∈ {1, 2, . . . , N} (38)

where zk ∈ C denotes the kth oscillator’s state, uk ∈ C is its
control input, and νk := νRk+iµIk and µk := µRk+iµIk are
constant complex parameters. We assume that νRk > 0 for all
k ∈ {1, 2, ..., N}.

We assign to the control inputs a distributed control law
as in (2), modulo the obvious changes in the notation. It is
assumed that the corresponding interconnection graph contains
at least one directed spanning tree. Then, in a compact form,
the overall network dynamics in closed loop takes the form

ż = F (z)− σLz, (39)

where z := [z1 · · · zN ]>, the function F : CN → CN is given
by

F (z) := [f1(z1) f2(z2) · · · fN (zN )]
>
,

fk(zk) := −νk|zk|2zk + µkzk,

the elements of L are defined in (3), and L has a unique null
eigenvalue while others have positive real parts.

Note that the networked system (39) satisfies Assumptions
1–3. Indeed, Assumption 1 is explicitly imposed, and each
single unit has a polynomial vector field, so Assumption 2
holds as well. We also remark that each unit in (38) is semi-
passive (Assumption 3) since it is assumed that νRk > 0 for
all k ∈ {1, 2, ..., N}. To better see this, consider the total
derivative of the Lyapunov function candidate

V (zk) :=
1

2
z∗kzk, (40)

where z∗k is the complex conjugate of zk; we obtain

V̇ (zk) = −νRk|zk|4 + µRk|zk|2 + z∗kuk.

Now, after Remark 1, we may apply the coordinate trans-
formation in (13) and rewrite the network dynamics in the
singularly-perturbed form, where the reduced-order dynamics,
defined by (17), has the form

żm = fm(zm) := −νm|zm|2zm + µmzm, (41)

where zm = v>l z, the parameter µm ∈ C corresponds to the
weighted average of the µks, i.e.,

µm := µmR + iµmI ,

µmR :=

N∑
j=1

vljµRj , µmI :=

N∑
j=1

vljµIj ,

similarly for νm := νmR + iνmI , with νmR > 0.
Remark 10: With an abuse of terminology, we may refer to

(41) as the average dynamics. However, we note that µmR and
µmI do not correspond to simple averages of the individual
parameters µRk and µIk; through the Laplacian’s eigenvector
vl, they depend on the network’s topology, through vl.

The reduced-order dynamics (41) also corresponds to an
Andronov-Hopf oscillator, which admits an invariant set com-
posed of a compact invariant set that is composed of two
disjoint invariant subsets, the origin and a limit cycle:

ω =

{
zm ∈ C : |zm| =

√
µmR
νmR

}
∪
{
zm = 0

}
.

In particular, if µmR ≤ 0, the set ω reduces to the origin. If
µmR > 0, Assumption 4 holds.

Thus, we see that Andronov-Hopf oscillators enjoy several
interesting properties, individually. Yet, as we show below,
the behavior of a network of different such systems may vary
considerably depending on the choice of the coupling gain,
and on the individual systems’ dynamics. The postulate of this
paper, as that of [20], is that the collective behavior may be
assessed by studying the evolution of the reduced-order system
(41), using Theorems 1 and 2. In what follows, we analyze
different scenarii that we regroup into two cases, depending
on whether µmR ≤ 0 or µmR > 0.

A. The case in which µmR = 0

Consider the Lyapunov function V defined in (40), i.e.,
V (zm) := (1/2)z∗mzm. Its total derivative, along the trajec-
tories of (41) with µm = µmI , yields

V̇ (zm) = −νmR|zm|4, νmR :=

N∑
j=1

vljνRj .

Since νmR > 0, the origin {zm = 0} for the reduced-order
system (41) is globally asymptotically stable.

Remark 11: Note that νmR > 0 does not necessarily imply
that νRk > 0 for each individual system. However, the latter
is needed to verify Assumption 3.

Furthermore, after Item (i) of Theorem 1, we conclude
that the origin for the overall networked system (39) is
globally practically asymptotically stable. The same may also
be concluded after the main results in [20], but neither of
these theorems gives an assessment regarding the behavior of
the trajectories of the networked system, within the compact
set to which they converge. For instance, the origin may be
unstable or exponentially stable, depending on the coupling
gain σ and depending on the individual dynamics composing
the network. To see clearer, consider the linearization of (39)
around the origin, i.e.,

ż = Aσz,

{
Aσ := Ao − σL,
Ao := diag {µ1, µ2, ..., µN} .

(42)

and the following examples.
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Example 1 (unstable origin): Consider two Andronov-
Hopf oscillators interconnected bidirectionally, hence with

L :=

[
1 −1
−1 1

]
.

Let ν1 = ν2 = 1, µR1 = −µR2 = µ ∈ R, so µI1 = µI2 = 0
and µmR = 0. After (42), we have Ao := diag{µ, −µ} and

Aσ =

[
−σ + µ σ
σ −σ − µ

]
,

whose eigenvalues are λ1,2(Aσ) = −σ ∓
√
σ2 + µ2. That is,

Aσ has two positive real eigenvalues for any σ > 0, so, after
Lyapunov’s first method, the origin is unstable for the network
of Andronov-Hopf oscillators (39). �

Example 2 (exponentially stable origin): Consider two
Andronov-Hopf oscillators interconnected bidirectionally as
in Example 1 and with ν1 = ν2 = 1, µR1 = −µR2 = 1, and
µI1 = −µI2 = 2, so µmR = 0 and Aσ in (42) corresponds to

Aσ =

[
−σ + 1− 2i σ

σ −σ − 1 + 2i

]
.

The eigenvalues of Aσ above are

λ1,2(Aσ) := −σ ±
√
σ2 − 3− 4i,

which have strictly negative real parts for all σ > 0.8376. We
conclude that the origin for the networked system is (locally)
exponentially stable for such values of sigma. �

More generally, we can state the following result, which
follows directly from Lyapunov’s direct method, but it is
certainly difficult to apply to large networks; namely, it is
increasingly difficult to find the threshold value of σ as
the dimension of the network increases. Note, also, that the
threshold depends on the network’s topology since so does
Aσ .

Proposition 3: Consider the network of Andronov-Hopf
oscillators in (39), interconnected over a connected directed
graph. Assume that there exists σf > 0 such that, for all
σ ≥ σf , the smallest (in norm) eigenvalue of Aσ , denoted
by λ1(Aσ), has a strictly negative real part. Then, there exists
σf > 0 such that, for all σ ≥ σf , the origin {z = 0} is locally
exponentially stable. �

Thus, it may be inferred that while standard methods may
be used to assess the local behavior of solutions, albeit with
increasing difficulty in function of the network’s size, such
tools fail to address the more interesting problem of finding
sufficient conditions for global exponential stability. To the
best of our knowledge, this question remains open. Now,
one may conjecture that since the origin for (39) is globally
practically asymptotically stable, if the origin is also locally
exponentially stable, the global property should follow if one
could establish exponential stability in the large [67], [68] with
a domain of attraction that does not shrink in function of the
coupling gain. Such analysis, however, is tedious even for the
simple examples above and is beyond this paper’s scope.

B. The case in which µmR 6= 0

From Examples 1 and 2, it is clear that the parameter µmR
plays a crucial role in the collective behavior, which is hardly
predictable from the sole inspection of the corresponding
parameter for each individual system. Indeed, the network
behavior varies significantly in function of the coupling gain.
In what follows, we analyze it in the case that µmR is either
positive or negative and we provide some illustrative numerical
simulation results.

Proposition 4: Consider the network of Andronov-Hopf
oscillators defined in (39) interconnected over a connected
directed graph. For the corresponding reduced-order system
(41). Then,

(i) if µmR < 0, then there exists σf > 0 such that, for all
σ ≥ σf , the origin {z = 0} is GAS;

(ii) if µmR > 0, then there exists σf > 0 such that, for each
σ ≥ σf , system (39) has a unique nontrivial periodic
orbit

Oo := {z ∈ CN : zm ∈ γo and ev = 0},

γo :=

{
zm ∈ C : |zm| =

√
µmR
νmR

}
which is almost globally asymptotically stable.

�

Proposition 4 illustrates the interest of Theorems 1 and
2. Both statements rely on the analysis of the reduced-order
dynamics (41) instead of recurring to a local analysis of the
overall network. Not only the analysis is straightforward, as
one can see from the proof below, but the statements guarantee
global properties.

Proof of Proposition 4: The total derivative of V (zm) :=
(1/2)z∗mzm along the trajectories of (41), yields

V̇ (zm) = −νmR|zm|4 + µmR|zm|2. (43)

If µmR < 0 global asymptotic stability for the reduced-
order dynamics follows and, after Theorem 1, Item (i) of the
proposition follows (i.e., global asymptotic stability for the
overall network). If µmR > 0, the invariant orbit γo is almost
globally asymptotically stable and the origin {zm = 0} is anti-
stable—see [69]. So Item (ii) of Theorem 2 implies the second
statement of the proposition. �

C. Numerical results

For the system (39), using (43) and standard Lyapunov
theory [32], we may conclude that if µmR > 0, the solutions
are ultimately bounded. However, nothing may be inferred
about the behavior of the solutions within the ultimate bound.
After Proposition 4, it follows that for sufficiently large values
of the coupling gain, all oscillators describe periodic orbits
and, moreover, that there exist a unique periodic orbit defined
by the solutions of the reduced order system. To illustrate
this fact, we used Matlab R© to perform several numerical
simulations for the system (39), for distinct values of the
coupling gain σ.

The setting consists in five Andronov-Hopf oscillators (38),
with νk = 1 for all k ∈ {1, 2, . . . , 5}, µk ∈ {1 + i, 3 +



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 13

Fig. 2. Trajectories of (39) with σ = 3, i.e., below the threshold σf in
Theorem 2. The interconnected oscillators loose their periodic behavior.
NB: the time span for the NE plot is t ∈ [0, 500]. The trajectories of the
reduced-order system are showed in cyan.
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Fig. 3. Trajectories of (39) on the complex plane. The oscillators
become periodic as σ is increased beyond the threshold σf = 3.53,
identified numerically. As σ increases further, the unique oscillators’
orbits converge to that of the reduced-order system. The time span in
all figures is t ∈ [400, 500]. The orbit γo is showed in black.

2i, −2 + 5i, 4 − i, −1 − i}, interconnected over a directed
network with Laplacian matrix

L =


1 −1/4 −1/4 −1/4 −1/4
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

 .
The initial conditions were set to zok ∈ 1

10{5−3i, 2+6i, 4+
2i, −3+4i, −3−6i}. In Figure 2, we show the response of the

Fig. 4. Real part of the trajectories of (39) against time, in oscillatory
steady state, i.e., for t ∈ [400, 500]. From the top: in the first plot one
can appreciate that, for a relatively weak coupling gain, the trajectories
are not periodic, except for that of the reduced-order system (in black).
In the second plot, it is showed that for a coupling gain slightly above
the threshold, the solutions become periodic, but of different amplitude.
In the third plot, for a higher coupling gain, we see that all the oscillators
synchronize in frequency, but not at the same frequency of the reduced
order system. In the bottom plot, one sees that all oscillators, under very
strong coupling, are in perfect synchrony, albeit out of phase relative to
the reduced-order system.

interconnected systems with a relatively low interconnection
gain. It is apparent that the Stuart-Landau oscillators do not
exhibit periodic orbits, but a new dynamics emerges.

In Figure 3 we present plots of z(t) on the complex plane,
for four different values of the coupling gain, for values below
the threshold and above it. As Theorem 2 establishes, for
gain values above the threshold not only the systems exhibit
a periodic behavior, but as the gain increases, it approaches
that of the reduced-order “averaged” system (41). Finally, in
Figure 4, it is appreciated that the oscillators’ periods tend to
match with respect to each other and with that of the reduced-
order system—Item (ii) in Theorem 2, as the coupling gain
increases.

VI. CONCLUDING REMARKS

We presented a framework to assess the collective behav-
ior of networks of heterogeneous nonlinear systems, in fair
generality. Our approach allows to qualitatively characterize
the collective behavior for “large” values of the coupling
gains. For systems admitting periodic orbits of any dimension,
we demonstrate that there exists a coupling gain threshold
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characterizing an inherent orbit to which each and all os-
cillators tend to asymptotically. On one hand, for any gain
above this threshold each system admits an individual periodic
motion. On the other hand, as the coupling gain increases, all
oscillators’ motions tend to coincide with that of an average
dynamics. Although such behavior may be expected to hold
locally, we demonstrate that it occurs for any initial conditions.

Our main results rely on original statements on singular-
perturbation theory that might serve as starting point to es-
tablish interesting extensions. For instance, our analysis, so
far, is restricted to networks of systems with state-coupling.
Yet, many physical systems are interconnected through part or
a function of the state. Statements for systems under output
coupling pose a significant and well-motivated challenge.

Furthermore, our analysis does not provide explicit values of
the coupling strength threshold, under which, the networked
system exhibits the established behavior. Characterizing the
emergent behavior, such as orbital asymptotic stability, both
qualitatively and quantitatively (in terms of the coupling gain)
is still another open and important problem, even in specific
case-studies.

Finally, beyond the analysis problems solved in this paper,
the control design problem is widely open. To find conditions
under which a network of heterogeneous systems may be
controlled so that it admits a desired reduced-order dynamics.
Finally, we believe that extending the proposed framework for
general classes of nonlinear systems such as hybrid systems
is an interesting perspective as well.
Acknowledgments: The authors are indebted to Anes Lazri,
PhD student at Univ Paris Saclay, for performing the il-
lustrative numerical simulations and for valuable technical
discussions om boundedness of solutions.

APPENDIX I: BACKGROUND

The following result, which is a consequence of the main
statements in [30], establishes the existence of periodic solu-
tions for singularly-perturbed systems,

ż = f(z, e, ε)

εė = g(z, e, ε) (z, e) ∈ Rmz × Rme .
(44)

Lemma 9: Consider the singularly perturbed system (44)
such that the following properties hold:

1) the functions f and g are continuous with respect to
(z, e, ε) and differentiable with respect to z and e. More-
over, the derivatives of f and g with respect to z and e
depend continuously on (z, e, ε).

2) There is a unique function h : Rmz → Rme such that
g(z, h(z), 0) = 0.

3) The equilibrium state y = 0 (with y = e − h(z)) of the
boundary-layer system

y′ = g(z, y + h(z), 0),

where y′ := dy/d(t/ε), is hyperbolic uniformly in z.
4) The unperturbed system

˙̄z = f(z̄, h(z̄), 0) (45)

has a nontrivial nonsingular periodic orbit γo ⊂ Rmz .

Then, there exists ρo > 0 and a class K function εo such
that for each ρ ∈ (0, ρo] and for each ε ≤ εo(ρ), the system
(44) has a unique nontrivial periodic orbit Γε, which is strictly
contained in the ρ-neighborhood of Γo, where

Γo := {(z, e) ∈ Rmz × Rme : z ∈ γo and e = h(z)}.

Moreover, the period αε of the periodic solution to (44)
generating the orbit Γε tends to αo the period of the solution
to (45) generating the orbit Γo. �

APPENDIX II: AUXILIARY LEMMATA

Given a function of two scalar variables that is smooth in
one and only continuous in the other, the following original
lemma shows the existence of a smooth approximation to any
given ’nonuniform’ degree of precision.

Lemma 10: Consider a function T : [0, 1] × [0, αo] →
Rn×n such that τ 7→ T (ε, τ) is continuous, ε 7→ T (ε, τ) is
continuously differentiable, and τ 7→ T (0, τ) is continuously
differentiable. Then, for each ρ > 0, there exists T̂ : [0, 1] ×
[0, αo]→ Rn×n continuously differentiable such that

T̂ (0, τ) = T (0, τ) ∀τ ∈ [0, αo], (46)

|T̂ (ε, τ)− T (ε, τ)|∞ ≤ ρε+ o(ε) ∀τ ∈ [0, αo], (47)

and

lim
ε→0

Ṫ (ε, τ) = lim
ε→0

∂T̂ (ε, τ)

∂τ
= Ṫ (0, τ). (48)

�

Proof: Since the matrix T is continuously differentiable in
ε and continuous in τ , then it admits a first-order Taylor
expansion of the form

T (ε, τ) = T (0, τ) + a(τ)ε+ g(ε, τ),

where a : [0, αo] → Rn×n is continuous and g : [0, 1] ×
[0, αo) → Rn×n enjoys the same continuity and smoothness
properties as T . Furthermore, there exists M > 0 such that,
for each τ ∈ [0, αo], we have

|g(ε, τ)| ≤Mε2 ∀ε ∈ [0, 1].

Now, we choose the matrix T̂ as

T̂ (ε, τ) = T (0, τ) + â(τ)ε,

where â : [0, αo] → Rn×n is a continuously differentiable
approximation of a on [0, αo] satisfying

sup
τ∈[0,αo]

{|a(τ)− â(τ)|} ≤ ρ.

To obtain the latter inequality we used StoneWeierstrass theo-
rem stating that every continuous function defined on a closed
interval [0, αo] can be uniformly approximated as closely as
desired by a polynomial function [70]. As a result, (46) holds.
Furthermore, we note that

T (ε, τ)− T̂ (ε, τ) = (a(τ)− â(τ))ε+ g(ε, τ),

which implies that (47) also holds. Finally, (48) holds under
(46) and the continuous differentiability of T̂ . �
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Consider the dynamical system

ẋ = f(x) x ∈ Rn, (49)

where f : Rn → Rn is continuously differentiable and the
origin x = 0 is a hyperbolic equilibrium point. The following
lemma allows us to show that the propagation of the local
stable manifold W s(0) using the backward solutions to (49)
is a null-measure set.

Lemma 11: Consider the dynamical system (49) and let
So ⊂ Rn and T > 0 such that, for each xo ∈ So, the solution
x(t) is well defined on [0, T ]. Furthermore, for each t ∈ [0, T ],
we define the reachable set

Rb(t, So) := {y ∈ Rn : y = x(t), x(0) = xo ∈ So} .

Then, if there exists τ ∈ [0, T ] such that µ(Rb(τ, So)) = 0
then µ(So) = 0, where µ(·) is the Lebesgue measure of (·).
�

Proof: To find a contradiction, we assume that µ(So) > 0 and
µ(Rb(τ, So)) = 0 for some τ ∈ [0, T ]. Next, we introduce
the mapping φτ : So → Rn such that φτ (xo) := x(τ),
where x(τ) is the unique solution to (49) starting from xo.
Using [71, Theorem V.2.1], we conclude that the mapping
φτ is continuous and clearly the reciprocal mapping satisfies
φ−τ (xo) := x(−τ, xo). Hence, φ−τ (·) is also continuous and
therefore φτ is a homeomorphism; thus, an open map. Let
us now fix xo ∈ So arbitrary such that there exists U(xo)
an open set containing xo that is contained in So, the latter
is possible to find since µ(So) 6= 0. Let φτ (U(xo)) be the
image of U(xo) by the homeomorphism φτ . Since φτ is a
homeomorphism, φτ (U(xo)) is an open set containing φτ (xo).
Hence, µ(φτ (U(xo))) 6= 0. However, φτ (U(xo)) ⊂ Rb(τ, So)
and we already assumed that µ(Rb(τ, So)) = 0, which yields
to a contradiction. �
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