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Singular-Perturbations-Based Analysis of
Dynamic Consensus in Directed Networks of

Heterogeneous Nonlinear Systems
Mohamed Maghenem Elena Panteley Antonio Lorı́a

Abstract— We analyze networked heterogeneous nonlin-
ear systems, with diffusive coupling and interconnected
over a generic static directed graph. Due to the network’s
hetereogeneity, complete synchronization is impossible, in
general, but an emergent dynamics arises. This may be
characterized by two dynamical systems evolving in two
time-scales. The first, “slow”, corresponds to the dynam-
ics of the network on the synchronization manifold. The
second, “fast”, corresponds to that of the synchronization
errors. We present a framework to analyse the emergent
dynamics based on the behavior of the slow dynamics.
Firstly, we give conditions under which if the slow dynam-
ics admits a globally asymptotically stable equilibrium, so
does the networked systems. Secondly, we give conditions
under which, if the slow dynamics admits an asymptoti-
cally stable orbit and a single unstable equilibrium point,
there exists a unique periodic orbit that is almost-globally
asymptotically stable. The emergent behavior is thus clear,
the systems asymptotically synchronize in frequency and,
in the limit, as the coupling strength grows, the emergent
dynamics approaches that of the slow system. Our analysis
is established using singular-perturbations theory. In that
regard, we contribute with original statements on stability
of disconnected invariant sets and limit cycles.
Index Terms— Consensus, multi-agent systems, singular per-
turbations, network systems, synchronization.

I. INTRODUCTION AND MOTIVATION

NETWORKS of nonlinear heterogeneous systems are
both, ubiquitous and complex. Their ubiquity motivates

their study across numerous research disciplines, as varied as
Engineering Systems theory [1], Complexity theory [2] or,
even, Philosophy of Science [3]. Their complexity is motor
for two apparently antagonistic trains of thought that attempt
to explain the collective behavior of networked systems in a
broad sense: reductionism and emergentism. The first asserts
that any whole can be reduced to its constituent parts—as in
the case of networked linear systems [4], while the tenet of
emergentism is that a new behavior appears as a consequence
of the interaction of the said parts [3]—as in networks of
heterogeneous nonlinear systems. What is more, one of the
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accepted definitions of Complexity is that it corresponds to
the difference between the network as a whole and the sum
of its parts and, in that regard, nonlinearity is a necessary
condition for complexity to appear [5].

In this paper, we show that, to some extent, both emergen-
tism and reductionism are not necessarily mutually exclusive,
but their respective underlying postulates are useful to assess
the behavior of networks of heterogeneous nonlinear systems.
We focus on systems with dynamics given by

ẋi = fi(xi) + ui, i ∈ {1, 2, . . . , N}, xi ∈ Rn, (1)

where i ∈ {1, 2, . . . , N}, xi ∈ Rn is the state of the ith system
and ui ∈ Rn is the decentralized control input to each system,
defined as the consensus control law

ui := −σ
[
li1(xi − x1) + . . .+ liN (xi − xN )

]
, (2)

where lij are different non-negative real numbers denoting the
individual interconnection weights and the scalar parameter
σ > 0 is the common coupling strength.

The control law (2) is reminiscent of that commonly used
in the literature on consensus control, in which, the coupling
strength σ = 1. This is specifically the case for networks
of linear systems, in which case complexity hardly appears
and the focus turns towards relaxing the various conditions
pertaining to the nature of the interconnections. These may be
linear [4]; nonlinear [6], [7]; time-varying [8], [9]; switching
[10], [11] or even state dependent [12], [13]. Other topology
aspects, such as whether the graph is directed [14] or the
interconnections are signed [15], may also alter consensus.
For networks of heterogeneous nonlinear systems, however,
the coupling strength plays a central role. Different kinds
of emergent behavior may arise depending on whether σ is
“weak” [16], [17] or “strong” [18], [19].

Our main interest in this paper is to assess the behavior of
the corresponding closed-loop system, specifically, in the case
that the coupling gain σ is larger than a certain threshold,
but we restrict our analysis to networks with an underlying
static directed graph. Akin to [20] and [18], we analyze the
closed-loop networked system via a change of coordinates—
introduced in [21]—that exhibits an intrinsic dichotomous
structure composed of two dynamics defined in orthogonal
spaces. On one hand, one has a reduced-order dynamics with
state xm ∈ Rn (miscalled emergent dynamics in [18]) and, on
the other, the dynamics of synchronization errors, denoted by
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ei := xi− xm. This characterization of the networked system
is driven by the objective of characterizing synchronization
phenomena that may appear (or not) in view of the systems’
interconnections.

In [18], we say that the systems reach dynamic consensus if,
for all i ≤ N , the synchronization errors ei converge to zero
asymptotically. The dynamic consensus paradigm generalizes
the more common equilibrium consensus, in which case, the
reduced-order dynamics is null, i.e. ẋm = 0, because the
collective behavior is static and the state of the reduced-order
dynamics satisfies xm(t) ≡ xm(0), where xm(0) is a weighted
average of the nodes’ states’ initial values. In the case of a
network of oscillators, the reduced-order dynamics may admit
an asymptotically stable equilibrium (an example is provided
in [18]) or an asymptotically stable attractor [22]. However,
in general, asymptotic dynamic consensus is unreachable due
to the heterogeneity [19]. An exception is that of systems
that admit an internal model [23]–[25]. Otherwise, for general
nonlinear heterogeneous systems, dynamic consensus may be
guaranteed only in a practical sense [18].

In this paper, we establish two statements, each addressing
one of two possible cases: one in which the (slow) reduced-
order dynamics admits a globally asymptotically stable equi-
librium and another one, in which, it admits a periodic
solution. In the first case, we give sufficient conditions, un-
der which, the origin for the networked system is globally
asymptotically stable. In the second case, we prove that the
synchronization errors converge to a unique attractive periodic
orbit, so the systems synchronize in frequency. Moreover,
for “large” values of the coupling strength σ, this orbit is
“close” to that generated by periodic solutions of the reduced
dynamics. Thus, the emergent dynamics approaches that of the
reduced-order system, as the coupling gain grows.

The analysis is based on the recognized premise that in self-
organized complex systems, emergence is multi-level, as oc-
curring in multiple timescales [2], [26]. Here, we only consider
two, one that is slow and pertains to the reduced-order system
and another that is fast and pertains to the synchronization
errors. We rely on singular perturbation theory, on statements
found in [27]–[30], but also on original refinements of some
statements from [27] for systems admitting disconnected sets
composed of equilibria and periodic orbits.

The model-reduction-and-multi-time-scale perspective is
certainly not new, neither in systems theory [1] nor in other
disciplines. In the seminal work [31], which follows up on
[1], the authors consider a modular network composed of
sparsely connected clusters of densely interconnected dynam-
ical systems modeled by simple integrators—the paradigm is
motivated by that of large electrical networks. Using classical
singular-perturbation theory [27], [28], it is showed that such
networks achieve synchronization at two levels, within and
among the clusters. The analysis is based on relating the
network’s sparsity to a singular-perturbation parameter. These
concepts have been revisited in many succeeding works, such
as [32] and [14]. In the former, for networks of simple
integrators through sector nonlinearities, and in the latter,
for linear homogeneous systems interconnected through time-

varying persistently-exciting gains a la [8]. On the other hand,
in [33], [34], networks of linear homogeneous singularly-
perturbed systems are considered. Thus, in all of the above,
the setting is fundamentally different from the one adopted
here.

In [21], for a particular case-study of networked Andronov-
Hopf oscillators, we use a coordinate transformation to exhibit
the presence of the two-timescale emergent dynamics and
singular-perturbation theory to analyze the collective behavior
under the premise that the reduced-order system admits an
asymptotically stable orbit. Based on the coordinate trans-
formation introduced in [21], singular-perturbation theory is
used in [19] on a wider class of nonlinear systems with rank-
deficient coupling to establish synchronization in the practical
sense. Thus, there are several articles in the literature that
explicitly use reduction and singular-perturbation theory, even
in a multi-agent context. Yet, we are not aware of any such
work whose scope covers generic nonlinear heterogeneous
systems interconnected over directed graphs and characterize
the collective behavior with higher precision. Conceptually, in
phase with the emergentism posit, we exhibit the emergence
of a complex (in the sense of [5]) dynamic behavior, as a
result of the systems’ interactions. At the same time, we
give a more precise characterization (well beyond practical
asymptotic stability of the synchronization manifold) of the
collective behavior of networked systems based on that of a
reduced-order model.

The rest of the paper is organized as follows. In Section II
we exhibit the network’s reduced-order and synchronization
dynamics, under an invertible coordinate transformation. In
Sections III and IV we present our main results for the
two cases described above, respectively. In Section V we
provide concluding remarks and comments on future research
directions. The paper is completed with technical appendices.

Notation. Given a nonempty set K ⊂ Rn, |x|K :=
infy∈K |x − y|, where |s| denotes the Euclidean norm of s,
defines the distance between x and the set K. For a nonempty
set O ⊂ Rn, K\O denotes the subset of elements of K that are
not in O. For a matrix A ∈ Rn×n, A−1 denotes its inverse, A>

denotes its transpose, and |A| denotes its norm. For a matrix
Γ ∈ Rn×n, λmin(Γ) and λmax(Γ) denote the smallest and
the largest eigenvalues of Γ, respectively. By 1N ∈ RN , we
denote the vector whose entries are equal to 1. For a sequence
{Ai}Ni=1 ⊂ ΠN

i=1Rni×ni , blkdiag
i∈{1,2,...,N}

{Ai} is the block-diagonal

matrix whose i-th diagonal block corresponds to the matrix
Ai. By ⊗, we denote the Kronecker product. For a complex
number λ ∈ C, <e(λ) denotes the real part of λ and =(λ)
denotes the imaginary part of λ.

II. ON STRONGLY-COUPLED CONNECTED NETWORKS

A. The model and standing assumptions

Consider a group of N nonlinear systems as in (1) driven
by the distributed control inputs in (2), where each lij ≥ 0 is
constant but not necessarily equal to lji. In particular, when lij
is strictly positive, then there exists an interconnection from
the jth node to the ith node, but lji may be null, in which
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case, the interconnection is unidirectional. More precisely, we
pose the following hypothesis.

Assumption 1 (connected di-graph): The network’s graph
is connected.

Remark 1: We stress that under Assumption 1, any kind
of directed graph containing a rooted spanning-tree (with or
without cycles) is considered. Moreover, under Assumption
1 the Laplacian L has exactly one eigenvalue (say, λ1) that
equals zero, while the others have positive real part, i.e.,
0 = λ1 < <e {λ2} ≤ . . . ≤ <e {λn}. Furthermore, the right
eigenvector corresponding to the simple eigenvalue λ1 = 0,
is vr = 1N ∈ RN , while the left eigenvector, denoted vl,
contains only non-negative elements [10] and satisfies 1>Nvl =
1. •

In addition, for each unit, we impose the following regular-
ity and structural hypotheses:

Assumption 2 (equilibrium): The functions fi are continu-
ously differentiable and, without loss of generality, we assume
that fi(0) = 0 for all i ∈ {1, 2, . . . , N}.

Assumption 3 (Semi passive units): Each agent is input-to-
state strictly semi-passive; namely, for each i ∈ {1, 2, . . . , N},
there exists a continuously differentiable and radially un-
bounded storage function Vi : Rn → R≥0, a positive constant
ρ, a continuous function Hi : Rn → R, and a continuous
function ψi : Rn → R≥0 such that

V̇i(xi) ≤ xTi ui −Hi(xi)

and Hi(x) ≥ ψi(|x|) for all |x| ≥ ρ.

Assumption 3 is useful to assess the boundedness of solu-
tions for system (1) in closed loop with (2) for a sufficiently
large coupling strength σ. More precisely, we have the follow-
ing result.

Lemma 1 (Global ultimate boundedness [18]): Consider
the systems in (1) in closed loop with the control inputs in (2)
and let Assumptions 1–3 be satisfied. Then, the closed-loop
system is (uniformly in σ) ultimately bounded; namely, there
exist σ∗ > 0 and r > 0 such that, for any R ≥ 0, there
exists τR ≥ 0 such that, for each solution x(t) starting from
xo ∈ RnN , we have

|xo| ≤ R =⇒ |x(t)| ≤ r ∀t ≥ τR, ∀σ ≥ σ∗,

where x ∈ RnN denotes the network’s state, i.e., x =
[x1, . . . , xN ]>. �

Under the assumptions listed above, we investigate the
problem of assessing the behavior of the networked closed-
loop system (1)-(2). To this end, as it is customary, let us
collect the individual interconnection coefficients lij into the
Laplacian matrix L := [`ij ] ∈ RN×N , where

`ij =

{ ∑
k∈Ni

aik i = j

−aij i 6= j.

Then, replacing (2) in (1), we see that the overall network
dynamics takes the form

ẋ = F (x)− σ[L⊗ In]x, (3)

where the function F : RnN → RnN is given by

F (x) := [f1(x1) · · · fN (xN )]
>
.

As in [18] and [20], to analyze the behavior of the network
system (3), we acknowledge its dichotomous nature. In these
references as well as in many others—see, e.g., [35]–[37],
synchronization is defined as the property of the trajectories
of each individual system following the trajectories of an
“averaged” unit with state

xm := [v>l ⊗ In]x. (4)

The quotes in “averaged” are superfluous in the case of undi-
rected networks, in which case vl = 1N , so xm = 1

N

∑N
i=1 xi,

but for directed connected networks the state xm is more
generically defined as a weighted average of the respective
systems’ states since vli ≥ 0 for all i ∈ {1, 2, ..., N} and
v>l 1N = 1.

In either case, a sensible way to define the synchronization
errors e is as the difference between the units’ states and xm,
that is,

e := x− [1N ⊗ In]xm. (5)

Thus, in [18] and [20] the collective behavior of network sys-
tems is studied in function of the dynamics of the “averaged”
unit xm and that of the synchronization errors e.

In the next section, we introduce another change of coordi-
nates to rewrite system (3) in an equivalent form that exhibits
two motions; one that is generated by the averaged dynamics
and another by a projection of the synchronization errors e
on a certain subspace. This coordinate transformation is not a
simple artifice for analysis, it exhibits two time-scales that are
inherent to networked systems satisfying Assumption 1 and
subject to a sufficiently large coupling σ.

B. Intrinsic two-time-scales decomposition

After Assumption 1 and Remark 1, because λ1 = 0 has
multiplicity one, the Laplacian admits the following Jordan-
block decomposition of over RN×N :

L = U

[
0 0
0 Λ

]
U−1, (6)

where Λ ∈ R(N−1)×(N−1) is composed by the Jordan blocks
corresponding to the N − 1 non-zero eigenvalues.

Remark 2: Note that even though a Jordan decomposition
does not necessarily exist with a real matrix U , it is always
possible to use the spectral-invariant-subspace decomposition
as in [38, Theorem 1.5., p. 224]—see also [39, Lemma 13]—to
generate a real matrix U . •

The convertible matrix U is constituted, column-wise, of the
right eigenvector of the Laplacian, 1N , and a left-invertible
matrix V ∈ RN×(N−1), which consists of the eigenvectors
corresponding to the nonzero eigenvalues of L. That is,

U = [1N V ], U−1 =

[
v>l
V †

]
, (7)
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where V † ∈ R(N−1)×N , and

v>l V = 0, V †V = IN−1. (8)

So, using (7) and (8), we also have the useful identity

V V † = IN − 1Nv
>
l .

Now, using U−1, we define the new coordinates

x̄ := [U−1 ⊗ In]x (9)

and their inverse transformation

x := [U ⊗ In]x̄. (10)

The interest of the coordinate x̄ is that it consists in the familiar
“averaged” states xm and a projection of the synchronization
errors e defined in (5) onto the subspace that is generated by
V †, which is orthogonal to the right eigenvector 1N . To better
see this, note that such projection yields

[V † ⊗ In]e = [V † ⊗ In]
[
x− [1N ⊗ In]xm

]
In the sequel, we refer to the left-hand side of the latter
equation as the projected synchronization errors,

ev := [V † ⊗ In]x. (11)

Hence, in view of (4), (7), (9), and (11), we have

x̄ =

[
xm
ev

]
=

[
[v>l ⊗ In]x

[V † ⊗ In]x

]
. (12)

In the new coordinates, the network system (3) is equiva-
lently written as

˙̄x = [U−1 ⊗ In]
[
F (x)− σ[L⊗ In]x

]
,

which consists in two interconnected dynamics, that of the
“averaged” state xm and that of the projected synchronization
errors ev . Therefore, the behavior of the trajectories of (3)
may be assessed via the behavior of the latter dynamics. To
this end, we use x̄ = [x>m e>v ]> and U = [1N V ] in (10) to
write

x = [1N ⊗ In]xm + [V ⊗ In]ev. (13)

So, differentiating on both sides of (4), using (3), (13), and
the fact that v>l L = 0, we obtain

ẋm = Fm(xm) +Gm(xm, ev), (14)

where Fm(xm) := [v>l ⊗ In]F
(

[1N ⊗ In]xm
)

and

Gm(xm, ev) := [v>l ⊗ In]
[
F
(

[1N ⊗ In]xm + [V ⊗ In]ev
)

− F
(

[1N ⊗ In]xm
) ]
.

Note that Fm(xm) effectively corresponds to an “averaged”
dynamics of the systems in (1),

Fm(xm) =

N∑
i=1

vlifi(xm),

Gm(xm, 0) = 0 and, under Assumption 2, all these functions
are smooth and there exists a continuous function h : RnN →
R≥0 such that∣∣Gm(xm, ev)

∣∣ ≤ h(xm, ev)|ev| ∀(xm, ev) ∈ RnN . (15)

On the other hand, by differentiating on both sides of
ev = [V † ⊗ In]x and using (6), (7), and (13), we obtain the
synchronization-errors dynamics

ėv = −σ[Λ⊗ In]ev +Ge(xm, ev), (16)

where

Ge(xm, ev) := [V † ⊗ In]F
(

[V ⊗ In]ev + [1N ⊗ In]xm
)
.

The complete collective behavior of the networked control
system (3), up to the globally invertible coordinate trans-
formation in (9), may be assessed by analyzing that of the
interconnected systems (14) and (16). We see that the systems
in (1) under the action of the control laws in (2) synchronize
if the errors ev tend asymptotically to zero. However, the
characterization of the networked systems’ behavior would
be incomplete unless one can ascertain what the individual
systems do when they synchronize. Indeed, a priori, not even
boundedness of solutions is guaranteed (whence Assumption
3). To assess any kind of stable behavior, we analyze the
network system (3) on the synchronization subspace corre-
sponding to ev = 0. On such a subspace, we have the reduced-
order dynamics

ẋm = Fm(xm). (17)

So, it is clear that the motion of the synchronized systems is
fully determined by that of the reduced-order dynamics (17).
In this regard, it is important to underline that (17), as well as
the “averaged” dynamics (14) are independent of the coupling
gain σ. This dynamics is inherent to the network and appears
simply as a consequence of the graph’s connectivity imposed
by Assumption 1. The synchronization dynamics (16), on the
other hand, clearly depends on the coupling strength σ. In this
paper we are interested in investigating the synchronization
behavior for ‘large’ values of the coupling strength. More
precision about the meaning of ‘large’ is given farther below.

We consider two scenarii of major interest. The first pertains
to the case in which the reduced-order dynamics (17) admits
the origin as a globally asymptotically stable equilibrium
point. This case covers, in particular, the classical problem of
consensus for heterogeneous nonlinear systems interconnected
over generic connected graphs, since in this case ẋm ≡ 0. Our
main statement in this case (Theorem 1) is that not only the
networked system achieves dynamic consensus but the origin
{x = 0} is GAS for (3). The second scenario pertains to the
case in which the reduced-order dynamics admits an unstable
equilibrium and a stable periodic orbit. Our main statement
in this case (Theorem 2) establishes sufficient conditions for
almost global asymptotic stability. For instance, for a network
of periodic heterogeneous nonlinear oscillators, it is possible
to assess the conditions under which they synchronize and to
characterize the resulting collective oscillatory behavior.
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The analysis of (3) is carried out using singular-
perturbations theory. For this, we write the network system
(3) in the familiar singular-perturbation form [29], [30]

ẋm = Fm(xm) +Gm(xm, ev) (18a)
εėv = − (Λ⊗ In) ev + εGe(xm, ev), ε := 1/σ, (18b)

in which we recognize two time scales, “slow” and “fast”,
corresponding, respectively, to the dynamics of the averaged-
unit states xm and the projected synchronization errors ev .
Now, in accordance with singular-perturbation theory; see [30,
p. 358], the behavior of (18) is ineluctably determined by that
of the slow dynamics, obtained by setting ε = 0, which clearly
corresponds to the reduced-order model (17). Thus, the rest of
the paper is devoted to the analysis of (18) in the two cases
evoked above.

Even though the analysis relies on the study of the system
in singularly-perturbed form, (18), we remark that our two
main statements are formulated for system (3), which remains
the main subject study in this paper. Therefore, we finish this
section by re-expressing the properties of (3) in Assumptions
1–3 in terms of (18), in the form of the following, rather
evident, statement that is extensively used in the sequel.

Lemma 2: Consider system (3) such that Assumptions 1–3
hold. Then, the resulting system (18), with states defined in
(12), enjoys the following properties:

(i) the functions Fm, Gm, and Ge are continuously differ-
entiable;

(ii) the origin {(xm, ev) = (0, 0)} as an isolated equilibrium
point;

(iii) the solutions to (18) are globally uniformly (in σ) ulti-
mately bounded;

(iv) the matrix Λ is Hurwitz. �

III. CASE I: GLOBAL ASYMPTOTIC STABILITY

Consider the network system (3) in its equivalent singular-
perturbation representation (18). In the case that the reduced-
order dynamics (17) admits the origin as a globally asymp-
totically stable equilibrium, under Assumptions 1–3, global
asymptotic stability of the origin for (18) follows under a
sufficiently small perturbation ε > 0. According to [40], we
recall the practical-stability notions of a closed subset A ⊂ Rn
for a general nonlinear system of the form

ẋ = f(x, ε) x ∈ Rn, ε ∈ [0, 1]. (19)

• The set A is globally practically attractive if, for each
β > 0, there exists ε? > 0 such that, for each ε ≤ ε?,
every solution x(t) to (19), there exists T > 0 such that
||x(to + T )|| ≤ β.

• The set A is globally practically stable if there exists
κ ∈ K such that, for each β > 0, there exists ε? > 0
such that, for each ε ≥ ε?, we have

|x(t)| ≤ κ (|x(to)|) + β ∀t ≥ to.

• The set A is globally asymptotically practically stable if
it is globally practically attractive and globally practically
stable.

Our first statement is the following.
Theorem 1 (GAS): Consider system (3) under Assumptions

1–3. In addition, assume that for system (17), the origin
{xm = 0} is globally asymptotically stable. Then,

(i) the origin for (3) is globally asymptotically practically
stable.

Furthermore, assume in addition that there exists a continu-
ously differentiable Lyapunov function Vm : Rn → R≥0 and
a class K∞ function α such that

∂Vm(xm)

∂x>m
Fm(xm) ≤ −α (|xm|)2 (20)

and there exists cr > 0 such that, for all x̄ ∈ Br—see (12),

max
x̄∈Br

{∣∣Ge(xm, ev)−Ge(0, ev)∣∣, ∣∣∣∣∂V (xm)

∂xm

∣∣∣∣} ≤ crα (|xm|) ,

(21)

where r > 0 is the global ultimate bound established in
Lemma 1. Then,

(ii) there exists σ? > 0 such that, for all σ ≥ σ?, the origin
for (3) is globally asymptotically stable. �

Proof: The statement in Item (i) follows by establishing
global asymptotic practical stability of the origin {x̄ = 0}
for (18). To this end, we first remark that, after Assumptions
2-3 and Lemma 2, system (18) is globally uniformly (in σ)
ultimately bounded. That is, there exist σ∗ > 0 and r > 0
such that, for any R ≥ 0, there exists τR ≥ 0 such that

|x̄o| ≤ R⇒ |x̄(t)| ≤ r ∀t ≥ τR, ∀σ ≥ σ∗.

Hence, it suffices to show (i) only inside the compact set Br.
To do so, we show that, for every positive constant rf < r,
there exists σf > 0 such that, for each σ ≥ σf , the compact
set Brf is globally asymptotically stable for (18) on Br [40].
We first rewrite the perturbed system (18) in the following
form

ẋm =Fm(xm) +Gm(xm, ev)

εėv =− (Λ⊗ In) ev + εGe(0, ev)

+ ε [Ge(xm, ev)−Ge(0, ev)] . (22)

Next, using Assumption 2, we conclude the existence of a
constant dr > 0 such that, for each x̄ ∈ Br,

max
x̄∈Br

{|Gm(xm, ev)| , |Ge(0, ev)|} ≤ dr |ev| , (23)

|Ge(xm, ev)−Ge(0, ev)| ≤ dr |xm| ∀x̄ ∈ Br.
(24)

Furthermore, after Item (iv) in Lemma 2, the linear system

ėv = − (Λ⊗ In) ev

is exponentially stable. As a result, there exists P ∈
R(N−1)×(N−1) symmetric and positive definite such that

PΛ + Λ>P ≤ −IN .

Finally, we use the converse Lyapunov theorem in [30,
Theorem 3.14] to conclude that, since the origin for (17) is
globally asymptotically stable, there exists a function Vm :
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Rn → R≥0 and positive constants αrrf and βrrf such that,
for each x̄ ∈ Br\Brf , we have∣∣∣∣∂Vm(xm)

∂xm

∣∣∣∣ ≤ βrrf |xm| , (25)

∂Vm(xm)

∂x>m
Fm(xm) ≤ −αrrf |xm|

2
. (26)

Therefore, under (23)–(26), the total derivative of the Lya-
punov function candidate

V (x̄) := Vm(xm) + Ve(ev), (27)

where Ve(ev) := e>v (P ⊗ In)ev , satisfies

V̇ (x̄) ≤− αrrf |xm|2 + dr
[
λmax(P ) + βrrf

]
|xm| |ev|

− [σ − drλmax(P )] |ev|2 ∀ x̄ ∈ Br\Brf .

Thus, for σf := d2
r

(
λmax(P ) + βrrf

)2
+ 2drλmax(P ), we

conclude that, for each σ ≥ σf , we have

V̇ (ev, xm) ≤ −1

2
αrrf |xm|2 −

1

2
σ |ev|2 ∀ x̄ ∈ Br\Brf .

The statement in Item (ii) follows by establishing global
asymptotic stability of the origin {x̄ = 0} for (18). However,
since (18) is globally uniformly (in σ) ultimately bounded, it
is enough to prove that the origin is asymptotically stable on
for all solutions contained in Br. So in the rest of the proof,
we restrict the analysis on Br. Let us reconsider the Lyapunov
function V introduced in (27). Note that the time derivative
of V along the solutions to (18) satisfies

V̇ (x̄) = −α(|xm|)2 +
∂Vm
∂x>m

Gm(xm, ev)− σ |ev|2

+ 2e>v P [Ge(0, ev) + (Ge(xm, ev)−Ge(0, ev))] .
(28)

Now, after (23) and (21), we conclude that

∂V (x̄)

∂xm
Gm(xm, ev) ≤ crdrα (|xm|) |ev| ∀ x̄ ∈ Br,

(29)
and, consequently, from (28), (23), and (29), it follows that

V̇ (x̄) ≤− α(|xm|)2 + cr[2λmax(P ) + dr]α(|xm|)|ev|
− [σ − 2drλmax(P )]|ev|2 ∀x̄ ∈ Br.

Therefore, for σ? := c2r[λmax(P ) + dr]
2 + 4drλmax(P ), we

conclude that, for each σ ≥ σ?,

V̇ (x̄) ≤ −1

2
α(|xm|)2 − 1

2
σ |ev|2 ∀ x̄ ∈ Br.

Remark 3: The first statement in Theorem 1 can be deduced
using [18, Corollaries 1 and 3], a detailed proof is included
in this paper for the sake of self containedness. •

Remark 4: The regularity conditions in (20)-(21) are re-
quired to ensure negativity of the time derivative of the
Lyapunov function V along the solutions to (18). Even though
they may appear conservative, since they are certainly not
necessary —see [30, Exercise 9.24], it is important to stress
that the origin is not necessarily globally asymptotically stable
if these conditions do not hold. In [39] we provide an example

that illustrates this claim. Furthermore, the inequalities (20)-
(21) are required to hold only in a compact set containing the
origin. •

IV. CASE II: PERIODIC BEHAVIOR

In this section, we present our second and main statement,
which pertains to the case where (17) admits a periodic orbit
that is attractive from almost all initial conditions. Under
this condition, Theorem 2 below establishes that for σ > 0
sufficiently large, the network system (3) also admits a unique
periodic orbit and it is globally attractive from almost all
initial conditions. In particular, frequency synchronization is
achieved and the synchronization errors can be made arbitrary
small by choosing σ sufficiently large. It is important to stress
that our main statement establishes a precise periodic behavior
for the network system (3) rather that just approaching the
periodic solution to (17).

For completeness and clarity, we start by recalling some
notions and tools related to the stability of periodic solutions
to nonlinear systems.

Consider the system

ẋ = f(x) x ∈ Rn, (30)

where f : Rn → Rn is locally Lipschitz.
Definition 1 (Periodic solution and periodic orbit): A so-

lution t 7→ φ(t), or simply φ(t), to (30) is said to be α-periodic
if there exists α > 0 (the period) such that, for each t ≥ 0,

φ(t+ α) = φ(t) and φ(t+ s) 6= φ(t) ∀s ∈ (0, α).

Moreover, if the system (30) admits a periodic solution
φ, we say that it admits a (closed) periodic orbit γ ⊂ Rn
generated by the image of φ.

Then, according with Lyapunov theory, we may single out
the following desired properties for periodic solutions.

Definition 2 (Orbital Stability): Let γ be a periodic orbit
for (30).

• The orbit γ is orbitally stable if, for each ε > 0, there
exist δ > 0 and T ≥ 0, such that, for each initial
condition xo satisfying |xo|γ ≤ δ, the solution φ starting
from xo satisfies |φ(t)|γ ≤ ε for all t ≥ T .

• The orbit γ is orbitally asymptotically stable, if it is
orbitally stable and attractive; i.e., if there exists R ∈
(0,+∞] such that, for each xo satisfying |xo|γ ≤ R, the
solution φ starting from xo satisfies limt→∞ |φ(t)|γ = 0.

• The orbit γ is globally orbitally asymptotically stable
if it is orbitally asymptotically stable with R = +∞
and almost globally asymptotically stable if it is orbitally
asymptotically stable for all xo ∈ Rn\D, where D ⊂ Rn
has a null Lebesgue measure.

Finally, we recall some orbital stability criteria in terms
of the so-called characteristics multipliers [41, Section III.7]
which, for linear periodic systems, are the counterpart of
eigenvalues for linear autonomous systems. To see this, we
assume that f is continuously differentiable and we consider
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the α-periodic matrix A(t) := ∂f
∂x>

(φ(t)), where φ(t) is the α-
periodic solution to (30) generating the orbit γ. After Floquet
theory—see e.g., [42] and [43], there exist an α-periodic non-
singular matrix P : [to,+∞] → Rn×n and a constant matrix
B ∈ Rn×n such that the transition matrix associated to the
linear time-varying system

ẋ = A(t)x (31)

is given by X(t) := P (t)eBt and the non-singular change of
coordinates y := P (t)−x transforms the linear system (31)
into ẏ = By.

Definition 3 (Characteristic multipliers): The characteris-
tic multipliers of the α-periodic matrix A(t) are the eigen-
values of the matrix eBα.

Definition 4 (Non-singular periodic orbit): The periodic
orbit γ generated by the periodic solution φ(t) is non-singular
if the matrix A(t) := ∂f

∂x>
(φ(t)) admits a simple characteristic

multiplier equal to 1.
Lemma 3 (Theorem 2.1, Section VI.2. [41]): Consider sys-

tem (30) with f continuously differentiable and let φ be a
non-trivial α-periodic solution generating the orbit γ. Assume
that the matrix A(t) := ∂f

∂x>
(φ(t)) is non-singular and all the

characteristic multipliers, except one, have modulus strictly
less than 1. Then, the resulting periodic orbit γ is asymptoti-
cally orbitally stable. �

Sufficient conditions for orbital stability

As mentioned above, generally speaking, the standing as-
sumption in this section is that the reduced-order dynamics
(17) admits an orbitally asymptotically stable periodic solu-
tion. However, we remark that some nonlinear systems defined
on compact and convex sets and that admit a limit cycle,
also admit at least one equilibrium point [44]. This imposes
particular richness to the network’s collective behavior and
considerable difficulty to analyze it since it translates into
studying the stability of a disconnected invariant set. In that
light, we pose the following, more precise hypothesis.

Assumption 4: The reduced-order dynamics (17) admits a
unique compact invariant subset ω ⊂ Rn that is globally
attractive; namely, for each xmo ∈ Rn, the solution xm(t)
starting from xmo satisfies

lim sup
t→+∞

|xm(t)|ω = 0 (32)

Furthermore, the set ω is compose a non-singular periodic
orbit γo, of period αo, that is orbitally asymptotically stable
and

• the origin {xm = 0}, when the latter is repulsive.
• the homoclinic orbit γ1 := Wu

o (0) ∩ W s
o (0) when the

origin is hyperbolic1, where W s
o (0) and Wu

o (0) are,
respectively, the global stable and unstable manifolds of
the origin.

1i.e. the eigenvalues of A :=
∂fm(xm)

∂xm

∣∣
xm=0

has 0 < k < n eigenvalues
with positive real part and n− k with negative real part.

Remark 5: Note that the global attractivity property in (32)
plus the structure of the invariant set ω imply the existence
of a Lyapunov function enjoying useful properties along the
solutions to (17)—see [45, Theorem 1]. •

Lemma 4: Under Assumption 4 and Item (i) in Lemma 2,
the periodic orbit γo is almost globally orbitally asymptotically
stable for (17). �

We are ready to present our main statement.
Theorem 2 (Almost global orbital asymptotic stability):

Consider the network system (3) under the Assumptions
1–3 and such that the reduced-order dynamics (17) satisfies
Assumption 4. Then, there exists σf > 0, such that, for all
σ ≥ σf , the networked system (3) admits a unique nontrivial
periodic orbit O1/σ , of period α1/σ and that is almost globally
orbitally asymptotically stable. Moreover, O1/σ → Oo, where

Oo := {x ∈ RnN : xm ∈ γo and ev = 0}

—see (12), and α1/σ → αo as σ →∞. �

The proof of Theorem 2, which is provided farther below,
follows a sequence of logical steps to assess the existence,
uniqueness, and almost global orbital asymptotic stability of
an orbit for (3). The analysis relies on studying the singularly-
perturbed system (18), but we emphasize that the available
literature on stability (of the origin or a compact set) for
singularly-perturbed systems [46], [28], [30] does not apply
to (18), when (17) admits a limit cycle and an isolated
equilibrium point. Therefore, the proof of Theorem 2 relies
on technical lemmata that are presented next, but, for clarity
of exposition, the proofs of these lemmata are given in the
Appendix.

• Lemma 5 establishes global asymptotic practical stability
of the

{(xm, ev) ∈ RnN : xm ∈ γo ∪ γ1 and ev = 0};

• Lemma 6 establishes that, given a torus sufficiently
tight around Oo, for each coupling gain σ sufficiently
large, system (17) admits a unique periodic orbit O1/σ

contained in the torus;
• Lemma 7 establishes that each such orbit O1/σ is (lo-

cally) asymptotically stable and admits the aforemen-
tioned torus as a basin of attraction;

• Lemmata 8 and 11 (in the Appendix) provide a local
analysis around the origin, to establish that it attracts only
the solutions starting from a null-measure set.

Technical Lemmata

We start by introducing the following notations. Corre-
spondingly to γo ⊂ Rn and γ1 ⊂ Rn, which denote,
respectively, the closed periodic and homoclinic orbits for
system (17)—see Assumption 4, we introduce their “lifting”
Γo ⊂ RnN and Γ1 ⊂ RnN in the space of system (18), as

Γo :=
{

(xm, ev) ∈ RnN : xm ∈ γo and ev = 0
}
, (33)

Γ1 :=
{

(xm, ev) ∈ RnN : xm ∈ γ1 and ev = 0
}
. (34)
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Furthermore, we denote by Tρ the torus defined as

Tρ :=
{

(ev, xm) ∈ RN(n−1) × Rn : |(xm, ev)|Γo
≤ ρ
}
,

(35)
and we use Γε ⊂ RnN to denote a closed orbit generated
by a periodic solution to system (18), if it exists. That is,
Γε is a subset in the space of (xm, ev) that consists in the
image points generated by the parameterized solutions of (18),
t 7→ (xm(t), ev(t)), that are periodic with period αε.

The first technical lemma provides a statement for system
(18) on global practical asymptotic (GApS) stability of the set

Ω := Γo ∪ Γ1,

where Γo and Γ1 are introduced in (33)-(34).
Lemma 5 (GApS of Ω): Consider system (18) such that

Items (i)–(iii) of Lemma 2 hold and let Assumption 4 be sat-
isfied for the corresponding reduced-order system (17). Then,
the set Ω := Γo ∪ Γ1 is GApS for (18). In particular, for any
ρ > 0, there exists ε1(ρ) > 0, such that, for each ε ≤ ε1(ρ)
and for each initial condition xo = (evo, zmo) ∈ RnN , the
solution (xm(t), ev(t)) satisfies limt→∞ |xm(t), ev(t)|Ω ≤ ρ.
�

The next lemma establishes that, for all sufficiently small
values of ρ > 0, there exist sufficiently small values of ε, such
that there exists a unique periodic orbit Γε ⊂ Tρ generated by
a solution to (18) of period αε ≈ αo.

Lemma 6 (Existence of Γε): Consider system (18) such
that Items (i) and (iii) of Lemma 2 hold and let Assumption
4 hold for the reduced-order dynamics (17). Then, there exist
ρo > 0 and a class K function εo such that, for each ρ ∈ (0, ρo]
and for each ε ≤ εo(ρ), system (18) has a unique nontrivial
periodic orbit Γε, which is strictly contained in Tρ. Moreover,
the period αε of the solution to (18) generating the orbit
Γε tends to αo, which is the period of the solution to (17)
generating the orbit Γo. �

Remark 6: The existence result in Lemma 6 follows from
a direct application of Anosov Theorem—see Lemma 9 in the
Appendix. •

The next lemma establishes local asymptotic orbital sta-
bility of all periodic orbits Γε lying inside the torus Tρ for
sufficiently small values of ε and ρ. Moreover, we show that
the corresponding domain of attraction is uniform in ε.

Lemma 7 (Stability of Γε): Let system (18) satisfy Items
(i) and (iii) of Lemma 2 and let Assumption 4 be satisfied for
the corresponding reduced-order dynamics (17). Then, there
exist ε∗∗ > 0 and ρ∗∗ > 0 such that, for each ε ≤ ε∗∗, each
periodic orbit Γε ⊂ Tρ∗∗ generated by an αε-periodic solution
to (18), with αε sufficiently close to αo, is asymptotically
orbitally stable with a domain of attraction that contains Tρ∗∗ .
�

Remark 7: Lemma 7 is reminiscent of a statement estab-
lished by Anosov— [27, Theorem 5]—that pertains to the case
in which the periodic orbit γo for (17) is only non-singular
(or hyperbolic). Although it is claimed in [27] that the proof
therein translates directly to the case where γo is non-singular
and asymptotically stable, in this paper, we provide an original

proof for the latter case using the theory of perturbed matrices
[38], [47]. •

The next statement links those from Lemmata 5–7. It
establishes that if ε is sufficiently small, then the periodic
behavior of the reduced order system (17) is preserved for
system (18) as well as its stability properties.

Proposition 1: Consider the dynamical system (18) under
the assumption that Items (i)–(iv) of Lemma 2 hold and
assume further that the reduced-order dynamics (17) satisfies
Assumption 4.

Then, there exists ρo > 0 such that, for each ρ ∈ (0, ρo],
there exists ε2(ρ) > 0 such that, for each ε ∈ (0, ε2(ρ)],

(i) system (18) admits a unique orbit Γε ⊂ Tρ generated by
a non-trivial (αε)-periodic solution, with Γε → Γo and
αε → αo as ε→ 0;

(ii) Γε is (locally) asymptotically stable;
(iii) for any initial condition x̄o ∈ RnN the corresponding

solution x̄(t) to (18) either converges to Γε or to a ρ-
neighborhood of Γ1, that is,

lim sup
t→∞

|x̄(t)|Γ1
≤ ρ. (36)

�

Proof: Items (i)-(iv) in Lemma 2 and Assumption 4
imply that the statements of Lemmata 5–7 hold. Then, let
Lemma 7 generate ε∗∗ > 0 and ρ∗∗ > 0. Furthermore, let
Lemma 6 generate (ρo, εo(·)), for each ρ ∈ (0, ρo], let Lemma
5 generate (ε1(ρ), ε1(ρ∗∗)), and let

ε ≤ ε2(ρ) := min{ε∗∗, εo(ρ), εo(ρ
∗∗), ε1(ρ), ε1(ρ∗∗)}

be arbitrarily fixed.
After Lemma 6, there exists a unique periodic orbit Γε ⊂

Tρ∩Tρ∗∗ = Tmin{ρ,ρ∗∗} generated by a solution to (18). Now,
given any sequence {εi}∞i=1 that converges to zero and such
that εi ≤ ε2(ρ) for all i ∈ {1, 2, ...}, from the above, we
know that, for i large enough, the unique orbit Γεi satisfies
Γεi ⊂ Tρi , where ρi := ε−1

o (εi)—note that ε−1
o exists and is

of class K because so it εo. Item [i] of the proposition follows
since Tρi converges to Γo—see (35).

Next, after Lemma 7, we conclude that Γε is orbitally
asymptotically stable and Tρ∗∗ is inside the domain of attrac-
tion of Γε. This establishes Item (ii).

Finally, from Lemma 5 we conclude that each solution to
(18) either converges to Tmin{ρ,ρ∗∗} ⊂ Tρ∗∗ , so it also con-
verges to Γε, or it converges to a min{ρ, ρ∗∗}−neighborhood
of Γ1. This establishes Item (iii).

The last technical lemma provides a local stability analysis
around the origin of (18). It states that the origin is a
hyperbolic equilibrium point, for all sufficiently-small values
of ε. Furthermore, inspired by the Stable Manifold Theorem
[48, Theorem 13.4.1], we show that the stable and unstable
manifolds around the origin are uniquely defined on a neigh-
borhood whose size does not shrink with ε.

Lemma 8 (Local behavior around the origin): Consider
system (18) and let Items (i)-(ii) of Lemma 2 hold. Assume
further that the corresponding reduced-order dynamics (17)
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satisfies Assumption 4. Then, there exist ρ∗ > 0, ε∗ > 0, a
neighborhood of the origin denoted U ⊂ Rn, and r > 0 such
that, for each ε ∈ (0, ε∗),

(i) system (18) admits a unique unstable and stable mani-
folds (Wu

ε (0),W s
ε (0)) defined on U ;

(ii) for each x̄(t) bounded solution to (18) starting from x̄o ∈
U\W s

ε (0), there exists T1 > 0 such that |x̄(t)| ≥ r for
all t ≥ T1;

(iii) for each x̄(t) solution to (18) such that |x̄(0)|Γ1 ≤ ρ∗,
there exists T2 > 0 such that |x̄(T2)| < r. �

Proof of Theorem 2

Under Assumptions 1–3, Items (i)-(iv) of Lemma 2 hold for
system (18). This and Assumption 4 imply that the statements
of Proposition 1 and Lemmata 5–8 hold. Then, let Lemma 8
generate ρ∗ > 0 and ε∗ > 0 and let Proposition 1 generate
(ρo, ε2(min{ρ∗, ρo}/4)). We show that the statement of The-
orem 2 holds with σf := 1/min {ε∗, ε2(min{ρ∗, ρo}/4)} in
the following four steps:

1) First, for any σ ≥ σf or, equivalently, any ε = 1/σ
satisfying ε ≤ min {ε∗, ε2(min{ρ∗, ρo}/4)}, we use Item
(i) of Proposition 1 to conclude the existence of a unique
nontrivial periodic orbit Γε generated by a periodic so-
lution to (18) of period αε. From Item (ii) of the same
Proposition it follows that Γε is locally asymptotically
stable. In addition, from Item (iii) of Proposition 1 it
follows that each solution x̄(t) to system (18) either
converges to the orbit Γε, otherwise, it converges to a
(min{ρ∗, ρo}/4)–neighborhood of Γ1; that is, (36) holds
with ρ = min{ρ∗, ρo}/4 and, consequently, there exists
T <∞ such that

|x̄(t)|Γ1
= |(xm(t), ev(t))|Γ1

≤ min{ρ∗, ρo}/2 ∀t ≥ T.
(37)

2) Let us now introduce the backward propagation of the
stable manifold W s

ε (0) introduced for (18) in Lemma 8.
That is, we introduce set

R(W s
ε (0)) := {x̄(t) : t ≤ 0, x̄(0) ∈W s

ε (0)}

and prove by contradiction that the solution x̄ to (18)
satisfying (37) must start from the set R(W s

ε (0)). Indeed,
assume that the opposite holds. Then, using Item (iii) in
Lemma 8, we conclude that the solution x̄ must enter Br
at some T ∗ ≥ T . In particular, x̄(T ∗) ∈ U and x̄(T ∗) /∈
W s
ε (0). Now, using Item (ii) in Lemma 8, we conclude

that there exists T1 > 0 such that

|x̄(T ∗ + t)| ≥ r ∀t ≥ T1.

However, since |x̄(T ∗ + T1)|Γ1
≤ min{ρ∗, ρo}/2, it

follows that x̄ must enter Br again under Item (iii) of
Lemma 8, which contradicts Item (ii).

3) Next, we show that the set R(W s
ε (0)) is a null measure

set using contradiction. That is, let So ⊂ R(W s
ε (0)) such

that µ(So) 6= 0. Assume without loss of generality that
for some T < 0, we have

So ⊂ {x̄(t) : t ∈ [−T, 0], x̄(0) ∈W s
ε (0), x̄ sol. to (18)}.

Note that

Rb(T, So) := {x̄(T ) : x̄(0) ∈ So} ⊂W s
ε (0)

with µ(W s
ε (0)) = 0. However, using Lemma 11 from the

Appendix, we conclude that µ(So) = 0.
4) Finally, using the inverse transformation (10), it follows

that the orbit

Oε := {x ∈ RnN : (xe, ev) ∈ Γε}

is almost GAS for (3). The second statement follows
from Lemma 6. �

V. CONCLUSION

We presented a framework to analyse networks of heteroge-
neous nonlinear systems. Our approach allows to qualitatevely
characterize the collective behavior for “large” values of the
coupling gains. The proposed approach, however, does not
give much information about the quantitative properties of
such behavior. In particular, we do not provide explicit values
of the coupling strength under which the networked system
exhibit the established behavior. Characterizing the emergent
behavior, such as orbital asymptotic stability, both qualitatively
and quantitatively (in terms of the coupling gain) is still an
open problem. Furthermore, beyond the analysis problems
solved in this paper, the control design problem is widely
open. To find conditions under which a network of hetero-
geneous systems may be controlled so that it admits a desired
reduced-order dynamics. Finally, we believe that extending the
proposed framework for general classes of nonlinear systems
such as hybrid systems is an interesting perspective as well.

APPENDIX I: BACKGROUND

Existence of periodic orbits for singularly perturbed
systems

The following result, which is a consequence of the main
statements in [27], establishes the existence of periodic solu-
tions for singularly-perturbed systems,

ż = f(z, e, ε)

εė = g(z, e, ε) (z, e) ∈ Rmz × Rme .
(38)

Lemma 9: Consider the singularly perturbed system (38)
such that the following properties hold:

1) the functions f and g are continuous with respect to
(z, e, ε) and differentiable with respect to z and e. More-
over, the derivatives of f and g with respect to z and e
depend continuously on (z, e, ε).

2) There is a unique function h : Rmz → Rme such that
g(z, h(z), 0) = 0.

3) The equilibrium state y = 0 (with y = e − h(z)) of the
boundary-layer system

y′ = g(z, y + h(z), 0), (39)

where y′ := dy/d(t/ε), is hyperbolic uniformly in z.
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4) The unperturbed system

˙̄z = f(z̄, h(z̄), 0) (40)

has a nontrivial nonsingular periodic orbit γo ⊂ Rmz .

Then, there exists ρo > 0 and a class K function εo such
that for each ρ ∈ (0, ρo] and for each ε ≤ εo(ρ), the system
(38) has a unique nontrivial periodic orbit Γε, which is strictly
contained in the ρ-neighborhood of Γo, where

Γo := {(z, e) ∈ Rmz × Rme : z ∈ γo and e = h(z)}.

Moreover, the period αε of the periodic solution to (38)
generating the orbit Γε tends to αo the period of the solution
to (40) generating the orbit Γo. �

APPENDIX II: AUXILIARY LEMMATA

Given a function of two scalar variables that is smooth in
one and only continuous in the other, the following original
lemma shows the existence of a smooth approximation to any
given ’nonuniform’ degree of precision.

Lemma 10: Consider a function T : [0, 1] × [0, αo] →
Rn×n such that τ 7→ T (ε, τ) is continuous, ε 7→ T (ε, τ) is
continuously differentiable, and τ 7→ T (0, τ) is continuously
differentiable. Then, for each ρ > 0, there exists T̂ : [0, 1] ×
[0, αo]→ Rn×n continuously differentiable such that

T̂ (0, τ) = T (0, τ) ∀τ ∈ [0, αo], (41)

|T̂ (ε, τ)− T (ε, τ)|∞ ≤ ρε+ o(ε) ∀τ ∈ [0, αo], (42)

and

lim
ε→0

Ṫ (ε, τ) = lim
ε→0

∂T̂ (ε, τ)

∂τ
= Ṫ (0, τ). (43)

�

Proof: Since the matrix T is continuously differentiable
in ε and continuous in τ , then it admits a first-order Taylor
expansion of the form

T (ε, τ) = T (0, τ) + a(τ)ε+ g(ε, τ),

where a : [0, αo] → Rn×n is continuous and g : [0, 1] ×
[0, αo) → Rn×n enjoys the same continuity and smoothness
properties as T . Furthermore, there exists M > 0 such that,
for each τ ∈ [0, αo], we have

|g(ε, τ)| ≤Mε2 ∀ε ∈ [0, 1].

Now, we choose the matrix T̂ as

T̂ (ε, τ) = T (0, τ) + â(τ)ε,

where â : [0, αo] → Rn×n is a continuously differentiable
approximation of a on [0, αo] satisfying

sup
τ∈[0,αo]

{|a(τ)− â(τ)|} ≤ ρ.

Note that to obtain the latter inequality, we used
Stone–Weierstrass theorem stating that every continuous
function defined on a closed interval [0, αo] can be uniformly
approximated as closely as desired by a polynomial function
[49].

As a result, (41) holds. Furthermore, we note that

T (ε, τ)− T̂ (ε, τ) = (a(τ)− â(τ))ε+ g(ε, τ),

which implies that (42) also holds. Finally, (43) holds under
(41) and the continuous differentiability of T̂ .

Consider the dynamical system

ẋ = f(x) x ∈ Rn, (44)

where f : Rn → Rn is continuously differentiable and the
origin x = 0 is a hyperbolic equilibrium point. The following
lemma allows us to show that the propagation of the local
stable manifold W s(0) using the backward solutions to (44)
is a null-measure set.

Lemma 11: Consider the dynamical system (44) and let
So ⊂ Rn and T > 0 such that, for each xo ∈ So, the solution
x(t) is well defined on [0, T ]. Furthermore, for each t ∈ [0, T ],
we define the reachable set

Rb(t, So) := {y ∈ Rn : y = x(t), x(0) = xo ∈ So} .

Then, if there exists τ ∈ [0, T ] such that µ(Rb(τ, So)) = 0
then µ(So) = 0, where µ(·) is the Lebesgue measure of (·).
�

Proof: To find a contradiction, we assume that µ(So) > 0
and µ(Rb(τ, So)) = 0 for some τ ∈ [0, T ]. Next, we introduce
the mapping φτ : So → Rn such that φτ (xo) := x(τ),
where x(τ) is the unique solution to (44) starting from xo.
Using [50, Theorem V.2.1], we conclude that the mapping
φτ is continuous and clearly the reciprocal mapping satisfies
φ−τ (xo) := x(−τ, xo). Hence, φ−τ (·) is also continuous and
therefore φτ is a homeomorphism; thus, an open map. Let
us now fix xo ∈ So arbitrary such that there exists U(xo)
an open set containing xo that is contained in So, the latter
is possible to find since µ(So) 6= 0. Let φτ (U(xo)) be the
image of U(xo) by the homeomorphism φτ . Since φτ is a
homeomorphism, φτ (U(xo)) is an open set containing φτ (xo).
Hence, µ(φτ (U(xo))) 6= 0. However, φτ (U(xo)) ⊂ Rb(τ, So)
and we already assumed that µ(Rb(τ, So)) = 0, which yields
to a contradiction.

APPENDIX III: PROOFS

Proof of Lemma 4

By Assumption 4, γo is globally orbitally asymptotically
stable. Also, ω is globally attractive. Since γo and γ1 are dis-
connected, the solutions must converge to either one. Then, to
show the statement of the Lemma, we show that the solutions
to (17) converging to γ1 must start from a null measure set
which is the global stable manifold W s

o (0). Indeed, to find
a contradiction, we let xmo /∈ W s

o (0) such that the solution
xm(t) to (17) starting from xmo converges γ1. Now, using [39,
Lemma 16]—cf. [51, Theorem 4.1], we conclude the existence
of r > 0 and t1 > 0 such that

|xm(t)| ≥ r ∀t ≥ t1. (45)

As a result, the solution xm(t) must converge to γ1\Br. Now,
we let a strictly increasing sequence of times {t1, t2, · · · ,∞}
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and the corresponding sequence of points

yi := Projγ1\Br
(xm(ti)) := argmin{|y−xm(ti)| : y ∈ γ1\Br}.

Note that, since xm(t) converges to γ1\Br, it follows that

lim
i→∞

|yi − xm(ti)| = 0.

Now, by definition of γ1 and since it is compact, we conclude
the existence of T > 0 such that, each solution ymi(t) to (17)
starting from yi satisfies

|ymi(t)| ≤ r/2 ∀t ≥ T.

However, since the right-hand side in (17) is continuously
differentiable, we the continuous dependence of the solutions
on the initial data [50, Theorem V.2.1] to conclude that, for
each ε > 0, there exists iε ∈ {1, 2, ...} such that, for each
i ≥ iε, we have

|ymi(t)− xm(t+ ti)| ≤ ε ∀t ∈ [0, T ].

The latter implies that xm(ti) must lie inside Br, which
contradicts (45).

Proof of Lemma 5

We start noting, by definition of the sets Ω and ω, that
(xm, ev) ∈ Ω if and only if ev = 0 and xm ∈ ω. As a result,

|(xm, ev)|Ω ≤ |ev|+ |xm|ω .

Then, to prove the lemma, we show that

(?) there exists ε1 ∈ K such that, for each ρ > 0, for each
ε ≤ ε1(ρ), and for each initial condition (xmo, evo) ∈
Rn×Rn(N−1), the solution (xm(t), ev(t)) to (18) satisfies

lim
t→∞

(|ev(t)|+ |xm(t)|ω) ≤ ρ.

In turn, to prove (?), we first show that

(??) there exists εv ∈ K such that, for each ρv > 0,
for each ε ≤ εv(ρv), and for each initial condition
(xmo, evo) ∈ Rn ×Rn(N−1), the solution (xm(t), ev(t))
to (18) satisfies

lim
t→∞

|ev(t)| ≤ ρv. (46)

To prove (??), we use the following four properties:

• The dynamics of ev in (18b) can be expressed as in (22);
namely, in the following form

εėv = − (Λ⊗ In) ev + εGe(0, ev)

+ ε [Ge(xm, ev)−Ge(0, ev)] .

• By assumption, system (18) is globally (uniformly in
σ := 1/ε) ultimately bounded. That is, there exists
ε∗ > 0 and r > 0 such that, for any R ≥ 0, there
exists TR ≥ 0 such that, for each ε ≤ ε∗ and for each
solution (xm(t), ev(t)) to (18) starting from (xmo, evo) ∈
Rn × Rn(N−1), we have

|(xmo, evo)| ≤ R =⇒ |(xm(t), ev(t))| ≤ r ∀t ≥ TR.

• We recall from (23)-(24) the existence of a constant dr >
0 such that, for each (xm, ev) ∈ Br, we have

|Ge(0, ev)| ≤ dr |ev| ,
|Ge(xm, ev)−Ge(0, ev)| ≤ dr |xm| .

(47)

• Using Item (iv) in Lemma 2, we conclude that the system

ėv = − (Λ⊗ In) ev

is exponentially stable and there exists P ∈
R(N−1)×(N−1) symmetric and positive definite such that

PΛ + Λ>P ≤ −IN−1.

As a result, combining the aforementioned four properties,
we conclude that the time derivative of the Lyapunov function
candidate

Ve(ev) := e>v (P ⊗ In)ev,

under (47) and along the solution (xm(t), ev(t)) to (18)
starting from (xmo, evo) ∈ BR, satisfies

V̇e(ev(t)) ≤ drλmax(P )r |ev(t)| −
[

1

ε
− drλmax(P )

]
|ev(t)|2

∀t ≥ TR.

Now, for ε ≤ 1
drλmax(P ) , we obtain

V̇e(ev(t)) ≤ drλmax(P )r − [1− (1 + r)drλmax(P )ε]

λmax(P )ε
Ve(ev(t))

∀t ≥ TR.

As a result,

lim
t→+∞

|ev(t)|2 ≤ lim
t→+∞

Ve(ev(t))

λmin(Q)

=
drλmax(P )2rε

[λmin(Q)− (1 + r)drλmax(P )λmin(Q)ε]
.

Hence, by introducing the class K function

εv(ρv) := min

{
ε∗,

1

(1 + r)drλmax(P )

}
× ρv

drλmax(P )2r
(1+r)drλmax(P )λmin(Q) + ρv

,

we conclude that, for each ρv > 0 and for each ε ≤ εv(ρv),
each solution (xm(t), ev(t)) to (18) satisfies (46), which
proves (??).

To complete the proof of (?), we rewrite the dynamics of
xm in (18b) as in (14); namely, we have

ẋm = Fm(xm) +Gm(xm, ev),

where

Gm(xm, ev) := Fm(xm, ev)− Fm(xm).

Next, we recall from (15) the existence of h : Rn×Rn(N−1) →
R≥0 continuous such that∣∣Gm(xm, ev)

∣∣ ≤ h(xm, ev)|ev| ∀(xm, ev) ∈ Rn×Rn(N−1).

Hence, for each ρv > 0, for each ε ≤ εv(ρv), and for each
solution (xm(t), ev(t)) to (18) starting from BR, under the
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global ultimate boundedness of (18) and (46), we conclude
the existence of TR1 > TR > 0 and cr > 0 such that

|Gm(xm(t), ev(t))| ≤ crρv ∀t ≥ TR1.

Next, we use Assumption 4 to show that, according to the
notation in Appendix II.C, the decomposition ω := γo ∪ γ1

has no cycles and we can only have γo < γ1. Indeed, since
the periodic orbit γo is asymptotically orbitally stable, we
conclude that R(γo) = γo; hence, R(γo)∩U(γ1) = γo∩U(γ1)
and, since γo is invariant, compact, and γo ∩ γ1 = ∅, it
follows that R(γo) ∩ U(γ1) = ∅. Thus, we cannot have
γ1 < γo. The latter also implies that we cannot have a 2-cycle.
Next, we exclude the possibility of having a 1-cycle using
asymptotic orbital stability of γo and by definition of the set
γ1. Finally, the compact disconnected subset ω := γo ∪{0} is
globally attractive for the unperturbed dynamics (17). Hence,
using [39, Lemma 11]—cf. [45, Theorem 1]—we conclude the
existence of a continuously differentiable Lyapunov function
V : Rn → R≥0, class K∞ functions α, ᾱ, α, and a positive
constant c ≥ 0, such that

α (|xm|ω) ≤ V (xm) ≤ ᾱ (|xm|ω + c)

and

∂V

∂x>m
(xm)Fm(xm) ≤ −α (|xm|ω) ∀xm ∈ Rn.

Hence, along the solution (xm(t), ev(t)) to (18) starting
from BR, the time-derivative of the Lyapunov function V
satisfies the following upper-bound

V̇ (xm(t)) ≤ −α (|xm(t)|ω) +

∣∣∣∣ ∂V∂x>m (xm(t))

∣∣∣∣ crρv
∀t ≥ TR1.

Next, using the global ultimate boundedness of (18) and the
continuity of ∂V

∂x>m
, we conclude the existence of br and TR2 >

TR > 0 such that∣∣∣∣ ∂V∂x>m (xm(t))

∣∣∣∣ ≤ br ∀t ≥ TR2.

As a result, for all t ≥ sup {TR1, TR2}, we have

V̇ (xm(t)) ≤ −α
(
α− (V (xm(t)))

)
+ brcrρv.

The last step invokes the comparison lemma [30, Lemma 2.5],
that establishes the existence of µ ∈ K∞ such that

lim
t→∞

V (xm(t)) ≤ µ (brcrρv) ,

and consequently,

lim
t→∞

|xm(t)|ω = lim
t→∞

|(xm(t), 0)|Ω ≤ α
− (µ (brcrρv)) .

Finally, to complete the proof, it is enough to take ε1(ρ) :=
εv(χ

−1(ρ)), where

χ(ρv) := α− (µ (brcrρv)) + ρv.

Proof of Lemma 6

The proof is based on a direct application of Lemma 9.
The first item in Lemma 9 is holds under Assumption 2, the
second item holds with ev = h(xm) = 0, the third item is
satisfied since the boundary-layer model of (18) is the linear
system ėv = −(Λ⊗ In)ev with Λ Hurwitz since the graph is
connected; see Lemma 2, and the last item in Lemma 9 holds
under Assumption 4. �

Proof of Lemma 7

Consider a periodic orbit Γε ⊂ Tρ, for some ρ ∈ (0, 1], gen-
erated by an αε-periodic solution to (18) denoted by x̄ε(t) :=
(xmε(t), evε(t)). Also, we let the αo-periodic solution to (17),
denoted by xmo(t), generating the periodic orbit γo introduced
in Assumption 4. We also let α̃ := αε− αo. Finally, we
introduce the following error coordinate x̃ = x̄− x̄ε.

In the coordinates x̃, we re-express system (18) as follows

˙̃x = A(x̄ε(t))x̃+ g(x̄ε(t), x̃), (48)

where

A(x̄ε(t)) :=


∂Fm

∂x>m

∂Gm

∂e>v

∂Ge

∂x>m
−1

ε
(Λ⊗ In) +

∂Ge

∂e>v


xm = xmε(t)
ev = evε(t),

g(x̄ε(t), x̃) := F̄ (x̄ε(t) + x̃)− F̄ (x̄ε(t))−A(x̄ε(t))x̃.

Note that g(x̄ε(t), x̃) is continuously differentiable in x̃, con-
tinuous in x̄ε(t), and we can find κ ∈ K (independent of ε
since Γε ⊂ Tρ ⊂ Tρ=1) such that

|g(x̄ε(t), x̃)| ≤ κ(x̃)|x̃|. (49)

To prove the lemma, we follow the following steps:

1) We start re-describing (48) using the new time scale τ :=
αo

αε
t, which gives us

x̃′ :=
dx̃

dτ
=
αε
αo
A

(
x̄ε

(
αε
αo
τ

))
x̃

:= A1 (x̄1(τ)) x̃+

(
αε
αo

)
g (x̄1(τ), x̃ε) ,

where

A1(·) :=
αε
αo
A(·) and x̄1(τ) := x̄ε

(
αε
αo
τ

)
.

2) Next, we re-express A1(x̄1(τ)) as

A1(x̄1(τ)) = A (x̄o(τ)) + ∆1(x̄1(τ), x̄o(τ), ε, ρ, α̃),
(50)

where x̄o(τ) := (xmo(τ), 0) and

∆1(x̄1(τ), x̄o(τ), ε, ρ) :=

A1(x̄1(τ))−A1(x̄o(τ)) +

(
α̃

αo

)
A(x̄o(τ)).

Furthermore, we show that

lim
(ρ,ε,α̃)→(0,0,0)

|∆1(x̄1(τ), x̄o(τ), ε, ρ, α̃)| = 0

∀τ ∈ [0, αo]
(51)
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by following two steps.
• We first apply Tikhonov Theorem (see, e.g., [30, The-

orem 9.1]—see also [39, Remark 8]) on the singularly
perturbed system (18), to conclude the existence of
ε∗ > 0 and M > 0 such that, for each ε ∈ [0, ε∗],
the solution x̄ε(t) to (18) and the signal x̄o(t), with
xmo(t) solution to (17), satisfy

|x̄ε(0)− x̄o(0)| ≤ ρ =⇒ |x̄ε(t)− x̄o(t)| ≤Mρ

∀t ∈ [0, αε].
(52)

• Now, using (52), we conclude that, for each τ ∈ [0, αo],
we have

x̄ε

(
αε
αo
τ

)
= x̄o

(
αε
αo
τ

)
+O(ρ)

= x̄o(τ)−∆x̄o (τ, ε, α̃) +O(ρ),

where

∆x̄o
(τ, ε, α̃) := x̄o

(
αε
αo
τ −

(
α̃

αo

)
τ

)
− x̄o

(
αε
αo
τ

)
.

Under Item (i) in Lemma 2, there exists Mρ > 0 such
that, for each τ ∈ [0, αo], we have

|∆x̄o (τ, ε, α̃)| ≤ sup
0≤t≤αε

| ˙̄xo (t)| |α̃|

≤ sup
0≤t≤αε

∣∣F̄ (x̄o(t))
∣∣ |α̃|

≤Mρ |α̃| ,

where, for x̄o(t) := (xm(t), 0), we have

F̄ (x̄o(t)) :=

[
Fm(xm(t)) +Gm(xm(t), 0)

Ge(xm(t), 0)

]
.

As a result, since both x̄1(τ) and x̄o(τ) are αo-
periodic, we conclude that

lim
(ρ,ε,α̃)→(0,0,0)

|x̄1(τ)− x̄o(τ)| = 0 ∀τ ≥ 0. (53)

As a result, using (53) and Item (i) in Lemma 2, we
conclude that (51) holds.

3) Now, we decompose the matrix A(x̄o(τ)) as

A(x̄o(τ)) :=

[
∂Fm

∂x>m
(xmo(τ)) 0

0 0

]
+

1

ε
Aε(x̄o(τ)),

where

Aε :=

[
0 0

0 −Λ⊗ In

]
+ ε

 0
∂Gm

∂e>v
∂Ge

∂x>m

∂Ge

∂e>v


xm = xmo(τ)
ev = 0.

Under Lidskii-Vishik-Lyusternik Theorem [47, Theo-
rem 2.1]—see also [39, Lemma 12]—we know that
Aε(x̄o(τ)) admits n eigenvalues of the form

λj(Aε(x̄o(τ))) = o(ε) ∀j = {1, 2, ..., n}.

Furthermore, we consider the non-singular matrix T (ε, τ)
transforming Aε(x̄o(τ)), as in [39, Lemma 13], into the
block-diagonal form

Jε(τ) :=

[
Λo(Aε(x̄o(τ))) 0n×n(N−1)

0n(N−1)×n Λ1(Aε(x̄o(τ)))

]
,

where Λo(Aε(x̄o(τ))) ∈ Rn×n is the representation of
Aε(x̄o(τ)) on the invariant spectral subspace correspond-
ing to {λj(Aε(x̄o(τ)))}nj=1. Similarly, Λ1(Aε(x̄o(τ))) ∈
Rn(N−1)×n(N−1) is the representation of Aε(x̄o(τ)) on
the invariant spectral subspace corresponding to the re-
maining eigenvalues.
Now, for ε > 0 sufficiently small, we use [52, Theorem
15.5.1]—see also [39, Lemma 14]—to conclude that the
transformation matrix T (ε, τ) is continuous. We also
conclude that T (ε, τ) is analytic (smooth) in ε. As a
result, for each τ ∈ [0, αo), we have limε→0 T (ε, τ) =
InN and

lim
ε→0

1

ε
Λo(Aε(x̄o(τ))) = 0,

lim
ε→0

[Λ1(Aε(x̄o(τ))) + (Λ⊗ In)] = 0.
(54)

4) At this point, we introduce the change of coordinates
x̃ε := T̂ (ε, τ)x̃, where T̂ is a continuously differentiable
non-singular approximation of T chosen according to
Lemma 10. In the new coordinates, (50) becomes

x̃′ε = T̂

[
∂Fm

∂x>m
(xmo(τ)) 0

0 0

]
T̂−x̃ε + T̂Aε(x̄o(τ))T̂−x̃ε

+
[
T̂∆1T̂

− +
˙̂
T T̂−

]
x̃ε +

(
αε
αo

)
T̂ g
(
x̄1(τ), T̂−x̃ε

)
.

The latter can be further expressed as

x̃′ε =

[
∂Fm

∂x>m
(xmo(τ)) 0

0 0

]
x̃ε +

Jε(τ)

ε
x̃ε

+ [T − InN ]

[
∂Fm

∂x>m
(xmo(τ)) 0

0 0

]
[T− − InN ]x̃ε

+
[
T̂∆1T̂

− +
˙̂
T T̂−

]
x̃ε

+ [T̂ − T ]A(x̄o(τ))[T̂− − T−]x̃ε

+

(
αε
αo

)
T̂ g
(
x̄1(τ), T̂−x̃ε

)
,

which allows us to write

x̃′ε =

[
∂Fm

∂x>m
(xmo(τ)) 0

0 1
εΛ1(Aε(x̄o(τ)))

]
x̃ε

+

[
1
εΛo(Aε(x̄o(τ))) 0

0 0

]
x̃ε

+ [T − InN ]

[
∂Fm

∂x>m
(xmo(τ)) 0

0 0

]
[T− − InN ]x̃ε

+
[
T̂∆1T̂

− +
˙̂
T T̂−

]
x̃ε

+ [T̂ − T ]A(x̄o(τ))[T̂− − T−]x̃ε

+

(
αε
αo

)
T̂ g
(
x̄1(τ), T̂−x̃ε

)
.

Finally, let
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A2(τ, ε) :=∂Fm∂x>m
(xmo(τ)) 0

0 (Λ⊗In)−[Λ1(Aε(x̄o(τ)))+(Λ⊗In)]
−ε

 ,

A3(τ, ρ, ε, α̃) :=

[
Λo(Aε(x̄o(τ)))

ε
0

0 0

]

+ [T − InN ]

[
∂Fm

∂x>m
(xmo(τ)) 0

0 0

]
[T− − InN ]

+
[
T̂∆1T̂

− +
˙̂
T T̂−

]
+ [T̂ − T ]A(x̄o(τ))[T̂− − T−],

hε(τ, x̃ε) :=

(
αε
αo

)
T̂ g
(
x̄1(τ), T̂−x̃ε

)
.

5) As a last step, applying Floquet Theory, we conclude
the existence of a non-singular αo-periodic matrix Po :
R≥0 → Rn×n and Bo ∈ Rn×n, such that

Ṗo(τ) + Po(τ)−
∂Fm(xmo(τ))

∂x>m
Po(τ) = Bo.

Now, using the change of coordinates y := P(τ)−x̃ε,
with

P(τ) := blkdiag
{
Po(τ), In(N−1)

}
,

we obtain

y′ = B(ε, τ)y + Ā3(τ, ρ, ε, α̃)y + P(τ)−hε (τ,P(τ)y) ,
(55)

where

Ā3(τ, ρ, ε, α̃) := P(τ)−A3(τ, ρ, ε, α̃)P(τ),

B(ε, τ) :=

[
Bo 0

0 (Λ⊗In)−[Λ1(Aε(x̄o(τ)))+(Λ⊗In)]
−ε

]
.

Note that Ā3 is continuous in its arguments and, using (51),
(54), and Lemma 10, we conclude that

lim
(ρ,ε,α̃)→0

|Ā3(τ, ε, ρ, α̃)| = 0 ∀τ ∈ [0, αo].

Furthermore, for the block-diagonal matrix B(ε, τ), we
use Assumption 4 and Lemma 3, to conclude that the
upper block Bo is Hurwitz. Moreover, the lower block
(Λ⊗In)−[Λ1(Aε(x̄o(τ)))+(Λ⊗In)]

−ε , for sufficiently small ε > 0,
has all its characteristic multipliers inside the unit circle since
Λ is Hurwitz and

lim
ε→0

[Λ1(Aε(x̄o(τ))) + (Λ⊗ In)] = 0 ∀τ ∈ [0, αo].

Finally, hε(τ, x̃ε) is continuous in τ and continuously differ-
entiable in x̃ε, and under (49), we can find κh ∈ K such that

P(τ)−hε (τ,P(τ)y) ≤ κh(|y|)|y| ∀τ ∈ [0, αo].

Hence, we can find ρ∗∗ > 0 and ε∗∗ > 0 such that, for
each ε ∈ (0, ε∗∗], the origin y = 0 for (55) is uniformly
exponentially stable on the set {y ∈ RnN : |y| ≤ ρ∗∗}.

Proof of Lemma 8

To establish the proof, we start analyzing the linearization
of (18) around the origin, which is given by

˙̄x = (Aε/ε)x̄,

where

Aε :=


0 0

0 −(Λ⊗ In)

+ ε


∂Fm

∂x>m
(0)

∂Gm

∂e>v
(0, 0)

∂Ge

∂x>m
(0)

∂Ge

∂e>v
(0, 0)


 .

After Lidskii-Vishik-Lyusternik Theorem, we know that Aε
admits n eigenvalues of the form

λj(Aε) = λj

(
∂Fm
∂x>m

(0)

)
ε+ o(ε) ∀j = {1, 2, ..., n}.

Furthermore, we consider the non-singular matrix T (ε) trans-
forming Aε, as in [39, Lemma 13], into the block-diagonal
form

Jε :=

[Λu(Aε) 0
0 Λs(Aε)

]
0n×n(N−1)

0n(N−1)×n Λ1(Aε)

 ,
where Λu(Aε) ∈ Rk×k is the representation of Aε on the
spectral subspace corresponding to the unstable eigenvalues
in {λj(Aε)}nj=1, Λs(Aε) ∈ R(n−k)×(n−k) is the represen-
tation of Aε on the spectral subspace corresponding to the
stable eigenvalues in {λj(Aε)}nj=1. Similarly, Λ1(Aε) ∈
Rn(N−1)×n(N−1) is the representation of Aε on the spectral
subspace corresponding to the remaining eigenvalues of Aε.

For ε > 0 sufficiently small, we use [52, Theorem 18.7.2]—
see also [39, Lemma 15]—to conclude that T (ε) is analytic
(smooth) in ε. As a result, we have

Λu(Aε) = ε

[
∂Fm
∂x>m

(0)

]
u

+ o(ε),

Λs(Aε) = ε

[
∂Fm
∂x>m

(0)

]
s

+ o(ε),

Λ1(Aε) = −(Λ⊗ In) +O(ε).

(56)

where
[
∂Fm

∂x>m
(0)
]
u
∈ Rk×k is a representation ∂Fm

∂x>m
(0) on

its unstable subspace and
[
∂Fm

∂x>m
(0)
]
s
∈ R(n−k)×(n−k) is a

representation ∂Fm

∂x>m
(0) on its stable subspace.

According to the aforementioned properties, we conclude
the existence of ε? > 0 such that, for each ε ∈ (0, ε?], the
origin is a hyperbolic equilibrium for (18). On the other hand,
following the notation of [39, Lemma 16], we conclude that

rs(Aε/ε) := {min |<(λj(Aε/ε))| : <(λj(Aε/ε)) < 0}

= rs

(
∂Fm
∂x>m

(0)

)
+O(ε),

ru(Aε/ε) := {min |<(λj(Aε/ε))| : <(λj(Aε/ε)) > 0}

= ru

(
∂Fm
∂x>m

(0)

)
+O(ε).

(57)
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Moreover, the forward and the backward overshoots of Aε/ε
satisfy

cs(Aε/ε) = cs(Aε) = cs(Jε) = cs (blkdiag{Λs(Aε),Λ1(Aε)}) ,
cu(Aε/ε) = cu(Aε) = cu(Jε) = cu(Λu(Aε)).

(58)
Using (56), we conclude that for ε∗ small enough, the forward
and backward overshoots (cu(Λu(Aε)), cs(Λs(Aε))) can be
chosen as

cs(Λs(Aε)) = cs

([
∂Fm
∂x>m

(0)

]
s

)
+ cs (Λ) ,

cu(Λu(Aε)) = cu

([
∂Fm
∂x>m

(0)

]
u

)
∀ε ∈ (0, ε∗].

Now, if we let

g(x̄) := F̄ (x̄)− (Aε/ε) x̄,

we conclude that g does not depend on ε and we can find
κ ∈ K such that

|g(x̄)| ≤ κ(|x̄|)|x̄|. (59)

As a result, under (57), (58), and (59), we conclude that,
for ε? > 0 sufficiently small, we can find γ > 0 and ∆ > 0
such that, for each ε ∈ (0, ε?], we have

cs(Aε/ε)γ

+ κ(γ)

(
cs(Aε/ε)

rs(Aε/ε)− µ(Aε/ε)
+

cu(Aε/ε)

ru(Aε/ε) + µ(Aε/ε)

)
∆

≤ ∆.

Hence, using [39, Lemma 16], Items (i) and (ii) in Lemma 8
follow with U := Bγ and r := γ/2.

To prove Item (iii), we apply Tikhonov Theorem—as in [39,
Lemma 9], see also [39, Remark 8]—to conclude that, given
T > 0, we can find ρ∗ > 0 and ε∗ > 0 sufficiently small and
M > 0 such that, for each ε ∈ [0, ε∗], the solution x̄(t) to (18)
and the signal x̄o(t) := (xmo(t), 0), with xmo(t) solution to
(17), satisfy

|x̄(0)− x̄o(0)| ≤ ρ∗ =⇒ |x̄(t)− x̄o(t)| ≤Mρ∗ ∀t ∈ [0, T ].

Now, we pick T > 0 as the largest time a solution xm(t) to
(17) starting from Γ1\Br takes to enter the ball Br/2. Such a
T > 0 always exists by definition of the set Γ1 and is finite
since the set Γ1 is compact. By taking ρ∗ = r

3M , we conclude
that |x̄(T )| must be inside Br.
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