
HAL Id: hal-03752315
https://hal.science/hal-03752315v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Robustness of On-line Learning Models on
Highly Noisy Data

Zilong Zhao, Robert Birke, Rui Han, Bogdan Robu, Sara Bouchenak, Sonia
Ben Mokhtar, Lydia Chen

To cite this version:
Zilong Zhao, Robert Birke, Rui Han, Bogdan Robu, Sara Bouchenak, et al.. Enhancing Robustness
of On-line Learning Models on Highly Noisy Data. IEEE Transactions on Dependable and Secure
Computing, 2021, 18 (5), pp.2177-2192. �10.1109/TDSC.2021.3063947�. �hal-03752315�

https://hal.science/hal-03752315v1
https://hal.archives-ouvertes.fr

Enhancing Robustness of On-line Learning Models
on Highly Noisy Data

Zilong Zhao∗, Robert Birke†, Rui Han‡, Bogdan Robu∗, Sara Bouchenak§, Sonia Ben Mokhtar§, Lydia Y. Chen¶
∗Univ. Grenoble Alpes, France {zilong.zhao, bogdan.robu}@gipsa-lab.fr

†ABB Research, Switzerland {robert.birke}@ch.abb.com
‡ Corresponding author: Beijing Institute of Technology, China {hanrui}@bit.edu.cn

§INSA Lyon, France {sara.bouchenak, sonia.benmokhtar}@insa-lyon.fr
¶TU Delft, Netherlands {y.chen-10}@tudelft.nl

Abstract—Classification algorithms have been widely adopted
to detect anomalies for various systems, e.g., IoT, cloud and
face recognition, under the common assumption that the data
source is clean, i.e., features and labels are correctly set. However,
data collected from the wild can be unreliable due to care-
less annotations or malicious data transformation for incorrect
anomaly detection. In this paper, we extend a two-layer on-
line data selection framework: Robust Anomaly Detector (RAD)
with a newly designed ensemble prediction where both layers
contribute to the final anomaly detection decision. To adapt to
the on-line nature of anomaly detection, we consider additional
features of conflicting opinions of classifiers, repetitive cleaning,
and oracle knowledge. We on-line learn from incoming data
streams and continuously cleanse the data, so as to adapt to the
increasing learning capacity from the larger accumulated data
set. Moreover, we explore the concept of oracle learning that
provides additional information of true labels for difficult data
points. We specifically focus on three use cases, (i) detecting 10
classes of IoT attacks, (ii) predicting 4 classes of task failures of
big data jobs, and (iii) recognising 100 celebrities faces. Our
evaluation results show that RAD can robustly improve the
accuracy of anomaly detection, to reach up to 98.95% for IoT
device attacks (i.e., +7%), up to 85.03% for cloud task failures
(i.e., +14%) under 40% label noise, and for its extension, it can
reach up to 77.51% for face recognition (i.e., +39%) under 30%
label noise. The proposed RAD and its extensions are general
and can be applied to different anomaly detection algorithms.

Index Terms—Unreliable Data; Anomaly Detection; Failures;
Attacks; Machine Learning

I. INTRODUCTION

Anomaly detection is one of the core operations for en-
forcing dependability and performance in modern distributed
systems [35], [51]. Anomalies can take various forms includ-
ing erroneous data produced by a corrupted IoT device or the
failure of a job executed in a datacenter [6], [7], [54].

Dealing with this issue has often been done in recent art
by relying on machine learning-based classification algorithms
over system logs [12], [15] or backend collected data [21],
[53]. These systems often rely on the assumption of clean
datasets from which the classifier learns to distinguish between
data corresponding to a correct execution of the system from
data corresponding to an abnormal execution of the latter (i.e.,
anomaly detection). As workloads at real systems are highly
dynamic over time, it is even more challenging to predict

anomalies that can not be easily distinguished from the system
dynamics, compared to the systems with static workloads.

In this context, a rising concern when applying classification
algorithms is the accessibility to a reliable ground truth for
anomalies [10]. Typically, anomaly data is manually annotated
by human experts and hence the generation of anomaly labels
is subject to quality variation, so-called noisy labels. For
instance, annotating service failure types for data centers is
done by operators of varying expertise.

However, standard machine learning algorithms typically
assume clean labels and overlook the risk of noisy labels.
Moreover, recent studies point out the increase in dirty data
attacks that can maliciously alter the anomaly labels to mislead
the machine learning models [11], [14], [19], [23]. As a
result, anomaly detection algorithms need to capture not only
anomalies that are entangled with system dynamics but also
the unreliable nature of anomaly labels.

Indeed, a strong anomaly classification model can be learned
by incorporating a larger amount of data. However, learning
from data with noisy labels can significantly degrade the
classification accuracy, even for deep neural networks [14],
[46], [52]. Such concerns lead us to ask the following question:
how to build an anomaly detection framework that can robustly
differentiate between true and noisy anomalies and efficiently
learn anomaly classification models from a succinct amount
of clean data. The immediate challenge of capturing the data
quality lies at the fact that label qualities are not directly
observable but only via anomaly classification outcomes that
in turn are coupled with the noise level in data labels.

We extend Robust Anomaly Detector (RAD) [54], a generic
framework that continuously learns an anomaly classification
model from streams of event logs or images that are subject
to label noise. The original design of RAD is composed of
two layers of learning models, i.e., a data label model and
an anomaly classifier. The label model aims at differentiating
the label quality, i.e., noisy v.s. true labels, for each batch of
new data and only “clean” data points are fed in the anomaly
classifier. The anomaly classifier predicts the event outcome
that can be divided in multiple classes of (non)anomalies,
depending on the specific use case. In this extension, we derive
three alternatives of RAD, namely, voting, active learning
and slim. These use additional information, e.g., opinions of

ar
X

iv
:2

10
3.

10
82

4v
1

 [
cs

.L
G

]
 1

9
M

ar
 2

02
1

conflicting classifiers and queries of oracles. We iteratively
update the prediction of historical windows such that weak
predictions can be continuously improved by the latest model.
Moreover, we propose an ensemble prediction strategy to
reconcile the prediction outcomes of the two models, namely
label model and anomaly classification model, instead of only
relying on classification model as [54]

To demonstrate the effectiveness of RAD, we consider three
use cases using open datasets: detecting 10 classes of attacks
on IoT devices [28], predicting 4 types of task failures for
big data processing cluster [37], [40], and recognising 100
most abundant celebrity faces [31]. Our results show that
RAD can effectively cleanse the data, i.e., selecting data with
clean labels, and result in better anomaly detection accuracy
per additional included streamed data, compared to classifiers
without continuous data cleansing. Specifically, under 40%
noise, RAD achieves up to 98.95%, 85.03% (comparing to
92.27% and 71.02% by anomaly classification model of no
selection on dataset) for detecting IoT device attacks and
predicting cluster task failures, respectively. If we implement
RAD Active Learning on cluster dataset with the same noise
level, the final accuracy could improve from 85.03% to
90.77%. For face image dataset, final accuracy of RAD Slim
under 30% noise achieves to 77.51% (comparing to 38.89%
of no selection on dataset). Furthermore, our study shows that
RAD is stable even when the noise is very strong. And if we do
not have many clean data at beginning to pre-train the model,
RAD Active Learning and RAD Active Learning Limited can
still perform very well from a very bad starting model.

The main contributions of this study can be summarized as
follows:

• We design an effective on-line anomaly detection frame-
work, RAD, consisting of a data selection and prediction
module that cater to a wide range of implementation
choices from regular machine learning models to deep
neural networks.

• We explore three novel data selection schemes: namely
voting, active learning, and active learning limit. These
can filter out the suspicious data and call upon experts
to cleanse the data based on the predicted uncertainty
from the quality model and classification model. We
combine the novel ideas of model disagreement and
active learning.

• We leverage the power of ensemble model prediction to
enhance the robustness of trained anomaly classifier by
incorporating the predictions of the label model used in
the data selection.

• RAD can be applied on multiple types of anomaly inputs,
i.e., server failure, IoT devices, and images. Specially,
RAD Active Learning can achieve remarkable accuracy
similar to the performance under no label noise.

The remainder of the paper is organized as follows. Sec-
tion III describes the motivating case studies. Sections IV and
V present the proposed RAD framework and the results of its
experimental evaluation, respectively. Section II describes the

related work. Finally, Section VI draws our conclusions.

II. RELATED WORK

Machine learning has been extensively used for failure de-
tection [9], [34], [36], [38], attack prediction [1], [3], [4], [24],
[25], [57], and face recognition [41], [44], [49]. Considering
noisy labels in classification algorithms is also a problem
that has been explored in the machine learning community
as discussed in [5], [13], [30].

The problem of classification in presence of noisy labels can
be organized into various categories according to, on the one
hand, the type of classification algorithm subject to noise, and
on the other hand, the techniques used to remove the noise.

Noisy labels have been studied for binary classification
where noisy labels are considered as symmetric (e.g., [26]) and
for classification with multiple classes where noisy labels are
considered as asymmetric, e.g., [32], [43]. For this paper, we
consider the problem of classification with multiple classes.
Furthermore, noisy labels have been considered in various
types of classifiers KNN [50], SVM [2], and deep neural
networks [47]. In the context of this paper, our proposed
approach is agnostic to the underlying classifier type as noise
removal is performed ahead of the classification.

Various techniques explore countering label noise following
two main strategies. The first strategy trains a single model as
filter for noisy label data. [1], [20], [27], [48] train a separate
filter from clean data for distinguishing noisy labels. Instead
[45] trains on the original data (with noise). Training the filter
with clean data is better, but the assumption of large quantity
of clean data does not always hold, especially in our on-line
learning scenario. Using noisy data to train a filter raises a
chicken-and-egg dilemma [13], since: 1) good classifiers are
necessary for filtering but 2) learning from noisy label data
may precisely produce poor classifiers.

The second strategy relies on voting based algorithms to
mitigate possible biases stemming from a chosen single filter.
[8], [22], [29] simultaneously train several classifiers directly
on the original data. Afterwards, they use either majority vote
(i.e. classify a sample as mislabeled if a majority of classifiers
misclassified it) or consensus vote (i.e. classify a sample as
mislabeled if all classifiers misclassified the sample) to filter
noisy data. There are similarities between these algorithms and
our RAD Voting and RAD Active Learning. However, these
solutions focus on static datasets and the off-line setting. They
do not consider the learning efficiency and training limitation
for on-line scenarios. Since the interval between data batches
can be short, we need to ensure the training and inference
times per batch are as short as possible. The two models
in our RAD are connected in cascade. Only data instances
deemed uncertain by the first model get to be predicted twice.
Off-line voting methods instead need to process each data
record multiple times, once for each classifier trained by the
algorithm. [22] trains two neural networks on top of the
classification model. In image classification, training three big
CNNs can be hardware-impossible on many devices or very
slow and not suitable for on-line learning.

(a) Use case of IoT thermostat device attacks (b) Use case of Cluster task failures (c) Use case of Face Recognition

Fig. 1: Impact of noisy data on anomaly classification

Using active learning in data cleaning has been explored
in pattern recognition research. [16] proposes to define an
information criteria function for patterns (data instances). If
the information value is below a given threshold, the pattern
can be used by the learning algorithm. Otherwise, the pattern
is sent to a human expert for checking. The idea is similar
to our active learning method, but we go one step beyond
by limiting the number of expert queries and proposing an
uncertainty-based ranking in RAD Active Learning Limited
and RAD Slim Limited. Only the most valuable instances are
thus selected to expert cleansing.

III. MOTIVATING CASE STUDIES

To qualitatively demonstrate the impact of noisy data on
anomaly detection, we use three case studies.

• Detecting IoT device attacks from inspecting network
traffic data collected from commercial IoT devices [28].
This dataset contains nine types of IoT devices which
are subject to 10 types of attacks. Specifically, we focus
on the Ecobee thermostat device that may be infected by
Mirai malware and BASHLITE malware. Here we focus
on the scenario of detecting and differentiating between
10 attacks. It is important to detect those attacks with high
accuracy against all load conditions and data qualities.

• Predicting task execution failures for big data jobs
running at a Google cluster [37], [39]. This trace contains
a month-long job execution records from Google clusters.
Each job contains multiple tasks, which can be terminated
into four different states: finish, fail, evict, or kill. The
last three states are considered as anomalous states.
To minimise the computational resource waste due to
anomalous states, it is imperative to predict the final
execution state of task upon their arrivals.

• Recognizing celebrity faces from photos of the Face-
Scrub dataset [31]. The set is a collection of photos of
celebrities roughly half female and half male. The task is
to recognize faces by matching each photo to the identity
of the celebrity shown on it. Here we focus on the face
recognition of the 100 celebrities with the highest number
of photos in the dataset totalling to 12K images. Faces are
widely used in biometric identification systems in many
security applications, e.g., access control. This makes

the robustness of such systems critical. Furthermore, this
image dataset is studied because we want to show the
broad applicability of our proposed framework.

The details about data definition, and statistics, e.g., num-
ber of feature and number of data points, can be found
in Section V-A. To recognize anomalies/faces in each use
case, related studies have applied different machine learning
classification algorithms, from simple ones, e.g., k-nearest
neighbour (KNN), to complex ones, e.g., deep neural networks
(DNN), under scenarios with different levels of symmetric
label noise. Noisy labels are corrupted with equal probability
to all classes except the true one. Here, we evaluate how
the detection accuracy changes relative to different levels of
noises. We focus on off-line scenarios where we split the data
in a training set affected by label noise and a clean evaluation
set. Due to our focus on resistance to noisy labels, we repeat
experiments by regenerating the noise while keeping the model
initialisation constant.

A. Anomaly Detection

Classification models are learned from 14,000 training
records and evaluated on a clean testing set of 6,000 records.
We specifically apply KNN, nearest centroid and multilayer
perceptron (MLP) (a.k.a feed-forward deep neural networks)
on both the IoT device attacks and the cluster task failures.
We repeat all experiments 10 times1. Fig. 1a and Fig. 1b
summarize the accuracy results.

One can see that noisy labels clearly deteriorate the de-
tection results for both IoT attacks and task failures, across
all three classification algorithms. For standard classifiers, like
KNN and nearest centroid, the detection accuracy decays faster
than MLP which is more robust to noisy labels. Such an
observation holds for both use cases. For IoT attacks, MLP
can even achieve a similar accuracy as the no label noise case,
when 40% of label classes are altered. Moreover, the impact of
noise depends also heavily on the specific sequence of label
noise. Corrupting the labels of some samples has a higher
impact than corrupting others. As a consequence the curve
is highly unstable with large variances and leads sometimes
to counter intuitive results of non monotonic impact of noise

1 To verify and reproduce the results the code is available at https://github.
com/zhao-zilong/MotivationCaseStudies

https://github.com/zhao-zilong/MotivationCaseStudies
https://github.com/zhao-zilong/MotivationCaseStudies

(a) Original data (b) 100% noisy label data

Fig. 2: Example of training under 100% label noise.

level on accuracy. An example is given by the nearest centroid
results on the cluster task dataset. Even across 100 runs the
mean accuracy at 30% noise is slightly lower than the mean
accuracy at 40% noise.

B. Face Recognition

For face recognition we use a subset of our complete dataset
(which contains 100 celebrities). The subset contains 2,639
images from 20 celebrities with varying degrees of label noise
as training set and 665 clean images as testing set. Due
to the complex features of image data, we use a MLP and
convolutional neural networks (CNN). Specifically we use a
small VGG [42] with 6 convolutional layers. We repeat MLP
experiments 10 times, and VGG experiments 3 times due to
the higher training complexity. Fig. 1c shows the accuracy
results under different label noise levels. Similar to previous
use cases, one can observe that label noise strongly affects the
performance of both classifiers. The accuracy degradation is
approximately linear with the noise level. VGG outperforms
MLP in this dataset under all noise levels except 100%
corrupted labels.

Although it is rare to encounter a dataset with 100% noisy
labels, it is still an interesting scenario to study. Almost all
accuracy curves in Fig. 1 reach near 0% under 100% noise.
This can be counter intuitive as illustrated by the following
example. If the dataset contains K balanced classes, one might
think that it should be possible to obtain an accuracy of 1

K
just by guessing. However training on 100% noisy label data
is worse than random guessing. We illustrate this via a simple
example with three classes, A, B and C, and 10 samples per
class. Fig. 2a shows the original sample distribution. Fig. 2b
shows the sample distribution with 100% label noise. Since
all labels are corrupted, each original cluster only contains
labels of wrong classes. If we train a machine learning model
(e.g., KNN with k = 5) on this noisy label data, we learn
a wrong model which can misclassify any data point. See
the highlighted points P1, P2 and P3 in Fig. 2b as examples.
Training on 100% noisy label data is hence worse than zero-
knowledge guessing because fully corrupted data can mislead
the learning process.

We fix the model initialization and regenerate the noisy
data across experiment runs. The randomness of the results
only stems from the noise injected into the data labels used
for training. Before choosing this setting, we run preliminary
experiments with different types of randomness. Fig.3 shows

(a) IoT attack (b) Face recognition

Fig. 3: Impact of model vs. noise randomness across runs.

the results on the IoT attack and Face recognition datasets
using MLP and VGG, respectively. It compares: Fixed-Model
initialization with regenerated noise – our setting throughout
the paper; Fixed-Noise with random model initialization; and
Double-Random with regenerated noise and random model
initialization. Both cases show significant overlaps between
the three types of randomness, especially for MLP. Due to
the lower number of runs (3 against 10) and higher model
complexity, the VGG results are slightly more dispersed.
Neither case shows significant impact of the randomness type
on the results. As our study focuses on the influence of noisy
label data, we choose Fixed-Model for the remainder of the
paper.

The above three experiments clearly show that under the
presence of noisy label data, all models are progressively de-
graded. These cases motivate us to design the RAD framework
and its extension to counter the influence of noisy label data
on the learning process.

IV. DESIGN PRINCIPLES OF RAD FRAMEWORK

In this section, we introduce the system model followed
by the general structure of RAD and its extended features
with respect to data selection and model prediction – ensemble
prediction. All used symbols are summarized in Table I.

A. System Model

We consider a dataset that consists of several data instances.
Each data instance has f features. Each data instance belongs
to a class k, where k ∈ K = {1, . . . ,K}. Data instances are
part of a pre-labeled dataset D with labels Y used for training.
Furthermore, a labeled data instance is either correctly labeled
(i.e., clean data instance), or incorrectly labeled (i.e., noisy
data instance). We use the indicator variable q̂ to indicate
clean q̂ = 1 and dirty q̂ = 0 labels. Wrong labels can stem
from several reasons ranging from subjectivity and data-entry
errors, to malicious error injection. The quality of a dataset
D is measured as the percent of clean labeled data instances,
denoted here as Q̃.

Data instances arrive at the learning system continuously
over time in batches. Di denotes the batch of labeled data
arriving at time ti and having labels Yi. In general we denote
the time window with the subscript i. We assume that a small
initial batch of data instances D0 has only clean labels, that is
Q̃0 = 100%. Subsequent batches, include varying proportions
of noisy labels, i.e 0 < Q̃i < 100%, i > 0. For simplicity we

TABLE I: Symbol description

Symbol Description

L label quality predictor
C anomaly detection classifier
Di ith training data batch
D∗

i ith cleansed data batch from L
Pi ith test data batch
Ŷi prediction of ith test data batch from C

Q̃i percent of clean labeled data of ith batch
Ui “unclean” data of ith batch determined by L
U∗
i ith cleansed data batch from C
Si “unclean” data of ith batch determined by C
S∗i data with true label from Expert of ith batch
p̂ indicator of prediction, 1 for clean, 0 for dirty
q̂ indicator of prediction, 1 for clean, 0 for dirty
α accuracy on testing set

consider arriving batches of equal size, ∀Di, |Di| = N , but
not necessarily at regular times.

A classification request consists of a batch of non-labeled
data instances Pi for which the classifier predicts the class k
of each data instance. At each batch arrival, the classification
output Ŷi is thus an array of the predicted classes for each
non-labeled data instance.

B. Design Overview of RAD

We propose the RAD learning framework. Its objective is
threefold:
(1) Learn accurate models from noisy data.
(2) Continuously update the learned models based on new

incoming data.
(3) Propose a general approach that fits to different machine

learning algorithms and different application use cases.
RAD is composed of two key steps: training data selection

and class prediction, as shown in Fig. 4. Training data selection
focuses on how to filter out suspicious noisy data instances
and solicit clean data to subsequently train the classification
model. It has four options: basic, voting, active and slim. The
class prediction uses different prediction techniques. Available
options are ensemble, which combines the prediction outcomes
of quality and classification models; and slim, which has
only one model to filter and classify anomalous images. We
consider the following specific combinations: (i) basic, voting,
and active are followed by the ensemble prediction; (ii) slim
is followed by the slim prediction, which only uses one model
to save computation resources.

Fig. 5 describes the overall architecture of RAD training
data selection. it comprises two main components. A label
quality model L mainly aims at discerning clean labels from
dirty labels and a classifier model C targets the specific
classification task at hand. But both models are used for the
ensemble predictions, described in Sec. IV-B3.

RAD follows a generic approach since the proposed classi-
fication framework can be used with any supervised machine
learning algorithm, such as SVM, KNN, random forest, nearest
centroid, DNN, etc. Moreover, RAD can be applied to a

Fig. 4: Structures of RAD and its extensions: four choices of
data selection and two choices of class prediction.

Fig. 5: RAD training data selection framework. Each block is
a machine learning algorithm. Data used to train is represented
by colored arrows from the top. The flowchart is iterated
at every batch arrival with new labelled and unlabelled data
coming in (black arrows on the left). The labelled training data
for C is cleansed based on the label quality predicted by L.

large spectrum of different applications where noisy data
are collected and must be cleansed before used to train the
classification model. Examples are the failure detection, attack
diagnosis and face recognition illustrated in Section V.

1) Data Selection Scheme: The first component of RAD
aims to select clean data instances from D through the
quality model. The objective of the label quality model is to
select the most representative data instances to train a strong
classifier model. It solicits data instances with clean labels,
avoiding the pitfall that the classifier overfits to the noise. RAD
uses supervised-learning algorithms to continuously train the
label quality model from accumulated predicted clean data
instances, to build a strong classifier.

We term the following selection procedure as basic, that
is the default data selection scheme of RAD which requires
no addition history data lookup nor involvement of human
experts. Li−1 is the label quality model that is trained with
data instances received up to time ti − 1, that is D0 . . .Di−1.
Upon the arrival of a new batch of data instances Di at time
ti, we use the currently learned label quality model Li−1

to predict the label quality q̂ for each data instance in Di

by comparing the given k and predicted class k̂Li . If they
coincide, we consider the label as clean q = 1, otherwise as

Fig. 6: Ensemble Prediction.

dirty q = 0. Then we build D∗
i as the subset of data instances

from Di with q = 1 and discard the instances with q = 0.
This data flow is summarized in Algorithm 2.

2) Generic Approach to Handle Dynamic Data: The sec-
ond component of RAD is the data classifier C, whose
input data has dynamic noise ratios. Ci is trained on all
predicted clean data instances D∗ received until time ti,
that is D∗

0 . . .D∗
i. We assume that D0 contains only clean

data instances to kick-start the framework and use the label
quality model L0 . . .Li−1 to cleanse D1 . . .Di and produce
D∗

1 . . .D∗
i. Thus, the RAD framework uses the batch-by-

batch updated data label quality model to enrich the training
data of the classification model.

3) Prediction Techniques: Fig. 6 shows the structure of
ensemble prediction, which combines the prediction outcomes
of both the quality and classification models. The combined
decision leverages the confidence from the output probability
vectors and the test accuracy of both models from the previous
training epoch. If the predictions of the two models coincide,
the common prediction is used. If not, we use the prediction
of the model having higher confidence. As for the confidence
measure, we use the class probability from the output vector
multiplied by the test accuracy of the last epoch. We provide
the details in Algorithm 1.

An alternative prediction technique is slim implemented
in RAD Slim, which relies on one single model for both
data selection and classification to save on the computation
overhead. We specifically apply RAD Slim on image data that
demands complex convolutional neural networks.

C. Extended Choices for Data Selection

In addition to the basic data selection scheme, we provide
three additional schemes, namely RAD Voting, RAD Active
Learning, and RAD Slim. Here, we explain their specific
pitfalls and opportunities.

1) RAD Voting: The base RAD uses distinctive goals for the
two models. However this approach biases the results towards
the label quality model L. We want the classifier model C to
also play a role in selecting clean data instances. We do this
via the voting extension shown in Fig. 7.

Comparing to the base RAD, predicted dirty labels having
q̂ = 0 are not discarded by L but passed to C as uncertain data
U . Then the classifier C further cleanses the uncertain data to
produce U∗. For each data instance in U we predict its class
k̂C using C and look for agreement with the given class k and
the class k̂L predicted by L. We add data instances to U∗ if

Algorithm 1 Ensemble Prediction
Input: Test data Pi, label quality model Li, classification

model Ci, testing accuracy αLi−1 of Li−1 and αCi−1 of Ci−1.
Conv(): convert probability vector to class. Max(): return
maximum value in a vector.

Output: Predicted labels Ŷi
1: Get predicted labels for Pi by Li (Y LP

i) and Ci (Y CP

i).
Both have length |Pi| where each element is a vector with
probabilities for each of the K classes summing to 1.

2: Initialize an empty Ŷi of length |Pi|
3: for j ∈ {1, 2, . . . , |Pi|} do
4: if Conv(Y LP

i [j]) = Conv(Y CP

i [j]) then
5: Ŷi[j] ← Conv(Y CP

i [j])
6: else
7: if αCi−1×Max(Y CP

i [j]) > αLi−1×Max(Y LP

i [j])
then

8: Ŷi[j] ← Conv(Y CP

i [j])
9: else

10: Ŷi[j] ← Conv(Y LP

i [j])
11: end if
12: end if
13: end for
14: return Ŷi

Fig. 7: RAD - Voting.

either k̂C equals k, or if k̂C equals k̂L. In the latter we replace
the given class by the predicted class.

Batches of data instances not added to U∗
i at time ti are not

immediately discarded but kept in a batch Si of inactive data.
The idea is that since the accuracy of the classifier improves
over time (see Section V-C), we can use the new classifier to
re-evaluate old batches of inactive data and further increase
the training data. More in detail we maintain a list Linac

of the batches of inactive data Si. After we finish training
a new classifier, we select r batches from Linac with the
largest number of inactive data and re-process them via the
voting system. See more details in Algorithm 2. The number
of batches selected from Linac to re-process is a hyper-
parameter. It depends on the time between data batches and the
computational efficiency of the training. All training should

Algorithm 2 RAD, RAD Voting and RAD Active Learning
Input: Data batch Di with given labels Yi, label quality

model Li−1, classification model Ci−1, r reprocessed batches
Output: Li, Ci

1: Predict labels Y L
i for Di using Li−1.

2: Create D∗
i as subset of data points in Di where Yi[j] =

Y L
i [j] for j ∈ 0, ..., |Di|.

3: Li−1 sends D∗
i to Ci−1.

4: if Algorithm is RAD then
5: Retrain Li−1 and Ci−1 on all accumulated D∗

t t ∈ [0,i]
to get Li and Ci

6: return Li, Ci

7: end if
8: if Algorithm is RAD Voting or Active Learning then
9: Create Ui as subset of data points in Di where Yi[j] 6=

Y L
i [j] for j ∈ 0, ..., |Yi|.

10: Li−1 sends Ui (with given label Y U
i) and predictions

Y LU

i to Ci−1.
11: Predict labels Y CU

i for Ui using Ci−1.
12: if Algorithm is RAD Voting then
13: Create U∗

i as subset of data points in Ui where:
for j ∈ 0, ..., |Ui|:

i) Y U
i [j] = Y CU

i [j], or
ii) Y CU

i [j] = Y LU

i [j], update Y U
i [j]← Y CU

i [j].
14: Ci−1 sends U∗

i to Li−1.
15: Create Si ← Ui \ U∗

i .
16: Add Si to inactive data list Linac[i].
17: Select set r batches with highest |Linac|. Save
18: indexes in R.
19: Repeat steps 1-16 for each batch with index h in
20: R. Use them to update Dh∗, U∗

h , and Sh.
21: Retrain Li−1 and Ci−1 on all accumulated D∗

t ,U∗
t

t ∈ [0, i] to get Li and Ci

22: return Li, Ci

23: end if
24: if Algorithm is RAD Active Learning then
25: Create U∗

i as subset of data points in Ui
where Y U

i [j] = Y CU

i [j] for j ∈ 0, ..., |Ui|.
26: Ci−1 sends U∗

i to Li−1.
27: Create Si ← Ui \ U∗

i .
28: Send Si to Expert. Expert corrects labels and

returns S∗
i .

29: Retrain Li−1 and Ci−1 on all accumulated D∗
t , U∗

t

and S∗
t t ∈ [0, i] to get Li and Ci.

30: return Li, Ci

31: end if
32: end if

be finished before the arrival of the next data batch. In our
experiments we set r = 2.

2) RAD Active Learning: In RAD Voting we use C and L to
correct labels and increase the overall amount of data used for
training aiming to improve the framework accuracy. However
still not all data is used. To increase further the amount of

training data we resort to active learning, i.e., we ask an expert
for the true class of the data instances we are least certain.

Fig. 8 shows the structure of RAD Active Learning. The
difference with RAD Voting is that in RAD Active Learning
we do not use the predictions from two models to correct the
labels, and we do not send the most uncertain data instances
to the inactive list but to an oracle to ask for the true label.
In RAD Active Learning, potentially every data instance will
be used to train L and C and there is no inactive data
anymore. In practice, consulting an oracle for every single
uncertain data instance might be too expensive. In RAD Active
Learning Limited we additionally impose a configurable limit
Nlim on the number of data instances sent to the expert
at each batch arrival. When the number of filtered out data
instances exceeds Nlim, two lists are created: RLdistance

and RLstd. Both measure the uncertainty of data instances.
RLdistance ranks instances in a decreasing order based on
the euclidean distance between the corresponding prediction
probability vectors of C and L. RLstd ranks instances in an
increasing order based on the summed standard deviations of
the corresponding prediction probability vectors of C and L.
We alternatively select the top instance from each list until we
have Nlim instances. Common instances between the two lists
are selected only once. We also implement experiments that
only sample data from RLdistance or RLstd, but the results are
worse. Due to the page limit, we omit the presentation here.
Current method leverages both the different opinions from the
two models, and the uncertainty of each model. We call this
the Highest Uncertainty Method.

Fig. 8: RAD - Active Learning.

3) RAD Slim: The RAD framework requires two models.
Depending on the complexity of the models used, he cost of
training might be excessive. Especially in scenarios relying on
complex deep neural networks, such as Convolutional Neural
Networks (CNNs) for image classification, it might be too
expensive and time consuming to train two models. To reduce
the computational cost we propose a slimmed version of RAD
Active Learning named RAD Slim. The idea is to partially
delegate the role of the label quality L model to the oracle.

In RAD Slim new data batches arrive directly at the C
model, see Fig. 9. For each data instance we compare the given
label k to the predicted label k̂C. If they are the same we add

Fig. 9: RAD Slim.

it to D∗. If they differ we ask the oracle for the true label and
add the answer to S∗. To train the model Ci−1, we use only
current D∗

i plus S∗i , not all the accumulated cleansed data as
before. Considering computational cost, one pair of D∗

i and
S∗i will be used to train the model for 60 epochs. Optionally
as before, we can impose a query limit, termed RAD Slim
Limited. We query experts for the Nlim data instances with
highest uncertainty ranked by decreasing cross-entropy loss
between given label and prediction probability vector made
by C. We call this the Highest Loss Method.

V. EXPERIMENTAL EVALUATION

In this section, we implement RAD, RAD Voting and RAD
Active Learning on IoT and Cluster datasets and report the
evolution of learning accuracy under 30% and 40% noise level.
For RAD, impact of noise level on final accuracy is discussed
in Sec. V-D. For RAD Voting, analysis on percentage of active
and active-truth data changing over time is carried out in
Sec. V-G. RAD Active Learning and its small update RAD
Active Learning Limited are explained in Sec. V-H. The im-
pact of the initial data batch size |D0| on the above frameworks
is studied in Sec. V-I. To demonstrate the applicability of
the framework to image dataset, RAD Slim and RAD Slim
Limited are studied in Sec. V-J.

A. Use Cases and Datasets

In order to demonstrate the general applicability of the
proposed RAD framework for anomaly detection, we consider
the following three use cases: (i) Cluster task failures, (ii) IoT
botnet attacks and (iii) Face recognition. In our experiments,
we use real data collected in cluster and IoT platforms and
faces from real celebrity images.

The cluster task traces comprise data instances each cor-
responding to a task with 27 features capturing information
related to static and dynamic system states, e.g. the task
start/end times, the task resource utilisations, the hosting
machine, etc. Each class is labeled based on its scheduling
state. A detailed description of the features and labels can
be found in [37]. In particular, we are interested in the four
possible termination classes: finish, fail, evict, or kill. We filter
out other classes. The resulting class distribution is dominated
by successful tasks (finish) 77.8%, followed by kill 22.0%, fail
0.2%, and evict <0.1%. Similar to [39], we aim to predict the
task outcome to reduce the resource waste and improve the
overall scheduling and system performance, e.g., in case of
lack of resources and the need to kill a task, help choosing the

task with the least probability to succeed. We apply RAD to
continually train a noise-resistant model for better accuracy.
For this dataset we report the F1-score in addition to the
accuracy due to the high class unbalance.

The IoT dataset comprises data instances describing 23
network packet-level statistics recursively computed over five
different time scales totalling to 115 features. This traffic
statistics are collected during normal operation, labeled as
benign, or under one of ten different malicious attacks stem-
ming from devices infected by either the BASHLITE or Mirai
malware. All the classes are evenly distributed in the training
and test dataset. Malicious traffic covers mainly scanning for
vulnerable devices and various flooding attacks. The dataset
provides traces collected at different IoT devices. More details
are provided in [28]. We aim to apply RAD to build a noise-
resistant model to categorize the attacks for post fact analysis,
e.g., for threat assessment.

The FaceScrub [31] dataset is used for face recognition.
Original FaceScrub contains more than 100,000 face images
of 530 people, with about 200 images per person. Male and
Female images are almost equal. We use a subset of 15K Face-
Scrub images to fit the limits of our compute resources. The
15K images cover the 100 people, 55 males and 45 females,
with the highest number of images. On average each person
(class) has 150 images with a standard deviation of 8.4 images.
We use 12K images as training and 3K as test data. Training
and test datasets have the same data distribution. FaceScrub
images were retrieved from the Internet and are taken under
real-world situations (uncontrolled conditions). We resize all
images to 64x64 pixels. Name is the only annotation we use.
Face recognition systems have been widely used in security
equipment. We apply RAD Slimmed to FaceScrub dataset to
show that our framework can also help to build robust face
recognition models.

The main dataset characteristics are summarized in Table II.

TABLE II: Dataset description

Use case Cluster task
failures

IoT device
attacks FaceScrub

#trainig data 60,000 33,000 12,000
#test data 6,000 6,000 3,000
#classes K 4 11 100
#features f 27 115 64*64
data batch size 600 300 2400
|D0| 6,000 6,000 2400

B. Experimental Setup

RAD is developed in Python using scikit-learn [33]. The
main performance evaluation metric is accuracy. All results
are averaged across three runs.

Noise. We inject noise into the two datasets by exchanging
the true label of data instances with erroneous one. The label
noise is symmetric, i.e., following the noise completely at
random model (NCAR) in [13] where a label is picked with
equal probability from all classes except the true one. The
noise level Ỹ represents the percentage of data instances with

(a) With data noise level of 30% (b) With data noise level of 40%

Fig. 10: Evolution of learning over time – Use case of IoT thermostat device attacks. Opt Sel and No Sel stand for optimal
data selection and no filtering, respectively. C, L, and Ens denote the model or strategy chosen for prediction.

(a) With data noise level of 30% (b) With data noise level of 40%

Fig. 11: Evolution of learning over time – Use case of Cluster task failures

noisy labels. We assume that all data is affected by label noise,
except D0 and the testing data. We regenerate the noise at each
experiment run.

Continual learning. We start with an initial data batch
of 6000 data instances for the Cluster task failures and the
IoT devices dataset. Then, data instances arrive continuously
in batches of 600 (Cluster) and 300 (IoT) data instances.
To kick-start the label and classification models in RAD we
assume first batch contains only clean data, and subsequent
data batches are affected by noise. We select 6000 clean data
instances as the test dataset for both use case. Test dataset will
be used at the end of each epoch to evaluate the accuracy of
the trained classification models. We show the evolution of the
model accuracy over data batch arrivals until the performance
of RAD converges.

Label model. We use a multilayer perceptron to mainly
assess the quality of each label, it will also be used to
join the ensemble prediction. We fix the model initialization
across experiment runs. For IoT and Cluster dataset, the neural
network consists of two layers with 28 neurons each. The
precision and robustness of the label model are critical to filter
out the noisy labels and provide a clean training set to the
classification model. We considered different models. Neural
networks provided the best results in terms of accuracy and
stability over time. Adaboost gave excellent accuracy when
training from the initial data with ground truth, but it is too
sensitive to label noise. Random forest is also known to be

robust against label noise [13], however its accuracy was below
the neural network one.

Classification model. We use KNN to jointly do ensemble
prediction with label model. For the extensions RAD Voting
and RAD Active Learning, classification model will also play
a role as label model to assess the quality of the data. We
set the number of neighbours to five in KNN. Higher values
can increase the resilience of the algorithm to residual noise,
but also induce extra computational cost. The current choice
stems from good results in preliminary experiments.

Slimmed framework. For the face recognition task we use
RAD Slim. In this case we use a 110-layers ResNet [18] as
classification model. ResNet is a type of CNN architecture
which introduces residual functions to alleviate the vanishing
gradient problem in training deep neural networks improving
the classification performance and model convergence. We use
a fixed model initialization across experiment runs.

Baselines. The proposed RAD is compared against fol-
lowing baseline data selection schemes: 1) No-Sel, where all
data instances of arriving batches are used for training the
classification model; 2) Opt-Sel which emulates an omniscient
agent who can perfectly distinguish between clean and noisy
labels, and only use clean data to train the models; and,
3) IDS: the intrusion detection system from [1]. The main
idea and structure of IDS are similar to the proposed RAD.
The differences are: i) IDS only trains label quality model
with D0 once without continuous updated; and, ii) IDS only

(a) IoT thermostat device attacks (b) Cluster task failures

Fig. 12: Impact of data noises on RAD accuracy

uses classification model for predictions, instead of combining
prediction results of quality and classification models. In
addition, we consider: 4) Full-Clean which simulates perfectly
recovered labels, i.e., all wrong labels have been correctly
identified and recovered by, e.g., an oracle. This represents
the ideal solution which provides all clean data in each data
batch. In the following, model names ending in ‘ C’ means
the predictions are obtained from the anomaly classification
model, ending in ‘ L’ means the predictions are obtained
from the label quality model, and ending in ’ Ens’ means the
predictions are obtained from both anomaly classification and
label quality model specified in Algorithm 1. No-Sel, Opt-Sel
and Full-Clean use all the data to independently train the label
quality and anomaly classification model. And Algorithm 1
is used to generate the final prediction. There is no filtering
process in these cases.

To compare with RAD Slim on image dataset, we introduce
two state-of-the-art approaches: 1) Forward [32] estimates
the noise transition matrix before training the model, and
subsequently uses this transition matrix for loss correction;
and 2) Co-Teaching [17] trains two deep neural networks
simultaneously to let them teach each other. For Forward, we
use the same network architecture as for RAD Slim, i.e. 110-
layers ResnNet. As Co-Teaching trains two models, we use
two 56-layers ResNet. To speed up model convergence for
RAD Slim, RAD Slim Limited, and Forward, we implement
the E (Exponential)/PD (Proportional-Derivative)-Control [55]
and Event-Based Control Learning rate [56] as learning rate
schedule based on stochastic gradient descent (SGD) opti-
mizer. Co-Teaching has its own learning rate scheduler.

C. Handling Dynamic Data

Fig. 10 and 11 show the evolution of the mean and vari-
ance of the classification accuracy achieved by RAD on the
thermostat and task failure datasets, respectively. Each figure
moreover presents results under two levels of label noise:
30% and 40%. We compare RAD against no selection (No-
Sel), optimal selection (Opt-Sel) and IDS. One can notice that
learning from all data instances without cleansing (i.e., No-
Sel curves) gives consistently lower accuracy in all cases.
For the task failure dataset, the accuracy even oscillates and
diverges. The performance of RAD is better: (1) the accuracy
does not diverge and (2) the accuracy consistently increases
until it converges. The end accuracies, under 30% and 40%

noise level, are all around 99% and 85% for the IoT attack
and cluster tasks datasets, respectively. For the first dataset,
the accuracy of RAD follows closely the ensemble prediction
accuracy of Opt-Sel. As for the second dataset, RAD follows
ensemble prediction of Opt-Sel at first but then converges after
30 data batch arrivals. Note that RAD gives also more stable
results as shown by shorter variance bars which in magnitude
are in line with the ones obtained by an ideal data cleansing.
For No-Sel the bars are significantly larger.

We note that ensemble prediction can greatly enhance the
learning outcomes in the presence of noisy data, compared the
prediction of solely the label quality or classification model.
Such an observation holds for the different data selection
schemes discussed in the subsequent sections. Due to space
limits, we skip the presentation of those results.

In summary: (i) continual learning is advantageous com-
pared to using only the initial dataset; however, (ii) continual
learning exposes to possible classification accuracy degra-
dation stemming from noisy labels if proper data selection
is lacking, (iii) RAD improves the classification accuracy
compared to taking all labels, (iv) the data selection of RAD
is good, and close to being optimal in some cases, and (v)
ensemble prediction can greatly enhance the robustness against
noisy data.

D. Evaluation of Noise Robustness of RAD

Next we investigate the impact of different noise levels on
the RAD performance in terms of classification accuracy.

Fig. 12a and 12b present the classification accuracy for
various levels of noise, ranging from 0% (all data are clean) up
to 90% for our two main reference datasets: IoT thermostat de-
vice attacks and Cluster task failures. All experiment settings
remain the same as before, only the noise level of training data
batches varies. Once again, the RAD performance is compared
to learning from all data (No-Sel) and an omniscient data
cleanser (Opt-Sel).

As illustrated in Section III, for No-Sel the noisier the
data are, the worse the classification accuracy, with ensemble
prediction, dropping to 20% and 52% for the Cluster and IoT
datasets, respectively. A decreasing trend can also be found
for RAD and Opt-Sel, however the drops are significantly
smaller: at most 5%. As there is by definition no noise in
Opt-Sel case, the decrease in classification accuracy is only
due to the reduction of the overall amount of clean data to
learn from. Since the data cleansing of RAD is not perfect,
the accuracy reduction is caused by noise pollution and overall
clean data reduction. Nevertheless, the impact is small and
any huge accuracy pitfall is avoided which results in RAD’s
performance being close to Opt-Sel. We can conclude that
RAD can limit the impact of the amount of noise across a
wide range of noise levels.

E. Analysis of All Datasets

Summary results are reported in Table III. One can see that
results of RAD are always better than IDS and No-Sel. For IoT
dataset with 40% noise, RAD is even better than any single

TABLE III: Final accuracy of all algorithms for the Cluster
task failures and IoT device attacks datasets on 30% and
40% noise level. Final F1-score is reported in brackets for
the Cluster dataset. All results are averaged across 3 runs.

Algorithm Cluster
(30%) IoT(30%)

Cluster
(40%) IoT(40%)

Full-Clean C 89.35(0.90) 98.28 89.35(0.90) 98.28
Full-Clean L 85.17(0.84) 90.87 85.17(0.84) 90.87
Full-Clean Ens 91.08(0.91) 99.83 91.08(0.91) 99.83
Opt-Sel C 87.68(0.87) 98.08 87.16(0.87) 98.06
Opt-Sel L 84.37(0.82) 90.81 84.18(0.83) 89.70
Opt-Sel Ens 87.88(0.87) 99.35 87.60(0.87) 99.25
No-Sel C 77.40(0.79) 95.47 71.02(0.74) 92.27
No-Sel L 83.54(0.82) 89.95 83.35(0.80) 89.57
No-Sel Ens 81.53(0.83) 98.06 74.92(0.79) 97.51

RAD 85.46(0.84) 99.01 85.03(0.83) 98.95
IDS 83.63(0.81) 97.83 83.31(0.81) 97.23

RAD Voting 86.01(0.85) 99.21 85.73(0.84) 99.07
RAD-AL1 90.84(0.90) 99.72 90.77(0.90) 99.58

RAD-AL-L2 90.00(0.90) 99.68 - -
PSO3 87.83(0.87) 98.85 - -
1. RAD-AL: RAD Active Learning
2. RAD-AL-L: RAD Active Learning Limited
3. PSO: Pre-Select Oracle

model of Opt-Sel. But there is still room for improvement
between RAD and Opt-Sel Ens. F1 scores are consistent with
accuracy results with few exceptions. Under the cluster dataset
and 30% noise, F1 score of No-Sel Ens is better than No-
Sel L and No-Sel C even if the accuracy is slightly worse
than No-Sel L. Under 40% noise, the accuracy of No-Sel Ens
is 8.43 points worse than No-Sel L, however the difference in
F1 score is only 0.01. This means that the accuracy difference
is mostly due to data unbalance.

The resilience to high levels of noise might be even more
important than the benefits of continual learning. Under such
levels, the classification accuracy without data cleansing di-
verges for all datasets. Even if it is rare to have noise levels of
90% or above, they might still happen for short time periods in
case of attacks to the auto-labelling system, e.g., via flooding
of malicious labels. Hence this property can be crucial for the
dependability of the auto-labelling system.

F. Limitation of RAD Framework

Though RAD works well for datasets of Cluster task failures
and IoT device attacks. We can still see the potential limita-
tions of this framework. For example: 1) the assumption of
availability of a small fraction of clean data which may not be
possible; 2) if data is coming at high rates, training two models
simultaneously instead of one can slow down the system; 3)
as the anomaly classifier receives only the data selected by the
label model, there is a risk that the classifier model overfits
to label model. To address these issues we devised the two
extensions presented in Sec. IV-C. These are evaluated in the
next subsections.

G. RAD Voting and History Extension

In the first extension we let both the label and classifier
models vote on the label quality and include the possibility to
recover instances from history to be evaluated as the model
performances improve over time.

We evaluate the accuracy of RAD Voting over time and
different noise levels in Fig. 13 and Fig. 14 for the IoT
thermostat and Cluster task failures, respectively. For the
IoT dataset, RAD Voting is better than any single model
of Full-Clean. For the Cluster dataset, RAD Voting does
not converge as RAD. Table. III summarizes and compares
the RAD Voting performance with others. We can see that
RAD Voting performance is always better than RAD. This
is because we correct labels in the RAD Voting algorithm,
which increases the number of training instances over RAD.
The F1-score results of the Cluster dataset are in line with the
accuracy results.

To better understand the different performance between the
two datasets we define A (called Hot) as the percent of data
used for training till time ti:

A =

∑i
k=1(|D∗

k|+ |U∗
k |)∑i

k=1 |Dk|
. (1)

Knowing the number of true clean labels used per batch CT
i ,

we further define AT (called Hot-Truth) as the percent of true
clean active data.

AT =

∑i
k=1 C

T
k∑i

k=1(|D∗
k|+ |U∗

k |)
(2)

In both formulas, we exclude the initial clean batch D0.
Intuitively, A tells how much of the incoming data we use
for training, and AT how clean the used training data is.

Fig. 15a and 15b plot A and AT using RAD and RAD
Voting over time for the IoT and Cluster datasets, respectively.
For the IoT dataset both A and AT improve over time with
RAD Voting, see Fig. 15a. This means that both the quantity
of active data, i.e. A, and the quality, i.e. cleanliness, of the
active data AT improve over time. For Cluster dataset, AT

of RAD Voting does not improve over time even though A
increases, see Fig. 15b. We attribute this to the fact that both
C and L predict the same wrong class and this class is used
to replace the original label of the data instance. Next we
compare the performance of RAD and RAD Voting. One can
see that RAD Voting includes more data into the training set
(higher A) than RAD, but the data is less clean (lower AT).
Overall since RAD Voting filters out less training data (final
A of RAD Voting is 27.74% and 39.07% higher than RAD for
the IoT and Cluster experiments, respectively), the difference
in AT is relatively small (final AT of RAD Voting is only
3.11% and 11.56% smaller than RAD for the IoT and Cluster
experiments, respectively). AT · A reflects the ratio between
clean label data used in training and the total received data.
Both RAD and RAD-voting receive the same amount of data
in every epoch. Therefore the higher AT ·A is, the more clean
label data is used in training. For both use cases, the final

(a) Iot data with noise level of 30% (b) Iot data with noise level of 40%

Fig. 13: Evolution of learning over time – Use case of IoT thermostat device attacks with RAD Voting and RAD Active
Learning (RAD-AL). Full clean means that no label noise is injected.

(a) Cluster data with noise level of 30% (b) Cluster data with noise level of 40%

Fig. 14: Evolution of learning over time – Use case of Cluster task failures with RAD Voting and RAD Active Learning

(a) IoT data with 30% noise (b) Cluster data with 30% noise

Fig. 15: RAD and RAD Voting: percentage of Hot data and
How-Truth it is.

AT · A of RAD Voting is higher than RAD. Intuitively RAD
Voting should be better than RAD and experiment results are
in line with this intuition.

H. RAD Active Learning

RAD Active Learning extends RAD with the ability of
asking an oracle to provide the true label for data instances
where the two models disagree. First we consider RAD Active
Learning with no limits on the number of oracle requests
followed by RAD Active Learning Limited which limits the
number of oracle interactions.

Fig. 13 and Fig. 14 show the performance of RAD Active
Learning (RAD-AL) for the IoT and Cluster datasets under
30% and 40% noise, respectively. The figures compare RAD
Active Learning to RAD Voting, No-Sel and Full-Clean. We
can see that RAD Active Learning is always better than RAD

Voting and almost as good as Full-Clean Ens across the two
different datasets and different noise levels. From the results
in Table III, we can observe that the result of RAD Active
Learning is extremely close to Full-Clean Ens who is the best
in every column. That shows that our training data selection
in RAD Active Learning is very accurate. Almost all noisy
data are filtered out for consultations to expert.

Consulting every single uncertain data instance with expert
might be too expensive or impossible in practice. Hence, we
consider RAD Active Learning Limited which limits the con-
sultations with experts. Here we limit the number of queries
per batch to 20% of the batch size. To illustrate the power
of our training data selection process, we introduce a new
comparison: Pre-Select Oracle. Pre-Select Oracle has the same
number of consultation to oracles as RAD Active Learning
Limited, but data instances are selected randomly before
training. Fig. 16 shows the results for IoT and Cluster datasets,
one can notice that the curve of RAD Active Learning Limited
(RAD-AL-L) increases along with RAD Active Learning and
largely outperforms Pre-Select Oracle. The accuracy difference
here is due to the uncertainty ranking used by the Highest
Uncertainty Method. From the result in Table III, one can
see that after imposing a query limit of 20%, RAD Active
Learning Limited reaches similar accuracy as RAD Active
Learning, and higher accuracy than RAD and RAD Voting.

(a) Iot data with noise level of 30% (b) Cluster data with noise level of 30%

Fig. 16: Comparison of RAD Active Learning Limited (RAD-AL-L) and Pre-Select Oracle, showing the power of selection.

I. Impact of Initialization

Here we study the impact on RAD and its extensions of
the size of the initial dataset D0. We vary the number of
initial clean data instances from 100 to 6000, and measure the
classification accuracy after 90 data batch arrivals. We consider
the Opt-Sel baseline since the No-Sel baseline is meant for the
framework configuration, not its performance evaluation.

Fig. 17a and Fig. 17b show the results for the IoT and
Cluster datasets, respectively. Opt-Sel Ens seems to perform
independent from the number of initial data instances (|D0|)
in Fig. 17a. This is due to the fact that after 90 batch arrivals
the amount of training data is sufficient for the accuracy to
converge. In Fig. 17b however, we can see that |D0| influences
the accuracy of Opt-Sel Ens. The model is yet to converge at
the end of learning, but the influence is clearly smaller than
that for RAD and RAD Voting. For these two models the size
of D0 matters more: the larger the better. At |D0| = 2000
their performances are similar to Opt-Sel Ens (less than 5%
difference) for IoT dataset, and at |D0| = 6000 they almost
overlap. RAD Voting outperforms RAD in both datasets under
all sizes of D0. This is because RAD Voting can correct data
labels and thus increase the number of training instances.
Finally, RAD Active Learning and RAD Active Learning
Limited (20% limit) do not depend on the size of D0, since
they can ask the oracle for the label of uncertain data instances.

This justifies our earlier choice of D0 having 6000 data
instances as it enables to achieve the best accuracy. However,
all proposed frameworks could also perform well with only
half the initial data instances in D0.

(a) IoT thermostat device attacks (b) Cluster task failures

Fig. 17: Impact of size of initial data batch D0 on RAD
accuracy with 30% noise level.

J. RAD Slim on Image Data

We evaluate the RAD framework on the challenging case of
noisy image classification. Specifically, we apply RAD Slim
and RAD Slim Limited (20% of batch size query limit per
batch) to train a classifier that encounters on-line noisy images.
Fig. 18 shows the accuracy results across the batch arrivals. We
can observe that RAD Slim is close to the Full-Clean baseline
and largely outperforms other baselines. Detailed numbers
are summarized in Table IV. Fig. 19 shows the comparison
between RAD Slim, RAD Slim Limited and Pre-Select Oracle
(same design as in Sec. V-H). One can see that RAD Slim
Limited performs significantly better than Pre-Select Oracle
when both use the same limit on the number of expert queries.

To further display the effectiveness of RAD Slim on differ-
ent types of attack, we design a series of unbalanced noisy data
batches. The original Facescrub dataset comprises a ratio of
55%:45% male and female images. For D0 of the unbalanced
data batches, image ratio of male and female is 90%:10%
followed by 45%:55% in subsequent batches. Fig. 20 shows
the results, RAD Slim performs definitely better than no
selection, and very close to full clean scenario, which shows
that RAD Active Learning can not only defend the model from
different noise levels, but also resist other types of attack.

Another observation is that all curves suffer a periodic up-
down pattern. This is because for image dataset, each time a
new batch comes, we only use this new batch data as training
dataset. As different batches provide different subviews of
the data the empirical distribution can be different from the
calculated optimum, but the model remains. So for the first
epoch of a new batch, we will generate a gradient which is
based on new data but applied on an old model. This can
influence the accuracy of the model. Moreover when retraining
on each new data batch we reset the learning rate which causes
a bump in the learning rate. Therefore, even if all batches
follow the same distribution, the system could temporarily
wander off from the previous optimum.

VI. CONCLUDING REMARKS

While machine learning classification algorithms are widely
applied to detect anomalies, the commonly employed assump-
tion of clean anomaly labels often does not hold for data

Fig. 18: FaceScrub with noise level of 30%

Fig. 19: RAD Slim Limited on FaceScrub with 30% noise

collected in the wild due to careless annotation and malicious
dirty label pollution. The noisy labels can significantly degrade
the accuracy of anomaly detection and are challenging to
tackle due to the lack of ground truth of label quality. In this
paper, we present a on-line framework for robust anomaly
detection, RAD, which can continuously learn the system
dynamics and anomaly behaviours from streams of arriving
data after filtering out suspicious noisy data.

RAD is a general framework that composes of label quality
predictor and classification model, where the former mainly
captures the label dynamics and the latter focuses on in-
creasing the diversity of prediction. Predictions from both
contribute to the final decision on detecting anomaly. To adapt
to the on-line nature of anomaly detection, we extend RAD
with additional features of conflicting opinions of classifiers,
repetitively cleaning, and oracle knowledge, corresponding
to RAD Voting, RAD Active Learning, and RAD Active
Learning Limited. We demonstrate the effectiveness of RAD
and its extensions on three uses cases, i.e., detecting IoT
device attacks, predicting task failures at Google clusters and
recognising celebrity faces from FaceScrub. The evaluation
results on three use cases show remarkable accuracy that
are close to the case without encountering anomaly input. In
short, RAD is a general robust learning framework that can be
applied on different classification models and enhances their
robustness against noisy inputs during on-line training.

ACKNOWLEDGEMENT

This work has been partly funded by the French LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01), the Swiss Na-
tional Science Foundation NRP75 project 407540 167266 and

Fig. 20: Unbalanced FaceScrub with 30% noise

TABLE IV: Final accuracy of different algorithms on Face-
Scrub dataset with 30% noise, results are averaged on 3 runs.

Algorithm Accuracy

Full-Clean 81.72
No-Sel 38.89
Forward 41.71
Co-Teaching 47.39

RAD Slim 77.51
RAD Slim Limited 67.18
Pre-Select Oracle 52.12

RAD Slim-Unbalanced 66.12
Unbalanced-No-Sel 37.11
Unbalanced-Full-Clean 69.95

the National Natural Science Foundation of China (Grant No.
61872337).

REFERENCES

[1] M. Agarwal, D. Pasumarthi, S. Biswas, and S. Nandi. Machine learning
approach for detection of flooding dos attacks in 802.11 networks
and attacker localization. Int. J. Machine Learning & Cybernetics,
7(6):1035–1051, 2016.

[2] W. An and M. Liang. Fuzzy support vector machine based on
within-class scatter for classification problems with outliers or noises.
Neurocomput., 110:101–110, June 2013.

[3] M. Anbar, R. Abdullah, B. N. Al-Tamimi, and A. Hussain. A machine
learning approach to detect router advertisement flooding attacks in next-
generation ipv6 networks. Cognitive Computation, 10(2):201–214, 2018.

[4] S. Banescu, C. S. Collberg, and A. Pretschner. Predicting the resilience
of obfuscated code against symbolic execution attacks via machine
learning. In 26th USENIX Security Symposium, Vancouver, BC, Canada.,
pages 661–678. USENIX Association, 2017.

[5] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under
adversarial label noise. In Asian Conference on Machine Learning, pages
97–112, 2011.

[6] R. Birke, G. Ioana, Lydia Y. Chen, D. Wiesmann, and T. Engbersen.
Failure analysis of virtual and physical machines: patterns, causes and
characteristics. In IEEE/IFIP DSN, pages 1–12, 2014.

[7] R. Birke, A. Podzimek, Lydia Y. Chen, and E. Smirni. Virtualization
in the private cloud: State of the practice. IEEE Trans. Network and
Service Management, 13(3):608–621, 2016.

[8] C. E. Brodley and M. A. Friedl. Improving automated land cover
mapping by identifying and eliminating mislabeled observations from
training data. In IGARSS ’96. 1996 International Geoscience and
Remote Sensing Symposium, volume 2, pages 1379–1381 vol.2, 1996.

[9] J. R. Campos, M. Vieira, and E. Costa. Exploratory study of machine
learning techniques for supporting failure prediction. In 14th European
Dependable Computing Conference, Iaşi, Romania, pages 9–16. IEEE
Computer Society, 2018.

[10] S. Cerf, R. Birke, and Lydia Y. Chen. Duo learning for classifications
with noisy labels. In Continual Learning Workshop, in conjunction with
Neural Information Processing Systems (NIPS), 2018.

[11] Y. Fan, J. Li, and D. Zhang. A method for identifying critical elements
of a cyber-physical system under data attack. IEEE Access, 6:16972–
16984, 2018.

[12] Z. Fang, J. Tzeng, C. C. Chen, and T. Chou. A study of machine learning
models in epidemic surveillance: Using the query logs of search engines.
In Pacific Asia Conference on Information Systems, PACIS 2010, Taipei,
Taiwan, 9-12 July 2010, page 137. AISeL, 2010.

[13] B. Frénay and M. Verleysen. Classification in the presence of label
noise: A survey. IEEE Trans. Neural Netw. Learning Syst., 25(5):845–
869, 2014.

[14] A. Ghiassi, T. Younesian, Z. Zhao, R. Birke, V. Schiavoni, and L. Y.
Chen. Robust (deep) learning framework against dirty labels and beyond.
In IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), pages 236–244, 2019.

[15] G. Giantamidis and S. Tripakis. Learning moore machines from input-
output traces. In FM 2016: Formal Methods - 21st International
Symposium, Limassol, Cyprus, Proceedings, volume 9995 of Lecture
Notes in Computer Science, pages 291–309, 2016.

[16] I. Guyon, N. Matić, and V. Vapnik. Discovering informative patterns and
data cleaning. In Proceedings of International Conference on Knowledge
Discovery and Data Mining, AAAIWS’94, page 145–156, 1994.

[17] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. W. Tsang, and
M. Sugiyama. Co-teaching: Robust training of deep neural networks
with extremely noisy labels. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing
Systems, Montréal, Canada, pages 8536–8546, 2018.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2015.

[19] Y. He, G. J. Mendis, and J. Wei. Real-time detection of false data injec-
tion attacks in smart grid: A deep learning-based intelligent mechanism.
IEEE Trans. Smart Grid, 8(5):2505–2516, 2017.

[20] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel. Using trusted
data to train deep networks on labels corrupted by severe noise. In Conf.
on Neural Information Processing Systems, Montréal, Canada., 2018.

[21] T. H. Huang, C. Yu, and H. Kao. Data-driven and deep learning
methodology for deceptive advertising and phone scams detection.
In 2017 Conference on Technologies and Applications of Artificial
Intelligence (TAAI), pages 166–171, Dec 2017.

[22] P. Jeatrakul, K. Wong, and C. Fung. Data cleaning for classification
using misclassification analysis. JACIII, 14:297–302, 04 2010.

[23] J. Kang, I. Joo, and D. Choi. False data injection attacks on contingency
analysis: Attack strategies and impact assessment. IEEE Access, 6:8841–
8851, 2018.

[24] D. Karagiannis and A. Argyriou. Jamming attack detection in a pair
of RF communicating vehicles using unsupervised machine learning.
Vehicular Communications, 13:56–63, 2018.

[25] R. Kozik, M. Choras, M. Ficco, and F. Palmieri. A scalable distributed
machine learning approach for attack detection in edge computing
environments. J. Parallel Distrib. Comput., 119:18–26, 2018.

[26] J. Larsen, L. Nonboe, M. Hintz-Madsen, and L. K. Hansen. Design of
robust neural network classifiers. In Acoustics, Speech and Signal Pro-
cessing, 1998. Proceedings of the 1998 IEEE International Conference
on, volume 2, pages 1205–1208. IEEE, 1998.

[27] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. Learning from
noisy labels with distillation. In ICCV, pages 1928–1936, 2017.

[28] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici. N-baiot—network-based detection of iot botnet
attacks using deep autoencoders. IEEE Pervasive Computing, 17(3):12–
22, 2018.

[29] A. L. B. Miranda, L. P. F. Garcia, A. C. P. L. F. de Carvalho, and
A. C. Lorena. Use of classification algorithms in noise detection and
elimination. In Hybrid Artificial Intelligence Systems, 4th International
Conference, HAIS 2009, Salamanca, Spain, June 10-12, 2009. Proceed-
ings, pages 417–424, 2009.

[30] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning
with noisy labels. In Advances in neural information processing systems,
pages 1196–1204, 2013.

[31] H.-W. Ng and S. Winkler. A data-driven approach to cleaning large face
datasets. 2014 IEEE International Conference on Image Processing,
ICIP 2014, pages 343–347, 01 2015.

[32] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu. Making deep
neural networks robust to label noise: A loss correction approach. In
IEEE CVPR, pages 2233–2241, 2017.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[34] A. Pellegrini, P. di Sanzo, and D. R. Avresky. A machine learning-based
framework for building application failure prediction models. In IEEE
International Parallel and Distributed Processing Symposium Workshop,
Hyderabad, India, pages 1072–1081. IEEE Computer Society, 2015.

[35] C. Pham, L. Wang, B. Tak, S. Baset, C. Tang, Z. T. Kalbarczyk, and
R. K. Iyer. Failure diagnosis for distributed systems using targeted fault
injection. IEEE Trans. Parallel Distrib. Syst., 28(2):503–516, 2017.

[36] T. Pitakrat, A. van Hoorn, and L. Grunske. A comparison of machine
learning algorithms for proactive hard disk drive failure detection.
In Proceedings of the 4th international ACM Sigsoft symposium on
Architecting critical systems, Vancouver, BC, Canada, pages 1–10, 2013.

[37] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces:
format+ schema. Google Inc., White Paper, pages 1–14, 2011.

[38] U. Reuter, A. Sultan, and D. S. Reischl. A comparative study of machine
learning approaches for modeling concrete failure surfaces. Advances
in Engineering Software, 116:67–79, 2018.

[39] A. Rosà, L. Y. Chen, and W. Binder. Failure analysis and prediction
for big-data systems. IEEE Trans. Services Computing, 10(6):984–998,
2017.

[40] A. Rosà, Lydia Y. Chen, and W. Binder. Understanding the dark side
of big data clusters: An analysis beyond failures. In IEEE/IFIP DSN,
pages 207–218, 2015.

[41] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. In IEEE CVPR 2015
, Boston, MA, USA, pages 815–823. IEEE Computer Society, 2015.

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations, San Diego, CA, USA, 2015.

[43] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus.
Training convolutional networks with noisy labels. arXiv preprint
arXiv:1406.2080, 2014.

[44] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In IEEE Conference
on Computer Vision and Pattern Recognition, Columbus, OH, USA,
pages 1701–1708. IEEE Computer Society, 2014.

[45] J. Thongkam, G. Xu, Y. Zhang, and F. Huang. Support vector machine
for outlier detection in breast cancer survivability prediction. In Ad-
vanced Web and Network Technologies, and Applications, International
Workshops: BIDM, IWHDM, and DeWeb Shenyang, China, pages 99–
109, 2008.

[46] V. N. Vagin and M. V. Fomina. Problem of knowledge discovery in noisy
databases. Int. J. Machine Learning & Cybernetics, 2(3):135–145, 2011.

[47] A. Vahdat. Toward robustness against label noise in training deep
discriminative neural networks. In NIPS, pages 5601–5610, 2017.

[48] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. J. Belongie.
Learning from noisy large-scale datasets with minimal supervision. In
CVPR, pages 6575–6583, 2017.

[49] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu.
Cosface: Large margin cosine loss for deep face recognition. In IEEE
CVPR, Salt Lake City, UT, USA, pages 5265–5274, 2018.

[50] D. R. Wilson and T. R. Martinez. Reduction techniques for instance-
basedlearning algorithms. Mach. Learn., 38(3):257–286, Mar. 2000.

[51] J. Xue, R. Birke, Lydia Y. Chen, and E. Smirni. Spatial-temporal
prediction models for active ticket managing in data centers. IEEE
Trans. Network and Service Management, 15(1):39–52, 2018.

[52] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International
Conference on Learning Representations, Toulon, France., 2017.

[53] M. Zhang, T. Li, H. Shi, Y. Li, and P. Hui. A decomposition
approach for urban anomaly detection across spatiotemporal data. In
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, Macao, China, pages 6043–6049, 2019.

[54] Z. Zhao, S. Cerf, R. Birke, B. Robu, S. Bouchenak, S. B. Mokhtar,
and L. Y. Chen. Robust anomaly detection on unreliable data. In 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, pages 630–637, 2019.

[55] Z. Zhao, S. Cerf, B. Robu, and N. Marchand. Feedback control for online
training of neural networks. In IEEE Conference on Control Technology
and Applications, Hong Kong, China, pages 136–141, 2019.

[56] Z. Zhao, S. Cerf, B. Robu, and N. Marchand. Event-based control for
online training of neural networks. IEEE Control Systems Letters, pages
1–6, 2020.

[57] B. Zhou, J. Li, J. Wu, S. Guo, Y. Gu, and Z. Li. Machine-learning-
based online distributed denial-of-service attack detection using spark
streaming. In IEEE International Conference on Communications,
Kansas City, USA, pages 1–6, 2018.

Zilong Zhao is a Postdoctoral researcher in the
Delft University of Technology in The Netherlands
since 2020. He received his PhD in Automation and
Information from Université Grenoble Alpes (UGA).
He was the lead AI and data engineer at the Miro
Health. His research focuses on applying control
theory into machine learning algorithms, building
robust and dependable machine learning systems, AI
application optimization and generative adversarial
networks (GANs).

Robert Birke is a Principal Scientist at the ABB
Research Lab, Switzerland. He received his Ph.D. in
Electronics and Communications Engineering from
the Politecnico di Torino, Italy. His research in-
terests are in the broad area of virtual resource
management including network design, workload
characterization, and AI and big-data application
optimization. He has published more than 80 papers
at venues related to communication and system per-
formance, e.g., SIGCOMM, SIGMETRICS, FAST,
INFOCOM, and JSAC. He is a senior member of

IEEE.

Rui Han is an Associate Professor at the School
of Computer Science and Technology, Beijing Insti-
tute of Technology, China. Before joining BIT, He
received MSc with honor in 2010 from Tsinghua
University, China, and obtained his PhD degree in
2014 from the Department of Computing, Imperial
College London, UK. His research interests are
system optimization for deep learning workloads. He
has over 40 publications in these areas, including pa-
pers at TPDS, TKDE, TC, INFOCOM, and ICDCS.

Bogdan Robu is associate professor at the Uni-
versité Grenoble Alpes (UGA) and a researcher
in GIPSA-lab laboratory, Grenoble, France since
September 2011. He received his PhD in 2010 from
the University of Toulouse. His research focus is
on applying control theory techniques to machine
learning algorithms, Cloud/Fog software and parallel
computing systems in order to achieve dependable,
trustworthy and highly available systems. He has
co-authored around 40 publications in peer-reviewed
conferences and journals.

Sara Bouchenak is Professor at INSA Lyon –
LIRIS laboratory. She conducts research on highly
available, dependable, privacy preserving and effi-
cient distributed computer systems. She serves as
Women in Computer Science Committee Chair for
INSA Lyon – Department of Computer Science.
She has co-authored more than 70 publications.
She has been Chair and member of the PC of
several conferences (ATC, DSN, ICDCS, SRDS, The
WebConf, etc.). She has coordinated and participated
in several national and international projects. She

serves as scientific expert for the European Commission, ANR 5france), FNS
(Switzerland), Vinnova (Sweden).

Sonia Ben Mokhtar is a CNRS research director at
the LIRIS lab and the head of the distributed sys-
tems and information retrieval group (DRIM). She
received her PhD in 2007 from Université Pierre et
Marie Curie before spending two years at University
College London (UK). Her research focuses on the
design of resilient and privacy-preserving distributed
systems. Sonia has co-authored 70+ papers in peer-
reviewed conferences and journals and has served
on the editorial board of IEEE Transactions on
Dependable and Secure Computing.

Lydia Y. Chen is an Associate Professor in the
Department of Computer Science at the Delft Uni-
versity of Technology in The Netherlands. Prior to
joining TU Delft, she was a research staff member
at the IBM Research Zurich Lab from 2007 to 2018.
She holds a PhD from Pennsylvania State University
and a BA from National Taiwan University. Her
research interests are distributed machine learning,
dependability management, resource allocation for
large-scale data processing systems and services.
More specifically, her work focuses on developing

stochastic and machine learning models, and applying these techniques to
application domains, such as data centers and AI systems. She has published
more than 100 papers in peer-reviewed journals. She has served on the
editorial boards of IEEE Transactions on Dependable and Secure Computing,
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions
on Service Computing and IEEE Transactions on Network and Service
Management. She is a Senior Member of IEEE.

	I Introduction
	II Related Work
	III Motivating case studies
	III-A Anomaly Detection
	III-B Face Recognition

	IV Design Principles of RAD Framework
	IV-A System Model
	IV-B Design Overview of RAD
	IV-B1 Data Selection Scheme
	IV-B2 Generic Approach to Handle Dynamic Data
	IV-B3 Prediction Techniques

	IV-C Extended Choices for Data Selection
	IV-C1 RAD Voting
	IV-C2 RAD Active Learning
	IV-C3 RAD Slim

	V Experimental Evaluation
	V-A Use Cases and Datasets
	V-B Experimental Setup
	V-C Handling Dynamic Data
	V-D Evaluation of Noise Robustness of RAD
	V-E Analysis of All Datasets
	V-F Limitation of RAD Framework
	V-G RAD Voting and History Extension
	V-H RAD Active Learning
	V-I Impact of Initialization
	V-J RAD Slim on Image Data

	VI Concluding Remarks
	References
	Biographies
	Zilong Zhao
	Robert Birke
	Rui Han
	Bogdan Robu
	Sara Bouchenak
	Sonia Ben Mokhtar
	Lydia Y. Chen

