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Section 1. Sampling sites

Figure S1: Illustration of different soil sample collection sites: A) Amazonian spodosol soils (sample P1), B) Atlantic Forest soil (sample
Native Forest, NF); and C) agricultural study site (Crop-Livestock-Forest agricultural system, CLFS). Figures adapted from  Tadini et al.
(2018) and Tadini et al. (2021).
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Section 2. Sample preparation using CEEXTRACTION approach

Figure S2. Flowchart for preparing samples using the CEEXTRACTION or AEEXTRACTION approaches.
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Section 3. ESI-FT-ICR-MS tuning and quality control 

The ESI-FT-ICR-MS mass spectrometer used in this study is calibrated daily with a freshly prepared polyethylene glycol (PEG) standard
(Romson and Emmer, 2021) mixture. We use a 1:1 (w/w) mixture of PEG 400 (average molecular weight = 400 g/mol) and PEG 400
(average molecular weight = 600 g/mol) at a concentration of 1 µg/mL.  Generally, only the elements of the transfer optics following after
the second quadrupole are tuned, but other components are checked, and their parameters are tweaked if necessary. The transfer optics
elements (accelerators, vertical and horizontal steers and focusing lenses) are critical for the formation of a tight ion packet that is to be
transferred to the ICR cell. PEG is continuously infused into the source and parameters are altered in tuning mode until a spectrum of
desirable mass range, gaussian shape and spectral magnitude (above 1 x 105) is achieved. Then, PEG is measured in acquisition mode
with ion accumulation time in hexapole 1 of 0.05 s, ion accumulation time in hexapole 2 of 0.2 seconds, and 10 scans. It is then used to
perform an external calibration across the mass range (typically m/z 300 – 800) as shown below. 

Figure S3. Polyethylene glycol (PEG) mass spectrum acquired in negative electrospray ionization mode. 
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Once external calibration is performed, Suwannee River fulvic acid (SRFA) standard from the International Humic Substances Society
(https://humic-substances.org/)  is used to validate the tuning following recommendations by the recent  ESI-FT-ICR-MS interlaboratory
comparison study (Hawkes et al., 2020). The powdered SRFA standard is dissolved as 40 mg/L carbon-equivalents in ultrapure laboratory-
grade water (MilliQ). Then it is 2-fold diluted with methanol (Fisher Scientific, Optima LC-MS grade) to result in a 1:1 H2O:MeOH mixture
with 20 mg/L carbon-equivalents of  SRFA. This solution is then immediately analyzed with ion accumulation time in hexapole 1 of 0.1 s, ion
accumulation time in hexapole 2 of 0.5 seconds, and 300 scans. The obtained peak list is immediately internally calibrated and molecular
formulas are assigned as described in the manuscript. 
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Section 4. Procedural blanks

Figure S4: Whole  ESI-FT-ICR-MS mass spectra  (left)  and expanded windows at  nominal  mass of  443 (right)  for  procedural  blanks
prepared using the five different solubilization approaches. Spectra are color coded as following: MeOH (gray), Pyridine (orange), NH4OH
(black), CE (blue), and CEEXTRACTION (red). Total number of detected peaks (S/N ≥ 3) is listed under the approach label. 
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Figure S5. Whole ESI-FT-ICR-MS mass spectrum (left)  and expanded window at nominal mass of 443 (right) for a procedural blank
prepared using the SPE-PPL approach (pink). Total number of detected peaks (S/N ≥ 3) is listed under the approach label. 
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Section 4. Assigned formulas of soil HA samples

Figure S6. Van Krevelen diagrams (H/C vs O/C molar ratio plots) of assigned molecular formulas from a humic acid from a forest soil
(native Atlantic Forest sample, NF) prepared using three different solubilization approaches: MeOH (gray),  Pyridine (orange),  NH4OH
(black), CE (blue), and CEEXTRACTION (red). Formulas are color coded based on mass defect of the observed molecular formulas: 0 – 0.1 in
pink, 0.1 – 0.2 in blue, 0.2 – 0.3 in red, 0.3 – 0.4 in green, 0.4 – 0.7 in cyan, and 0.95 – 1 in black. The black lines indicate modified
aromaticity index cutoffs (AIMOD)(Koch and Dittmar, 2006, 2016).
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Figure S7: Van Krevelen diagrams (H/C vs O/C molar ratio plots) of assigned molecular formulas from a humic acid from a forest soil
prepared using three different solubilization approaches: NH4OH (black), CE (blue), and CEEXTRACTION (red). Formulas are color coded based
on mass defect of the observed molecular formulas: 0 – 0.1 in pink, 0.1 – 0.2 in blue, 0.2 – 0.3 in red, 0.3 – 0.4 in green, 0.4 – 0.7 in cyan,
and 0.95 – 1 in black. The black lines indicate modified aromaticity index cutoffs (AIMOD)(Koch and Dittmar, 2006, 2016).
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Figure S8: Van Krevelen diagrams (H/C vs O/C molar ratio plots) on top and H/C vs Molecular Weight plots on the bottom of assigned
molecular formulas from a humic acid from a forest soil  prepared using two different solubilization approaches:  NH 4OH (black),  and
CEEXTRACTION (red). Formulas are assessed using presence/absence analysis (Sleighter et al., 2012) and formulas unique to the two samples
are shown on the left panels while formulas common to both samples are shown on the right panels (in  pink). The number of formulas
found in each of these pools is listed in the legends along with corresponding percentages (relative to total number of formulas in the two
samples being compared). The black lines on the van Krevelen diagrams indicate modified aromaticity index cutoffs (AI MOD)(Koch and
Dittmar, 2006, 2016).
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Section 5. ESI-FT-ICR-MS spectral multimodality of soil HA samples

Multimodal spectra have been previously observed  (Blackburn et al.,  2017; Cao et al.,  2015) and it  has been proposed that spectral
multimodality is caused by instrument tuning (Cao et al., 2016), molecular aggregation from too concentrated samples (Fievre et al., 1997;
Stenson et al., 2002) or molecular aggregation from using lower quality ESI sources (Kew et al., 2018). Spectra acquired on samples of low
concentration of 2 – 50 mg-carbon/L (equivalent to 0.004 – 1.000 mg/mL organic matter assuming 50% carbon) do not aggregate (Kew et
al., 2018; Witt et al., 2009). As the samples of this study are analyzed as 50 mg-carbon/L solutions, and the instrument was tuned following
the recommendations by the recent ESI-FT-ICR-MS interlaboratory comparison study (Hawkes et al., 2020), the observed multimodality in
the spectra for the MeOH and Pyridine approaches is likely not caused by instrument tuning or high sample concentration. The observed
unimodal distributions of the rest of the samples (NH4OH, CE, and CEEXTRACTION) is indicative of the lack of aggregation when H2O:MeOH
solvent systems are used (Figure 1). The HA molecules in pyridine and methanol are likely of very different conformations due to the
different solvent environment and thus solvent-induced aggregation must be considered  (Joyce and Richards, 2011; Pape et al., 2014;
Rodrigues et al., 2017). Modern instrument configurations and ion optics should break any ion aggregates that form (Kew et al., 2018), but
our ESI-FT-ICR-MS is 10+ years old and it is possible that its ESI configuration was not capable of breaking any solvent-induced HA
aggregates.  Therefore,  we conclude that  the observed spectral  multimodality  following the MeOH and Pyridine approaches could be
caused by aggregation. It is also possible that in MeOH or Pyridine environments, different molecular classes were ionized and suppressed
causing the multimodal spectral shape. Lastly, it is possible that pyridine and methanol extracted different compound class molecules (as
the HA samples were not completely solubilized) which caused the obtained liquid samples to be compositionally different. In conclusion,
the observed differences in spectral shapes (Figure 1) are indicative that different solubilization approaches alter the analytical window of
the technique and a sample preparation approach must be selected that provides the most representative molecular composition. 
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Section 6. Nitrogen-containing molecular formulas observed after MeOH and Pyridine approaches

The observation of many nitrogen-containing (1871 formulas, 88% of all) formulas in the CLFS sample when it was analyzed using the
pyridine (Pyr) approach was intriguing and thus they were evaluated in greater detail. Out of these formulas, 738 were found in the MeOH
sample and less than 10 were found in the NH4OH, CE, or CEEXTRACTION samples. Thus, the N-containing molecules of the Pyridine sample
could be artificially produced by coupling of pyridine with HA molecules via nitrogen incorporation into HA molecules (McKee et al., 2014).
Upon closer examination, it was found that there were only 159 formulas existed in this sample that had an adduct formula (C c+5Hh+5Nn+1)
and a precursor formula (CcHhNn)  following chemical  addition of pyridine (C5H5N).  Thus, pyridine incorporation using Michael  addition
(McKee et al., 2014) was unlikely to have had occurred. It is possible that the majority of these N-containing molecules were preferentially
extracted by pyridine from the HA as observed previously for aerosols  (Willoughby et al.,  2014). MeOH also exhibited an elevated N
content (1404, 44% of all). Out of these formulas, 738 were found in the Pyridine sample and less than 160 were found in the NH 4OH, CE,
or CEEXTRACTION samples. While MeOH cannot cause N-incorporation, it has been shown to preferentially extract N-containing molecules
from soils  (Tfaily et al.,  2015). Thus, it  is likely that Pyridine and MeOH preferentially extracted and/or enhanced the ionization of N-
containing molecules rather than causing chemical incorporation of N into the HA molecules.
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Section 7. Mass spectra of soil FA samples

Figure S9: Whole ESI-FT-ICR-MS mass spectra (left) and expanded windows at nominal mass of 443 (right) a fulvic acid sample from a
permanently waterlogged podzol soil (sample P1, horizon C) using two different solubilization approaches. Spectra are color coded as
following: CEEXTRACTION (red), and SPE-PPL (pink). Statistics for each mass spectrum (total, salt, and assignable peaks) are listed under the
approach label.
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Section 8. Assigned formulas of soil FA samples

Figure S10. Van Krevelen diagrams (H/C vs O/C molar ratio plots) of assigned molecular formulas from a fulvic acid sample from a
permanently waterlogged podzol soil (sample P1, horizon C) using two different solubilization approaches: CEEXTRACTION (red), and SPE-PPL
(pink). Formulas are color coded based on mass defect of the observed molecular formulas: 0 – 0.1 in pink, 0.1 – 0.2 in blue, 0.2 – 0.3 in
red, 0.3 – 0.4 in green, 0.4 – 0.7 in cyan, and 0.95 – 1 in black. The black lines indicate modified aromaticity index cutoffs (AIMOD)(Koch
and Dittmar, 2006, 2016).
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Figure S11. Van Krevelen diagrams (H/C vs O/C molar ratio plots) of assigned molecular formulas from a fulvic acid sample from a
permanently  waterlogged  podzol  soil  (sample  P1,  horizon  A)  prepared  using  five  different  solubilization  approaches:  MeOH ( gray),
MeOH:H2O (yellow), AE (dark green), AEEXTRACTION (bright green), and PPL (purple). Formulas are color coded based on mass defect of
the observed molecular formulas: 0 – 0.1 in pink, 0.1 – 0.2 in blue, 0.2 – 0.3 in red, 0.3 – 0.4 in green, 0.4 – 0.7 in cyan, and 0.95 – 1 in
black. The black lines indicate modified aromaticity index cutoffs (AIMOD)(Koch and Dittmar, 2006, 2016).
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Section 8. Assigned formulas of Suwannee River FA samples

Figure  S12. Van  Krevelen  diagrams  of  molecular  formulas  assigned  to  Suwannee  River  fulvic  acid  prepared  using  three  different
solubilization approaches: MeOH:H2O (left), CEEXTRACTION (middle), SPE-PPL (right). Only formulas unique to one or two samples are shown.
Common formulas to all three samples are shown on Figure S15. 
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Figure  S13. Van  Krevelen  diagrams  of  molecular  formulas  assigned  to  Suwannee  River  fulvic  acid  prepared  using  three  different
solubilization approaches: MeOH:H2O (left), CEEXTRACTION (middle), SPE-PPL (right). Only common formulas to all three samples are shown.
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