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Abstract
We present PProx, a system preventing recommendation-as-a-service 
(RaaS) providers from accessing sensitive data about the users of 
applications leveraging their services. PProx does not impact recom-
mendations accuracy, is compatible with arbitrary recommendation 
algorithms, and has minimal deployment requirements. Its design 
combines two proxying layers directly running inside SGX enclaves
at the RaaS provider side. These layers transparently pseudonymize 
users and items and hide links between the two, and PProx pri-
vacy guarantees are robust even to the corruption of one of these
enclaves. We integrated PProx with the Harness recommendation 
engine and evaluated it on a 27-node cluster. Our results indicate its
ability to withstand a high number of requests with low end-to-end 
latency, horizontally scaling up to match increasing workloads of
recommendations.
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1 Introduction
Recommender systems [16] complement traditional navigation 
on websites and applications, improving user experience [41], en-
abling personalized services [40], and eventually increasing service 
providers’ revenue [36]. Recommendations can be new directions,
items, or media. These are computed based on a user’s past inter-
actions and feedback (e.g., item likes, navigation clicks) combined 
with the interactions of other users with similar interests. Recom-
mendations are used by major Web services providers but can also
benefit smaller players (e.g., discussion forums or online stores).

As configuring and operating an efficient and scalable recommen-
dation service is far from trivial, several companies offer Recommen-
dation-as-a-Service (RaaS). Examples include Darwin & Goliath [14], 
Mediego [1], Plista [2], or Recombee [3]. In the RaaS service model, 
illustrated in Figure 1, application providers delegate the collection
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Figure 1. Principle of Recommendation-as-a-Service.

of interaction information (feedback) from their users, the con-
struction of models based on this feedback, and the generation of
personalized item recommendations from their catalog.

The major downside of using recommendation systems is their
impact on users’ privacy. Computing recommendation requires,
indeed, the collection of massive amounts of sensitive data, which
raises legitimate concerns amongst users [74]. Access histories and
feedbacks may reveal personal traits or interests, e.g., based on
access to different topics in an online forum or specific movies in a
review platform. An adversary observing in the clear interactions
with the recommender system or its database may infer private
information about users such as their faith, sexual preferences,
or health condition [21], or simply use profiling information for
non-legitimate purposes such as unsolicited advertising.

Privacy risks of recommender systems can be, unfortunately,
amplified by the use of RaaS. Users of applications that outsource
the generation of recommendations to a RaaS provider now have
to trust this provider, an additional third-party, for receiving and
storing sensitive data. It is desirable, therefore, that RaaS providers
be able to provide privacy-by-design guarantees to the users of
their client applications.

The research community proposed various solutions to deal with
the privacy concerns of recommender systems. These solutions can
be classified in three categories: (i) those based on cryptography [46,
77] where computations are performed over fully-encrypted data;
(ii) differentially private solutions [39, 56, 70, 71] that add noise for
disallowing the re-identification of a specific user and their data
and (iii) decentralized/federated solutions [17, 22, 26, 30, 33, 61]
where users keep their preferences locally and compute similarity
with other users in a decentralized manner. These solutions present
drawbacks such as performance issues for cryptography-based
solutions or accuracy issues for differentially private solutions (due
to the addition of noise) and peer-to-peer solutions (due to the
partial knowledge users have on the overall system). Perhaps more
importantly, none is well adapted to the RaaS service model, and
that for two key reasons:

• They all target a specific type of recommendation algorithm (e.g.,
using matrix factorization [33, 71] or collaborative filtering [22,
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72]). This goes against the need for RaaS providers to support a
variety of such algorithms [16, 20];

• They require to install complex code and to maintain specific
or even sensitive information at the user-side, at odds with the
“turn-key” service model of RaaS. Solutions based on encrypted
processing [46, 77] require to provision secret keys to the user
side with associated risks of leakage and additional complexity
of large-scale private key management. Differentially private so-
lutions implemented at the client side [56, 70] require to provide
clients with models of the data domain to enable adaptive noise
addition.

Contributions. We present PProx, an efficient and easily-deploy-
able solution for privacy-by-design in RaaS.

PProx introduces a privacy-preserving proxy service, standing
between users and an unmodified legacy recommendation system
(LRS). This proxy service intercepts feedback insertions and re-
quests for recommendations. It pseudonymizes on the fly users’
and items’ identifiers and hides links between the two. This guar-
antees unlinkability between clients and both the items they access
or receive as recommendations. The deployment of PProx does not
require to provision private keys or models to the user side. PProx
does not modify in any way the results returned by the LRS (e.g.,
by adding noise) and its use is totally transparent for the users.

PProx leverages the support in modern cloud infrastructure for
trusted execution environments (TEE), allowing to run secure en-
claves on untrusted hardware. TEEs include ARM’s TrustZone,
AMD’s MET, and Intel SGX [29] that we use in this paper. Applica-
tions client of RaaS provision these enclaves with secrets allowing
the pseudonymization of their users and of items of their catalog,
and these secrets are not accessible to the RaaS provider. In con-
trast with earlier work using SGX to protect users’ privacy from
online service providers [50, 51, 60] the design of PProx acknowl-
edges the possible vulnerability of SGX enclaves to side-channel
attacks [18, 24, 43, 58, 68, 75, 78]. These attacks are, however, costly
to implement, with completion times in the tens of minutes and
significant degradation of the attacked enclave performance [63].
PProx makes, therefore, the assumption that while the adversary
may break one such enclave, it may not break multiple enclaves
synchronously before a breach detection mechanism triggers ap-
propriate countermeasures [25, 45, 64].

PProx prevents a corrupted RaaS provider from breaking un-
linkability properties between users and items, by using a data
partitioning principle. Information necessary to link a user to a spe-
cific item or recommendation is split between two layers running
in different SGX enclaves. In addition, PProx provides protection
against traffic correlation attacks that would be performed by a
malicious provider observing the sequence of network exchanges
between users, enclaves, and the recommendation engine. Protec-
tion against such timing attacks is achieved through request and
response shuffling, hiding the correlation between flows while re-
specting tight bounds on additional service latency.

PProx is integrated with the Universal Recommender [7] module
of Harness [6], an open-source machine learning platform. Harness
is representative of an LRS used by a RaaS provider: It supports
high-throughput and low-delay operations and scales horizontally
to serve growing user bases. PProx is also able to similarly scale hor-
izontally to handle varying load while minimizing the performance
impact of privacy preservation.

Our evaluation over a 27-node/54-core Kubernetes cluster of
Intel SGX-capable NUC servers, and using a real-world workload,
shows that PProx is able to efficiently protect privacy while re-
specting strict end-to-end latency objectives, and scale up to handle
increasing workloads in unison with the scaling of the LRS. A single
instance of PProx can handle 250 requests per second using 4 cores,
and scale up to 1.000 requests per second using 8 proxy instances,
matching the capacity of a 32-core deployment of Harness.

Outline.We detail our system and adversary model in Section 2,
and give a high-level overview of PProx in Section 3. We present
the construction of the proxy service in details in Section 4, and its
implementation in Section 5. We discuss the security of PProx in
Section 6, and overview its integration with Harness in Section 7.
We evaluate the resulting system in Section 8, present related work
in Section 9, and conclude in Section 10.

2 System model and objectives
We start by defining our system model, our assumptions, our secu-
rity objectives, and the power of the adversary.

2.1 System model
Figure 2 illustrates the constituents of the system. Users interact
with a website or application offering access to items, e.g., books,
news articles, or movies (➀). This service outsources the man-
agement of a recommendation feature embedded in its front-end
to a Recommender-as-a-Service (RaaS) solution running in the
cloud (➁).

The RaaS runs a legacy recommendation system (LRS) for the
application (➂), accessed via a simple REST API. A post(𝑢, 𝑖 [, 𝑝])
request allows user 𝑢 to send feedback to the recommendation en-
gine about access to item 𝑖 with an optional payload 𝑝 , if required
by the recommendation algorithm. For instance, a movies recom-
mender may leverage ratings by the user, while a recommender
for items in an online store may only require identifiers. A get(𝑢)
request returns a collection of 𝑛 items (𝑖1, . . . , 𝑖𝑛) recommended to
user 𝑢.

PProx introduces an additional component, the privacy-preser-
ving proxy service (➃), lying between the clients and the LRS. It
runs as part of the RaaS in the same cloud as the LRS to avoid
indirections through multiple data centers and the resulting impact
on latency.

A thin user-side library is easily embeddable in the application
or web front-end as static web code, and offers the exact same REST
API as the LRS. This library intercepts, encrypts and forwards
clients’ API calls to the proxy service. In the case of get calls, it
returns the list of recommendations (➄).

2.2 Trust and operational assumptions
The user-side library is considered trusted for the processing and
handling of personal data, i.e., its code is public, in an interpreted
language, and it can be audited by external parties. We also trust
the user: protecting against a compromised browser or application
is orthogonal to this work.

The RaaS provider runs its service in the cloud, and its infrastruc-
ture may be subject to attacks performed by external or internal
malicious operators. The RaaS providers wishes, therefore, to offer
privacy-by-design guarantees to its clients, and be robust to the
occurrence of such attacks and resulting data leaks. We assume
the availability in the cloud used by the RaaS provider of trusted
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Figure 2. PProx system constituents (➀-➄ in §2.1) and adversary
model (➊-➍ in §2.3).
execution environments (TEE). Our implementation uses specifi-
cally Intel SGX [29]. We trust Intel for the certification of genuine
SGX-enabled CPUs, and we assume that the code running inside
enclaves is properly attested before being provided with secrets.

An LRS is typically built over data processing frameworks, e.g.,
Apache Spark, and databases, e.g., MongoDB, preventing from using
source-based application partitioning techniques such as Glam-
dring [54]. As the data that the LRS uses is almost entirely of
sensitive nature, the trusted computing base is potentially very
large, preventing the use of full-application containment, e.g., using
SCONE [9]. It is not desirable, under these conditions, to run the
LRS itself inside SGX enclaves andwe reserve their use for the proxy
service, which we design to take into account TEEs’ constraints.
2.3 Privacy objectives and adversary model
The goal of PProx is to preserveUser-Interest unlinkability. It should
be impossible for an adversary to relate a specific user (as identified
by their identifier or any unique characteristic, e.g., their IP address
or geographical location) to an access to an item or of their possible
interests as reflected by received recommendations. More formally,
it should be impossible for an adversary to (1) learn that a user
𝑢 called post(𝑢, 𝑖 [, 𝑝]) for item 𝑖 and (2) that a user 𝑢 received a
recommendation for an item 𝑖 following a get(𝑢) call.

We consider a powerful adversary (Figure 2, ➊). It wishes to
break the unlinkability property by observing all components of
the RaaS backend. It does not, however, interfere with the function-
ality of the system: It does not attempt to manipulate or bias the
recommendations returned by the LRS, and it does not block or de-
lay the access to the service for specific users or specific applications.
More specifically, the adversary interest is in stealing information
about users for its own profit, but not in triggering alerts for failed
service-level agreements, that could reveal its operations.

The adversary may be an insider to the RaaS organization (e.g.,
a corrupted operator) or an outsider exploiting a fault in the RaaS
software stack. It can bypass traditional security measures such

as system-level access control or the use of secure connections
(TLS/SSL) to and from the users [79]. This adversary can, as a result,
see all API calls to the LRS in the clear, and can access any data
manipulated by the LRS when computing recommendations (➋). In
addition, it may monitor network flows between the nodes forming
this infrastructure, both with the outside world and internally (➌),
and correlate in time its observations.

Our design takes into account the possibility, highlighted by
recent work, of time-based or cache-based side-channel attacks
on SGX [18, 24, 43, 58, 68, 75, 78], allowing an adversary to access
the secrets that were provisioned to an enclave. This contrasts
with previous designs that consider enclaves as inviolable [9, 50,
51, 60]. Implementing such attacks is, however, costly and time
consuming. Reported attacks indicate completion times in tens of
minutes while making enclave performance drop significantly [63].
Delete: ▶resulting in effective attack times when performance should
not drop below a detection threshold significantly longer in practice.◀
Mechanisms such as Cloak [45], Déjà Vu [25] or Varys [64] allow,
furthermore, to detect the occurrence of such attacks and to respond
appropriately1. If the adversarywishes to perform an attackwithout
significantly impairing performance (thereby avoiding detection)
the effective time can be, in practice, much longer. Delete: ▶(e.g.,
by shutting down the system and restart it after a security audit and using
new secrets).◀ Our model includes, therefore, the possibility for the
adversary to compromise and break into a single enclave at a time,
on any server. For instance, we illustrate in Figure 2 that an enclave
of the proxy service has been compromised and its secrets leaked
to the adversary (➍).

3 PProx in a nutshell
In addition to security features, PProx targets two key systems
objectives: performance and ease of deployment.

PProx must sustain the request load that is supported by the
LRS, with a potentially high throughput of user requests for both
insertions of feedback and collections of recommendations. The in-
teraction of users with the RaaS solution must, in addition, happen
with small delays (typically, at most a few hundred milliseconds
as required for the user to consider the system interactive [8]). It
is not desirable, therefore, to rely on anonymity services such as
AnonyFlow [57] or Tor [32], for their lack of reliability and impor-
tant impact on latency, and PProx security enforcement must not
impose latencies that would violate the RaaS service-level objec-
tives.

Ease of deployment requires that the integrationwith thewebsite
or application using the RaaS service only relies on static code and
globally known information. It must not require any intervention of
users and should not suppose that client-specific or session-specific
state is kept by the clients, other than their identifier with the
website or application.

A two-layer privacy-preserving proxy service. At the core of
PProx is a proxy service that guarantees that (1) the LRS only
sees pseudonymous information, for both user identifiers and item

1The appropriate response must take into account the fact that secrets provisioned
to the corrupted enclave are now in the hands of the adversary. Available options
include dropping the database content and re-starting the system with new secrets,
downloading the LRS state for local re-encryption before re-uploading it and provi-
sioning fresh enclaves and the user-side library with new secrets, or employing an
LRS-specific proxy re-encryption technique using (or not) an enclave [28, 65].
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identifiers2 and (2) that it is impossible to relate a call from some
user to a call sent to the LRS (and similarly for responses from the
LRS to the user).

We start by observing that mapping a user identifier to a pseudo-
nym in a single SGX enclave acting as a proxy and forwarding the
pseudonymized request to the LRS is not sufficient under our ad-
versary model. The adversary may, indeed, compromise this single
enclave and learn the direct associations between user identifiers
and item identifiers. PProx uses instead a two-layer proxy service,
with the two layers running in distinct SGX enclaves on different
servers. The foundational principle of this design is that no enclave
is provisioned with all the secrets necessary to an adversary to
break unlinkability:

• The first layer, the User Anonymizer (UA) is responsible for
hiding the identity of the user by replacing it with a pseudony-
mous identity. It is able to see the IP address and the identifier of
the user but it is not able to see the identifiers of the items sent
by or returned to this user.

• The second layer, the Item Anonymizer (IA) is the one that
directly interacts with the LRS. It is the only layer able to access
items identifiers in the clear, but it is not able to access user
identifiers or IP addresses. It can map actual item identifiers as
used in the application’s catalog to pseudonymous identifiers
used by the LRS, and reversely.

Protection from network observation attacks. Attacking an
enclave is not the only way the adversary may attempt to break
unlinkability. As we consider it may observe communications with
the LRS in the clear, the adversary could monitor the series of
interactions that occur between the user and the UA layer, between
the UA and the IA layers, and finally between the IA layer and the
LRS. It could, eventually, link a specific IP address and both the
pseudonymous user identifier and items used for the actual request.

PProx protects against such attacks by shuffling communication
for anonymizing requests of multiple users between the UA and IA
layers. We make the assumption that the system is under a flow
of requests of sufficiently high volume (e.g., 50 per second in our
evaluation). Redirections only happen after a configurable number
of requests have been buffered, and these requests are sent in a
randomized order. The adversary cannot, as a result, determine
precisely which final request sent to the LRS in the clear corre-
spond to a specific incoming request to the UA. The same applies
to responses sent back from the LRS to the user side. The use of
buffering introduces a queuing delay to every request but this delay
does not prevent from achieving overall latencies of at most a few
hundred milliseconds, as per our objective.

4 PProx protocol design
We detail in this section the PProx protocol, from the interception
of requests at the application side to their handling by the proxy
service, and their final processing by the LRS. We use the notations
listed in Table 1. We focus on the protocol in this section and discuss
its implementation and scaling in Section 5. We analyze its security
in Section 6.

2We note that for companies operating in the EU market, the storage of pseudonymous
information for user identifiers can help comply with the requirements of the EU’s
General Data Protection Regulation [48].

𝑢 User identifier
𝑖1, ..., 𝑖𝑛 Item identifiers

UA User Anonymizer, 1st layer of the proxy service
IA Item Anonymizer, 2nd layer of the proxy service

pkUA Public key of User Anonymizer layer
skUA Private key of User Anonymizer layer
pkIA Public key of Item Anonymizer layer
skIA Private key of Item Anonymizer layer

kUA Permanent symmetric key of User Anonymizer layer
kIA Permanent symmetric key of Item Anonymizer layer
k𝑢 Temporary symmetric key generated by user 𝑢

enc(𝑥, {p |s}k) asymmetric encryption of 𝑥 using public/private key 𝑘
det_enc(𝑥, k) deterministic symmetric encryption of 𝑥 using key 𝑘

𝑆 Size of the shuffling buffer

Table 1. Notations.

4.1 Provision and use of cryptographic material
The UA layer is provisioned with private key skUA and a perma-
nent symmetric key kUA. The IA layer is similarly provisioned with
skIA and kIA. The enclaves implementing the two layers are at-
tested upon their bootstrap before being provisioned with these
keys by the RaaS client application. The two types of keys serve
complementary purposes:
• Public/private key pairs enable the user-side library to encrypt
information for exclusive visibility by one of the two layers. For
instance, the user identifier should only be visible in the clear by
the UA layer. The user-side library intercepts the cleartext request
and transforms𝑢 into enc(𝑢, pkUA) so that only the UA layer may
recover 𝑢 from the ciphertext using skUA. However, this same
ciphertext cannot be used as the pseudonym of 𝑢 with the LRS,
as it is the result of randomized encryption: Two encryptions
of the same 𝑢 yield two different ciphertexts and do not allow
linking to a single pseudonymous user profile.

• The permanent symmetric keys kUA and kIA are used for deter-
ministic encryption of the users’ and items’ identifiers, enabling
their pseudonymization. The UA layer, accessing some user identi-
fier𝑢 in the clear, can encrypt it such that the resulting ciphertext
is the same as with another encryption of the same input. The
same applies to the IA layer, which must be able to determin-
istically encrypt an item identifier 𝑖𝑥 it sees in the clear. While
deterministic encryption has lower security (e.g., less resilience
against know-plaintext attacks than probabilistic encryption), it
is necessary to allow the LRS to recognize two encrypted user or
item identifiers as being the same entity. We enable deterministic
symmetric encryption by using the AES 256 CTR block cipher
with a constant initialization vector.

In addition to these permanent keys provisioned to the two layers,
PProx uses a distinct temporary symmetric key for each get re-
quest generated by the user-side library, and allowing to protect the
returned collection of recommendations. A temporary symmetric
key for a user 𝑢’s get request is denoted as k𝑢 . We note that, unlike
for using kUA and kIA in symmetric encryption for pseudonymiza-
tion, the encryption of returned results uses regular randomized
encryption, i.e., AES with a random initialization vector.
4.2 Transparent REST calls redirection
The LRS offers a REST API and the user-side library intercepts
unmodified calls to this API. The user-side library and the two
proxy service layers modify the headers, to implement redirections,
and payloads, to enable encryption. Each layer maintains a table
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T storing the association between an inbound socket I (from the
user-side library or from another proxy) and an outbound socket O
(to another proxy or to the LRS). Responses from the LRS are for-
warded backward using the same path as for the incoming request.
The response is finally provided to the application by the user-side
library as if it was returned by the LRS itself. We discuss the imple-
mentation and performance of redirections and the maintenance of
T in Section 5 and focus in the following on the end-to-end lifecycle
of post and get operations.

4.2.1 Insertion of feedback (post requests)
A post request inserts feedback about the access to an item 𝑖 by
a user 𝑢. There is no specific return value for this call, other than
the HTTP header’s success or error code from the REST API. The
end-to-end lifecycle of a post call is illustrated in Figure 3 and
detailed below.

The user-side library first transforms the call post(𝑢, 𝑖) by en-
crypting the two arguments, yielding a new call

post(enc(𝑢, pkUA), enc(𝑖, pkIA))

that is sent to the UA layer. This layer decrypts 𝑢 using private key
pkUA. It pseudonymizes plaintext 𝑢 by deterministically encrypting
it using kUA. The resulting call

post(det_enc(𝑢, kUA), enc(𝑖, pkIA))

is forwarded to the IA layer. This layer can decrypt 𝑖 using private
key skIA, and similarly pseudonymize the plaintext item identifier
using key kIA. The call containing the unlinkable information is
finally forwarded to the LRS as

post(det_enc(𝑢, kUA), det_enc(𝑖, kIA))

and the response traverses back the two layers.

4.2.2 Collection of recommendations (get requests)
A get request returns a set of recommended items (𝑖1, . . . , 𝑖𝑛) tai-
lored for a specific user 𝑢. The LRS maintains information about
previous feedbacks in its database using pseudonymous item iden-
tifiers, which must be decrypted by the IA layer. This list must not
be visible by the UA layer that can access the user identifier in the
clear. The lifecycle of a get request is illustrated in Figure 4.

When intercepting a get request, the user-side library generates
a temporary key k𝑢 and encrypts it using pkIA. This key k𝑢 will be
used by the IA layer to encrypt the list of recommendations and
hide it from the UA layer, and is therefore encrypted with the IA

get(u)

LRS

UA
skUA kUA

user-side
untrusted cloud

unmodified website or 
application

user-side library
pkUA pkIA kutmp

IA
skIA kIA kutmp

get(enc(u, pkUA), enc(ku, pkIA))

get(det enc(u, kUA))

get(det enc(u, kUA), enc(ku, pkIA))enc({i1, . . . , in}, ku)

{i1, . . . , in}

{det enc(i1, kIA), . . . ,

(det enc(in, kIA)}

Figure 4. Lifecycle of a get req. (collect recommendations).

layer’s public key pkIA. The user identifier is encrypted, as for a
post request, using the UA layer’s public key, yielding the call

get(enc(𝑢, pkUA), enc(k𝑢 , pkIA)) .

The UA layer when receiving this call pseudonymizes the user
identifier as for a post request and sends the call

get(det_enc(𝑢, kUA), enc(k𝑢 , pkIA))

to the IA layer. The IA layer then sends get(det_enc(𝑢, kUA)) to
the LRS. The returned list

{det_enc(𝑖1, kIA), . . . , (det_enc(𝑖𝑛, kIA)}

contains pseudonymized item identifiers. These identifiers are de-
crypted to plaintext item identifiers used by the application using
kIA. The recommendations list is then re-encrypted to hide it from
the UA layer using the user key k𝑢 , yielding enc({𝑖1, . . . , 𝑖𝑛}, k𝑢 ).
The call traverses back the layers until the user-side library, which
decrypts the list of recommended item identifiers using k𝑢 and
returns it in the clear, and transparently, to the application.
4.3 Requests and response shuffling
The pseudonymization of user and item identifiers is necessary, but
not sufficient, to enable the property of User-Interest unlinkability.
The adversary can observe, indeed, all network communications
between the nodes hosting the system components: between the
user and the UA layer, between the UA and IA layers, and between
the IA layer and the LRS. By correlating these observations in time,
it can relate an input request (from the user to the UA layer) to a
pseudonymized request from the IA layer to the LRS. If, in addition,
the adversary was able to compromise the IA layer, it could learn
the association between this user IP address and the item identifiers
in the clear.

We first ensure that the adversary cannot distinguish between
encrypted messages exchanged between the user-side library and
the UA layer, and between the UA and IA layers. The size of all
encrypted messages is constant, by using fixed-size user and item
identifiers, and padding when necessary. The list of items returned
by the LRS has a maximal size (20 in our implementation) and we
use padding to fill in missing entries. The pseudo-items used for
padding are automatically discarded by the user-side library.

We implement request shuffling to protect from network infer-
ence attacks, as illustrated in Figure 5. Shuffling hides the direct
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Figure 5. Shuffling disallows the adversary from determining
which of 𝑆 (here 𝑆 = 3) incoming requests to the UA layer cor-
responds to a specific request sent to the LRS. The same strategy is
applied to responses from the LRS.

mapping between an input request from the user to the UA layer
and the redirection of this request to the IA layer. Similarly, it hides
the correspondence between a response from the LRS to the IA
layer, and the corresponding redirection to the UA layer holding the
user’s connection. Both types of mappings are, in fact, made indis-
tinguishable from 𝑆−1 other requests, 𝑆 being the size of a shuffling
buffer used by the corresponding proxy layer (UA for requests, IA
for responses). Incoming requests are buffered until 𝑆 requests are
received, or until a timer expires, and then sent in random order to
the next stage. The size of the buffer 𝑆 is a compromise between
the additional latency imposed on requests and responses and the
power of the attacker. This bears similarities with the principle of
𝑘-anonymity in privacy-preserving databases [52, 73]3.

5 Implementation
We focus in this section on the implementation of the privacy-
preserving proxy service running in SGX enclaves. The implemen-
tation of the user-side library in Javascript and its integration into
a webpage, is straightforward; we do not detail it due to space
restrictions.

The proxy service must be able to support a large number of
concurrent requests. This is particularly challenging as (1) part of
the proxy logics resides in SGX enclaves and (2) this logic must
perform CPU-intensive cryptographic computations. In addition
to a high level of concurrency, the proxy design must target fair-
ness in the processing of requests, in order to control service time
tail latency. This requires ensuring that no request gets delayed
arbitrarily more than the delay that shuffling already introduces.
Scheduling the processing of requests should not introduce, on the
other hand, significant synchronization overheads.

The proxy service is implemented in C++ using the Intel SGX
SDK [4]. Cryptographic operations use Intel’s OpenSSL SGXport [5],
using RSA for asymmetric encryption and AES-CTR mode for sym-
metric encryption. We use a constant initialization vector (IV) for
deterministic encryption (user and item pseudonymization). For
regular encryption of data to and from the client, we use a randomly-
generated IV that is stored temporarily in the enclave memory. Data
from/to the client and from/to the LRS is structured in JSON, and
the encrypted content is handled and stored in the base64 format.
The implementation is split in two parts, server and data processing,
which we detail below.

3We note that, in contrast with some past work using SGX enclaves to protect the
privacy of online services such as web search [60], PProx does not attempt to hide
legitimate user requests amongst artificial (fake) traffic. The principal reason is that,
unlike for read-only web search queries, insertion of feedback (put queries) in the
LRS mutate its state, and would bias future recommendations. While fake get queries
could leverage the replay of previous user requests, they would be difficult to make
undistinguishable by the attacker without using costly re-encryption in the UA layer.

Server The server runs outside of SGX enclaves and is identical for
the UA and IA layers. It (i) handles connection requests and sched-
ules their processing, implementing shuffling, and (ii) is in charge
of receiving and sending packets. The server is the only compo-
nent that performs system calls with the local OS: data processing
enclaves only process data in memory that has been prepared by
the server.

We adopt an event-driven approach to the scheduling and han-
dling of incoming requests. The server runs as a single thread
listening to incoming connection requests notification using the
epoll() data structure and associated system calls of the Linux ker-
nel. Incoming connections’ file descriptors are pushed into a queue,
to be consumed in order4 by the pool of data processing threads.
We use a lock-free, scalable concurrent queue implementation by
Desrochers [31].

The server threadmaintains table T, the routing table for pending
requests, as a map from outbound file descriptors to inbound file
descriptors (sockets). When the epoll() call raises an event for a
file descriptor 𝑓 , the server thread can lookup T to establish the
corresponding return path.

Table T is also used for implementing request shuffling. When
the number of elements in T reaches 𝑆 or when the timer expires,
the server enqueues all pending requests in a randomized order
into the shared concurrent queue. Note that the size of 𝑇 should be
larger than 𝑆 in order to avoid dropping incoming requests between
the reaching of the threshold and the processing of the requests.
We stress that the server only processes encrypted content without
the possibility of accessing it in the clear: clients’ identities, keys,
IVs, and data are stored inside the enclave memory.

Data processing The data processing part of the proxy is sup-
ported by a pool of threads running in the SGX enclave5. Each
data processing thread dequeues work from the tail of the shared
concurrent queue. For each processed packet, a thread (i) parses it
(HTTP headers and JSON payloads); (ii) performs cryptographic
operations as detailed in Section 4 and (iii) forges a new packet to
forward to the other proxy layer, to the LRS, or back to the client.
We implemented a lightweight JSON parser inside the enclave, able
to retrieve and/or update JSON fields in place and with minimal
copy overhead. An in-memory key-value store in the EPC (Enclave
Page Cache) holds the information necessary for handling requests
responses on their way back from the LRS.

Horizontal scaling PProx is horizontally scalable similarly to
the underlying LRS, i.e., it can support increased requests loads
by using more enclave instances in each proxy layer. All enclaves
from the same layer are provisioned with the same secrets, but they
do not need to share a common mutable state. New enclaves are
attested upon their bootstrap before being provisioned with the
corresponding keys.

Incoming requests from the clients are balanced to any of the
enclaves in the UA layer. The following request from the UA to

4The order of notifications across several epoll_wait() system calls follows the real-
time order of requests reception, except for requests received between calls that may
be ordered arbitrarily. The number of such requests when the system has not reached
saturation is limited and the processing of requests is, in practice, very close to the
order of their reception.
5We use a thread pool size equal to the number of cores (2) in our evaluation, but
deployments on a large multicore CPU could use one less thread in the pool than the
number of cores and pin the server thread to the remaining core to reduce scheduling
overheads.
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the IA layer is also balanced to any of the enclaves of the latter.
Responses follow the reverse path to the client.

Shuffling relies on the assumption that a sufficiently high amount
of traffic is available for each enclave, in order to fill in the shuffling
buffer before the timer expires. The two proxy layers need, therefore,
to elastically scale up and down based on observed request load,
dynamically implementing a compromise between throughput and
latency.

Using multiple enclaves for each proxy layer does not lower se-
curity: an adversary able to break into one enclave will compromise
one, but never both, of the layers, as was the case with a single
enclave per layer.

6 Security analysis
We present in this section the security analysis of PProx. We first
present an informal proof of the User-Interest unlinkability prop-
erty (§6.1), then analyze the impact of shuffling (§6.2), and finally
discuss limitations (§6.3).

6.1 User-Interest Unlinkability
To break the unlinkability between a user 𝑢 and an item 𝑖 , the ad-
versary must either (1) leak information from the post(𝑢, 𝑖 [, 𝑝])
message sent by 𝑢; (2) get access to items recommended by the
LRS in response to a get(𝑢) message, in which the item 𝑖 appears
or (3) de-anonymize the database of the LRS. We consider the ad-
versary defined in Section 2. This adversary can observe network
flows, read all data stored by the LRS and break into one of the
enclaves (i.e., obtain secrets from either a UA or an IA enclave). We
proceed in steps and consider the two layers of PProx separately.
Case 1: the adversary breaks aUA enclave. The adversary gains
access to the following secrets: the private key skUA used to de-
crypt the user identifier𝑢 contained in a transformed post(𝑢, 𝑖 [, 𝑝])
message; and the permanent key kUA used to encrypt the same
user identifier 𝑢 toward its storage by the LRS in pseudonymous
form det_enc(𝑢, kUA). We consider in the following these three (not
mutually exclusive) cases: (a) the adversary intercepts the trans-
formed post(𝑢, 𝑖 [, 𝑝]) message at a UA enclave; (b) the adversary
intercepts the response to the get(𝑢) message containing 𝑖 as a
recommended item; (c) the adversary gets access to the content of
the LRS database.

Case 1.(a): the adversary intercepts a post request at a broken UA
enclave. ⊲ Call post(𝑢, 𝑖 [, 𝑝]) has been transformed at the user side
to post(enc(𝑢, pkUA), enc(𝑖, pkIA)). The adversary intercepts this
message and knows the origin of the request. It can link the IP ad-
dress to 𝑢 by decrypting enc(𝑢, pkUA) using the stolen secret skUA.
By accessing the LRS database, it may link 𝑢 with det_enc(𝑖, kIA)
as it knows kUA and can thus decrypt det_enc(𝑢, kUA). However,
as long as it does not steal IA layer’s secrets, the adversary cannot
decrypt det_enc(𝑖, kIA) and cannot, therefore, link 𝑢 and 𝑖 .

Case 1.(b): the adversary intercepts the response to a get request
at a broken UA enclave. ⊲ The adversary accesses a list of encrypted
item identifiers containing enc({𝑖}, k𝑢 ). It also knows the final
destination, i.e., the IP address of user 𝑢. However, it is not able
to decrypt item identifiers as it does not have access to k𝑢 , only
available at the client and to the IA layer. Linking 𝑢 and 𝑖 would
require, again, to get secrets from IA enclaves at the same time as
from UA enclaves.

Case 1.(c): the adversary breaks a UA enclave and also gets access
to the content of the LRS database. ⊲ In this case, the adversary can

de-pseudonymize user identifiers using kUA, but it is not able to
de-pseudonymize items as obtaining kIA would require breaking
into a second enclave, in the IA layer.

Case 2: the adversary breaks an IA enclave. Breaking an IA
enclave allows the adversary to gain access to the following secrets:
the private key skIA used to decrypt an item identifier 𝑖 contained in
a transformed post(𝑢, 𝑖 [, 𝑝]) message; and the permanent key kIA
used to pseudonymize this item identifier 𝑖 as det_enc(𝑖, kIA) for
use by the LRS. As for Case 1, we consider the following three (not
mutually exclusive) cases: (a) the adversary intercepts the trans-
formed post(𝑢, 𝑖 [, 𝑝]) message at an IA enclave; (b) it intercepts
the response to a get request, containing 𝑖 as a recommended item;
(c) it gets access to the LRS database.

Case 2.(a): the adversary intercepts a post message at the bro-
ken IA enclave. ⊲ The message available to the IA layer is the re-
sult of transformations by the user-side library and by the UA
layer, i.e., post(det_enc(𝑢, kUA), enc(𝑖, pkIA)). The adversary can
decrypt enc(𝑖, pkIA) using the leaked secret skIA to obtain 𝑖 . How-
ever, it cannot know the origin of the request thanks to the shuffling
of messages performed by the UA layer. By observing the LRS, the
adversary can further link 𝑖 with det_enc(𝑢, kUA), having access
to permanent key kIA. However, as long as it does not simultane-
ously break one of the UA enclaves, the adversary cannot decrypt
det_enc(𝑢, kUA) and cannot, therefore, link 𝑢 and 𝑖 .

Case 2.(b): the adversary intercepts the response to a get request
at the broken IA enclave. ⊲ The adversary accesses a list of encrypted
item identifiers containing det_enc(𝑖, kIA). It can, therefore, decrypt
𝑖 using the leaked secret kIA. However, thanks to message shuffling,
the adversary is not able to learn for which user (IP address) the
response is, making it unable to link 𝑢 and 𝑖 .

Case 2.(c): the adversary breaks an IA enclave and accesses the
content of the LRS database. ⊲ The adversary does not have access
to the permanent key kUA, held by UA enclaves. It cannot decrypt
pseudonymous user identifiers in the LRS database, preserving
unlinkability between 𝑢 and 𝑖 .

In summary, even if it breaks one of the UA enclaves or one of the
IA enclaves, an adversary cannot break user-interest unlinkabil-
ity despite actively observing network activity and accessing the
content of the LRS database.

6.2 Impact of Shuffling
We analyze the impact of shuffling as described in §4.3. The UA
layer sends requests to the IA layer in randomized batches of 𝑆
requests, on the way from the user to the LRS, and the IA layer
does the same on the way back to the user when forwarding the
response to the UA layer.

We first consider a single proxy instance per layer, and the user-
to-LRS path. For a given time window, let us denote the set of
messages output by the UA layer as outUA, and the set of messages
output by the IA layer as outIA. Let us further assume that the
adversary is interested in linking an incoming client request 𝑅 to
the related message 𝑅′ reaching the LRS. Packets are encrypted and
of the same size and, therefore, all outbound packets from the UA
layer to the IA layer are equally likely to correspond to 𝑅. The odd
for the attacker to correctly “guess” the correct outbound packet
given an inbound packet from the client is 1

|outUA | =
1
𝑆
. Note that

the same applies for responses from the LRS going back towards
users.
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We now factor in horizontal scaling, i.e., a varying number of
proxy instances in each layer. On the way from the user to the
LRS, the number of instances in the UA layer does not impact
unlinkability, as the adversary can observe the origin (IP address)
of requests to any of the instances. We denote as 𝐼 the number
of instances in the IA layer. The horizontal scaling of 𝐼 improves
unlinkability: the probability to select the correct outboundmessage
𝑅′ for an inbound message 𝑅 becomes 1

|outUA |×𝐼 = 1
𝑆×𝐼 . From the

LRS to the user, the number of IA layer instances has no impact,
and the probability for the attacker to rightly guess that a response
from the LRS is for a specific IP is 1

𝑆×𝑈 where𝑈 is the number of
UA layer instances.
6.3 Limitations
Assumption on traffic. The effectiveness of shuffling depends on
our assumption that there is sufficient traffic. In certain cases, e.g.,
for unpopular websites or for some given periods of times (e.g., at
night time), this assumption may not hold for a given application.
In this case, an adversary could break the unlinkability between
a user and an item if, and only if, it successfully steals secrets
from the IA layer in addition to timing network requests. Such an
attack is difficult to orchestrate and may be of little interest for low-
traffic applications. This situation may also arise for new websites,
receiving low traffic in their bootstrap period. Possible mitigation
would be for the RaaS provider to leverage multi-tenancy, i.e., use
the same proxy layer for multiple applications, thereby increasing
the minimum traffic. This comes, however, with increased risks in
case an enclave is broken, as secrets for multiple applications could
be stolen at once.
History-based attacks. Shuffling makes a specific input query
undistinguishable from 𝑆 − 1 others. An adversary targeting a
specific IP address could collect over time a series of associated
sets of 𝑆 queries to the LRS. If the corresponding user repeatedly
receives the same recommendations, or inserts feedback for the
same items, the adversary could identify recurrent pseudonymized
items identifiers and associate them with that IP address, and learn
the associated pseudonymized user identifier. If such attacks are
a concern, a solution is to trade off latency for privacy, using an
HTTP redirection from the service using RaaS rather than issuing
queries directly from clients, thereby hiding their IP addresses.
Disabling itempseudonymization. In PProx, we send pseudony-
mous item identifiers to the LRS by default. For a large fraction
of recommendation algorithms, and in particular those based on
collaborative filtering, the use of pseudonymous items has no im-
pact and is recommended for increased privacy. For algorithms
that would need item identifiers in the clear, e.g., for recommen-
dations based on the semantics of the items [55], it is easy to dis-
able the pseudonymization of items, by using 𝑖 directly instead of
det_enc(𝑖, kIA) for calls to the LRS. This would have, however, an
impact on our provided security properties. Accepting that items
be sent in clear requires, indeed, to lower down our assumed adver-
sary to still preserve unlinkability between users and their interests.
This is an example of the privacy-utility tradeoff: Disabling item
pseudonymization means unlinkability is preserved if and only if
UA enclaves are not broken.

7 Integration and Reproducibility
We integrate PProx with a representative LRS, the Universal Rec-
ommender [7] (UR), initially developed for Apache Mahout and the

prediction.io frameworks and integrated with Harness [6], an
open-source machine learning platform. UR implements collabo-
rative filtering based on the Correlated Cross-Occurrence (CCO)
algorithm. CCO aggregates indicators (in our setup, feedback on
the access to items) and builds profiles allowing to predict users’
interests based on the history of other profiles with high similarity.

Harness uses several modules to support the UR model con-
struction and the generation of predictions. A MongoDB database
persists engine-related data and inputs pending processing (i.e.,
feedback received via post requests). UR uses an elasticsearch
instance to persist the recommendation mode, and periodic runs
of Apache Spark for rebuilding this model including new inputs
fetched fromMongoDB. Harness frontend modules provide a REST
API allowing to query the model and return JSON-encoded recom-
mendations. These frontend modules handle the most significant
part of the load. All modules can scale horizontally by adding new
instances. We further detail the performance and scaling of Harness
supporting UR in our evaluation (§8.2).

7.1 Workload injection and stub LRS
We built an HTTP load injector based on the high-performance
loadtest library [35] for node.js. The injector issues REST API
calls and times their execution. When testing PProx in isolation
fromHarness, we use a stub servicewith the nginx high-performance
HTTP server to serve a static payload of the same size as Harness
recommendations lists.

7.2 Experimental reproducibility
All of our code and experimental material are available open-source
(link at the end of the paper). We target the experimental repro-
ducibility of our results through the use of an “everything-as-code”
approach. All components (PProx, Harness, our workload injector,
and nginx) are deployed as Docker containers in a cluster man-
aged with MaaS [23] and running Kubernetes [19] v1.15, deployed
using Kubespray v2.12.3. Since support for Intel SGX is yet to be
integrated into the main version of Kubernetes we used the Kuber-
netes Device Plugin for Intel SGX developed by Vaucher et al. [76].
The deployment and configuration of all containers composing the
system rely on charts for the Helm [27] package manager. We im-
plement horizontal scaling of PProx proxy layers and of all Harness
modules using Kubernetes integrated load balancing mechanisms
(kube-proxymodule). We collect logs in a systematic fashion using
fluentd [37] and store them in a MongoDB instance separate from
the one used by Harness. Experiments are described by Jupyter [67]
notebooks in order to systematize deployment, orchestration and
analysis of experimental results, and allow other researchers to
reproduce them.

8 Evaluation
We evaluate PProx using the reproducible experimental setup pre-
sented in the previous section. All our deployments are performed
on a cluster of 27 nodes. Each node is an Intel Next Unit of Comput-
ing (NUC) Kit with a 2-core 3.50 GHz Intel i7 processor and 32 GB
of RAM6.

Our evaluation aims at answering the following research ques-
tions: (1)What is the impact of each of the privacy-enabling features
of PProx (encryption, use of SGX, and request shuffling) on service
latency? (2) How does the performance of Harness equipped with
6One of the models recommended by Intel for experimenting with SGX.
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PProx compare to an unprotected deployment? (3) Is PProx able
to scale to handle larger Harness deployments, and what are the
comparative costs of the two sub-systems?

We answer the question (1) through a series of micro-bench-
marks with PProx connected to a stub server. We answer questions
(2) and (3) through macro-benchmarks of PProx connected to Har-
ness, with increasingly large deployments.
Metrics and workload. Our primary evaluation metric is the dis-
tribution of round-trip service latencies, as measured by workload
injector instance(s). When measuring the performance of a given
configuration with an increasing number of requests per second
(RPS), we present results up to the last value measured before
reaching saturation (i.e., where latencies increase drastically due
to congestion). This allows measuring the supported workload un-
der acceptable conditions rather than the peak throughput, which
comes at the price of very high latencies and is, therefore, of little
interest in our context. We run each experiment (i.e., for each config-
uration and RPS pair) 6 times and report the aggregated distribution
of round-trip service latencies7.

The target Service-Level Objective (SLO) for round-trip service
latency depends on the nature of the application or website using
RaaS services. As a rule of thumb, we consider in this evaluation
that a median latency below 300 ms (not accounting the latency
to and from the data center hosting the RaaS services) and never
exceeding twice that value should comply with typical SLOs for
online services [69]8. We use theMovieLens dataset ml-20m [44, 47]
as our experimental workload. This dataset is classically used for the
evaluation of recommender systems. It contains feedbacks (ratings
and free-text reviews) from users for movies on the collaborative
MovieLens website. We use the years 2014 and 2015 as a source
of feedback, corresponding to 562,888 ratings for 17,141 different
movies made by 7,288 different users. In all of our experiments,
we proceed in two phases: We inject feedback for one minute and
trigger the training phase of UR (using Apache Spark) in a first
phase, and collect recommendations for a duration of 5 minutes in
a second phase. Note that: (1) We do not report on the quality of
recommendations. This is an orthogonal concern for PProx that
depends on the LRS. Recommendations are strictly the same as
when using UR in Harness directly. (2) We focus on reporting the
performance of get requests, as these are the costlier in terms of
encryption and payload.9 (3) We trim the first and last 15 seconds
of each measurement period to avoid perturbations linked with the
warm-up and slow-down of injection.

8.1 Micro-benchmarks
Our micro-benchmarks connect the PProx proxy service to the
nginx stub returning static recommendations. We consider the con-
figurations listed in Table 2, with various configurations of PProx
allowing to analyze the contribution of each security-enabling
feature (use of encryption, use of SGX enclaves, use of requests
shuffling) in configurations m1-m6 and the scalability of the proxy

7Each such distribution is represented as a candlestick chart: the box boundaries
represent the 25th and 75th percentiles of the distribution: the difference between these
two values is the interquartile range (IQR). The middle line in each box represent the
median. The whiskers extend from the end of the box to the most distant point whose
value lie within 1.5 times the IQR starting from the box boundary.
8For instance, Google representatives reported back in 2006 that search results dis-
played in more than 500 ms resulted in drops of 20% in traffic [42].
9We evaluated the costs of post requests and these systematically follow the same
trends as for get requests, with only marginally lower latencies.

§ Fig. Enc. SGX S UA IA RPS

m1 8.1.1 6 ✗ ✗ ✗ 1 1 250
m2 8.1.1 6 ✓ ✗ ✗ 1 1 250
m3 8.1.1 6, 7 ✓ ✓ ✗ 1 1 250
m4 8.1.1 6 ★ ✓ ✗ 1 1 250
m5 8.1.1 7 ✓ ✓ 5 1 1 250
m6 8.1.1, 8.1.2 7, 8 ✓ ✓ 10 1 1 250
m7 8.1.2 8 ✓ ✓ 10 2 2 500
m8 8.1.2 8 ✓ ✓ 10 3 3 750
m9 8.1.2 8 ✓ ✓ 10 4 4 1000

Table 2. Micro-benchmark configurations.
“§” and “Fig.” resp. denote the section(s) and figure(s) in which the configuration is used.
“Enc.” stands for the use of encryption, with ★ denoting that item pseudonymization
is disabled. “S” is the shuffling parameter, “UA” and “IA” the number of nodes in each
proxy service layer, and “RPS” the maximal amount of Requests Per Second supported
by this configuration.
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Figure 6. Performance of the proxy service with no security-
enabling feature (m1), when adding encryption (m2), and when
adding the use of SGX enclaves (m3); Impact of disabling item
pseudonymization (m4).

service in configurations m6-m9. We use one (for m1-7) or two (for
m8-9) injector nodes and increments of 50 RPS (for m1-6, using a
single instance in each proxy layer) or 250 RPS (for m6-m9, when
analyzing scalability). The single nginx server is not a bottleneck:
Direct requests from the injector(s) to the stub have a median la-
tency of 1 to 2 ms and scale well over 1,000 RPS.

8.1.1 Dissecting the impact of privacy features
Figure 6 presents the distribution of latencies when adding each of
the security-enabling features of PProx one by one, except shuffling
that we evaluate separately. We emphasize that reported values are
the requests round-trip time, i.e., requests traverse the UA and IA
layer twice, once in each direction. We can observe that the added
cost of encryption is slightly higher than the cost of using SGX en-
claves. The use of SGX enclaves introduces 2 to 5 ms additional me-
dian or maximal latency, about half as much as adding encryption.
We also disable in configuration m4 the use of pseudonymization
for item identifiers, as discussed in §6.3. The impact is negligible,
confirming that using pseudonymous item identifiers can remain
the default unless explicitly required by the recommendation algo-
rithm.
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Figure 7. Impact of shuffling: reference configuration with no
shuffling (m3), and with 𝑆 = 5 (m5) and 𝑆 = 10 (m6).
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Figure 8. Scalability of PProx using 1 (m6) to 4 (m9) instances in
each proxy layer (2 to 8 nodes), using all privacy-enabling features
and 𝑆 = 10.

Figure 7 compares the performance of a configuration with no
shuffling (m3, same as in Figure 6) with configurations using shuf-
fling. The impact of shuffling depends, unsurprisingly, on the num-
ber of requests received per second, impacting the time required
to fill the buffer and send requests in a random order to the next
stage (in both directions, from the UA to the IA, and from the IA
to the UA). With a value of 𝑆 = 5 and low throughput of 50 RPS,
latency remains within usable boundaries for building an interac-
tive service (at most a few hundred milliseconds) but can be too
high for most SLOs when 𝑆 = 10. With a larger number of requests
per second, median round-trip service latency remains well below
200 ms in both cases.

8.1.2 PProx proxy service scaling
We finally evaluate the ability of the PProx proxy to scale and han-
dle higher throughputs, starting from the complete configuration
m6 with all features and 𝑆 = 10 from our previous experiment and
using only one instance per proxy service layer. We report the
results in Figure 8. Note that starting from this figure and for the
rest of this section we switch the ordinates to a logarithmic scale
for readability.

Using more proxy instances in each layer allows supporting
increasing amounts of requests, i.e., each additional pair of UA and
IA proxy instances enables an additional 250 RPS without reaching

Fig. Enc. SGX S UA IA LRS RPS

–baseline configurations: only LRS–
b1 9 ✗ ✗ ✗ ✗ ✗ 7: 3+4 250
b2 9 ✗ ✗ ✗ ✗ ✗ 10: 6+4 500
b3 9 ✗ ✗ ✗ ✗ ✗ 13: 9+4 750
b4 9 ✗ ✗ ✗ ✗ ✗ 16: 12+4 1000

–full configurations: proxy service and LRS–
f1 10 ✓ ✓ 10 1 1 7: 3+4 250
f2 10 ✓ ✓ 10 2 2 10: 6+4 500
f3 10 ✓ ✓ 10 3 3 13: 9+4 750
f4 10 ✓ ✓ 10 4 4 16: 12+4 1000

Table 3. Macro-benchmark experimental configurations.
“Fig.” denotes the figure using the configuration. “Enc.” stands for the use of encryption,
𝑆 is the shuffling parameter, UA, IA and LRS are the number of nodes allocated to the
proxy service layers and the LRS (front-end + support nodes). “RPS” is the maximal
throughput achievable with this configuration.

saturation. With 4 instances of each proxy, PProx can offer round-
trip latencies that are consistently under 200 ms for 1.000 RPS10.
We also confirm the observation made in Section 5: When using an
over-provisioned system (e.g., m7-9with 50 RPS or m9with 250 RPS)
latencies due to request shuffling may become too high to comply
with the recommendation service SLO and, therefore, the number
of proxy instances should ideally be elastically scaled down.

8.2 Macro-benchmarks: PProx with the Harness LRS
We deploy PProx and Harness using the configurations listed in
Table 3. Configurations b1-4 are for Harness deployed alone. They
serve as a baseline. We vary the number of Harness front-end
services from 3 to 12, and use 4 nodes for support services (three
for Elasticsearch, one for MongoDB and Apache Spark). The front-
end service is the main source of load for serving requests and these
4 support nodes are necessary and sufficient in all configurations.
This translates to Harness configurations of 7 to 16 nodes.

Figure 9 presents Harness baseline performance. As previously,
we present round-trip service latency for each configuration be-
fore reaching saturation. For instance, configuration b3 with 13
nodes can serve 750 RPS with sub-second latency but saturates with
1.000 RPS. The service time latencies of Harness are representative
of the type of algorithm used, that require non-trivial reads to a
shared database and complex (pre-built) user models to generate
recommendations. These service times are below 100 ms in all con-
figurations for low to moderate throughput (up to 500 RPS) and the
spread of the distribution becomes wider for higher throughput,
with peak service times around 300 ms for the largest configuration
b4 under 1.000 RPS.

Figure 10 finally presents the performance of the complete inte-
grated system, with PProx using 2 to 8 nodes and Harness using 7
to 16 nodes. These configurations f1-4 correspond to the combina-
tion of previously-detailed configurations m6-9 for PProx and b1-4
for Harness, supporting the same multiple of 250 RPS as maximal
throughput prior to saturation. These configurations include all
privacy-enabling features of PProx and use 𝑆 = 10. The infras-
tructure cost of PProx ranges, therefore, from 30% (f1) to 50% (f4)
additional nodes compared to privacy-unprotected Harness. Laten-
cies are, as expected, the sum of latencies observed in Figures 8

10We emphasize that the NUCs used in our evaluation only feature two cores and
mobile-grade CPUs; we expect the supported throughput to also scale vertically using
server-grades CPUs with support for SGX.
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Figure 9. Baseline performance of the Harness LRS.
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Figure 10. Performance of Harness when used in combination
with PProx with increasingly large deployments.

and 9. With 50 RPS the impact of request shuffling is important,
in particular for configurations f2-4. This is intrinsic to the need
to prevent network observation attacks, as previously observed,
and a lower value of 𝑆 would shift the privacy-performance trade-
off towards the latter. For workloads of 250 to 750 RPS, however,
overall latencies are systematically below 300 ms, with a median
between 100 and 200 ms. With 1,000 RPS the max service time in-
creases to 450ms but median latency remains below 200ms. Delete:

▶We can contrast these latency results with the experimental evaluation of
privacy-preserving recommendation algorithms based on encrypted pro-
cessing [12, 13, 77] yielding latencies of several seconds.◀ Evaluations
of privacy-preserving recommendation algorithms based on en-
crypted processing by other researchers often yield, in contrast,
latencies for client requests that exceed several seconds and re-
quire non-trivial client-side computations. CryptoRec [77] reports,
for instance, exchanges of multi-MB messages between clients and
servers, and an order of magnitude of 10s of seconds of computation
on both side to prepare and decrypt the results. Basu et al. [12, 13]
analyzed the performance of an homomorphically-encrypted vari-
ant of the Slope One collaborative filtering algorithm [53] running
on the Google App Engine and Amazon AES cloud platforms. They
report base latencies for get queries in the order of several seconds,
as well as a sharp increase in these latencies as the number of items
in the dataset increases.

9 Related Work
Privacy violations in recommendation systems received consider-
able attention [16, 38]. Representative risks are the inference of

individual users’ profiles from temporal changes in the public out-
puts of a recommender system [21], or statistical deanonymization
attacks [62]. Surveyed users generally consider that recommenda-
tion systems violate their privacy [59] and would prefer not to be
profiled [10].

Privacy preservation can involve cryptographic schemes such as
homomorphic encryption, to compute recommendations over en-
crypted user preferences, e.g., using X-Rec [46] or CryptoRec [77].
These solutions have a high computational overhead, leading to
high latencies in collecting recommendations. Slope One predic-
tors [11] evaluations using support for homomorphic computations
of the Paillier cryptosystem [66] report, indeed, latencies in the
order of several seconds in public clouds [12, 13], similarly as for
CryptoRec [77]. PProx only imposes a limited latency on top of the
base performance of an unmodified LRS.

Differential privacy limits the disclosure of private information
of records in the result of aggregate queries in a statistical data-
base [34]. In the context of recommender systems, differential pri-
vacy can be used to add noise and obfuscate user preferences in
the LRS storage and replies [39, 70, 71]. Such approaches come
with a difficult-to-set tradeoff on the quality of recommendations.
Under our fault model, the noise should further be added before
sending put requests to the cloud, requiring the provision of user-
side code with specific models. In contrast, PProx does not degrade
the quality of recommendations and enables easy deployment.

A final approach to privacy preservation is to distribute the
computation. Two recent approaches have been proposed in this
context: the decentralized computation of recommendation models
(e.g., Matrix Factorization) as in PDMFRec [33] or the use of Fed-
erated Learning principles for training recommendation models
as in FedFast [61] and Fleet [30]. Other approaches include the
pre-aggregation of several users’ profiles and the use aggregated
profiles in the cloud [72], or peer-to-peer approaches computing
an overlay of nodes based on similar interests [15]. Data decen-
tralization reduces risks of leaks in the cloud but increases such
risks during direct exchanges between users. These solutions have
to rely on additional noise to protect individual profiles, impact-
ing the quality of recommendations, and their deployment is far
from trivial (e.g., considering NATs, firewalls, or the possibility of
malware).

X-Search [60] implements web search proxies in SGX to protect
the link between users and their search queries. While this presents
similarities with user-interest unlinkability, X-Search employs fake
queries to obfuscate this information. Such an approach would not
apply to a recommender system as it would degrade the quality
of recommendations. SGX-Tor [49] leverages SGX to strengthen
the security of Tor. Shuffling in PProx presents similarities with
onion routing in Tor, in that it helps prevent an adversary observing
network exchanges from determining communication endpoints.
Unlike PProx, and similarly to other work employing SGX [50, 51],
X-Search or SGX-Tor do not consider the possibility for an adversary
to steal secrets from an enclave.

10 Conclusion
We presented PProx, a system for privacy preservation fitting the
requirements of Recommendation-as-a-Service. PProx contributes
a privacy-preserving proxy service, that prevents the disclosure
of the link between individuals and their interests. The security
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guarantees of PProx hold even in the presence of a powerful at-
tacker able to use recently-documented side-channel attacks on
SGX enclaves, and observing all network traffic in the cloud. In
contrast with previous work, privacy-preservation with PProx is
not specific to a recommendation algorithm and does not require
complex deployment of code or state at the users’ side. In our future
work, we intend to explore the use of PProx foundations for pri-
vacy preservation in general services accessed through REST APIs,
and for easing the automation of pseudonymization in systems
handling sensitive user data in untrusted clouds.

Artifact availability: The code of PProx together with all material
allowing the reproduction of our experiments is available at the
companion repository:

https://github.com/CloudLargeScale-UCLouvain/PProx.
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