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We address the problem of making nonholonomic vehicles, with second-order dynamics and interconnected over a bidirectional network, converge to a formation centered at a non-prespecified point on the plane with a non-prespecified common orientation. We assume that only the Cartesian position of the center of mass of each vehicle and its orientation are available for measurement, but not the velocities. In addition, we assume that the interconnections are affected by timevarying delays. Our control method consists in designing a set of second-order systems that are interconnected with the robots' dynamics through virtual springs and transmit their own coordinates to achieve consensus. This and the virtual elastic couplings with the vehicles make the latter achieve consensus too. To the best of our knowledge, output feedback consensus control of underactuated nonholonomic vehicles has been little studied, all the less in the presence of delays.

I. INTRODUCTION

For first and second-order integrators the leaderless consensus problem, which consists in the state variables of all agents converging to a common value, is well-studied and solved under many different scenarios [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]. The solution to this problem is more complex if one considers the agents' dynamics [START_REF] Li | Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols[END_REF], [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], network constraints, such as communication delays [START_REF] Zhao | Distributed consensus of multiple Euler-Lagrange systems networked by sampled-data information with transmission delays and data packet dropouts[END_REF], unavailability of velocity measurements [START_REF] Nuño | Consensus of Euler-Lagrange systems using only position measurements[END_REF], or nonholonomic constraints that restrict the system's motion [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. For autonomous vehicles, which, in contrast to mathematical models, do occupy a physical space, the leaderless consensus problem consists in making all robots converge to a rendezvous point while forming a pattern with an unknown center. This is done by specifying an offset position from the unknown center for each robot. It may be required that either only the positions [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF], [START_REF] Zheng | Rendezvous of unicycles with continuous and time-invariant local feedback[END_REF] or only the orientations [START_REF] Montijano | Epipolar visual servoing for multirobot distributed consensus[END_REF] achieve a common equilibrium point, or that both positions and orientations converge to a common value [START_REF] Maghenem | Distributed fullconsensus control of nonholonomic vehicles under non-differentiable measurement delays[END_REF].

Rendezvous control is useful, e.g., if a group of robots must converge to postures that form a desired geometric pattern in order to subsequently maneuver as a whole [START_REF] Zhao | Affine formation maneuver control of multiagent systems[END_REF]. This is a typical twostage formation problem. In the first, a rendezvous algorithm is required for the stabilization of the agents [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]- [START_REF] Roza | A Smooth Distributed Feedback for Global Rendezvous of Unicycles[END_REF] and in the second a formation-tracking controller is employed [START_REF] Consolini | On a class of hierarchical formations of unicycles and their internal dynamics[END_REF]. From a systems viewpoint, rendezvous control of nonholonomic vehicles is
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inherently a set-point stabilization problem. In that regard, it presents the same technical difficulties as the stabilization of a single robot. In particular, that nonholonomic systems are not stabilizable via timeinvariant smooth feedback [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF], but either via discontinuous timeinvariant control [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] or time-varying smooth feedback [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF], [START_REF] Jin | Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem[END_REF].

In this paper we solve the rendezvous problem for force-controlled nonholonomic systems unequipped of velocity sensors and interconnected over a network with bidirectional interconnections affected by time-varying delays. Delays are common in network control systems [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF]. Not relying on velocity measurements is desirable since these measurements are often contaminated by noise and velocity sensors may be unreliable [START_REF] Liang | Formation control of nonholonomic mobile robots without position and velocity measurements[END_REF]. Measurement delays and lack of velocity measurements have been addressed in the literature on consensus of nonholonomic systems, but not simultaneously. For instance, [START_REF] Liang | Formation control of nonholonomic mobile robots without position and velocity measurements[END_REF]- [START_REF] Mao | Observer-based consensus design for multi-agent systems with unavailable velocities of leader and followers[END_REF] address control problems without velocity measurements, and delays are considered in [START_REF] Wang | Distributed observers for tracking a moving target by cooperative multiple agents with time delays[END_REF], but they all concern leader-follower formation tracking control; output-feedback consensus is addressed in [START_REF] Dong | Distributed observer-based cooperative control of multiple nonholonomic mobile agents[END_REF] and [START_REF] Loría | Observerless output-feedback consensus-based formation control of 2nd-order nonholonomic systems[END_REF], but delays are not considered. In [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF] a controller achieving consensus formation in the presence of smooth timevarying delays is proposed, but the controller uses state feedback.

The design of the controller that we propose in this paper is inspired by the previous works [START_REF] Nuño | Consensus of Euler-Lagrange systems using only position measurements[END_REF] and [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF]. The control approach consists in designing a group of independent second-order systems to achieve output consensus among themselves and, then, steer the plants to output consensus through a virtual mechanical coupling. The underlying idea is reminiscent of that used in [START_REF] Nuño | Consensus of Euler-Lagrange systems using only position measurements[END_REF], for flexiblejoint manipulators, but in contrast to the latter, we do not use a high-gain nonlinear observer. As in [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF], our controller relies on persistency of excitation to overcome the difficulties imposed by the nonholonomicity on set-point stabilization, but it is not a certaintyequivalence modification of the controller in that reference.

The remainder of this paper is organized as follows. In the next section we describe the nonholonomic second-order dynamic model and lay our main assumptions. In Sections III and IV we present some preliminary, but original, results on state-and outputfeedback consensus control that are useful to explain and put our main results in perspective. The latter are presented in Section V. In Section VI we provide some realistic simulations using the Gazebo-ROS environment and we provide concluding remarks in Section VII.

II. MODEL AND PROBLEM FORMULATION

We consider a group of N autonomous nonholonomic secondorder vehicles modeled by the equations:

angular motion θi = ω i (1a) ωi = u ωi , (1b) 
linear motion żi = ϕ(θ i )v i , (2a) 
vi = u vi , i ∈ {1, 2 . . . N } (2b) where ϕ(θ i ) := [cos(θ i ) sin(θ i )] , (3) 
z i = [x i y i ] ∈ R 2
denotes the Cartesian coordinates of the ith vehicle on the plane, θ i ∈ R denotes its orientation, and

u vi := 1 rm [τ i1 + τ i2 ], u ωi := 2R Ir [τ i1 -τ i2 ]
are the control inputs, which are defined in function of the wheel torques τ i1 and τ i2 , the robot inertia I, the mass m, the wheel radius r, and the wheel axle length R. Remark 1: For the purpose of analysis, the angles are defined as real variables, but this may entail undesired unwinding. In practice, θ i ∈ (-π, π]. This is considered in Section VI.

• It is required that the vehicles meet in formation around a nonpredefined rendezvous point on the plane, denoted zc := (xc, yc), and acquire a non-predefined common orientation, denoted θc, modulo a given offset δ i = [δ xi δ yi ] , with i ≤ N , which determines the position of the ith vehicle relative to the unknown center of the formation. In other words, defining, zi := z i -δ i (correspondingly, xi := x i -δ xi and ȳi := y i -δ yi ) the control goal is to make

lim t→∞ v i (t) = 0, lim t→∞ zi (t) = zc, (4) 
lim t→∞ ω i (t) = 0, lim t→∞ θ i (t) = θc ∀ i ≤ N. (5) 
This is a leaderless consensus problem. That is, neither the coordinates (xc, yc) nor the angle θc are determined a priori as a reference. They depend on the initial postures, on the systems' nonlinear dynamics, and on network features. The rendezvous problem has been successfully solved under different conditions, but the originality of this paper resides in considering the realistic scenario determined by the following assumptions simultaneously.

First, owing to the fact that velocity measurements are often corrupted by noise and sensor defects we pose the following hypothesis.

Assumption 1: Only the coordinates (z i , θ i ) are measured.

Second, we assume that a WiFi communication network is available over which the ith robot communicates with a set of neighbors, which we denote by N i . It is naturally assumed that once a communication is set between two robots i and j ∈ N i , the flow of information is bidirectional and is never lost. Whence the following.

Assumption 2: The network may be modeled using an interconnection graph that is undirected, static, and connected.

Remark 2: In graph theory, a graph is undirected if the nodes exchange information in both direction, it is static if the interconnection is constant, and it is connected if any node is reachable from any other node. The latter is a necessary condition to achieve consensus [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]. • On the other hand, because the robots communicate through a WiFi network, the communication between the robots i and j is affected by non-constant time-delays. More precisely, we consider the following.

Assumption 3:

The communication from the jth to the ith robot is subject to a variable time-delay denoted T ji (t). It is assumed that the function t → T ji (t) is bounded, has bounded time-derivatives, up to the second, and the upper-bound, denoted T ji , is known. Assumption 3, which is imposed only for technical reasons imposed by the method of formal analysis, carries certain conservatism in the supposition that the delays are differentiable. Indeed, timedelays over WiFi networks or the Internet may rather be of a nonsmooth nature [START_REF] Maghenem | Distributed fullconsensus control of nonholonomic vehicles under non-differentiable measurement delays[END_REF], [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF]. In Section VI we provide realistic simulations in which Assumption 3 is violated. Yet, the formal solution to the rendezvous problem defined above under Assumptions 1, 2, and under discontinuous time-varying delays remains an open problem.

III. CONTROL ARCHITECTURE: STATE-FEEDBACK CASE

An essential feature of the model ( 1)-( 2) is that it consists of two coupled second-order systems driven by independent control inputs.

One system determines the linear motion and the other the angular one. Each of the latter being a second-order mechanical system, the control design starts by devising a consensus controller for (1) and (2) separately. To that end, we revisit a controller from the literature, but we provide an original analysis of robust stability that serves as design-basis for our dynamic output-feedback controller, presented in Section V.

A. Robust consensus control of second-order systems

The consensus problem for systems with dynamics

θi = u i i ≤ N, u i ∈ R (6) 
(that is steering ϑ i → ϑc, θi → 0, and θi → 0 with ϑc constant and not imposed a priori) is now well understood in various settings. For instance, it is well known (see [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]) that if the systems modeled by [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF] communicate over a network modeled by an undirected, static, and connected graph, the distributed control law, of proportionalderivative (PD) type,

u i = -d i θi -p i j∈N i a ij (ϑ i -ϑ j ); d i , p i > 0, (7) 
where a ij > 0 if j ∈ N i and a ij = 0 otherwise, solves the consensus problem. There are many reported ways to show this. For further development we provide here a simple and original proof based on Lyapunov's direct method. Let

ϑ := [ϑ 1 • • • ϑ N ] and θ := ϑ - 1 N 1 N 1 N ϑ, 1 N := [1 • • • 1] . (8) 
Indeed, θ denotes a vector whose ith element corresponds to the difference between ϑ i and the average of all states, i.e., ϑc := (1/N )1 N ϑ. In addition, under Assumption 2, ϑc corresponds to the consensus equilibrium point. Now, to abbreviate the notation, we also define

Π := I - 1 N 1 N 1 N .
Note that Π = Π and Π ≤ 1, where Π corresponds to the induced norm of Π, and θ = Πϑ.

Next, we introduce the Laplacian matrix,

L := [ ij ] ∈ R N ×N , where ij = k∈N i a ik i = j -a ij i = j. (9) 
By construction, L1 N = 0 and, after Assumption 2, L is symmetric, it has a unique zero-eigenvalue, and all of its other eigenvalues are strictly positive. Thus, rank(L) = N -1. Also, the last term on the right-hand side of Equation ( 7) satisfies

col j∈N i a ij (ϑ i -ϑ j ) = L θ, (10) 
where col[(•) i ] denotes a column vector of N elements (•) i . Indeed, by the definition of the Laplacian, we have col

j∈N i a ij (ϑ i -ϑ j ) = L ϑ - 1 N 1 N 1 N ϑ + 1 N L1 N 1 N ϑ.
However, L1 N = 0, so the right hand side of the equation above equals to LΠϑ, which corresponds to L θ, by definition. These identities are useful to write the closed-loop system ( 6)-( 7) in the multi-variable form

θ = -D θ -P L θ, (11) 
where

P := diag[p i ] and D := diag[d i ],
and to see that the Lyapunov function

V 1 ( θ, θ) := 1 2 θ L θ + θ P -1 θ (12)
is positive definite, even if L is rank deficient. Indeed, the term θ L θ ≥ λ 2 (L)| θ|, where λ 2 (L) > 0 corresponds to the second eigenvalue of L (that is, the smallest positive eigenvalue), not for any θ ∈ R N , but for θ as defined in [START_REF] Montijano | Epipolar visual servoing for multirobot distributed consensus[END_REF]. Now, evaluating the total derivative of V 1 along the trajectories of ( 11) and using L θ = L θ (again, this holds because L1 N = 0) we see that

V1 ( θ, θ) = θ P -1 D θ. ( 13 
)
Global asymptotic stability of the consensus manifold {( θ, θ) = (0, 0)} may be ascertained from ( 13) by invoking Barbashin-Krasovskȋi's theorem (also, but wrongly, known as LaSalle's theorem). As a matter of fact, since the system is linear time-invariant, it is also globally exponentially stable and robust to external perturbations.

To see this more clearly, using V 1 it is possible to construct a simple strict Lyapunov function. This is useful to assess the robustness of system (6) in closed loop with the consensus control law defined in [START_REF] Zheng | Rendezvous of unicycles with continuous and time-invariant local feedback[END_REF] in terms of input-to-state stability. Let

V 2 ( θ, θ) := V 1 ( θ, θ) + ε θ P -1 θ, ε ∈ (0, 1). ( 14 
)
In view of the properties of V 1 it is clear that V 2 also is positive definite and radially unbounded, but only for all θ as defined in [START_REF] Montijano | Epipolar visual servoing for multirobot distributed consensus[END_REF] and for sufficiently small values of ε ∈ (0, 1). The total derivative of V 2 along the closed-loop trajectories yields

V2 ( θ, θ) = V1 + ε θ ΠP -1 θ -θ ΠP -1 D θ -θ L θ , (15) 
which, in view of ( 13) and the fact that Π ≤ 1, implies that

V2 ( θ, θ) ≤ -c 1 dm p M | θ| 2 -εc 2 | θ| 2 (16) 
where dm and p M are the smallest and largest coefficients of D and P respectively,

c 1 := 1-ε 1 λ + 1 dm and c 2 := 2 -λ dm p M
are positive for appropriate values of λ and ε ∈ (0, 1) and any 2 := λ 2 (L) > 0.

Remark 3: Consider, now, the systems θi = u i + α i where α i is a bounded external disturbance. Then, the previous computations lead to the inequality

V2 ( θ, θ) ≤ -c 1 dm p M | θ| 2 -εc 2 | θ| 2 + θ α, (17) 
with

α := [α 1 • • • α N ] .
It follows that the map α → θ is statestrictly passive [START_REF] Khalil | Nonlinear systems[END_REF] and, also, the closed-loop system is input-to-state stable with respect to the input α.

• From the previous analysis, we conclude that for the angular-motion subsystem (1) the controller

u ωi = -d ωi ω i -p ωi j∈N i a ij (θ i -θ j ) + α i , (18) 
where d ωi and p ωi > 0, ensures global asymptotic stability of the consensus manifold {ω i = 0 ∧ θ i = θ j } if α i ≡ 0 and the closedloop system is input-to-state stable with respect to α i -cf. [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF]. Remark 4: The previous computations hold with obvious changes in the notation for the angular-motion dynamics θi = u ωi , which is equivalent to (1). This is used farther below.

•

B. On consensus in the linear motion

After the developments in Section III-A and with the purpose of designing two independent controllers for the angular and linear motion, it appears appealing to use the following control law for the subsystem [START_REF] Li | Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols[END_REF]. Let

u vi = -d vi v i -p vi ϕ(θ i ) j∈N i a ij (z i -zj ) (19) 
and let us replace the state variable θ i with an arbitrary trajectory θ i (t) which, for the time being we assume to be bounded and to have a bounded derivative ω i (t), for all t ≥ 0 and all i ≤ N (this technical assumption is relaxed later). Thus, the closed-loop linearmotion dynamics, formed by Eqs. ( 2) and ( 19), may be regarded as a time-varying subsystem, decoupled from the angular motion dynamics -cf. [25, p. 657], [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. That is,

żi = ϕ(θ i (t))v i , (20a) vi = -d vi v i -p vi ϕ(θ i (t)) j∈N i a ij (z i -zj ). (20b) 
Next, akin to V 1 in (12), we define the Lyapunov function

V 3 (v, z) := 1 2 i≤N 1 p vi v 2 i + 1 2 j∈N i a ij |z i -zj | 2 , (21) 
where 10). This function is positive definite and radially unbounded in the velocities v i and the consensus errors. The total derivative of V 3 along the closed-loop trajectories of (20) yields

v := [v 1 • • • v N ] and z := [z 1 • • • zN ] -cf. (
V3 (v, z) = -v DvP -1 v v, (22) 
where Pv := diag[p vi ] and Dv := diag[d vi ]. Now, the system in (20) being non-autonomous, Barbashin-Krasovskȋi's theorem does not apply, but we may use Barbȃlat's Lemma [START_REF] Khalil | Nonlinear systems[END_REF] to conclude (after integrating on both sides of ( 22)) that v i → 0 and vi → 0. In turn, from (20b), we see that

lim t→∞ ϕ(θ i (t)) j∈N i a ij zi (t) -zj (t) = 0.
This expression, however, does not imply that the consensus objective is reached. Indeed, note that the set of equilibria of the system in [START_REF] Wang | Distributed observers for tracking a moving target by cooperative multiple agents with time delays[END_REF] corresponds to points belonging to the set

U := v i = 0 ∧ ϕ(θ i ) j∈N i a ij (z i -zj ) = 0 ,
which admits points such that zi = zj ∈ R 2 because rank ϕ(θ) = 1. This means that if orientation consensus is reached and, for instance, θ i (t) → 0 then xi → xc, but ȳi → yc -see Eq. (3).

Remark 5: This shows that the consensus problem for nonholonomic systems cannot be treated as that for ordinary second-order systems -cf. [START_REF] Poonawala | Preserving strong connectivity in directed proximity graphs[END_REF].

• To ensure consensus it is necessary that the set of equilibria correspond to the set U ∩ U ⊥ , where

U ⊥ := v i = 0 ∧ ϕ(θ i ) ⊥ j∈N i a ij (z i -zj ) = 0 , where ϕ(θ i ) ⊥ := [-sin(θ i ) cos(θ i )] is the annihilator of ϕ(θ i ) hence, ϕ(θ i ) ⊥ ϕ(θ i ) = ϕ(θ i ) ϕ(θ i ) ⊥ = 0.
Roughly speaking, the controller must "pull" out non-equivalentlyequal-to-zero trajectories that may remain "trapped" in U and away from U ⊥ . To that end, we endow the angular-motion controller with a term that incorporates an external function of time (smooth and bounded) and acts as a perturbation to the angular-motion closedloop dynamics. This "perturbation" is designed to persist as long as

ϕ(θ i ) ⊥ j∈N i a ij (z i -zj ) = 0.
More precisely, let ψ i , ψi , and ψi be bounded (belong to L∞) let ψi be persistently exciting, i.e., let there exist T and µ > 0 such that

t+T t ψ i (s) 2 ds ≥ µ ∀ t ≥ 0. (23) 
Then, for the control law in [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF], we define

α i (t, θ i , zi ) := k αi ψ i (t)ϕ(θ i ) ⊥ (z i -zj ), k αi > 0. ( 24 
)
Thus, while α i injects excitation into the system, which ensures that the position consensus errors converge, it acts as a bounded (hence harmless) perturbation on the angular-motion dynamics -cf. [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF]. Indeed, the state-feedback controller defined by ( 18), [START_REF] Liang | Formation control of nonholonomic mobile robots without position and velocity measurements[END_REF], and (24) ensures full consensus, in position and orientation, for the closed-loop system, even in the presence of delays; this is shown in [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF].

IV. CONTROL ARCHITECTURE: OUTPUT-FEEDBACK CASE

As in the case where state feedback is available, the outputfeedback control design relies on the dichotomy of the system's dynamics (1)-( 2). Let us consider, first, the angular-motion dynamics, [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]. Note that, expressed as θi = u ωi , this system corresponds to an elementary Newtonian force-balance equation with unitary inertia. The problem at hand still is to synchronize the angular positions θ i for N such systems, but since ω i is not available, we cannot use the control law in (18) -with α i ≡ 0-. Yet, it appears reasonable to conjecture that the objective θ i → θ j for all i, j ≤ N may be achieved by coupling the subsystems θi = u ωi , via torsional springs, to virtual second-order oscillators for which the states are available and are synchronized by design -see Fig. 1 for an illustration. where ν ωi is an external input to be defined, the state ϑ ωi ∈ R, and d ωi , p ωi > 0.

As we showed in Section III-A, for (25) consensus is achieved, that is, there exists a real constant ϑωc, such that ϑ ωi → ϑωc, θωi → 0, for all i ≤ N , provided that d ωi , p ωi > 0, and ν ωi = 0. On the other hand, the system in (25) defines a passive map ν ωi → θωi . Furthermore, the system (1b) also defines a passive map, u ωi → ω i . Hence, it appears natural to hinge the systems ( 25) and ( 1) by setting

ν ωi := -u ωi , u ωi := -k ωi (θ i -ϑ ωi ), k ωi > 0. ( 26 
)
That is, the coupling -k ωi (θ i -ϑ ωi ) may be interpreted as the force exerted by a torsional spring that hinges the (angular) positions of the two subsystems -again, see Fig. 1. Therefore, consensus among the angular positions θ i is achieved indirectly by imposing consensus on the dynamic controllers' variables ϑ ωi . Consensus among the plants' variables θ i is achieved in view of the virtual mechanical coupling in [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. As a matter of fact, the control law in ( 26) is inspired by how joint flexibility in robot manipulators is modeled -cf. [START_REF] Burkov | Dynamics of elastic manipulators with electric drives[END_REF], [START_REF] Spong | Modeling and control of elastic joint robots[END_REF] and the fact that consensus in the link positions may be achieved by applying a consensus control law on the actuator dynamics -cf. [START_REF] Nuño | Consensus of Euler-Lagrange systems using only position measurements[END_REF]. Then, we have the following original statement on output-feedback consensus control of second-order systems θi = u i . Proposition 1 (Output feedback orientation consensus): Consider a group of differential-drive robots, each with dynamic model [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF], in closed loop with the dynamic controller defined by ( 25), ( 26) and under Assumptions 1 and 2. Then, for any initial conditions 4 there exist constants θc and ϑc ∈ R such that, for all i and j ≤ N , 

(θ i• , ω i• , ϑ ωi• , θωi• ) ∈ R
where ϑω := [ϑ ω1 • • • ϑ ωN ] , W 1 (ϑω, θω) := 1 2 i≤N θ2 ωi p ωi + 1 2 j∈N i a ij (ϑ ωi -ϑ ωj ) 2 , ( 27 
)
W 2 (θ, ω, ϑω) := 1 2 i≤N ω 2 i p ωi + k ωi (θ i -ϑ ωi ) 2 . ( 28 
)
The function W 2 corresponds to the total energy of the mass-spring (closed-loop) system θi = -k ωi (θ i -ϑ ωi ); the first term is the kinetic energy and the second the potential energy "stored" in the torsional spring of stiffness k ωi . Akin to V 3 in ( 21) and V 1 in ( 12), the function W 3 is positive definite and radially unbounded in the consensus errors and the velocities. The total derivative of W 3 along the closed-loop trajectories yields

Ẇ3 ( θω, ϑω, θ, ω) = - 1 2 i≤N d ωi p ωi θ2 ωi . (29) 
Then, the system being autonomous, we may invoke Barbashin-Krasovskȋi's theorem. First, we see that Ẇ3 = 0 if and only if θωi = 0. This implies that θωi = 0 and ϑ ωi = const for all i ≤ N .

From [START_REF] Khalil | Nonlinear systems[END_REF] and ν ωi := k ωi (θ i -ϑ ωi ) we conclude that θ i = const, i.e., ω i = ωi = 0. In turn, from ωi = -k ωi (θ i -ϑ ωi ) = -ν ωi = 0 and (25) we obtain j∈N i a ij (ϑ ωi -ϑ ωj ) = 0 and θ i = ϑ ωi ∀ i, j ≤ N.

After Assumption 2, it follows that the only solution to these equations is θ i = ϑ ωi = ϑc for all i, j ≤ N . Next, to steer the Cartesian positions zi to a consensual point, we also use a second-order dynamic controller that is reminiscent of the equation ( 6) in closed loop with the control [START_REF] Zheng | Rendezvous of unicycles with continuous and time-invariant local feedback[END_REF], and an added virtual-spring coupling term, -k vi (ϑ vi -zi ). That is, let [START_REF] Nuño | Rendezvous of nonholonomic robots via output-feedback control under time-varying delays[END_REF] where ϑ vi ∈ R 2 and θvi are controller's state variables, and all control gains d vi , p vi and k vi are positive.

θvi + d vi θvi + p vi j∈N i a ij (ϑ vi -ϑ vj ) = -k vi (ϑ vi -zi ),
Then, the dynamical system (30) is coupled to the double (nonholonomic) integrator [START_REF] Li | Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols[END_REF]. In contrast to the case of the angular motion, however, for the linear motion the control input u vi must incorporate the change of coordinates defined by ϕ. Therefore, we define

u vi := -ϕ(θ i ) k vi (z i -ϑ vi ), k vi > 0 (31) 
-cf. Eq. ( 26). Thus, the controller ( 25)-( 26) achieves consensus for the angularmotion dynamics (1) via output feedback while the controller ( 30)-( 31) steers the linear-motion dynamics to consensus provided that ϕ(θ i (t)) is persistently exciting. To that end, as in Section III-B, we "perturb" the control law in ( 26) with an additional term α i that is designed to persist as long as so do the synchronization errors e zi .

V. OUTPUT FEEDBACK CONTROL UNDER DELAYS

Based on ( 30) and ( 31), the controller for the linear-motion dynamics (2), in the presence of measurement delays, is given by

u vi = -k vi ϕ(θ i ) (z i -ϑ vi ) , (32a) θvi = -d vi θvi -k vi (ϑ vi -zi ) -p vi e vi , (32b) 
where the linear position errors are given by

e vi := j∈N i a ij ϑ vi -ϑ vj (t -T ji (t)) . ( 33 
)
On the other hand, for the angular motion dynamics, we introduce

u ωi = -k ωi (θ i -ϑ ωi ) + α i (t, θ i , e vi ), (34a) 
θωi = -d ωi θωi -k ωi (ϑ ωi -θ i ) -p ωi e ωi , (34b) 
where e ωi :=

j∈N i a ij ϑ ωi -ϑ ωj (t -T ji (t)) . ( 35 
)
All constant parameters are defined as above. In addition, in order to be used with an output-feedback controller, the function α i is redefined -cf. Eq. ( 24)-as

α i (t, θ i , e vi ) := k αi ψ i (t)ϕ(θ i ) ⊥ (ϑ vi -zi ) , (36) 
where k αi > 0, ψ i is twice differentiable, bounded, with bounded derivatives and ψi is persistently exciting -cf. Section III-B. That is, α i in (34a) fulfills the same role as explained above. Then, our main statement is the following. Proposition 2 (Main result): Consider the system (1)-( 3), under Assumptions 1-3, in closed-loop with ( 32)-(36). Then, for any initial conditions 11 , there exist constants θc ∈ R and zc ∈ R 2 such that (4) and ( 5) hold, if

(θ i• , ω i• , zi• , v i• , ϑ vi• , θvi• , ϑ ωi• , θωi• ) ∈ R
d vi > 1 2 p vi j∈N i a ij β i + T 2 ji β j (37) d ωi > 1 2 p ωi j∈N i a ij ε i + T 2 ji ε j (38)
for some β i , ε i > 0, for all i ≤ N . The conditions (37) and (38) impose bounds on the controller's damping gains, depending on the bounds on the delays (and their derivatives). Note that these conditions are completely distributed; a different bound is required for each vehicle individually. The arguments behind the statement of Proposition 2 rely on the observed dichotomy of the model ( 1)-( 2) and the separate control designs for the linear-and angular-motion dynamics. Indeed, the resulting closed-loop equations have an underlaying cascaded structure: α i (t,θ i ,e vi ) θ i Fig. 3: Schematic representation of the closed-loop system . Even though the systems are feedback interconnected , they may be regarded as in cascade [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF], whence the feedback represented by a dashed arrow.

Σ ωi :    θi = ω i (39a) ωi = -k ωi (θ i -ϑ ωi ) + α i (t, θ i , e vi ) (39b) θωi = -d ωi θωi -k ωi (ϑ ωi -θ i ) -p ωi e ωi (39c) 
Σ vi :

   żi = ϕ(θ i )v i (40a) vi = -k vi ϕ(θ i ) (z i -ϑ vi ) (40b) θvi = -d vi θvi -k vi (ϑ vi -zi ) -p vi e vi ( 40c 
)
As illustrated in Fig. 3, for each robot, the closed-loop equations consist of two dynamical feedback-interconnected systems. However, as explained in Section III-B, by replacing the state variables θ i with fixed, but arbitrary, trajectories θ i (t) in (40a) and (40b), these systems may be considered as if interconnected in cascade. Then, the analysis of Σ ωi and Σ vi may be carried out using arguments for such systems [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. In a nutshell, one needs to establish that: 1) all trajectories are bounded; 2) for Σ ωi with α i ≡ 0 the consensus errors converge to zero -cf. Proposition 1; 3) For Σ vi the consensus errors converge, under the persistently exciting effect of α i . A detailed proof is provided in [START_REF] Nuño | Rendezvous of nonholonomic robots via output-feedback control under time-varying delays[END_REF], but for completeness we provide a sketch of proof in the Appendix.

VI. SIMULATION RESULTS

We used the simulator Gazebo-ROS and the Robot Operating System (ROS) interface to evaluate the performance of our controller in a scenario that reproduces as closely as possible that of a laboratory experimental benchmark. We employed the model of a PIONEER 3-DX wheeled robot [START_REF]Pioneer P3-DX mobile robot[END_REF], available in Gazebo's library. For simplicity, it is assumed that all the robots have the same inertial and geometrical parameters given by m = 5.64 kg, I = 3.115 kg•m 2 , r = 0.09 m and R = 0.157 m. It must be underlined that for this robot the center of mass is not located on the axis joining the two wheels'. Consequently, in this case, the Coriolis terms r i 3 ω 2 i and -r i m i 3I i ω i v i appear on the left-hand side of Eqs. (1b) and (2b) respectively. Akin to an actual experimentation set-up, these constitute dynamic effects not considered in the model for which the controller is designed.

The six PIONEER 3D-X robots communicate over the undirected connected graph like the one illustrated in Fig. 4, below. Then, to emulate the time-varying delays T ji (t), which are different for each pair of robots, we use randomly generated signals following a normal distribution with mean µ = 0.3, variance σ 2 = 0.0003 and a sample time of 10 ms -see Fig. 5 for the illustration of one of such delays. Such time delay (non-smooth but piece-wise continuous) does not satisfy Assumption 3 since its time-derivative is bounded only almost everywhere (that is, except at the points of discontinuity). However, it is considered in the simulations since it is closer to what is encountered in a real-world set-up. The initial postures of the robots are given in the 2nd-4th columns of Table I, below.

TABLE I: Initial conditions and ofsets

Index x i [m] y i [m] θ i [rad] δ xi [m] δ yi [m] 1 8 7 1.57 2 0 2 2 13 0.0 1 2 3 2 9 -0.39 -1 2 4 -2 6 0.39 -2 0 5 1 3 -0.39 -1 -2 6 4 4 -0.39 1 -2 
The desired formation at rendezvous corresponds to a hexagon determined by desired offsets δ i = (δ xi , δ yi ) with respect the unknown center of the formation. These constants are presented in the last two columns of Table I.

The control gains were set to k vi = 1, k ωi = 2, d vi = 3, p vi = 0.4, d ωi = 2, p ωi = 0.1, for all i ∈ [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF][START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. These values correspond to magnitudes compatible with the emulated physics of the PIONEER 3D-X robots in Gazebo-ROS and are chosen so that the poles of the 2nd-order system ẍ = -d(•) ẋ -p(•)x have negative real parts and the system have an over-damped step-response. The functions α i were taken as in (36) with k αi = 0.4 and using the following multi-periodic function (any persistently-exciting function applies):

ψ i (t) = 2.5 + sin(2πt) + 0.3 cos(6πt) -0.5 sin(8πt) -0.1 cos(10πt) + sin(πt) ∀ i ≤ 6. (41) 
The robots appear to achieve consensus, i.e., to meet at a nonpredefined rendezvous point in hexagonal formation and with common non-predefined orientation -see Fig. 6. The center of the formation is located at (-3.6, -4) and the consensual orientations settle at θc ≈ -2.932 rad. Note that the center of the formation and the common orientation do not correspond to the average of the vehicles' initial conditions. Hence, the simulations illustrate that for networks of nonholonomic vehicles, the initial conditions do not determine the consensus point, as is the case of linear systems interconnected over static undirected connected graphs.

In addition, for the purpose of graphic illustration, following [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], we define the following synchronization errors, as the difference between each robot's variables and the corresponding average: 

e zi := zi - 1 N j∈N i zj , e θi := θ i - 1 N j∈N i θ j , (42) 
x i [m] i ∈ [1, y i [m] i ∈ [1, 6]
zc zc≈(-3.6, -4) Fig. 6: Paths followed by the PIONEER 3D-X robots up to full formation consensus -Gazebo-ROS simulation. A hexagonal formation is achieved with coinciding orientations (illustrated by arrows).

That is, the limits in ( 4) and ( 5) hold if the error trajectories e zi (t) and e θi (t) as defined above converge to zero, but the errors in (42) do not correspond to variables actually used by the controller nor measured for that matter. These errors are illustrated in Fig. 7 below. From the top plot in Fig. 7 one can appreciate that the position synchronization errors e zi tend to a steady state-error -a keen observer will notice that the hexagon in Fig. 6 is actually not quite so. The reason is that in the Gazebo-ROS simulation, after a transient, the amplitude of the input torques becomes considerably small in absolute value -see Fig. 8 below. Now, the presence of a steadystate error and the persistency-of-excitation effect in the controller maintain the input torques oscillating (periodically in this case due to the choice of ψ i (t) in (41) ), but, physically, they result insufficient to overcome the robots' inertia and friction forces that oppose their forward and angular motions. It seems fitting to say that in numerical simulations using Matlab, hence without considering the same physical phenomena, it may be appreciated that the synchronization errors tend to zero asymptotically and so do the control torquessee [START_REF] Nuño | Rendezvous of nonholonomic robots via output-feedback control under time-varying delays[END_REF]. Also, we emphasize that in the Gazebo-ROS environment θ i is defined in (-π, π] to avoid unwinding, whence the apparent discontinuity appreciated in the bottom plot of Fig. 7. 

VII. CONCLUSIONS

The dynamic output-feedback controller for rendezvous of differential-drive robots that we propose has the neat physical interpretation of a second-order mechanical system itself and performs well even in the presence of discontinuous time-varying delays. Some readers may see a resemblance of our angular-motion controller with an observer, since ϑ ωi → θ i . However, note that one does not necessarily have that θωi → ω i . This being said, there remains the question of to what extent our control strategy may serve as a (partial) state estimator in other output-feedback control problems.

Even though the assumptions that our main results rely on are somewhat realistic, there are other hypotheses whose relaxing needs further study. For instance, the study of multiagent nonholonomic vehicles interconnected over directed graphs is a significant problem under investigation. So is the formal analysis of the controller without assuming differentiability of the time-varying delays.

Also, the numerical tests using the Gazebo-ROS simulator clearly show the effects of the nonlinearities in the consensus. This is an intriguing aspect to investigate further, notably by extending our main statements to hold for nonholonomic systems modeled by secondorder systems that include Coriolis terms.

APPENDIX: SKETCH OF PROOF OF PROPOSITION 2

First, we analyze the linear-motion dynamics, Σv. Claim 1 (Boundedness): For the system Σ vi in (40), the following holds true: θvi ∈ L 2 whereas v i , θvi , |ϑ vi -zi |, and |ϑ vi -ϑ vj |, all belong to L∞ (are bounded). Furthermore, also e vi ∈ L∞ and, consequently, θvi ∈ L∞ too. Finally, θvi → 0. The proof of Claim 1 relies on Barbȃlat's Lemma and the energybased Lyapunov-Krasovskȋi functional

V := i≤N 1 p vi E i + 1 4 j∈N i a ij |ϑ vi -ϑ vj | 2 + Υ v i (43a) E i := 1 2 v 2 i + | θvi | 2 + k vi |ϑ vi -zi | 2 (43b) 
Υ v i := 1 2β i j∈N i a ij T ji 0 -T ji t t+η | θvj (σ)| 2 dσdη, (43c) 
where β i > 0 is introduced in the statement of Proposition 2.

The function E i is reminiscent of an energy function; the first two quadratic-in-velocities terms on the right-hand side may be assimilated to kinetic energy terms while the third corresponds to a potential-energy term associated to the springs with stiffness k vi -see Fig. 2. The second term in the definition of V is quadratic in the consensus errors and it is equivalent to θ vi L θvi with θvi defined as in (7) -cf. V 1 in [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF]. Finally, because the closed-loop system is in the form of a set of functional differential equations, we use a so-called Lyapunov-Krasovskȋi functional term Υ v i . Now, the total derivative of V along the trajectories of (40) yields

V ≤ - i≤N d vi p vi - j∈N i a ij β i 2 + T 2 ji 2β j | θvi | 2 . ( 44 
)
Note that the factor of | θvi | 2 for any i ≤ N is positive under condition (37). The claim follows from integrating along trajectories on both sides of (44) and invoking Barbȃlat's Lemma and [START_REF] Farkas | Variations on Barbȃlat's lemma[END_REF]Theorem 5].

Next, we analyze the trajectories of Σω subject to α i ≡ 0. Claim 2: Under the condition that α i ≡ 0 the trajectories of Σ ωi satisfy the following: θωi ∈ L 2 ∩L∞ whereas ω i , [ϑ ωi -θ i ], [ϑ ωiϑ ωj ], and e ωi ∈ L∞. Finally, θωi → 0 asymptotically. The proof of Claim 2 relies on the Lyapunov-Krasovskȋi functional

W := i≤N 1 p ωi H i + 1 4 j∈N i a ij (ϑ ωi -ϑ ωj ) 2 + Υ ω i ( 45a 
)
H i := 1 2 ω 2 i + θ2 ωi + k ωi (ϑ ωi -θ i ) 2 , (45b) 
where ε i > 0 -cf. Eq. (43c) and Υ ω i is defined as in (43c), replacing β i with ε i and ϑ vj with ϑ ωj . Its derivative along the trajectories of

Σ ωi with α i ≡ 0 satisfies Ẇ ≤ - i≤N d ωi p ωi - j∈N i a ij ε i 2 + T 2 ji 2ε j θ2 ωi , (46) 
in which the factor of θ2 ωi is positive in view of the condition (38). The first part of the Claim follows by integrating on both sides of the inequality in (46). Then, a simple inspection of (39) reveals that ωi and θωi are also bounded (belong to L∞), so after Barbȃlat's Lemma it follows that θωi → 0. In addition, by successive derivations it also follows that θ i → θc and [θ i -ϑ ωi ] → 0. Now, the previous statements regarding Σω hold under the restriction that α i ≡ 0. If this is not the case, we remark that since, ψ i , ϑ vi -zi and ϕ ⊥ are bounded along all trajectories, so is α isee Eq. (36). This and the fact that Σω is a marginally stable linear time-varying system with uniformly bounded time-delays, imply that ωi , ω i , θωi , θωi ∈ L∞ and so [θ i -ϑ ωi ] and e ωi are also bounded -cf. [START_REF] Wang | Differential-cascade framework for consensus of networked lagrangian systems[END_REF]Proposition 3]. Moreover, the limits in (5) follow from the marginal stability of Σ ωi with α i ≡ 0 and, once more, invoking [START_REF] Wang | Differential-cascade framework for consensus of networked lagrangian systems[END_REF]Proposition 3], provided that α i → 0. In turn, the latter follows from the following statement that holds under the condition of persistency of excitation [START_REF] Loría | Observerless output-feedback consensus-based formation control of 2nd-order nonholonomic systems[END_REF] and whose proof is provided farther below.

Claim 3: The term (z i -ϑ vi ) converges to zero asymptotically. Now we establish the first limit in (4). We argue as follows. Since ϕ is uniformly bounded, from (40a) and (40b) we have that żi ∈ L∞ and vi ∈ L∞. Moreover, from Assumption 3 (in view of the boundedness of Ṫji and Tji ), and the fact that θvi , θvi , żi ∈ L∞ it holds that ϑ vi → 0. From this it is concluded that żi → 0. Hence lim t→∞ v i (t) = 0, which corresponds to the first limit in (4). Now, the second limit in (4) is implied by θvi , θvi , and [z i -ϑ vi ] converging to zero (for the latter see Claim 3 above). Indeed, if θvi , θvi , and zi -ϑ vi → 0, from the first equation in (40), it follows that also e vi converges to zero and this in turn implies that the second limit in (4) holds. This comes from the fact that e vi = 0 and θvi = 0 imply that (L ⊗ I 2 )ϑv = 0 which, in view of the properties of L, implies the existence of zc ∈ R 2 such that ϑv = 1 N ⊗ zc, or ϑ vi = zc for all i ≤ N . Hence, from the third equation in (40), we see that if θvi , θvi , and e vi → 0, then lim t→∞ zi (t) = lim t→∞ ϑ vi (t)

and lim t→∞ zi (t) = zc. The statement follows. Proof of Claim 3: From the second equation in (40) it follows that, since vi , vi , θvi , and v i → 0, ϕ(θ i ) (z i -ϑ vi ) → 0, ω i ϕ(θ i ) ⊥ (z i -ϑ vi ) → 0.

(47)

On the other hand, the solutions of the equation ϕ(θ i ) (z i -ϑ vi ) = 0 (48) are of the form (z i -ϑ vi ) = c 1 ϕ(θ i ) ⊥ with c 1 ∈ R while the solutions of the equation

ω i ϕ(θ i ) ⊥ (z i -ϑ vi ) = 0 (49) 
are of the form (z i -ϑ vi ) = c 2 ω i ϕ(θ i ) with c 2 ∈ R. Therefore, (48) and ( 49) hold together if and only if cω i ϕ(θ i ) = ϕ(θ i ) ⊥ with c := c 1 /c 2 . In turn, the latter may hold only if either c = 0 or ω i = 0. Now, if c = 0 then (z i -ϑ vi ) = 0. Thus, (47) imply that either (z i -ϑ vi ) → 0, which is to be showed, or ω i → 0. In the latter case lim t→∞ t 0 ω(s)ds = -ω i• < ∞ and since ωi ∈ L∞ we obtain, from Barbȃlat's Lemma, that ωi → 0. From a similar argument we conclude that ωi → 0. Next, we show that ω i , ωi , ωi → 0 and ψi → 0 -see (36)-imply together that (z i -ϑ vi ) → 0, so the proof ends. To that aim, we recall that the total derivative of W in (45a) along the trajectories of Σω satisfies Ẇ ≤ -i≤N λ ωi θ2 ωi -1 p ωi α i ω i =:

-Ψ. Now, integrating on both sides of the inequality Ψ ≤ -Ẇ, along the system's trajectories, and using the boundedness of W, we see that Ψ ∈ L 1 . Furthermore, all the terms defining Ψ depend, also, on bounded functions of time, so Ψ ∈ L∞. It follows, after Theorem 5 in [START_REF] Farkas | Variations on Barbȃlat's lemma[END_REF], that Ψ → 0. Since α i ∈ L∞ and ω i → 0 it follows, in turn, that θωi → 0. Therefore, since ω i , ωi , ωi , θωi , θvi → 0, all the terms in the definition of ωi tend to zero but in view of (47) and ψi → 0 we necessarily have (ϑ vi -zi ) → 0.

•

Fig. 1 :

 1 Fig. 1: Schematic representation of coupled mass-spring-damper systems: angular motion. It is the controller state variable, ϑ ωi that is transmitted to neighboring robots and, correspondingly, ϑ ωj is received from neighbors in the set N i . More precisely, consider the dynamic system θωi + d ωi θωi + p ωi

  lim t→∞ θ i (t) = lim t→∞ θ j (t) = θc, lim t→∞ ω i (t) = 0, lim t→∞ ϑ ωi (t) = lim t→∞ ϑ ωj (t) = ϑc, lim t→∞ θωi (t) = 0. Proof: Consider the function W 3 ( θω, ϑω, θ, ω) := W 1 (ϑω, θω) + W 2 (θ, ω, ϑω),

Fig. 2 :

 2 Fig. 2: Schematic representation of coupled mass-spring-damper systems: linear motion. The controller state variable ϑ vi is sent to neighboring robots and, correspondingly, ϑ vj is received from N i neighbors.

Fig. 4 :

 4 Fig. 4: Communication topology: undirected connected graph

Fig. 5 :

 5 Fig. 5: Variable delay between the robot 1 and the received information from neighbor 2.

Fig. 7 :

 7 Fig. 7: Consensus errors (top: position errors, bottom: orientation errors)

Fig. 8 :

 8 Fig. 8: Input torques -Gazebo-ROS simulation.

  vi are bounded too, so by Barbȃlat's Lemma, θvi → 0 and ϑ[START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]