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Rendezvous of Nonholonomic Robots
via Output-Feedback Control
under Time-varying Delays

Emmanuel Nuño Antonio Lorı́a Elena Panteley Esteban Restrepo

Abstract— In this paper we address the rendezvous prob-
lem for nonholonomic vehicles with second-order dynamics,
that is, to make them converge to a formation centered at
a non-prespecified point on the plane. We assume that only
output feedback is available; the output corresponding to the
Cartesian position of the center of mass of each vehicle and its
orientations. In addition, we suppose that the robots commu-
nicate over a wireless network, so the information travels with
a time-varying delay. In contrast to more common practice in
output-feedback control, we do not use an observer, but the
controller is dynamic. In fact, it has a clear physical interpreta-
tion of a second-order oscillator that is hinged to the actual
system. Furthermore, the controller is fully distributed; for
each robot it depends on the coordinates of the actual agent,
the controller’s states and the information received from its
neighbors. We show, both analytically and via realistic Gazebo-
ROS simulations, that by exchanging the controller variables,
as opposed to their own, the networked robots achieve full
consensus, both in positions and orientations, in spite of
the delays. To the best of our knowledge, output feedback
consensus control of underactuated nonholonomic vehicles
has been little studied, all the less in the presence of delays.

Index Terms— Rendezvous, consensus, autonomous vehicles,
persistency of excitation, output feedback, differential-drive
mobile robots.

I. INTRODUCTION

For first and second-order integrators the leaderless con-
sensus problem, which consists in the state variables of all
agents converging to a common value, is well-studied and
solved under many different scenarios [1]. The solution to
this problem is more complex if one considers the agents’
dynamics [2], [3], network constraints, such as communication
delays [4], unavailability of velocity measurements [5], or
nonholonomic constraints that restrict the systems’ motion [6].
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For autonomous vehicles, which, in contrast to mathematical
models consisting of first and second-order integrators, do
occupy a physical space, the leaderless consensus problem
consists in making all robots converge to a rendezvous point.
That is, the robots are required to coordinate their motions
without any pre-established trajectory. Furthermore, because
the robots can obviously not occupy the same physical space
simultaneously, a formation pattern with an unknown center
must be imposed. This is done by specifying for each robot, an
offset position from the unknown center [7]. It may be required
that positions and orientations converge to a common value
[8], or that either only the positions [6] or only the orientations
[9] achieve a common equilibrium point.

Rendezvous control is useful in cases where a group of
robots must converge to postures that form a desired geometric
pattern given any initial configuration in order to subsequently
maneuver as a whole [10]. This is a typical two-stage forma-
tion problem. In the first, a rendezvous algorithm is required
for the stabilization of the agents [11]–[13] and in the second
a formation-tracking controller is employed [14]– [15].

From a systems viewpoint, rendezvous control of nonholo-
nomic vehicles inherently is a set-point stabilization problem.
In that regard, it presents the same technical difficulties as the
stabilization of a single robot. In particular, that nonholonomic
systems are not stabilizable via time-invariant smooth feed-
back [16], but either via discontinuous time-invariant control
[12] or time-varying smooth feedback [17], [18]. In other
words, in contrast to the case of holonomic systems, for
systems with nonholonomic constraints stabilization is not
a particular case of trajectory tracking, so controllers that
solve one problem generally cannot solve the other [19].
For multiagent systems, necessary conditions for rendezvous
are laid in [6]. Thus, neither the numerous algorithms for
consensus of linear systems nor those for formation-tracking
control, notably in a leader-follower configuration, apply to
the rendezvous problem for nonholonomic vehicles.

In this paper we consider a rendezvous problem for second-
order (force-controlled) nonholonomic systems interconnected
over an undirected static graph and with time-varying measure-
ment delays for which velocity measurements are not avail-
able. From a systems viewpoint, this is an output-feedback
control problem, with output corresponding to the vehicles’
positions and orientations. We emphasize that in spite of the
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many articles on output-feedback control for the consensus
of multi-agent systems, e.g., [20]–[23], very few address the
problem of output-feedback control for nonholonomic vehi-
cles; see for instance, [24] on the leader-follower consensus
problem and [25] where a velocity filter has been employed
to obviate the need of velocity measurements. In the latter,
however, delays are not considered and, more importantly,
such problem appears to be unsolvable using the algorithm
proposed therein.

The main contribution of our work is the solution to the
rendezvous problem via a novel smooth output feedback
controller. The controller does not require velocity measure-
ments and it is robust to interconnecting delays. Further, our
controller is completely distributed because it relies only on
the information available to each agent from its neighbors,
without requiring any knowledge of the complete network.

The stabilization mechanism behind our proposal has a clear
physical analogy with the stabilization of (under-actuated)
flexible joint robots, see Section IV-B below. The controller
is dynamic and achieves the control goal via a persistently-
exciting term —cf. [26].

The next section describes the dynamic model of the
nonholonomic agents and, formally, describes the problem at
hand. Then for clarity of exposition, in Section III, we revisit
the rendezvous problem for linear second-order systems via a
state-feedback controller. In Section IV we design an output-
feedback scheme for nonholonomic vehicles for the undelayed
case. The main contribution of our work is presented in
Section V. Section VI depicts some realistic simulations using
the Gazebo-ROS environment. Finally, Section VII draws the
final remarks and conclusions.

II. MODEL AND PROBLEM FORMULATION

A. Single-robot model
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Fig. 1: Schematics of a differential-drive mobile robot.

We consider autonomous vehicles as the one schematically
represented in Fig. 1. Its position on the plane may be defined
as that of its center of mass, with Cartesian coordinates
(x, y) ∈ R2 and its orientation with respect to the abscissae
is denoted by the angle θ. It is assumed that the vehicle may
move forward with a velocity v := [ẋ2+ẏ2](1/2) and turn with
an angular velocity ω. The vehicle, however, cannot move in
certain directions (e.g., sideways). This restriction is encoded
by the non-integrable velocity constraint

sin(θ)ẋ = cos(θ)ẏ.

From these expressions we obtain the velocity equations

ẋ = cos(θ)v (1a)
ẏ = sin(θ)v (1b)
θ̇ = ω, (1c)

which define a first-order model often used in the literature on
control of nonholonomic systems —see e.g., [14], [27]–[29]
and [15]. In such model the control inputs are the velocities v
and ω. Being mechanical systems, however, a more complete
model also includes a set of Euler-Lagrange equations for the
velocity dynamics, i.e.,

v̇ = Fv(z, θ, v, ω) + uv (2a)
ω̇ = Fω(z, θ, v, ω) + uω, (2b)

where Fv and Fω are smooth functions [30]. Articles on
control of nonholonomic systems where such second-order
models are used are considerably scarce in comparison —see,
e.g., see [31] and [32] and they are more often found in a
single-vehicle setting [33]–[35].

In this paper, we employ a complete second-order model
that corresponds to that of so-called differential drive robots
[36]. For the purpose of analysis, only, we assume that the
center of mass is aligned with an axis joining the centers of
the wheels —see the illustration on the left in Fig. 1, so Fω ,
Fv ≡ 0. The model used to test our algorithms in the realistic
simulator Gazebo-ROS does not satisfy this assumption.

The control inputs take the form

uv :=
1

rm
[τ1 + τ2], uω :=

2R

Ir
[τ1 − τ2],

where m and I are respectively the robot’s mass and inertia
whereas τ1 and τ2 are the torques applied, independently, at
each of the wheels.

An essential feature of this model, that is at the basis of the
control design, is that Equations (1)–(2) consist of two coupled
second-order systems driven by independent control inputs.
One system determines the linear motion and the other the
angular one. To evidence this, we define zi := [xi yi]

> ∈ R2,
where we introduced the index i ≤ N to refer to one among N
robots —see the illustration on the right in Fig. 1, and rewrite
the equations for the ith robot in the form:

angular
motion

{
θ̇i = ωi (3a)
ω̇i = uωi, (3b)

linear
motion

{
żi = ϕ(θi)vi, (4a)
v̇i = uvi, (4b)

where
ϕ(θi) := [cos(θi) sin(θi)]

>. (5)

This (apparently innocuous) observation is important because
the literature is rife with efficient controllers for second-order
mechanical systems from which we may draw inspiration for
the problem at hand here, even in the context of multi-agent
systems [1]. Moreover, even though the subsystems (3) and
(4) are clearly intertwined through the function ϕ they may be
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dealt with as if decoupled, by replacing θi with the trajectory
θi(t) since ϕ is uniformly bounded [37]. Hence, relying on
a cascades argument, we may apply a separation principle
to design the controllers for the linear and angular motion
subsystems independently. These key features are at the basis
of our method to approach the rendezvous problem, which is
described next.

B. Problem statement: rendezvous
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Fig. 2: Robots in formation at rendezvous

Consider a group of N force-controlled nonholonomic vehi-
cles modeled by (3)–(5) like the one depicted in Fig. 1, each
of these robots is assumed to be equipped with positioning
sensors that deliver reliable measures of xi, yi, and θi.

The robots are required to meet in formation at a rendezvous
point zc := (xc, yc) and acquire a common orientation θc. That
is, for each i ≤ N the Cartesian positions zi must converge to
zc + δi, where δi := (δxi, δyi) is a vector that determines the
position of the ith vehicle relative to the unknown center of
the formation —see Fig. 2 for an illustration. More precisely,
consider the following problem statement.

Definition 1 (Rendezvous): For each robot (resp. each i ≤
N ), given a vector δi = [δxi δyi]

>, define its translated
position z̄i := zi − δi (correspondingly, let x̄i := xi − δxi
and ȳi := yi− δyi). Then, design a distributed controller such
that

lim
t→∞

vi(t) = 0, lim
t→∞

z̄i(t) = zc, (6)

lim
t→∞

ωi(t) = 0, lim
t→∞

θi(t) = θc ∀ i ≤ N. (7)

We stress that this is a leaderless consensus problem.
That is, neither the coordinates (xc, yc) nor the angle θc
are determined a priori as a reference. They depend on the
initial postures, the systems’ nonlinear dynamics, and network
features (see farther below). Stated as above, this problem,
in general, may not be approached via controllers designed
to make the vehicles advance in formation while following a
leader (virtual or otherwise). However, the rendezvous problem
has been successfully solved in a number of articles, under
different conditions; some of these are cited in the Introduc-
tion. As is pointed out in this section, the originality of this

paper resides in considering the scenario determined by the
following hypotheses simultaneously.

Assumption 1: The velocities vi and ωi are not measurable.

That is, only the coordinates (zi, θi) are known by each
robot. Then, a WiFi network is available for the robots to
communicate over. Hence, the ith robot communicates with
a set of neighbors, which we denote by Ni. It is naturally
assumed that once a communication is set between two robots
i and j ∈ Ni, the flow of information is bidirectional and is
never lost. Therefore, the network may be modeled using an
undirected time-invariant graph. Whence the following.

Assumption 2: The network may be modeled using an
interconnection graph that is undirected, static, and connected.

Remark 1: In graph theory, a graph is undirected if the
nodes exchange information in both direction, it is static if the
interconnection is constant, and it is connected if any node is
reachable from any other node [1], [38]. •

On the other hand, because the robots communicate through
a WiFi network, the communication between the robots i and
j is affected by non-constant time-delays. More precisely, we
consider the following.

Assumption 3: The communication from the jth to the ith
robot is subject to a variable time-delay denoted Tji(t) that is
bounded by a known upper-bound T ji ≥ 0 and has bounded
time-derivatives, up to the second.

Assumptions 1–3 coin a realistic scenario of automatic
control of multi-agent systems which has been little addressed
in the literature in the context of the rendezvous problem.
Assumption 3 carries certain conservatism. However, in the
supposition that the delays are differentiable and bounded.
Indeed, it must be stressed that, in general, time-delays over
WiFi networks or the Internet may rather be of a non-
smooth nature [8], [39], [40]. Nonetheless, the formal analysis
under such condition is considerably intricate and escapes the
scope of this paper. For a Lyapunov-based analysis of the
rendezvous problem under non-differentiable delays, albeit via
state-feedback, see [8], [41].

III. CONTROL ARCHITECTURE: STATE-FEEDBACK CASE

As previously implied, the controller that we propose relies
on the system’s structural properties that lead to a separation
of the linear and angular motion dynamics. For clarity of
exposition and to better put our contributions in perspective,
we start by revisiting the consensus problem for ordinary
second order systems (‘double integrators’) via state-feedback
and without delays. The purpose is to underline the robustness
of a commonly used distributed controller, by presenting an
original analysis that is helpful to understand the proof of our
main result.

A. Consensus control of second-order systems

The consensus problem for systems with dynamics

ϑ̈i = ui i ≤ N, ui ∈ R (8)
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(that is steering ϑi → ϑc, ϑ̇i → 0, and ϑ̈i → 0 with ϑc
constant and non-imposed a priori) is now well understood [1]
in various settings, e.g., in the case of immeasurable velocities
[42], of measurement delays [43], or with state constraints
[44], [45], to mention a few.

For instance, it is well known (see [1]) that if the systems
modeled by (8) communicate over a network modeled by a
directed, static, and connected graph, the distributed control
law, of proportional-derivative (PD) type,

ui = −diϑ̇i − pi
∑
j∈Ni

aij(ϑi − ϑj); di, pi > 0, (9)

where aij > 0 if j ∈ Ni and aij = 0 otherwise, solves the
consensus problem. There are many reported ways to show
this. For further development we provide here a simple and
original proof based on Lyapunov’s direct method. Let ϑ :=
[ϑ1 · · · ϑN ]> and

ϑ̃ := ϑ− 1

N
1N1>Nϑ, 1N := [1 · · · 1]>. (10)

Indeed, ϑ̃ denotes a vector whose ith element corresponds
to the difference between ϑi and the average of all states,
i.e., ϑc := (1/N)1>Nϑ. In addition, under Assumption 2,
ϑc corresponds to the consensus equilibrium point. Now, to
abbreviate the notation, we also define

R := I − 1

N
1N1>N .

Note that R = R> and ‖R‖ ≤ 1, where ‖R‖ corresponds to
the induced norm of R, and ϑ̃ = Rϑ.

Next, we introduce the Laplacian matrix, L := [`ij ] ∈
RN×N , where

`ij =

{ ∑
k∈Ni

aik i = j

−aij i 6= j.
(11)

By construction, L1N = 0 and, after Assumption 2, L is
symmetric, it has a unique zero-eigenvalue, and all of its other
eigenvalues are strictly positive. Thus, rank(L) = N−1. Also,
the last term on the right-hand side of Equation (9) satisfies

col
[ ∑
j∈Ni

aij(ϑi − ϑj)
]

= Lϑ̃, (12)

where col[(·)i] denotes a column vector of N elements (·)i.
Indeed, by the definition of the Laplacian, we have

col
[ ∑
j∈Ni

aij(ϑi−ϑj)
]

= L
[
ϑ− 1

N
1N1>Nϑ

]
+

1

N
L1N1>Nϑ.

However, L1N = 0, so the right hand side of the equation
above equals to LRϑ, which corresponds to Lϑ̃, by definition.
These identities are useful to write the closed-loop system (8)–
(9) in the multi-variable form

ϑ̈ = −Dϑ̇− PLϑ̃, (13)

where P := diag[pi] and D := diag[di], and to see that the
Lyapunov function

V1(ϑ̃, ϑ̇) :=
1

2

[
ϑ̃>Lϑ̃+ ϑ̇>P−1ϑ̇

]
(14)

is positive definite, even if L is rank deficient. Indeed, the
term ϑ̃>Lϑ̃ ≥ λ2(L)|ϑ̃|, where λ2(L) > 0 corresponds to
the second eigenvalue of L (that is, the smallest positive
eigenvalue), not for any ϑ̃ ∈ RN , but for ϑ̃ as defined in
(10). Now, evaluating the total derivative of V1 along the
trajectories of (13) and using L

˙̃
ϑ = Lϑ̇ (again, this holds

because L1N = 0) we see that

V̇1(ϑ̃, ϑ̇) = ϑ̇>P−1D ϑ̇. (15)

Global asymptotic stability of the consensus manifold
{(ϑ̃, ϑ̇) = (0, 0)} may be ascertained from (15) by invok-
ing Barbashin-Krasovskı̆i’s theorem [46] (also, but wrongly,
known as LaSalle’s theorem). As a matter of fact, since the
system is linear time-invariant, it is also globally exponentially
stable and robust to external perturbations.

To see this more clearly, using V1 it is possible to construct
a simple strict Lyapunov function. This is useful to assess the
robustness of system (8) in closed-loop with the consensus
control law defined in (9) in terms of input-to-state stability.
Let

V2(ϑ̃, ϑ̇) := V1(ϑ̃, ϑ̇) + εϑ̃>P−1ϑ̇, ε ∈ (0, 1). (16)

In view of the properties of V1 it is clear that V2 also is positive
definite and radially unbounded, for sufficiently small values
of ε ∈ (0, 1). The total derivative of V2 along the closed-loop
trajectories yields

V̇2(ϑ̃, ϑ̇) = V̇1+ε
[
ϑ̇>RP−1ϑ̇−ϑ̃>RP−1Dϑ̇−ϑ̃>Lϑ̃

]
, (17)

which, in view of (15) and the fact that ‖R‖ ≤ 1, implies that

V̇2(ϑ̃, ϑ̇) ≤ −c1
dm
pM
|ϑ̇|2 − εc2|ϑ̃|2 (18)

where dm and pM are the smallest and largest coefficients of
D and P respectively, c1 := 1−ε

[
1
λ+ 1

dm

]
and c2 := `2−λ dmpM

are positive for appropriate values of λ and ε ∈ (0, 1) and any
`2 := λ2(L) > 0.

Remark 2: Consider, now, the systems ϑ̈i = ui +αi where
αi is a bounded external disturbance. Then, the previous
computations lead to the inequality

V̇2(ϑ̃, ϑ̇) ≤ −c1
dm
pM
|ϑ̇|2 − εc2|ϑ̃|2 + ϑ̇>α (19)

with α := [α1 · · ·αN ]>. It follows that the map α 7→ ϑ̇ is
state-strictly passive [47] and, also, the closed-loop system is
input-to-state stable with respect to the input α. •
From the previous analysis, we conclude that for the angular-
motion subsystem (3) the controller

uωi =−dωiωi − pi
∑
j∈Ni

aij(θi − θj) + αi; dωi, pωi > 0,

(20)

ensures global asymptotic stability of the consensus manifold
{ωi = 0 ∧ θi = θj} if αi ≡ 0 and the closed-loop system
is input-to-state stable with respect to αi. We shall see farther
below that such robustness is fundamental to our main results.

Remark 3: The previous computations hold with obvious
changes in the notation for the angular-motion dynamics θ̈i =
uωi, which is equivalent to (3). This will be used later. •
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B. On consensus in the linear motion

Based on the collective knowledge recalled in Section III-A
and with the purpose of designing two independent controllers
for the angular and linear motion, it appears appealing to use
the following control law for the subsystem (4) —cf. [48]. Let

uvi = −dvivi − pviϕ(θi)
>
∑
j∈Ni

aij(z̄i − z̄j) (21)

and let us replace the state variable θi with an arbitrary
trajectory θi(t) which, for the time being we assume to be
bounded and to have a bounded derivative ωi(t), for all t ≥ 0
and all i ≤ N (this technical assumption is relaxed later).
Then, the closed-loop linear-motion dynamics (4)-(21) may
be regarded as a time-varying subsystem, decoupled from the
angular motion dynamics. That is,

˙̄zi = ϕ(θi(t))vi, (22a)

v̇i = −dvivi − pviϕ(θi(t))
>
∑
j∈Ni

aij(z̄i − z̄j). (22b)

Next, akin to V1 in (14), we define the Lyapunov function

V3(v, z̄) :=
1

2

∑
i≤N

[ 1

pvi
v2i +

1

2

∑
j∈Ni

aij(z̄i − z̄j)2
]
, (23)

where v := [v1 · · · vN ]> and z̄ := [z̄1 · · · z̄N ]> —cf. (12).
Using the identity

1

2

∑
i≤N

∑
j∈Ni

aij( ˙̄zi − ˙̄zj)
>(z̄i − z̄j) =

∑
i≤N

aij ˙̄z>i (z̄i − z̄j)

—see [49] and [50, Lemma 6.1], we compute the total
derivative of V3 along the closed-loop trajectories of (22) to
obtain

V̇3(v, z̄) = −v>DvP
−1
v v, (24)

where Pv := diag[pvi] and Dv := diag[dvi].
Now, the system in (22) being non-autonomous, Barbashin-

Krasovskı̆i’s theorem does not apply, but we may use
Barbălat’s (Lemma A.1 in the Appendix) and Lemma A.2 to
assess global asymptotic stability. To that end, we first remark
that the function V3 is positive definite and radially unbounded
in vi and |z̄i− z̄j | for all i, j ≤ N . Then, integrating, along the
trajectories, on both sides of (24) and of V̇3(v(t), z̄(t)) ≤ 0, we
obtain that vi and |z̄i− z̄j | are bounded, i.e., vi, |z̄i− z̄j | ∈ L∞
and vi ∈ L2. In addition, (24) implies that the consensus
equilibrium defined by {vi = 0, z̄i = z̄j} is stable. From
(22), the boundedness and continuity of ϕ(θi), of θi(t), and
of ωi(t), we see that, also, ˙̄zi, v̇i, and, consequently, v̈i ∈ L∞.
Since vi ∈ L2 ∩L∞ and vi ∈ L∞ we conclude, after Lemma
A.2, that vi → 0. Hence, since

lim
t→∞

∫ t

0

v̇i(s)ds = lim
t→∞

vi(t)− vi(0),

we have

lim
t→∞

∫ t

0

v̇i(s)ds = −vi(0),

That is, the limit of v̇i “exists and is finite” whereas the
boundedness of v̈i implies that v̇i is uniformly continuous.

Hence, by virtue of Barbălat’s Lemma, we conclude that
v̇i → 0 as well. In turn, after (22) we see that

lim
t→∞

ϕ(θi(t))
>
∑
j∈Ni

aij
(
z̄i(t)− z̄j(t)

)
= 0.

This expression, however, does not imply that the consensus
objective is reached. Indeed, note that the set of equilibria of
the system in (22) corresponds to points belonging to the set

U :=
{
vi = 0 ∧ ϕ(θi)

>
∑
j∈Ni

aij(z̄i − z̄j) = 0
}
,

which admits points such that z̄i 6= z̄j ∈ R2 because
rankϕ(θ) = 1. This means that if orientation consensus is
reached and, for instance, θi(t) → 0 then x̄i → xc, but
ȳi 6→ yc —see Eq. (5).

Remark 4: This shows that the consensus problem for
nonholonomic systems cannot be treated as that for ordinary
second-order systems like those discussed in Section III-A —
cf. [44], [51]. •
To ensure consensus it is necessary that the set of equilibria
correspond to the set U ∩ U⊥, where

U⊥ :=
{
vi = 0 ∧ ϕ(θi)

⊥>
∑
j∈Ni

aij(z̄i − z̄j) = 0
}
,

and
ϕ(θi)

⊥ := [− sin(θi) cos(θi)]
>. (25)

That is, ϕ(θi)
⊥ is the annihilator of ϕ(θi) hence,

ϕ(θi)
⊥>ϕ(θi) = ϕ(θi)

>ϕ(θi)
⊥ = 0.

Roughly speaking, the controller must “pull” out the trajec-
tories that may eventually get “trapped” in the set U , whereas
they do not belong to the set U⊥. To that end, we endow
the angular-motion controller with a term that incorporates an
external function of time (smooth and bounded) and acts as a
perturbation to the angular-motion closed-loop dynamics. This
perturbation is designed to persist as long as

ϕ(θi)
⊥>
∑
j∈Ni

aij(z̄i − z̄j) 6= 0.

More precisely, let ψi, ψ̇i, and ψ̈i be bounded (belong to L∞)
let ψ̇i be persistently exciting [52], that is, let there exist T
and µ > 0 such that∫ t+T

t

ψi(s)
2ds ≥ µ ∀ t ≥ 0. (26)

Then, for the control law in (20), we define

αi(t, θi, z̄i) := kαiψi(t)ϕi(θi)
⊥>(z̄i − z̄j), kαi > 0. (27)

The following remarks are in order.

• While αi injects excitation into the system, which ensures
that the position consensus errors converge, it acts as a
bounded (hence harmless) perturbation on the angular-
motion dynamics —cf. Section III-A.

• The state-feedback controller defined by (20), (21), and (27)
ensures full consensus, in position and orientation, for the
closed-loop system, even in the presence of delays [7].
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• Controllers for nonholonomic systems that make explicit
use of persistency of excitation were first used for tracking
in [53] and for set-point stabilization in [26], but the un-
derlying ideas are already present in [54], [55]. Nowadays,
persistency of excitation is recognized as a fundamental, if
not necessary, condition [19], for set-point stabilization of
nonholonomic systems via smooth feedback and they are
also frequently used in trajectory-tracking scenarii —see
e.g., [56], [57].

IV. CONTROL ARCHITECTURE: OUTPUT-FEEDBACK CASE

We have argued that the consideration of the nonholonomic
system’s dynamics as being constituted by an angular and a
linear-motion dynamics leads to the control design for each
of these subsystems separately. This was demonstrated in the
case of state-feedback control. In this section we build upon
the previous analyses and designs and show how a simple,
linear, dynamic output-feedback, controller may be designed
to achieve consensus both in position and orientation.

A. Output-feedback consensus: the rationale behind

θi

kωi

ϑωi

dωi

ϑωj

ϑωi

Fig. 3: Schematic representation of coupled mass-spring-damper
systems: angular motion. It is the controller state variable, ϑωi that
is transmitted to neighboring robots and, correspondingly, ϑωj is
received from Ni neighbors.

Let us consider, first, the angular-motion dynamics, (3).
Note that, expressed as θ̈i = uωi, this system corresponds to
an elementary Newtonian force-balance equation with unitary
inertia. The problem at hand still is to synchronize the angular
positions θi for N such systems, but since ωi is not available
from measurement, we cannot use the control law in (20) —
with αi ≡ 0—. Yet, it appears reasonable to conjecture that
the objective θi → θj for all i, j ≤ N may be achieved
by coupling the subsystems θ̈i = uωi, via torsional springs,
to virtual second-order oscillators for which the states are
available and are synchronized by design —see Fig. 3 for an
illustration.

More precisely, consider the dynamic system

ϑ̈ωi + dωiϑ̇ωi + pωi
∑
j∈Ni

aij(ϑωi − ϑωj) = νωi (28)

where νωi is an external input to be defined, the state ϑωi ∈ R,
and dωi, pωi > 0.

As we showed in Section III-A, for (28) consensus is
achieved, that is, there exists a real constant ϑωc, such that
ϑωi → ϑωc, ϑ̇ωi → 0, for all i ≤ N , provided that dωi,
pωi > 0, and νωi = 0. On the other hand, the system in (28)
defines a passive map νωi 7→ ϑ̇ωi. Furthermore, the system

(3b) also defines a passive map, uωi 7→ ωi. Therefore, it
results natural to “hitch” the systems (28) and (3) by setting
νωi := −uωi and

uωi := −kωi(θi − ϑωi), kωi > 0. (29)

That is, the coupling −kωi(θi−ϑωi) may be interpreted as the
force exerted by a torsional spring that hinges the (angular)
positions of the two subsystems —again, see Fig. 3.

Remark 5: Some readers will recognize here an analogy
with flexible-joint manipulators [58], [59]. This is discussed
in further detail in the next section. •
Thus, we have the following.

Proposition 1 (Output feedback orientation consensus):
Consider the system (3) in closed-loop with the dynamic
controller defined by (28), (29), and νωi := kωi(θi − ϑωi).
Let Assumption 2 hold. Then, there exist constants θc and
ϑc ∈ R such that, for all i and j ≤ N ,

lim
t→∞

θi(t) = lim
t→∞

θj(t) = θc, lim
t→∞

ωi(t) = 0,

lim
t→∞

ϑωi(t) = lim
t→∞

ϑωj(t) = ϑc, lim
t→∞

ϑ̇j(t) = 0.

�

Proof: Consider the function

W3(ϑ̇ω, ϑω, θ, ω) := W1(ϑω, ϑ̇ω) +W2(θ, ω, ϑω),

where ϑω := [ϑω1 · · · ϑωN ]>,

W1(ϑω, ϑ̇ω) :=
1

2

∑
i≤N

[ ϑ̇2i
pωi

+
1

2

∑
j∈Ni

aij(ϑωi − ϑωj)2
]
, (30)

W2(θ, ω, ϑ) :=
1

2

∑
i≤N

[ ω2
i

pωi
+ kωi(θi − ϑωi)2

]
. (31)

The function W2 corresponds to the total energy of the mass-
spring (closed-loop) system θ̈i = −kωi(θi − ϑωi); the first
term is the kinetic energy and the second the potential energy
“stored” in the torsional spring of stiffness kωi. The function
W1 is analogous to V3 in (23). The function W3 is positive
definite in the consensus errors, in ω, ϑω , and ϑ̇ω . Moreover,
its total derivative along the trajectories of the closed-loop
system yields

Ẇ3(ϑ̇ω, ϑω, θ, ω) = −1

2

∑
i≤N

dωi
pωi

ϑ̇2ωi. (32)

Then, the system being autonomous, we may invoke
Barbashin-Krasovskı̆i’s theorem. First, we see that Ẇ3 = 0
if and only if ϑ̇ωi = 0. The latter implies that ϑ̈ωi = 0 and
ϑωi = const for all i ≤ N . From (28) and νωi := kωi(θi−ϑωi)
we conclude that θi = const, i.e., ωi = ω̇i = 0. In turn, from
ω̇i = −kωi(θi − ϑωi) = −νωi = 0 and (28) it follows that∑

j∈Ni

aij(ϑωi − ϑωj) = 0 and θi = ϑωi ∀ i, j ≤ N.

Finally, in view of Assumption 2. The only solution to the
equations above is θi = ϑωi = ϑc for all i, j ≤ N .
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x̄i
kvi

ȳi

ϑvi
ϑvj

ϑvi1

ϑvi2

Fig. 4: Schematic representation of coupled mass-spring-damper
systems: linear motion. The controller state variable ϑvi is sent to
neighboring robots and, correspondingly, ϑvj is received from Ni
neighbors.

B. Output-feedback position consensus

Akin to the controller for the angular motion subsystem, to
steer the Cartesian positions z̄i to a consensual point on the
plane zc, we use a second-order dynamic controller system
that is reminiscent of the equation (8) in closed loop with
the control (9), and an added virtual-spring coupling term,
−kvi(ϑvi − z̄i). That is, let

ϑ̈vi+dviϑ̇vi+ pvi
∑
j∈Ni

aij(ϑvi−ϑvj) = −kvi(ϑvi−z̄i), (33)

where ϑvi ∈ R2 and ϑ̇vi are controller’s state variables, and
all control gains dvi, pvi and kvi are positive.

Then, the dynamical system (33) is coupled to the double
(nonholonomic) integrator (4). In contrast to the case of the
angular motion, however, for the linear motion the control
input uvi must incorporate the change of coordinates defined
by ϕ. Therefore, we define

uvi := −ϕ(θi)
>kvi(z̄i − ϑvi), kvi > 0 (34)

—cf. Eq. (29).
The following remarks are in order

• The control design is based on the ability to separate the
linear and angular motion dynamics. As it is discussed
in Section III-B, however, this is only an artifice for the
purpose of analysis (and to rationalize the control design).
Nonetheless, the systems (3) and (4) in closed loop with
the controllers defined by (28) with νωi := kωi(θi − ϑωi)
and (29), as well as (33), (34) cannot be expected to reach
consensus unless the control input (29) is redesigned, en-
hanced with a δ-persistently exciting term αi. This problem
is addressed in the next section.

• There is an interesting analogy between the control archi-
tecture proposed above and (consensus) control of robot
manipulators with flexible joints. To better see this, consider
the Euler-Lagrange equations for such systems, in closed-
loop with a proportional-derivative consensus controller like
the one defined in (9). We have —see [58], [59]—

Mi(q1i)q̈1i + Ci(q1i, q̇1i)q̇1i + gi(q1i) = K(q2i−q1i) (35a)

q̈2i +K(q2i−q1i) = diq̇2i + pi
∑
j∈Ni

aij(q2i − q2j) (35b)

and consensus is reached provided that di, pi > 0; this
follows from the main results in [60].
In (35), the generalized coordinates q2i correspond to the
actuators’ angular positions while q1i correspond to the
links’ positions. Hence, in the case of the angular motion
dynamics, the closed-loop equation θ̈i = −kωi(θi − ϑωi)
may be assimilated to Eq. (35a) with unitary inertia Mi = I
and null Coriolis and gravitational forces, i.e., Ci = gi ≡ 0.
On the other hand, the dynamic controller (28) with νωi :=
kωi(θi − ϑωi) corresponds, up to obvious changes in the
notation, to the actuator dynamics in closed loop, that is,
Eq. (35b).
These observations are significant, on one hand, because
they illustrate the underlying stabilization mechanism of
our approach and, on the other, as they provide guidelines
beyond Section III-A to construct suitable energy-like Lya-
punov functions for the analysis of the overall system. For
further details, see Section V-B.

V. OUTPUT FEEDBACK CONTROL UNDER DELAYS

In this section we present our main result, a dynamic
output feedback controller under delayed measurements. It
is designed following the certainty-equivalence principle and
the previous developments. For clarity of exposition, only a
sketch of proof of the main statement is provided here, but
complementary details are presented in the Appendix.

A. Main result

In the presence of measurement delays Tji(t) (see As-
sumption 3), which are different for each pair of robots, the
consensus errors take the following forms. For the position
errors, we have

evi :=
∑
j∈Ni

aij
(
ϑvi − ϑvj(t− Tji(t))

)
, (36)

whereas for the orientations,

eωi :=
∑
j∈Ni

aij
(
ϑωi − ϑωj(t− Tji(t))

)
. (37)

Remark 6: Note that in both cases, as in previous sections,
the errors are defined in the controllers’ coordinates and not
on robots’ measured variables. •
Based on (34) and (33), the certainty-equivalence controller
for the linear motion dynamics, (4), is given by

uvi = −kviϕ(θi)
> (z̄i − ϑvi) , (38a)

ϑ̈vi = −dviϑ̇vi − kvi (ϑvi − z̄i)− pvievi, (38b)

whereas, for the angular motion dynamics, we introduce

uωi = −kωi(θi − ϑωi) + αi(t, θi, evi), (39a)
ϑ̈ωi = −dωiϑ̇ωi − kωi(ϑωi − θωi)− pωieωi, (39b)

All constant parameters are defined as above. In addition,
in order to be used with an output-feedback controller, the
function αi is redefined —cf. Eq. (27)— as

αi(t, θi, evi) := kαiψi(t)ϕ(θi)
⊥> (ϑvi − z̄i) , (40)
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where kαi > 0, ψi is twice differentiable, bounded, with
bounded derivatives and ψ̇i is persistently exciting —cf.
Section III-B. That is, αi in (39a) fulfills the same role as
explained above. Then, we have the following.

Proposition 2: Consider the system (3)–(5), under Assump-
tions 1–3, in closed-loop with (38)-(40). Then, the leaderless
consensus control goal is achieved, that is, (6) and (7) hold
provided that

dvi >
1

2
pvi
∑
j∈Ni

aij

[
βi +

T
2
ji

βj

]
(41)

dωi >
1

2
pωi

∑
j∈Ni

aij

[
εi +

T
2
ji

εj

]
(42)

for some βi, εi > 0, for all i ≤ N . �

B. Sketch of proof of Proposition 2

Σvi

Eqs. (44)
Σωi

Eqs. (43)

α(t,θi,evi)θi

Fig. 5: Schematic representation of the closed-loop system, con-
sisting in the error equations for the angular and the linear-motion
dynamics. Even though the systems are feedback interconnected, for
the purpose of analysis, they may be regarded as in cascade [37],
whence the feedback represented by a dashed arrow.

We start by laying out the closed-loop equations, according
to the logic of separating the linear and the angular-motion
dynamics. After a direct computation, we obtain

Σωi :


θ̇i =ωi (43a)
ω̇i =−kωi(θi − ϑωi) + αi(t, θi, evi) (43b)
ϑ̈ωi =−dωiϑ̇ωi − kωi(ϑωi − θi)− pωieωi (43c)

Σvi :


˙̄zi =ϕ(θi)vi (44a)
v̇i =−kviϕ(θi)

>(z̄i − ϑvi) (44b)
ϑ̈vi =−dviϑ̇vi − kvi(ϑvi − z̄i)− pvievi (44c)

As illustrated in Fig. 5, for each robot, the closed-loop
equations consist of two dynamical feedback-interconnected
systems. However, as explained in Section III-B, by replacing
the state variables θi with fixed, but arbitrary, trajectories θi(t)
in (44a) and (44b), these systems may be considered as if
interconnected in cascade. Then, the analysis of Σωi and Σvi
may be carried out using arguments for such systems [37]. In
a nutshell, one needs to establish that: 1) all trajectories are
bounded; 2) for Σωi with αi ≡ 0 the consensus errors converge
to zero —cf. Proposition 1; 3) For Σvi the consensus errors
converge, under the persistently exciting effect of αi.

A more formal proof is provided below. For clarity of
exposition, it is articulated into a sequence of claims and
pertinent observations that may be drawn from them. All these
are organized in two subsections pertaining to the boundedness
and the convergence of the error trajectories. Details are
relegated to the Appendix.

1) All the trajectories are bounded:

Claim 1: For the system Σvi in (44), the following holds
true: ϑ̇vi ∈ L2 whereas vi, ϑ̇vi, |ϑvi − z̄i|, and |ϑvi − ϑvj |,
all belong to L∞ (are bounded). Furthermore, also evi ∈ L∞
and, consequently, ϑ̈vi ∈ L∞ too. Finally, ϑ̇vi → 0.
The proof of Claim 1 is provided in the Appendix. It relies on
standard signal chasing analysis [61] and on the energy-based
Lyapunov-Krasovskı̆i functional defined below

V :=
∑
i≤N

[
1

pvi
Ei +

1

4

∑
j∈Ni

aij |ϑvi − ϑvj |2 + Υv
i

]
(45a)

Ei :=
1

2

[
v2i + |ϑ̇vi|2 + kvi|ϑvi − z̄i|2

]
(45b)

Υv
i :=

1

2βi

∑
j∈Ni

aijT ji

∫ 0

−T ji

∫ t

t+η

|ϑ̇vj(σ)|2dσdη, (45c)

where βi > 0 is introduced in the statement of Proposition
2. The function Ei is reminiscent of an energy function;
the first two quadratic-in-velocities terms on the right-hand
side may be assimilated to kinetic energy terms while the
third corresponds to a potential-energy term associated to the
springs with stiffness kvi —see Fig. 4. The second term in the
definition of V is quadratic in the consensus errors and it is
equivalent to ϑ̃>viLϑ̃vi with ϑ̃vi defined as in (9) —cf. V1 in
(14). Finally, because the closed-loop system is in the form of
a set of functional differential equations, we use a so-called
Lyapunov-Krasovskı̆i functional [62], that is the term Υv

i .
Now, the total derivative of V along the trajectories of (44)

yields

V̇ ≤ −
∑
i≤N

[
dvi
pvi
−
∑
j∈Ni

aij

[βi
2

+
T

2

ji

2βj

]]
|ϑ̇vi|2 (46)

—see the Appendix for details. Note that the factor of |ϑ̇vi|2
for any i ≤ N is positive under condition (41). The statement
of the claim follows from integrating along trajectories on
both sides of (46) and invoking Lemmata A.1 and A.2 in the
Appendix.

Next, we analyze the behavior of the trajectories of Σω and,
in first instance, we assume that αi ≡ 0; this convenient hy-
pothesis is relaxed farther below. We start with the following.

Claim 2: Under the condition that αi ≡ 0 the trajectories
of Σωi satisfy the following: ϑ̇ωi ∈ L2 ∩ L∞ whereas ωi,
[ϑωi − θi], [ϑωi − ϑωj ], and eωi ∈ L∞. Finally, ϑ̇ωi → 0
asymptotically.
Similarly to the proof of Claim 1, the proof of Claim 2 relies
on the Lyapunov-Krasovskı̆i functional

W :=
∑
i≤N

[
1

pωi
Hi +

1

4

∑
j∈Ni

aij(ϑωi − ϑωj)2 + Υω
i

]
(47a)

Hi :=
1

2

[
ω2
i + ϑ̇2ωi + kωi(ϑωi − θi)2

]
, (47b)

where εi > 0 —cf. Eq. (45c) and Υω
i is defined as in (45c),

replacing βi with εi and ϑvj with ϑωj . Its derivative along the
trajectories of Σωi with αi ≡ 0 satisfies (see the Appendix for
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details)

Ẇ ≤ −
∑
i≤N

[
dωi
pωi
−
∑
j∈Ni

aij

[εi
2

+
T

2

ji

2εj

]]
ϑ̇2ωi, (48)

in which the factor of ϑ̇2ωi is positive in view of the condition
(42). The first part of the Claim follows by integrating on both
sides of the inequality in (48). Then, a simple inspection of
(43) reveals that ω̇i and ϑ̈ωi are also bounded (belong to L∞),
so after Lemma A.2 it follows that lim

t→∞
ϑ̇ωi(t) = 0.

In addition, the following assertion is established in the
Appendix.

Claim 3: In the case that {αi ≡ 0} it holds that ωi → 0,

lim
t→∞

θi(t) = θc, (49)

and
lim
t→∞

θi(t)− ϑωi(t) = 0. (50)

Now, the previous statements regarding Σω hold under the
restriction that αi ≡ 0. If this is not the case, we remark that
since, ψi, ϑvi − z̄i and ϕ⊥ are bounded along all trajectories,
so is αi —see Eq. (40). This and the fact that Σω is a
marginally stable linear time-varying system with uniformly
bounded time-delays, imply that ω̇i, ωi, ϑ̇ωi, ϑ̈ωi ∈ L∞ and so
θi − ϑωi and eωi are also bounded —cf. [63, Proposition 3].

2) The consensus errors vanish:

So far, we have assessed the boundedness of |θi−ϑωi|, ωi,
ω̇i, ϑ̇ωi, ϑ̈ωi, and eωi, as well as of vi, ϑ̇vi, [ϑvi − z̄i], and
|ϑvi − ϑvj |. In addition, we established that ϑ̇vi ∈ L2 and
ϑ̇vi → 0. Next, we establish the limits in (6) and (7).

The limits in (7) follow from the marginal stability of Σωi
with αi ≡ 0 and, once more, invoking —cf. [63, Proposition
3], provided that αi → 0. The latter, in turn, holds in view
of the following assertion whose proof is presented in the
Appendix.

Claim 4: The term (z̄i − ϑvi) converges to zero asymptot-
ically.

Now, in regards to the first limit in (6) we argue as follows.
Since ϕ is uniformly bounded, from (44a) and (44b) we have
that ˙̄zi ∈ L∞ and v̇i ∈ L∞. Moreover, from Assumption 3
and the fact that ϑ̈vi, ϑ̇vi, ˙̄zi ∈ L∞ it holds that

ϑ
(3)
vi = −dviϑ̈vi − kvi(ϑ̇vi − ˙̄zi)− pviėvi, (51)

is bounded too. This last and

lim
t→∞

∫ t

0

ϑ̈vi(σ)dσ = lim
t→∞

ϑ̇vi(t)− ϑ̇vi(0) = −ϑ̇vi(0)

imply, by Barbălat’s Lemma, that lim
t→∞

ϑ̈vi(t) = 0. Further-

more, we note that also ϑ(4)vi ∈ L∞, where

ϑ
(4)
vi = −dviϑ(3)vi − kvi(ϑ̈vi − ¨̄zi)− pviëvi.

To see this, note that since ¨̄zi = ϕ(θi)v̇i + ωiϕ
⊥(θi)vi and

we have previously established that ωi ∈ L∞ then ϑ(4)vi ∈ L∞
as required. Thus, ϑ(3)vi is uniformly continuous and tends to
zero (after Barbălat’s Lemma A.1). From (51) it also follows

that ˙̄zi → 0. Hence lim
t→∞

vi(t) = 0, which corresponds to the
first limit in (6).

Remark 7: For further development we stress that v̇i, v̈i →
0. To see this, note that

lim
t→∞

∫ t

0

v̇i(σ)dσ = lim
t→∞

vi(t)− vi(0) = −vi(0)

and since all signals in the right-hand side of

v̈i = −kviϕ(θi)
>( ˙̄zi − ϑ̇vi)− kviωiϕ(θi)

⊥> (z̄i − ϑvi)
are bounded, then v̈i ∈ L∞ so v̇i is uniformly continuous and
Barbălat’s Lemma implies that lim

t→∞
v̇i(t) = 0. Following a

similar argument, it also follows that lim
t→∞

v̈i(t) = 0. •
The second limit in (6) is implied by ϑ̇vi, ϑ̈vi, and [z̄i−ϑvi]

converging to zero (for the latter see Claim 4 above). Indeed,
if ϑ̈vi, ϑ̇vi, and z̄i−ϑvi → 0, from the first equation in (44), it
follows that also evi converges to zero and this in turn implies
that the second limit in (6) holds. To better see this, note that
since

evi =
∑
j∈Ni

aij

[
ϑvi(t)− ϑvj(t) +

∫ t

t−Tji(t)

ϑ̇vj(σ)dσ

]
,

defining ev :=
[
ev1 · · · evN

]>
and ϑv :=

[
ϑv1 · · · ϑvN

]
,

respectively, we have

ev = (L⊗ I2)ϑv + col

[ ∑
j∈Ni

aij

∫ t

t−Tji(t)

ϑ̇vj(σ)dσ

]
.

Therefore, evi = 0 and ϑ̇vi = 0 imply that (L ⊗ I2)ϑv = 0
which, in view of the properties of L, implies the existence of
z̄c ∈ R2 such that ϑv = 1N ⊗ z̄c, or ϑvi = z̄c for all i ≤ N .
Hence, from the third equation in (44), we see that if ϑ̈vi, ϑ̇vi,
and evi → 0, then

lim
t→∞

z̄i(t) = lim
t→∞

ϑvi(t).

and
lim
t→∞

z̄i(t) = z̄c.

The statement follows.

VI. SIMULATION RESULTS

In lack of an adequate set-up, we used the simulator
Gazebo-ROS and the Robot Operating System (ROS) interface
to evaluate the performance of our controller in a scenario that
reproduces as closely as possible that of a laboratory experi-
mental benchmark. Furthermore, for the sake of comparison,
we also carried out numerical-integration simulations using
Simulink of Matlab.

Gazebo-ROS is an efficient 3D dynamic simulator of robotic
systems in indoor and outdoor environments. In contrast to
pure numerical-integration based solvers of differential equa-
tions, Gazebo-ROS accurately emulates physical phenomena
and dynamics otherwise neglected, such as friction, contact
forces, actuator dynamics, slipping, etc. In addition, it offers
high-fidelity robot and sensor simulations.
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For the test scenario we employed the model of a PIONEER
3-DX wheeled robot [64], available in Gazebo’s library. It
must be underlined that for this robot the center of mass is
not located on the axis joining the two wheels’ centers –cf.
Fig. 1, as it is assumed at the basis of the developments in
the previous sections. More precisely, in Equations (2) the
functions Fv and Fω include Coriolis terms that are quadratic
in the velocities, i.e., ri

3 ω
2
i on the left-hand side of Equation

(2a) and − rimi

3Ii
ωivi on the left-hand side of Equation (2b).

Akin to an actual experimentation set-up, these constitute
dynamic effects not considered in the model for which the
controller is validated analytically, nor in the simulations
carried out with Simulink of Matlab.

Concretely, in the simulation scenario we consider six PI-
ONEER 3D-X robots starting from initial postures as defined
in the 2nd-4th columns of Table I, below.

TABLE I: Initial conditions

Index xi [m] yi [m] θi [rad] δxi [m] δyi [m]
1 8 7 1.57 2 0
2 2 13 0.0 1 2
3 2 9 -0.39 -1 2
4 -2 6 0.39 -2 0
5 1 3 -0.39 -1 -2
6 4 4 -0.39 1 -2

Also, an illustration of the robots in their initial postures is
showed via a screenshot of the Gazebo-ROS simulator’s user
interface in Fig. 6, below.

Fig. 6: Screenshot of the six PIONEER 3D-X robots’ at their initial
configuration, in the Gazebo-ROS simulator

It is assumed that the robots communicate over the undi-
rected connected graph like the one illustrated in Fig. 7 and
with piece-wise constant time-varying delays. For simplicity,
all the time delays Tji(t) are taken equal; they are generated
randomly following a normal distribution with mean µ = 0.3,
variance σ2 = 0.0003 and a sample time of 10 ms —see Fig. 8.
Such time delay (non-smooth but piece-wise continuous) does
not satisfy Assumption 3 since its time-derivative is bounded
only almost everywhere (that is, except at the points of
discontinuity). However, it is considered in the simulations
since it is closer to what is encountered in a real-world set-up
[39]. Even though the technical Assumption 3 does not hold,
full consensus is achieved (at least practically) in both the
Matlab and the realistic Gazebo-ROS simulations. This hints
at the fact that Assumption 3 might be relaxed in the analysis,
albeit using a different controller —cf. [8].
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Fig. 7: Communication topology: undirected connected graph
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Fig. 8: Variable delay between the robot 1 and the received infor-
mation from neighbor 2.

The desired formation at rendezvous corresponds to a
hexagon determined by desired offsets δi = (δxi, δyi) with
respect the unknown center of the formation. These constants
are presented in the last two columns of Table I —see Fig. 2
for an illustration of the target formation.

For a fair and meaningful comparison, the numerical sim-
ulations under Simulink of Matlab were performed using the
information available on the PIONEER 3D-X robot, from the
Gazebo-ROS simulator. For simplicity, it is assumed that all
the robots have the same inertial and geometrical parameters
given by m = 5.64 kg, I = 3.115 kg·m2, r = 0.09 m and
R = 0.157 m.

In both simulators, the control gains were set to kvi = 1,
kωi = 2, dvi = 3, pvi = 0.4, dωi = 2, pωi = 0.1, for all
i ∈ [1, 6]. These values correspond to magnitudes compatible
with the emulated physics of the PIONEER 3D-X robots in
Gazebo-ROS and are chosen so that the poles of the 2nd-order
system ẍ = −d(·)ẋ − p(·)x have negative real parts and the
system have an over-damped step-response. The δ-persistently-
exciting functions αi, for all i ∈ [1, 6], were taken as in (40)
with kαi = 0.4 and, for simplicity, (multi)periodic functions

ψi(t) = 2.5 + sin(2πt) + 0.3 cos(6πt)− 0.5 sin(8πt)

−0.1 cos(10πt) + sin(πt) ∀ i ≤ 6. (52)

Other parameters such as the sampling time, were taken equal.
As we mentioned above, however, certain physical phe-

nomena as well as actuator and sensor dynamics, which are
hard-coded in Gazebo-ROS, cannot be reproduced in Matlab.
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The consequence of this is clearly appreciated in the figures
showed below. The results obtained with Gazebo-ROS are
showed in Figs. 10, 12, 14, and 16. The results obtained using
Simulink of Matlab are showed in Figs. 9, 12, 15, and 17.
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[m

]
i
∈
[1
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zc ≈ (1.356, 5.523)

Fig. 9: Paths followed by the PIONEER 3D-X robots up to full
formation consensus —Matlab simulation. A hexagonal formation is
achieved with coinciding orientations (illustrated by arrows).

In both cases the robots appear to achieve consensus, i.e.,
to meet at a non-predefined rendezvous point in hexagonal
formation and with common non-predefined orientation —see
Figs. 9 and 10, as well as the screenshot of the final postures
from Gazebo’s graphical interface, Fig. 11. Under Matlab,
the center of the formation is located at (1.356, 5.523), while
under Gazebo-ROS it is at (−3.242,−3.597). The consensual
orientations are θc ≈ −2.889 rad under Gazebo-ROS and
θc≈−1.785 rad under Matlab.

Both simulations illustrate that for networks of nonholo-
nomic vehicles, the initial conditions do not determine the
consensus point, as is the case of linear systems interconnected
over static undirected connected graphs [1]. Indeed, the con-
sensus point —in this case the center of the formation and the
common orientation— does not correspond to the average of
the initial conditions.

The consensus equilibrium heavily depends, as well, on the
systems’ nonlinear dynamics. This is clear both, in Fig. 9
which results of a Matlab simulation for a network of nonlin-
ear systems modeled as in (1)-(2) with Fv = Fω = 0, as well
as in Fig. 10 which results from a more realistic simulation
based on a model that emulates otherwise neglected Coriolis
high-order terms, friction, sensor and actuator effects, etc. In
addition, it appears fitting to recall that the controller, in both
cases, is dynamic and time-varying.

Furthermore, it is clear from Figs. 9 and 10 that the results
obtained with either simulator differ considerably in various
manners. Obvious discrepancies lay in the position of the
center of the consensus formation that is achieved, as well
as in the paths followed by the robots.
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Fig. 10: Paths followed by the PIONEER 3D-X robots up to
full formation consensus —Gazebo-ROS simulation. A hexagonal
formation is achieved with coinciding orientations (illustrated by
arrows).

Fig. 11: Screenshot of the final configuration in the Gazebo-ROS
simulator; the six robots achieving full consensus at the rendezvous
point.

The differences in the transient behaviors for both simula-
tions are even clearer in the plots of the consensus errors,
which, for the purpose of graphic illustration, are defined
as the difference between each robot’s variables and the
corresponding average:

ezi := z̄i −
1

N

∑
j∈Ni

z̄j , eθi := θi −
1

N

∑
j∈Ni

θj . (53)

That is, the limits in (6) and (7) hold if the error trajectories
ezi(t) and eθi(t) as defined above converge to zero, but the
errors in (53) do not correspond to variables actually used by
the controller nor measured for that matter.

In Fig. 12 one can appreciate that such errors do not actually
tend to zero, but to a steady state-error —a keen observer will
notice that the hexagon in Fig. 10 is actually not quite so. In
contrast to this, in the simulation obtained using Matlab —see
Fig. 13— the errors converge to zero asymptotically, albeit
slowly. The reason is that in the Gazebo-ROS simulation,
after a transient, the amplitude of the input torques becomes
considerably small in absolute value —see Fig. 16.
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The presence of a steady-state error and the persistency-of-
excitation effect in the controller maintain the input torques
oscillating (periodically in this case due to the choice of ψi(t)
in (52) ), but, physically, they result insufficient to overcome
the robots’ inertia and friction forces that oppose their forward
and angular motions. In contrast to this, in Fig. 17 are showed
the input torques obtained using Simulink of Matlab. A
similar oscillating behavior is observed, but the torques vanish
asymptotically —notice the order of magnitude in the plots on
the right column in Fig. 17, in the range of milli-Nm— as the
error-dependent persistency of excitation disappears.

It seems fitting to say at this point that the controller gains
may be augmented, for instance, to increase the convergence
speed, but such values may result incompatible with the
robots’ and actuators’ physical limitations, so it is not done
here to conserve a realistic setting.
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Fig. 12: Position consensus errors — Gazebo-ROS simulation.
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Fig. 13: Position consensus errors — Matlab simulation.
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Fig. 14: Orientation consensus errors — Gazebo-ROS simulation.
The consensus equilibrium θc ≈ −2.889 rad
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Fig. 15: Orientation consensus errors — Matlab simulation. The
consensus equilibrium θc ≈ −1.785 rad
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Fig. 16: Input torques — Gazebo-ROS simulation.
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Fig. 16: Input torques — Matlab simulation.

and avoid an unnatural behavior of the robots in Gazebo.
However, it is important to remark that the convergence speed
can be greatly improved by increasing the controller gains.

Note, also, that the simulated variable delay Tji(t) in Fig. 7
does not satisfy Assumption 3 since its time-derivative is
bounded almost everywhere. Despite this fact, full consensus
is achieved (at least practically) in both the Matlab and the
realistic Gazebo-ROS simulations, hinting at the fact that
Assumption 3 might be relaxed.

VII. CONCLUSIONS

We have presented a simple dynamic output feedback con-
troller for rendezvous of differential-drive robots. The novelty
of our contributions lie in the lack of velocity measurements
and the presence of time-varying delays. The controller that
we propose has the neat physical interpretation of a second
order mechanical system itself. In that regard, this technique
may be a starting point for the control of multiagent systems
under output feedback. Even though the assumptions that our
main results relie on are somewhat realistic, there are other
hypotheses whose relaxing needs further study. Some pertain
to the topology. In this work we assumed that the graph is
undirected and static. The study of multiagemnt nonholonomic
vehicles with less stringent hypotheses on the topology has
been little addressed; for instance, with prosimity constraints
in [] or under directed spanning-tree graph topologies in [].
Another significant aspect to investigate is the influence of the
nonlinear dynamics. Our theoretical results apply to the sim-
plest of second-order nonholonomic systems, but other models
in which the center of mass is not aligned with the axis joining
the centers of the wheels should be investigated. The difficulty
lies in the presence of highly nonlinear Lagrangian dynamics
[]. Yet, our numerical tests using the Gazebo simulator clearly
show the limitations of more classic integration routines in
which aspects such as unmodelled dynamics, friction and, even
the actuator dynamics are neglected.
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VII. CONCLUSIONS

We have presented a simple dynamic output feedback con-
troller for rendezvous of differential-drive robots. The novelty
of our contributions lie in the lack of velocity measurements
and the presence of time-varying delays. The controller that
we propose has the neat physical interpretation of a second
order mechanical system itself. In that regard, this technique
may be a starting point for observerless control of multiagent
systems under output feedback.

Even though the assumptions that our main results rely
on are somewhat realistic, there are other hypotheses whose
relaxing needs further study. Some pertain to the topology.
In this work we assumed that the graph is undirected and
static. The study of multiagent nonholonomic vehicles with
less stringent hypotheses on the topology has been little
addressed; for instance, with proximity constraints in [45] or
under directed spanning-tree graph topologies in [44].

An intriguing aspect to investigate further is the influence of
the nonlinear dynamics on consensus. Our theoretical results
apply to the simplest of second-order nonholonomic systems,
but other models in which the center of mass is not aligned
with the axis joining the centers of the wheels should be inves-
tigated. The difficulty lies in the presence of highly nonlinear
Lagrangian dynamics [33]–[36]. Yet, our numerical tests using
the Gazebo-ROS simulator clearly show the effects of the
nonlinearities in the consensus and the limitations of numerical
algorithms bound to solving ordinary differential equations
that describe over-simplified models, in which aspects such
as unmodelled dynamics, friction and, actuator and sensor
dynamics are neglected.
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APPENDIX

A continuous function t 7→ φ(t) is said to be in L∞ (or to
be bounded) if supt≥0 |φ(t)| <∞. It is said to belong to Lp
if
∣∣∣ ∫ t

0

φ(s)ds
∣∣∣p <∞.

Lemma A.1 (Barbălat [65]): If the function t 7→ f(t) is

uniformly continuous and lim
t→∞

∫ t

0

f(s)ds exists and is finite,

then f(t)→ 0 as t→∞. �

Remark 8: The function t 7→ f(t) is uniformly continuous
if ḟ ∈ L∞, but the latter is not necessary. •

Lemma A.2 (Lemma 3.2.5 in [61]): If for a function t 7→
f(t), f and ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞), then
f(t)→ 0 as t→∞. �

Lemma A.3 (Theorem 5 in [66]): Let p ∈ [1,∞) and q ∈
(1,∞]. Every function t 7→ f(t) such that f ∈ Lp and ḟ ∈ Lq
tends to zero at infinity. �

Proof of Claim 1: Consider the energy-like function defined
in (45b). Its total derivative evaluated along the trajectories of
(44) yields

Ėi =− dvi|ϑ̇vi|2 − pviϑ̇>vievi
=− dvi|ϑ̇vi|2 − pvi

∑
j∈Ni

aij ϑ̇
>
vi

(
ϑvi − ϑvj

)
− pvi

∑
j∈Ni

aij ϑ̇
>
vi

∫ t

t−Tji(t)

ϑ̇vj(η)dη,

where, to obtain the second equation, we employed (36) and
the fact that

ϑvj − ϑvj(t− Tji(t)) =

∫ t

t−Tji(t)

ϑ̇vj(η)dη.

Consider, next, the Lyapunov-Krasovskı̆i functional (45a).
Its total derivative, under Assumption 2 and invoking [50,
Lemma 6.1], yields

V̇ = −
∑
i≤N

[
1

pvi
Ėi +

∑
j∈Ni

aij ϑ̇
>
vi[ϑvi − ϑvj ]
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− 1

2βi

∑
j∈Ni

aij

[
T

2

ji|ϑ̇vj |2 − T ji
∫ t

t−T ji

|ϑ̇vj |2(η)dη
] ]
.

Hence, V̇ satisfies

V̇ = −
∑
i≤N

[
dvi
pvi
|ϑ̇vi|2 +

∑
j∈Ni

aij ϑ̇
>
vi

∫ t

t−Tji(t)

ϑ̇vj(η)dη

− 1

2βi

∑
j∈Ni

aij

[
T

2

ji|ϑ̇vj |2 − T ji
∫ t

t−T ji

|ϑ̇vj |2(η)dη
]]
.

Applying Young’s and Cauchy-Schwarz’ inequalities on the
second term of the right-hand side of V̇i, we get

−ϑ̇>vi
∫ t

t−Tji(t)

ϑ̇vj(η)dη ≤βi
2
|ϑ̇vi|2 +

1

2βi

∣∣∣∣∫ t

t−Tji(t)

ϑ̇vj(η)dη

∣∣∣∣2
≤βi

2
|ϑ̇vi|2 +

T ji
2βi

∫ t

t−T ji

|ϑ̇vj(η)|2dη,

for any βi > 0. This yields

V̇ ≤ −
∑
i≤N

[[dvi
pvi
− βi

2
`ii

]
|ϑ̇vi|2 −

∑
j∈Ni

aij
T

2

ji

2βi
|ϑ̇vj |2

]
,

where `ii is the ith element in the diagonal of the Laplacian
matrix —see (11). Then, proceeding as in [67] and defining
σ
(
|ϑ̇vi|2

)
:=
[
|ϑ̇v1|2 · · · |ϑ̇vN |2

]>
and

A =


dv1

pv1
− β1

2 `11 −T
2
21

2β1
a12 . . . −T

2
N1

2β1
a1N

−T
2
12

2β2
a21

dv2

pv2
− β2

2 `22 . . . −T
2
N2

2β2
a2N

...
...

. . .
...

−T
2
1N

2βN
aN1 −T

2
2N

2βN
aN2 . . . dvN

pvN
− βN

2 `NN

 ,

we obtain V̇ ≤ −1>NAσ
(
|ϑ̇vi|2

)
or, equivalently, Inequality

(46). Thus, after (41), it follows that there exists λvi > 0 such
that

V̇ ≤ −
∑
i≤N

λvi|ϑ̇vi|2 ≤ 0.

Integrating on both sides of the second inequality latter along
the trajectories and observing that V is positive definite and
radially unbounded with respect to vi, ϑ̇vi, ϑvi − z̄i, and
ϑvi − ϑvj , it follows that all corresponding trajectories are
bounded. Using this and integrating on both sides of V̇ ≤
− ∑
i≤N

λvi|ϑ̇vi|2 we obtain that ϑ̇vi ∈ L2. This establishes the

first part of the claim.
Now, from the above it follows that evi ∈ L∞ and ϑ̈vi ∈
L∞ too and, after Barbălat’s Lemma, that ϑ̇vi → 0. To see
this more clearly, note that

|evi|2 =

∣∣∣∣ ∑
j∈Ni

aij

[
ϑvi − ϑvj +

∫ t

t−Tji(t)

ϑ̇vj(σ)dσ
] ∣∣∣∣2

≤ `ii
∑
j∈Ni

aij |ϑvi − ϑvj |2

+`ii
∑
j∈Ni

aij

∣∣∣∣ ∫ t

t−Tji(t)

ϑ̇vj(σ)dσ

∣∣∣∣2

≤ `ii
∑
j∈Ni

aij |ϑvi − ϑvj |2

+ `ii
∑
j∈Ni

aijT ji

∫ t

0

|ϑ̇vj(σ)|2dσ (54)

and all the terms on the right hand side of the last inequality
are bounded. That ϑ̇vi → 0 follows invoking Lemma 2 above,
which is a well-known consequence of Barbălat’s Lemma. •

Proof of Claim 2: Akin to the function Ei for the system
Σvi, consider the energy-type function Hi defined in (47b),
which is positive definite and radially unbounded in ϑ̇ωi, ωi,
and ϑωi− θi. Its total time-derivative along the trajectories of
(43) —with αi ≡ 0— yields

Ḣi =− dωi|ϑ̇ωi|2 − pωi
∑
j∈Ni

aij ϑ̇
>
ωi

(
ϑωi − ϑωj

)
− pωi

∑
j∈Ni

aij ϑ̇
>
ωi

∫ t

t−Tji(t)

ϑ̇ωj(η)dη.

Then, proceeding as in the proof of Claim 1 we compute
the total derivative of the Lyapunov-Krasovskı̆i functional W
defined in (47a) to obtain (47b). Under condition (42) there
exists λωi > 0 such that

Ẇ ≤ −
∑
i≤N

λωiϑ̇
2
ωi.

The first part of the Claim follows integrating along trajectories
as in the Proof of Claim 1. That eωi ∈ L∞ follows from the
bound

|eωi|2 ≤ `ii
∑
j∈Ni

aij |ϑωi − ϑωj |2

+ `ii
∑
j∈Ni

aijT ji

∫ t

0

|ϑ̇ωj(σ)|2dσ

—cf. (54), and observing that all the terms on the right-hand
side are bounded. In turn, from (43c), we conclude that ϑ̈ωi ∈
L∞. Thus, from Lemma A.2 we have ϑ̇ωi → 0. •

Proof of Claim 3: First we show that lim
t→∞

ϑ̈ωi(t) = 0 by

invoking Barbălat’s Lemma. To that end, note that since ϑ̇ωi →
0,

lim
t→∞

∫ t

0

ϑ̈ωi(σ)dσ = lim
t→∞

ϑ̇ωi(t)− ϑ̇ωi(0) = −ϑ̇ωi(0).

On the other hand, ϑ̈ωi is uniformly continuous since ϑ(3)ωi is
bounded. To see this, note that

ϑ
(3)
ωi = −dωiϑ̈ωi − kωi(ϑ̇ωi − ωi)− pωiėωi (55)

where ϑ̈ωi, ϑ̇ωi, ωi were showed to be bounded above and so is
ėωi, in view of Assumption 3. Furthermore, from the latter and
ϑ̇ωi → 0 it also follows that ėωi → 0. Similarly, Assumption
3 and ϑ(3)ωi , ϑ̈ωi, ω̇i ∈ L∞ imply, in turn, that ϑ(4)ωi ∈ L∞. This
implies that ϑ(3)ωi → 0 and, in view of (55), also ωi → 0. Thus,

lim
t→∞

∫ t

0

ω̇i(σ)dσ = lim
t→∞

ωi(t)− ωi(0) = −ωi(0).

In addition, ω̇i is uniformly continuous because

ω̈i = −kωi(ωi − ϑ̇ωi)
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is bounded so, after Barbălat’s Lemma it follows that ω̇i → 0
which, in view of (43), implies that (50) holds.

Also, from the third equation in (43), restricted to αi ≡
0, we see that ϑ̇ωi, ϑ̈ωi and θi − ϑωi → 0 implies that
lim
t→∞

eωi(t) = 0 or, equivalently, that

lim
t→∞

∑
j∈Ni

aij

[
ϑωi(t)− ϑωj(t) +

∫ t

t−Tji(t)

ϑ̇ωj(σ)dσ

]
= 0.

Then, since ϑ̇ωi → 0 and Tji(t) is globally bounded (see
Assumption 3), we have

lim
t→∞

∑
j∈Ni

aij [ϑωi(t)− ϑωj(t)] = 0

which implies that lim
t→∞

Lϑω(t) = 0, where ϑω := col(ϑωi) ∈
RN . Equivalently, there exists a constant θc ∈ R such that
lim
t→∞

ϑωi(t) = θc. This and (50) imply (49). •
Proof of Claim 4: Consider again the second equation in

(44). A simple inspection of the latter and of its first derivative,
show that, since v̇i, v̈i, ϑ̇vi, and vi → 0,

ϕ(θi)
>(z̄i − ϑvi)→ 0, ωiϕ(θi)

⊥>(z̄i − ϑvi)→ 0. (56)

On the other hand, the solutions of the equation

ϕ(θi)
>(z̄i − ϑvi) = 0 (57)

are of the form (z̄i − ϑvi) = c1ϕ(θi)
⊥ with c1 ∈ R while the

solutions of the equation

ωiϕ(θi)
⊥>(z̄i − ϑvi) = 0 (58)

are of the form (z̄i−ϑvi) = c2ωiϕ(θi) with c2 ∈ R. Therefore,
(57) and (58) hold together if and only if cωiϕ(θi) = ϕ(θi)

⊥

with c := c1/c2. In turn, the latter may hold only if either
c = 0 or ωi = 0. Now, if c = 0 then (z̄i − ϑvi) = 0. Thus,
(56) imply that either (z̄i− ϑvi)→ 0, which is to be showed,
or ωi → 0. In the latter case

lim
t→∞

∫ t

0

ω̇(s)ds = −ωi(0) <∞ (59)

and since ω̈i ∈ L∞ we obtain, from Barbălat’s Lemma, that
ω̇i → 0. From a similar argument we conclude that ω̈i → 0.
Next, we show that ωi, ω̇i, ω̈i → 0 and ψ̇i 6→ 0 —see (40)—
imply together that (z̄i−ϑvi)→ 0, so the proof ends. To that
aim, we recall that the total derivative of W in (47a) along
the trajectories of Σω satisfies

Ẇ ≤ −
∑
i≤N

[
λωiϑ̇

2
ωi −

1

pωi
αiωi

]
=: −Ψ

in which we have dropped the arguments to avoid a cumber-
some notation. Now, integrating on both sides of the inequality
Ψ ≤ −Ẇ , along the system’s trajectories, and using the
boundedness of W , we see that Ψ ∈ L1. Furthermore, all
the terms on the right-hand side of

Ψ̇ =
∑
i≤N

[
2λωiϑ̇ωiϑ̈ωi −

1

pωi

[
α̇iωi + αiω̇i

]]
depend, also, on bounded functions of time, so Ψ̇ ∈ L∞. It
follows, after Lemma A.3, that Ψ → 0. Since αi ∈ L∞ and

ωi → 0 it follows, in turn, that ϑ̇ωi → 0. Therefore, since ωi,
ω̇i, ω̈i, ϑ̇ωi, ϑ̇vi → 0, all the terms in

ω̈i =− kωi(ωi − ϑ̇ωi) + kαiψ̇i(t)ϕ(θi)
⊥> (ϑvi − z̄i)

− kαiωiψi(t)ϕ(θi)
> (ϑvi − z̄i) + kαiψi(t)ϕ(θi)

⊥>ϑ̇vi

tend to zero but in view of (56) and ψ̇i 6→ 0 we necessarily
have (ϑvi − z̄i)→ 0. •
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