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1 Introduction

Federated learning (FL) is a distributed machine learning

(ML) approach, which attracted attention thanks to its abil-

ity of training ML models while keeping raw data under the

control of their producer, i.e., end users. However, the long

list of privacy attacks (e.g., [11, 13, 18]) prove that the model

updates shared in the context of FL training still constitute

a threat to users’ privacy. In particular, the model’s gradi-

ents [17], generally used to update model parameters, may

leak sensitive information enabling for instance the recon-

struction of raw data samples or learning hidden properties

about the participating users (e.g., their race, gender).

Trusted execution environments (TEEs) [15] are recent

turn-key solutions that provide program execution with

privacy and confidentiality guarantees (e.g., ARM Trust-

Zone [14], Intel SGX [4], AMD SEV [7]). Typically, TEEs

can execute secure enclaves, shielding read and write access

to an application’s protected code and data against com-

promised operating systems, or system libraries. This work

provides a secure FL scheme to mitigate inference attacks

using TEEs.

Context and threat model. We study three types of in-

ference attacks, all launched by a compromised or malicious

FL client: DRIA (Data-Reconstruction Inference Attack) [18],

MIA (Membership Inference Attack) [13] and DPIA (Data-

Property Inference Attack) [11]. We detail their threat model

as defined in the original papers.

(1) DRIA aims at reconstructing original input data based

on the emitted model gradients. The attacker is a spyware

running in an FL client device, monitoring the FL training

process, particularly the gradients produced. It looks for two

emitted gradients, with respect to original input and with re-

spect to attacker’s random input, respectively. Then, through

an optimisation algorithm similar to Gradient Descent, the

attacker minimizes the distance between the two gradients

by optimising the random data. At the end of the optimisa-

tion process, the attacker manages to get a random data as

close as possible to the training data.

(2) MIA’s goal is to learn whether specific data instances are

present in the global model training dataset (𝐷). We assume

that a malicious FL client has prior knowledge about 𝐷 , i.e.,
some of the data part of𝐷 (𝐷1 ⊂ 𝐷) and some of the data that

aren’t (𝐷2). The attacker trains a binary classifier (Attack

Model) on global model gradients with respect to 𝐷1 and 𝐷2.

Further, if the attacker wants to make an inference about

membership probability of any data, he feeds it to the global

model, gets its gradients, then feed them to his Attack Model.

(3) DPIA infers the presence probability of private properties

in the input data. As MIA, we assume a malicious FL client

trains a binary classifier (Attack Model) on global model

gradients with respect to attacker’s auxiliary data, collected

along many FL cycles. Then, if the attacker wants to infer

the presence probability of a private property among batches

of data used to train the global model during an FL cycle, he

computes the difference between two consecutive snapshots

of the global model to get the aggregated gradients, and fed

them to the Attack Model.

In all the previous threat models, the FL Server is assumed

to be a honest entity that uses Secure Aggregation [2] to

avoid spying on individual FL client gradients, preventing

privacy attacks from him self. All threat models assume an

honest-but-curious attacker not interfering with the normal

FL process and message exchanges. Finally, we assume the

used ML models are exclusively feed-forward neural net-

works [5] (e.g., fully-connected and convolutional ones [1])

trained by stochastic gradient descent [3], a popular opti-

mization for feed-forward networks.

Goals.We propose GradSec, a TEE-based gradient pro-

tection mechanism for FL architectures. Intuitively, reducing

the amount of gradients accessible from the model will re-

duce the accuracy of inference attacks. However, storing

the optimization process for the entire FL model into an en-

clave will introduce large overheads and increase the attack

surface. Unlike previous approaches (i.e., DarkneTZ [12]),

GradSec can protect non-successive layers of the FLmodel, a

strategy which can substantially reduce the overheads while

providing similar levels of protection against attacks.

2 GradSec: architecture and workflow

GradSec is a TEE-based scheme that aims at securing model

gradients during the FL training. Our design is driven by two

main observations on existing neural network systems: (i)
An attacker can compute the difference between two consec-

utive snapshots of a model to deduce the gradients. (ii) An
attacker can follow the back-propagation computation flow

when the gradients are naturally emitted during training.
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GradSec protects the model parameters and the opera-

tions required for the gradient computations of a layer. It sup-

ports two execution modes. In static mode, we fix in advance

a subset of layers to be protected in the TEE enclave during

all the FL cycles. This approach is similar to DarkneTZ [12].

We overcome DarkneTZ’s limitation by implementing the

ability to protect non-successive layers inside the TEE en-

clave. In the dynamic mode the protected layers can change

from one FL cycle to another by leveraging a moving win-

dow (𝑀𝑊 ), defined by two parameters: its size 𝑠𝑖𝑧𝑒𝑀𝑊 (the

number of successive layers protected in the TEE at a time)

and its probability distribution𝑉𝑀𝑊 (the probability that the

window protects a specific set of layers).

DRIA and MIA are single-shot attacks. Hence, an attacker

only needs one iteration of model training to get the gradi-

ents needed for the attack model. Therefore, for such attacks

only GradSec static mode can be effective. Instead, the DPIA

attack is carried out over multiple FL cycles, giving dynamic
GradSec sufficient time and opportunities to vary the pro-

tected layers.

As shown in our preliminary evaluation results, we eval-

uated the efficiency of the static mode against all the con-

sidered attacks (DRIA, MIA and DPIA), limiting instead the

dynamic mode to the DPIA.

3 Preliminary Evaluation

We consider two distinct training models and real-world

datasets. We launched DRIA and MIA against the model

LeNet in [9] (4 convolutional layers and 1 fully connected

layer) using CIFAR-100 [8]. We rely on the DPIA official

implementation [16] (3 convolutional layers and 2 fully con-

nected layers) using the LFW dataset [6].

We measure the performance of DRIA via the 𝐼𝑚𝑎𝑔𝑒𝐿𝑜𝑠𝑠

metric, i.e., the euclidean distance between the attacker’s

infered image and the original FL client image fed to the

model. We measure the performance of MIA and DPIA using

𝐴𝑈𝐶 , i.e., an aggregated measure of the attack model perfor-

mance considering all the possible classification thresholds.

It is statistically consistent and more discriminating measure

than accuracy [10]. An attack model with an AUC of 0.5 is

considered as inefficient and similar to a random guess.

DRIA. Securing early layers (especially the 2𝑛𝑑 layer)

with static GradSec is sufficient to make the attacker get a

completely blurry reconstructed image, thus a big 𝐼𝑚𝑎𝑔𝑒𝐿𝑜𝑠𝑠

like shown in Figure 1.

MIA. Securing tail layers (i.e., the 5𝑡ℎ layer) with static
GradSec significantly lowers the attack 𝐴𝑈𝐶 from 0.96 to

0.85. Protecting more layers show little benefits, as the 𝐴𝑈𝐶

attack only reaches 0.80 with last 4 layers protected as shown

in Table 1.

DPIA. Protecting individual layers using static GradSec
proves barely effective against this attacks. We just manage

to hit an AUC rate of 0.88 by protecting the 4th layer. While it

was possible to lower the𝐴𝑈𝐶 down to 0.70 with 4 protected
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Figure 1. ImageLoss of two infered images.

None L5 L5+L4 L5+L4+L3 L5+L4+L3+L2

AUC 0.95 0.85 0.84 0.82 0.8

Table 1. AUC of MIA with various protected layers.

layers inside the enclave, protecting 4 layers uses a lot of

secure memory, a scarce resource shared with other Secure

Applications. However, GradSec in dynamic mode is able to

achieve the sameAUC rate (0.70) with only two simultaneous

layers inside the enclave (𝑠𝑖𝑧𝑒𝑀𝑊 = 2). Finally, we manage

to lower the AUC further to 0.64 and 0.62 with 𝑠𝑖𝑧𝑒𝑀𝑊 = 3

and 𝑠𝑖𝑧𝑒𝑀𝑊 = 4 respectively. These results are resumed in

Tables 2 and 3.

None L4 L3+L4 L2+L3+L4 L1+L2+L3+L4

AUC 0.94 0.88 0.83 0.79 0.70

Table 2. AUC of DPIA using Static GradSec

None MW=2 MW=3 MW=4

AUC 0.94 0.71 0.64 0.62

Table 3. AUC of DPIA using Dynamic GradSec

Grouped protection. Given its ability to protect non-

successive layers, GradSec is able to simultaneously mini-

mize the impact of both DRIA and MIA, without the need to

protect all intermediate layers as required in DarkneTZ. By

only protecting the 2
𝑛𝑑

and 5
𝑡ℎ

layer, GradSec can reduce

the memory footprint of DarkneTZ by 10% while providing

similar levels of protection.

4 Conclusion and Future Work

We presented GradSec, a TEE-based protection mechanism

that improves the FL privacy guarantees. GradSec can op-

erate in two modes: static and dynamic. Static GradSec can

simultaneously protect against DRIA and MIA attacks while

dynamic GradSec is able to increase the protection against

DPIA.
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