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Introduction

Federated learning (FL) is a distributed machine learning (ML) approach, which attracted attention thanks to its ability of training ML models while keeping raw data under the control of their producer, i.e., end users. However, the long list of privacy attacks (e.g., [START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF][START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF][START_REF] Zhu | Deep leakage from gradients[END_REF]) prove that the model updates shared in the context of FL training still constitute a threat to users' privacy. In particular, the model's gradients [START_REF] Hongxu Yin | See through gradients: Image batch recovery via gradinversion[END_REF], generally used to update model parameters, may leak sensitive information enabling for instance the reconstruction of raw data samples or learning hidden properties about the participating users (e.g., their race, gender).

Trusted execution environments (TEEs) [START_REF] Sabt | Trusted execution environment: What it is, and what it is not[END_REF] are recent turn-key solutions that provide program execution with privacy and confidentiality guarantees (e.g., ARM Trust-Zone [START_REF] Pinto | Demystifying arm trustzone: A comprehensive survey[END_REF], Intel SGX [START_REF] Costan | Intel sgx explained[END_REF], AMD SEV [START_REF] Kaplan | Amd memory encryption[END_REF]). Typically, TEEs can execute secure enclaves, shielding read and write access to an application's protected code and data against compromised operating systems, or system libraries. This work provides a secure FL scheme to mitigate inference attacks using TEEs.

Context and threat model. We study three types of inference attacks, all launched by a compromised or malicious FL client: DRIA (Data-Reconstruction Inference Attack) [START_REF] Zhu | Deep leakage from gradients[END_REF], MIA (Membership Inference Attack) [START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF] and DPIA (Data-Property Inference Attack) [START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF]. We detail their threat model as defined in the original papers.

(1) DRIA aims at reconstructing original input data based on the emitted model gradients. The attacker is a spyware running in an FL client device, monitoring the FL training process, particularly the gradients produced. It looks for two emitted gradients, with respect to original input and with respect to attacker's random input, respectively. Then, through an optimisation algorithm similar to Gradient Descent, the attacker minimizes the distance between the two gradients by optimising the random data. At the end of the optimisation process, the attacker manages to get a random data as close as possible to the training data.

(2) MIA's goal is to learn whether specific data instances are present in the global model training dataset (𝐷). We assume that a malicious FL client has prior knowledge about 𝐷, i.e., some of the data part of 𝐷 (𝐷 1 ⊂ 𝐷) and some of the data that aren't (𝐷 2 ). The attacker trains a binary classifier (Attack Model) on global model gradients with respect to 𝐷 1 and 𝐷 2 . Further, if the attacker wants to make an inference about membership probability of any data, he feeds it to the global model, gets its gradients, then feed them to his Attack Model.

(3) DPIA infers the presence probability of private properties in the input data. As MIA, we assume a malicious FL client trains a binary classifier (Attack Model) on global model gradients with respect to attacker's auxiliary data, collected along many FL cycles. Then, if the attacker wants to infer the presence probability of a private property among batches of data used to train the global model during an FL cycle, he computes the difference between two consecutive snapshots of the global model to get the aggregated gradients, and fed them to the Attack Model.

In all the previous threat models, the FL Server is assumed to be a honest entity that uses Secure Aggregation [START_REF] Bonawitz | Practical secure aggregation for privacy-preserving machine learning[END_REF] to avoid spying on individual FL client gradients, preventing privacy attacks from him self. All threat models assume an honest-but-curious attacker not interfering with the normal FL process and message exchanges. Finally, we assume the used ML models are exclusively feed-forward neural networks [START_REF] Fine | Feedforward neural network methodology[END_REF] (e.g., fully-connected and convolutional ones [START_REF] Saad Albawi | Understanding of a convolutional neural network[END_REF]) trained by stochastic gradient descent [START_REF] Bottou | Stochastic gradient descent tricks[END_REF], a popular optimization for feed-forward networks.

Goals. We propose GradSec, a TEE-based gradient protection mechanism for FL architectures. Intuitively, reducing the amount of gradients accessible from the model will reduce the accuracy of inference attacks. However, storing the optimization process for the entire FL model into an enclave will introduce large overheads and increase the attack surface. Unlike previous approaches (i.e., DarkneTZ [START_REF] Mo | Darknetz: towards model privacy at the edge using trusted execution environments[END_REF]), GradSec can protect non-successive layers of the FL model, a strategy which can substantially reduce the overheads while providing similar levels of protection against attacks.

GradSec: architecture and workflow

GradSec is a TEE-based scheme that aims at securing model gradients during the FL training. Our design is driven by two main observations on existing neural network systems: (i) An attacker can compute the difference between two consecutive snapshots of a model to deduce the gradients. (ii) An attacker can follow the back-propagation computation flow when the gradients are naturally emitted during training.

GradSec protects the model parameters and the operations required for the gradient computations of a layer. It supports two execution modes. In static mode, we fix in advance a subset of layers to be protected in the TEE enclave during all the FL cycles. This approach is similar to DarkneTZ [START_REF] Mo | Darknetz: towards model privacy at the edge using trusted execution environments[END_REF]. We overcome DarkneTZ's limitation by implementing the ability to protect non-successive layers inside the TEE enclave. In the dynamic mode the protected layers can change from one FL cycle to another by leveraging a moving window (𝑀𝑊 ), defined by two parameters: its size 𝑠𝑖𝑧𝑒 𝑀𝑊 (the number of successive layers protected in the TEE at a time) and its probability distribution 𝑉 𝑀𝑊 (the probability that the window protects a specific set of layers).

DRIA and MIA are single-shot attacks. Hence, an attacker only needs one iteration of model training to get the gradients needed for the attack model. Therefore, for such attacks only GradSec static mode can be effective. Instead, the DPIA attack is carried out over multiple FL cycles, giving dynamic GradSec sufficient time and opportunities to vary the protected layers.

As shown in our preliminary evaluation results, we evaluated the efficiency of the static mode against all the considered attacks (DRIA, MIA and DPIA), limiting instead the dynamic mode to the DPIA.

Preliminary Evaluation

We consider two distinct training models and real-world datasets. We launched DRIA and MIA against the model LeNet in [START_REF] Han | [END_REF] (4 convolutional layers and 1 fully connected layer) using CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. We rely on the DPIA official implementation [16] (3 convolutional layers and 2 fully connected layers) using the LFW dataset [START_REF] Gary | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF].

We measure the performance of DRIA via the 𝐼𝑚𝑎𝑔𝑒𝐿𝑜𝑠𝑠 metric, i.e., the euclidean distance between the attacker's infered image and the original FL client image fed to the model. We measure the performance of MIA and DPIA using 𝐴𝑈 𝐶, i.e., an aggregated measure of the attack model performance considering all the possible classification thresholds. It is statistically consistent and more discriminating measure than accuracy [START_REF] Charles X Ling | Auc: a statistically consistent and more discriminating measure than accuracy[END_REF]. An attack model with an AUC of 0.5 is considered as inefficient and similar to a random guess.

DRIA. Securing early layers (especially the 2𝑛𝑑 layer) with static GradSec is sufficient to make the attacker get a completely blurry reconstructed image, thus a big 𝐼𝑚𝑎𝑔𝑒𝐿𝑜𝑠𝑠 like shown in Figure 1.

MIA. Securing tail layers (i.e., the 5𝑡ℎ layer) with static GradSec significantly lowers the attack 𝐴𝑈 𝐶 from 0.96 to 0.85. Protecting more layers show little benefits, as the 𝐴𝑈 𝐶 attack only reaches 0.80 with last 4 layers protected as shown in Table 1.

DPIA. Protecting individual layers using static GradSec proves barely effective against this attacks. We just manage to hit an AUC rate of 0.88 by protecting the 4th layer. While it was possible to lower the 𝐴𝑈 𝐶 down to 0.70 with 4 protected Grouped protection. Given its ability to protect nonsuccessive layers, GradSec is able to simultaneously minimize the impact of both DRIA and MIA, without the need to protect all intermediate layers as required in DarkneTZ. By only protecting the 2 𝑛𝑑 and 5 𝑡ℎ layer, GradSec can reduce the memory footprint of DarkneTZ by 10% while providing similar levels of protection.

Conclusion and Future Work

We presented GradSec, a TEE-based protection mechanism that improves the FL privacy guarantees. GradSec can operate in two modes: static and dynamic. Static GradSec can simultaneously protect against DRIA and MIA attacks while dynamic GradSec is able to increase the protection against DPIA.

Figure 1 .

 1 Figure 1. ImageLoss of two infered images. None L5 L5+L4 L5+L4+L3 L5+L4+L3+L2 AUC 0.95 0.85 0.84 0.82 0.8

Table 1 .

 1 AUC of MIA with various protected layers.

	None L4 L3+L4 L2+L3+L4 L1+L2+L3+L4
	AUC 0.94 0.88	0.83	0.79	0.70

layers inside the enclave, protecting 4 layers uses a lot of secure memory, a scarce resource shared with other Secure Applications. However, GradSec in dynamic mode is able to achieve the same AUC rate (0.70) with only two simultaneous layers inside the enclave (𝑠𝑖𝑧𝑒 𝑀𝑊 = 2). Finally, we manage to lower the AUC further to 0.64 and 0.62 with 𝑠𝑖𝑧𝑒 𝑀𝑊 = 3 and 𝑠𝑖𝑧𝑒 𝑀𝑊 = 4 respectively. These results are resumed in Tables

2 and 3

.

Table 2 .

 2 AUC of DPIA using Static GradSec

	None MW=2 MW=3 MW=4
	AUC 0.94	0.71	0.64	0.62

Table 3 .

 3 AUC of DPIA using Dynamic GradSec